
HAL Id: hal-03356196
https://hal.science/hal-03356196

Submitted on 27 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Addressing the Empty Answer Problem in Uncertain
Knowledge Bases

Ibrahim Dellal, Stéphane Jean, Allel Hadjali, Brice Chardin, Mickaël Baron

To cite this version:
Ibrahim Dellal, Stéphane Jean, Allel Hadjali, Brice Chardin, Mickaël Baron. On Addressing the Empty
Answer Problem in Uncertain Knowledge Bases. Proceedings of the 28th International Conference
on Database and Expert Systems Applications, Aug 2017, Lyon, France. pp.120-129, �10.1007/978-3-
319-64468-4_9�. �hal-03356196�

https://hal.science/hal-03356196
https://hal.archives-ouvertes.fr

On Addressing the Empty Answer Problem in
Uncertain Knowledge Bases

Ibrahim Dellal, Stéphane Jean, Allel Hadjali, Brice Chardin, Mickaël Baron

LIAS/ISAE-ENSMA - University of Poitiers
1, Avenue Clement Ader, 86960 Futuroscope Cedex, France

{firstname.lastname}@ensma.fr

Abstract. Recently, several large Knowledge Bases (KBs) have been
constructed by mining the Web for information. As an increasing amount
of inconsistent and non-reliable data are available, KBs facts may be un-
certain and are then associated with an explicit certainty degree. When
querying these uncertain KBs, users seek high quality results i.e., results
that have a certainty degree greater than a given threshold α. However,
as they usually have only a partial knowledge of the KBs contents, their
queries may be failing i.e., they return no result for the desired certainty.
To prevent this frustrating situation, instead of returning an empty set
of answers, our approach explains the reasons of the failure with a set
of αMinimal Failing Subqueries (αMFSs), and computes alternative re-
laxed queries, called αMaXimal Succeeding Subqueries (αXSSs), that are
as close as possible to the initial failing query. Moreover, as the user may
not always be able to provide an appropriate threshold α, we propose
two algorithms to compute the αMFSs and αXSSs for other thresholds.
Our experiments on the WatDiv benchmark show the relevance of our
algorithms compared to a baseline method.

1 Introduction

A Knowledge Base (KB) is a collection of entities and facts about them. Well-
known examples of KBs include Knowledge Vault [1] and YAGO [2]. These KBs
contain billions of facts captured as RDF triples (subject, predicate, object) and
are queried with the SPARQL language. As these KBs have been constructed
by mining the Web for information, their facts are uncertain (i.e., potentially
inconsistent). Therefore, an explicit degree of certainty is assigned to KB facts.
When querying uncertain KBs, users expect to obtain high quality results i.e.,
results that have a certainty degree greater than a given threshold α. However,
as they rarely know the underlying structure and contents of a KB, they may be
faced with the empty answer problem i.e., they obtain no result or results with a
degree of certainty lower than α. This is not an uncommon problem. Indeed, the
study conducted by Saleem et al. on SPARQL endpoints shows that ten percent
of queries submitted to DBpedia between May and July 2010 returned empty
results [3]. Instead of solely returning an empty set as the answer of a query, the
system might help the user understand the reasons of this failure by providing

him/her with a set of Minimal Failing Subqueries (MFSs). Moreover, interesting
non-failing relaxed queries, called MaXimal Succeeding Subqueries (XSSs), might
be suggested to the user by the system as well.

The problem of computing MFSs and XSSs of SPARQL queries expressed on
KBs has already been addressed by Fokou et al. [4]. In this paper, we consider
a generalization of MFSs and XSSs in the context of uncertain KBs. We call
αMFSs and αXSSs the failure causes and maximal relaxed subqueries of a query
that filters results according to their certainty degree and a given threshold α.
We first show under which conditions the computation of MFSs and XSSs can be
directly adapted to αMFSs and αXSSs. In this setting, the user has to define the
threshold α. However, as she/he may not have an idea of the certainty degrees
assigned to the KB RDF triples, we also investigate the idea of suggesting relaxed
queries with lower α thresholds. This kind of relaxation requires the computation
of αMFSs and αXSSs for multiple thresholds α. To save computation time, some
properties between αMFSs and αXSSs of different thresholds are established
and exploited. Thus, depending on which order the α values are considered, two
approaches Top-Down and Bottom-Up are discussed. We run the experiments
on the WatDiv benchmark with the Jena TDB quadstore to show the impact of
our approaches.

