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Abstract. When querying Knowledge Bases (KBs), users are faced with
large sets of data, often without knowing their underlying structures. It
follows that users may make mistakes when formulating their queries,
therefore receiving an unhelpful response. In this paper, we address the
plethoric answers problem, the situation where a query produces sig-
nificantly more results than the user was expecting. We deal with this
problem by identifying the parts of the failing query, called Minimal
Failure Inducing Subqueries (MFIS), that cause plethoric answers. As
long as the query contains an MFIS, it will fail to reach a sufficiently
low amount of answers. Thanks to these MFIS, interactive and auto-
matic approaches can be set up to help the user reformulate their query.
The dual notion of MFIS, maXimal Succeeding Subqueries (XSS), is also
useful. They are queries with the most parts of the original query that
return non plethoric answers. Our goal is to compute MFIS and XSS effi-
ciently, so that they may be used to solve the plethoric answers problem.
We propose two algorithms that leverage query and data properties to
compute MFIS and XSS. We show experimentally that our algorithms
clearly outperform a baseline method on generated queries as well as real
user-submitted queries.

1 Introduction

A Knowledge Base (KB) is a collection of entities and facts about them. With the
development of the Semantic Web, numerous KBs have been created in academic
and industrial areas. A well known example of a KB is DBpedia [1]. These KBs
store information as RDF triples (subject, predicate and object) and are queried
with the SPARQL language [2] using triple patterns which are triples containing
variables. KBs typically store billions of facts and are often structured using an
ontological schema and rules, such as those provided by RDFS [3].

A new user querying a KB is often unfamiliar with the KB’s structure and
the data within it. Thus, mistakes ormisconceptions can manifest in queries, and
cause unexpected or unsatisfactory answers. Mistakes refer to the user incorrectly
writing their query, for example creating an unwanted Cartesian product by
omitting a triple pattern, or misspelling a term. Misconceptions refer to the
difference between a user’s view of a KB, and its reality [4]. For example if in a
hospital KB, the property treats can only link a Doctor to a Patient, and a user



writes a query based on the patients that a Nurse treats, they will be frustrated
to receive no answers. Alternatively, a user may believe a property birthPlace
only gives a person’s town of birth whereas in the KB birthPlace is used for the
country, county, town, and address of birth. A query involving birthPlace may
overwhelm the user by producing four times as many answers as expected. The
issue of unexpected answers is a challenge to database usability [5]. There are five
unexpected answers problems, each associated with a why-question: no answers
(why-empty), too few answers (why-so-few), too many answers (why-so-many),
missing expected answers (why-not), and unwanted answers (why-so). We focus
on the the too many answers problem, also called the plethoric answers problem,
where users struggle to extract useful information from an overwhelming result.
A query’s results are said to be plethoric when there are more than a threshold K.

Most state of the art methods to deal with plethoric answers rely on ordering
results and selecting an adequately sized subset of answers to be returned to the
user. These methods are called top-K methods. Solutions vary by the way results
are ordered, and the extent of user involvement. They guarantee the number of
answers will be at most K. Yet, if a query is based on a misconception on the
user’s part no ordering strategy will solve the underlying problem. In this paper,
we claim that the first step to solve the plethoric answers problem should be
to understand why a query produces plethoric answers. Our failure causes can
be directly provided to users in an effort to educate them in formulating their
queries. They can also be used as a basis for automatic or interactive query
rewriting, in order to avoid suggesting queries that are known to fail, and thus
accelerate the process.

Drawing on work on the empty-answers problem in KBs [6], we propose the
basis of a cooperative method to deal with the plethoric answers problem. We
provide two notions that can help with query rewriting: the smallest subqueries
that cause plethoric answers (MFIS) and the largest subqueries that do not pro-
duce plethoric answers (XSS). We propose an algorithm to compute MFIS and
XSS, leveraging query properties to avoid executing some subqueries. Improve-
ments based on a data property, i.e. predicate cardinalities, are also discussed.
The performance of our algorithms is assessed through experimental evaluation,
using queries generated for the WatDiv synthetic dataset [7], and user-submitted
DBpedia queries from the Linked SPARQL Queries Dataset logs [8].

This paper is organized as follows. Section 2 gives a motivating example that
will illustrate our proposal throughout the paper. Section 3 details related work.
We provide preliminary notions in Section 4. Section 5 presents our approaches
to calculate MFIS and XSS. Section 6 describes the experimental evaluation of
our algorithms. We conclude and introduce future work in Section 7.

2 Motivating Example

We consider a simplified hospital KB (figure 1a), and a user wanting information
on doctors, nurses and patients. Figure 1b shows an example of a user query
defined as a conjunction of triple patterns Q = t1 ∧ t2 ∧ t3 ∧ t4 ∧ t5 (or t1t2t3t4t5



subject predicate object
d1 experience 25
d1 supervises n3

d1 supervises n2

d1 treats p1

d1 treats p2

d2 experience 14
d2 supervises n1

d2 treats p3

n1 type SurgicalNurse
n1 providesCare p3

n2 type ERNurse
n2 providesCare p2

n2 providesCare p3

n3 type ERNurse
n3 providesCare p1

n3 providesCare p2

?d ?p ?e ?n ?pt
d1 p1 25 n3 p1

d1 p2 25 n3 p1

d1 p1 25