The paper is structured as follows. Section 2 formalizes the problem. Section 3
defines the conditions under which a previous work algorithm can be directly
adapted to find the αMFSs and αXSSs for a given α. Section 4 describes the
two proposed approaches to compute αMFSs and αXSSs for a set of thresholds.
Section 5 discusses the experimental evaluation performed. Section 6 details
related work and Section 7 concludes.

2 Problem statement

An RDF triple is a triple (subject, predicate, object) ∈ (U ∪B)×U×(U ∪B∪L)
where U is a set of URIs, B is a set of blank nodes and L is a set of literals.
We denote by T the union U ∪ B ∪ L. An RDF database (or triplestore) is
a set of RDF triples (denoted by TRDF). Each RDF triple has a trust score
representing the trustworthiness of the triple. This score is assigned with the
function tv : TRDF → [0, 1].

An RDF triple pattern t is a triple (subject, predicate, object) ∈ (U ∪ V)×
(U ∪ V) × (U ∪ V ∪ L), where V is a set of variables disjoint from the sets
U , B and L. We denote by var(t) ⊆ V the set of variables occurring in t. We
consider RDF queries defined as a conjunction of triple patterns: Q = t1∧· · ·∧tn.
The number of triple patterns of a query Q is denoted by |Q| and its variables
var(Q) =

⋃
var(ti).

A mapping µ from V to T is a partial function µ : V → T . For a triple pattern
t, we denote by µ(t) the triple obtained by replacing in t its variables var(t)
by their mapping µ(var(t)). Let D be an RDF database, t a triple pattern.
The evaluation of the triple pattern t over D denoted by [[t]]D is defined by:
[[t]]D = {µ | dom(µ) = var(t)∧µ(t) ∈ D}. Let Q be a query, the evaluation of Q

over D is defined by: [[Q]]D = [[t1]]D ./ · · · ./ [[tn]]D. Let µ be a solution of the
query Q = t1∧· · ·∧tn and aggreg be an aggregation function (e.g, the minimum),
the trust value of µ is defined by tv(µ,Q) = aggreg(tv(µ(t1)), · · · , tv(µ(tn))).
The evaluation of Q over D that returns trust weighted results with a threshold
α is defined by: [[Q]]αD = {µ ∈ [[Q]]D | tv(µ) ≥ α}.

Given a query Q = t1 ∧ · · · ∧ tn, a query Q′ = ti ∧ · · · ∧ tj is a subquery of Q,
Q′ ⊆ Q, iff {i, · · · , j} ⊆ {1, · · · , n}. If {i, · · · , j} ⊂ {1, · · · , n}, we say that Q′ is a
proper subquery of Q (Q′ ⊂ Q). An αMinimal Failing Subquery (αMFS) Q∗ of
a query Q for a given α is defined by: [[Q∗]]αD = ∅ ∧@Q′ ⊂ Q∗ such that [[Q′]]αD =
∅. The set of all αMFSs of a query Q for a given α is denoted by mfsα(Q). An
αMaximal Succeeding Subquery (αXSS) Q∗ of a query Q for a given α is
defined by: [[Q∗]]αD 6= ∅ ∧ @ Q′ such that Q∗ ⊂ Q′ ∧ [[Q′]]αD 6= ∅. The set of all
αXSSs of a query Q for a given α is denoted by xssα(Q).

Problem statement. We are concerned with computing mfsαi(Q) and
xssαi(Q) of a failing RDF query Q for a set of thresholds {α1, · · · , αn}.

3 αMFSs and αXSSs computation for a single α

In this section, we first give a direct adaptation of the Lattice-Based Approach
(LBA) proposed in [4] to compute the αMFSs and αXSSs of a query for a given α.
It has the same algorithmic complexity as LBA (detailed in [4]). αLBA explores
the lattice of subqueries by following a three-steps procedure.

1. Find an αMFS Q∗ of Q. Following Algorithm 1, αLBA removes iter-
atively each triple pattern ti from Q, resulting in the proper subquery Q′. If
Q′ fails for α, then Q′ contains an αMFS. Conversely, if Q′ succeeds, then each
αMFS of Q contains ti. The proof of this property relies on the fact that a
successful query cannot contain a failing query [4].

Algorithm 1: Find an αMFS of a failing RDF query Q

FindAnαMFS(Q, D, α)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D;

a threshold α
output: An αMFS of Q denoted by Q∗

1 Q∗ ← ∅; Q′ ← Q;
2 foreach triple pattern ti ∈ Q do
3 Q′ ← Q′ − ti;
4 if [[Q′ ∧Q∗]]αD 6= ∅ then
5 Q∗ ← Q∗ ∧ ti;

6 return Q∗;

2. Compute potential αXSSs i.e., the maximal queries that do not in-
clude the αMFS previously found. The set of potential αXSSs is denoted by
pxss(Q,Q∗). This set can be computed as follows:

pxss(Q,Q∗) =

{
∅, if |Q| = 1.

{Q− ti | ti ∈ Q∗}, otherwise.

3. Test potential αXSSs. If a subquery found during step 2 succeeds, it is
then an αXSS. If it fails, we apply the two previous steps on this particular sub-
query to find a new αMFS and its associated potential αXSSs. This is illustrated
by Algorithm 2. It is worth noting that this algorithm includes mechanisms to
avoid discovering the same αMFSs multiple times (lines 11-13).

Algorithm 2: Find the αMFSs and αXSSs of a query Q

αLBA(Q, D, α)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D;

a threshold α
outputs: The αMFSs and αXSSs of Q

1 Q∗ ←FindAnαMFS(Q,D,α);
2 pxss← pxss(Q,Q∗);
3 mfsα(Q)← {Q∗}; xssα(Q)← ∅;
4 while pxss 6= ∅ do
5 Q′ ← pxss.element(); // choose an element of pxss
6 if [[Q′]]αD 6= ∅ then // Q′ is an αXSS
7 xssα(Q)← xssα(Q) ∪ {Q′}; pxss← pxss− {Q′};
8 else // Q′ contains an αMFS
9 Q∗∗ ←FindAnαMFS(Q′, D, α);

10 mfsα(Q)← mfsα(Q) ∪ {Q∗∗};
11 foreach Q′′ ∈ pxss such that Q∗∗ ⊆ Q′′ do
12 pxss← pxss− {Q′′};
13 pxss← pxss ∪ {Qj ∈ pxss(Q′′, Q∗∗) | @Qk ∈

pxss ∪ xssα(Q) such that Qj ⊆ Qk};

14 return {mfsα(Q), xssα(Q)};

The αLBA algorithm relies on the fact that a successful query cannot con-
tain a failing query. In the context of uncertain KBs, this property does not
always hold depending on the chosen trust value aggregate function (aggreg).
For example, with the maximum aggregate function, the degree of certainty of
results potentially increases with additional triple patterns. Thus, a query may
be failing but not its subqueries. The algorithm αLBA can only be used if the
aggregate function aggreg is monotonic decreasing with respect to the subset
partial order. We omit the proof of this property.

Definition 1. Let aggreg : [0, 1]n → [0, 1] be an aggregate function, aggreg
is monotonic decreasing with respect to set1 inclusion if for all sets A and B
∈ [0, 1]n, A ⊆ B ⇒ aggreg(A) ≥ aggreg(B).

As examples of monotonic decreasing aggregate functions, we can cite the
minimum or the product restricted to values ∈ [0, 1].

1 For simplicity, this definition is restricted to sets but could be extended to multisets.

Proposition 1. Let aggreg be monotonic decreasing. [[Q]]αD = ∅ ∧ Q′ ⊂ Q ⇒
[[Q′]]αD = ∅. That is to say, if a proper subquery Q′ of Q fails for a given α
(using the aggreg function) then Q also fails for α.

4 αMFSs and αXSSs computation for a set of α

To find αMFSs and αXSSs for a set of α: {α1, · · ·αn}, the αLBA algorithm can
be applied for each αi. This baseline method is named NLBA. In this section,
we discuss various improvements of this approach. The idea is that the αMFSs
and αXSSs for a given threshold provide a set of hints to deduce some αMFSs
and αXSSs with higher (or lower) thresholds.

4.1 Bottom-Up Approach

In this section, we consider two thresholds αi and αj such that αi < αj . If Q∗ is
an αiMFS of the query Q, then Q∗ also fails for αj . However, this subquery is not
necessarily minimal for αj and therefore might not be an αjMFS. The following
proposition provides a condition under which an αiMFS is also an αjMFS. Due
to space constraints, proofs are omitted.

Proposition 2. Let αi and αj be two thresholds such that αi < αj and Q∗ be
an αiMFS of Q on a dataset D. If |Q∗| = 1, then Q∗ is also an αjMFS of Q.

As pointed out previously, for a subquery Q∗ to be an αjMFS of a query
Q, all its proper subqueries have to succeed. As stated in proposition 2, this
property is always true if the query contains a single triple pattern. Checking if
a query has a single triple pattern does not require any database access. Thus,
this case is checked first and all discovered αjMFS of Q are put in a set of
discovered αMFSs denoted by dmfsαj (Q). Otherwise, proving that Q∗ is an
αjMFS requires checking that all its subqueries succeed, by executing those |Q∗|
queries. In the worst case where Q∗ is not an αjMFS, |Q∗| queries are executed
without finding any αjMFS. Conversely, the algorithm FindAnαMFS of αLBA
(Algorithm 1) also requires |Q∗| queries but guarantees that an αMFS will be
found. Thus, our approach favors FindAnαMFS over executing the subqueries
of the αiMFS to discover new αjMFSs, as shown in Algorithm 3.

As for the αXSSs, an αiXSS of Q may fail for αj . The following proposition
shows that if it succeeds, it is then an αjXSS of Q.

Proposition 3. Let αi and αj be two thresholds such that αi < αj and Q∗ be
an αiXSS of Q on a dataset D. If [[Q∗]]

αj

D 6= ∅, then Q∗ is an αjXSS of Q.

Thus, discovering if an αiXSS is also an αjXSS only requires the execution
of a single query (αiXSS with the new threshold αj). This enables us to find a
set of discovered αjXSSs, denoted dxssαj (Q).

Algorithm 3 presents our complete approach to find some αjMFSs and αjXSSs
from the set of αiMFSs and αiXSSs. All αiMFSs that have one triple pattern

(oneAtom) are inserted in dmfsαj (Q) (line 1). Then, the algorithm iterates over
the αiMFSs with at least two triple patterns (the set FQ). It searches an αjMFS
Q∗ in a query Q′ of FQ with the FindAnαMFS algorithm (line 5). Then, it re-
moves all the failing queries of FQ that contain Q∗ since they cannot be minimal.
This process stops when all the queries in FQ have been processed (they have
either been used to find an αjMFS or removed as they contain a found αjMFS).
Some αjXSSs are then identified simply by executing each αiXSS and keeping
those that are succeeding (lines 9-10).

Algorithm 3: Find some αjMFSs and αjXSSs for Bottom-Up

DiscoverαMFSXSS(mfsαi(Q), xssαi(Q) D, αj)
inputs : The αiMFSs mfsαi(Q) of a query Q for a threshold αi;

The αiXSSs xssαi(Q) of a query Q for a threshold αi;
an RDF database D; a threshold αj > αi

outputs: A set of αjMFSs of Q denoted by dmfsαj (Q);
A set of αjXSSs of Q denoted by dxssαj (Q);

1 oneAtom← {Qa ∈ mfsαi(Q) | |Qa| = 1};
2 dmfsαj (Q)← oneAtom; FQ← mfsαi(Q)− oneAtom;
3 while FQ 6= ∅ do
4 Q′ ← fQ.dequeue();
5 Q∗ ← FindAnαMFS(Q′, D, αj);
6 dmfsαj (Q)← dmfsαj (Q) ∪ {Q∗};
7 foreach Q′′ ∈ FQ such that Q∗∗ ⊆ Q′′ do
8 FQ← FQ− {Q′′};

9 foreach Q∗ ∈ xssαi(Q) such that [[Q∗]]
αj

D 6= ∅ do
10 dxssαj (Q)← dxssαj (Q) ∪ {Q∗};
11 return {dmfsαj (Q), dxssαj (Q)};

Once some αjMFSs and αjXSSs have been discovered, an optimized version
of αLBA is executed that takes these discovered αjMFSs and αjXSSs as inputs,
then computes the remaining αjMFSs and αjXSSs.

4.2 Top-Down Approach

We also consider a Top-Down approach that computes the αMFSs and αXSSs
using threshold values in descending order. Thanks to the duality relation that
holds between αMFS and αXSS, the properties used in this approach are dual
to the ones used in the bottom-up approach.

5 Experimental Evaluation

Here we investigate the scalability of our approaches and compare them with
the baseline method NLBA (executing αLBA for each of the N thresholds).

Experimental Setup. We have implemented the proposed algorithms in
JAVA 1.8 64 bits. In our current implementation, these algorithms are run on top
of Jena TDB. We chose Jena TDB because it is a quadstore that allows us to store
the degree of certainty for each triple. Moreover, Jena TDB provides a low level
quad filter hook2 that we use to retrieve results satisfying the provided threshold.
Our implementation is available at https://forge.lias-lab.fr/projects/qars4ukb
with a tutorial to reproduce our experiments.

Our experiments were conducted on a Ubuntu Server 16.04 LTS system with
Intel XEON CPU E5-2630 v3 @2.4Ghz CPU and 16GB RAM. For our experi-
ments, we chose the min aggregate function.

Dataset and Queries. We used a dataset of 20M triples generated with the
WatDiv benchmark [5]. The certainty degree of each RDF triple were generated
randomly. We consider 7 failing queries3. These queries range between 1 and 15
triple patterns and cover the main query patterns: star (characterized by subject-
subject joins between triple patterns), chain (composed of object-subject joins)
and composite (made of other join patterns).

Experiment. Figure 1 shows the execution times of each algorithm for each
query on Jena TDB with the 20M triples dataset. Figure 2 gives the number
of executed queries by each algorithm. This experiment has been run with the
thresholds arbitrarily set to {0.2, 0.4, 0.6, 0.8}. In comparison with NLBA, our
algorithms execute fewer queries for finding the αMFSs and αXSSs of each work-
load query. Overall, Bottom-Up and Top-Down execute respectively 39% and
44% fewer queries than NLBA. As a consequence, these algorithms have shorter
execution times (a decrease of respectively 30% and 42% execution times for
Bottom-Up and Top-Down). For some queries, this improvement is important.
For example, NLBA needs 7 seconds to find the αMFSs and αXSSs of the query
Q2, whereas our algorithms need around 1 second. Execution times depend heav-
ily on the queries that our algorithms avoid executing. For example, our algo-
rithms execute around 30 queries for Q4 whereas NLBA needs 120 queries. For
Top-Down, this result is an important performance gain 94%. This is not the
case for Bottom-Up that has nearly the same execution time than NLBA. By
analyzing the executed queries, we find that Bottom-Up prevents the execution
of queries that have short execution times but keeps the most expensive ones.
Thus, the overall execution time is almost unchanged.

This experiment also shows that none of our algorithms provides the best
result for every query. Bottom-Up offers the best execution times for Q1, Q2
and Q5 whereas Top-Down is the most efficient for Q3, Q4 and Q6. Despite
executing the least number of queries, Bottom-Up does not offer the best total
execution time for this workload. Conversely, Top-Down executes the greatest
number of queries but has the best execution time. This is due to the fact that
our algorithm executes different queries that have different execution times. In
particular, Top-Down starts by searching the αMFSs and αXSSs for the highest
thresholds. The executed queries tend to be selective as the threshold is high

2 http://jena.apache.org/documentation/tdb/quadfilter.html
3 available at https://forge.lias-lab.fr/projects/qars4ukb/wiki/Doc#Queries

Q1 Q2 Q3 Q4 Q5 Q6 Q7

NLBA 1,36 7,07 13,08 6,17 2,22 5,27 16,63

Bottom-Up 0,5 0,24 11,08 6,12 0,8 4,46 13,11

Top-Down 1,35 1,27 8,78 0,35 2,16 2,59 13,79

0

2

4

6

8

10

12

14

16

18

T
im

e
 (

se
c)

Fig. 1. Execution time (20M triples)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

NLBA 20 51 93 120 148 641 1475

Bottom-Up 11 26 78 33 62 510 1286

Top-Down 11 28 43 39 65 576 1470

1

10

100

1000

N
u

m
b

e
r

o
f

e
x

e
cu

te
d

 q
u

e
ri

e
s

Fig. 2. # Executed queries (log scale)

and thus, they have short execution times. Once the αMFSs and αXSSs for the
highest thresholds are found, they avoid the execution of queries with a lower
threshold that are likely to be more expensive. As Bottom-Up follows the dual
approach, it tends to execute non-selective queries and has the overall worst
performance.

6 Related Work

Several approaches proposed relaxation operators in the RDF context. These
operators are mainly based on RDFS semantics [6–8], similarity measures [9,
10] and user preferences [11]. They generate a set of relaxed queries, ordered by
similarity with the original query and executed in this order [6, 7, 12]. Relaxation
operators are directly used by the user in her/his query [8] or combined with
query rewriting rules to perform relaxation [11]. In these approaches, the failure
causes of the query are unknown, which may lead to executing unnecessary
relaxed queries. Fokou et al. [4] tackled this problem by defining the LBA and
MBA approaches to compute the MFSs and XSSs of the query. Our approach
is based on the LBA algorithm. We have extended this work by identifying the
condition under which LBA can be used in the context of uncertain KBs and by
defining two algorithms to compute αMFSs and αXSSs for several thresholds.
Our work is among the pioneering works aiming at exploring the query relaxation
issue in uncertain KBs. To the best of our knowledge, the only other work in
this context is [12]. However, this work only uses the trust value to order results
by their trustworthiness. They do not consider, as we do in this paper, queries
that return no result satisfying the provided trust threshold.

7 Conclusion

In this paper, we have considered the empty answer problem in the context of
uncertain KBs. To provide the user with a relevant feedback, we have proposed

to compute the αMFSs and αXSSs of the failing query as they give a clear
overview of the query failure causes and a set of relaxed queries that she/he
can execute to find some useful alternative answers. We have first defined the
condition under which a previous work algorithm can be directly adapted to the
context of uncertain KBs. Then, we have studied the problem of computing the
αMFSs and αXSSs for multiple thresholds by defining two approaches that con-
sider α thresholds in different orders. We have done a complete implementation
of these algorithms and shown experimentally on WatDiv benchmark that our
approaches outperform the baseline method.

In our experiments, none of our algorithms has the best performance for all
queries. As a future work, we plan to study the conditions under which an algo-
rithm may provide the best results. An analysis of the queries executed by our
algorithms shows that they share some triple patterns. Thus, we will investigate
multiple-query optimization techniques to further improve their execution times.

References

1. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge Vault: A Web-scale Approach to Probabilistic
Knowledge Fusion. In: KDD’14. (2014) 601–610

2. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A Spatially and
Temporally Enhanced Knowledge Base from Wikipedia. Artificial Intelligence 194
(2013) 28–61

3. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.N.: LSQ: The Linked
SPARQL Queries Dataset. In: ISWC’15. (2015) 261–269

4. Fokou, G., Jean, S., Hadjali, A., Baron, M.: Handling Failing RDF Queries: From
Diagnosis to Relaxation. Knowledge and Information Systems (KAIS) 50(1) (2017)

5. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified Stress Testing of RDF
Data Management Systems. In: ISWC’14. (2014) 197–212

6. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Ranking Approximate Answers to
Semantic Web Queries. In: ESWC’09. (2009) 263–277

7. Huang, H., Liu, C., Zhou, X.: Approximating query answering on RDF databases.
Journal of the World Wide Web: Internet and Web Information Systems (WWW)
15(1) (2012) 89–114

8. Caĺı, A., Frosini, R., Poulovassilis, A., Wood, P.: Flexible Querying for SPARQL.
In: ODBASE’14. (2014) 473–490

9. Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards Fuzzy Query-
relaxation for RDF. In: ESWC’12. (2012) 687–702

10. Elbassuoni, S., Ramanath, M., Weikum, G.: Query Relaxation for Entity-
Relationship Search. In: ESWC’11. (2011) 62–76

11. Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF queries
based on user and domain preferences. Journal of Intelligent Information Systems
(JIIS) 33(3) (2009) 239–260

12. Reddy, K.B., Kumar, P.S.: Efficient Trust-Based Approximate SPARQL Querying
of the Web of Linked Data. In: Uncertainty Reasoning for the Semantic Web II.
Springer (2013) 315–330

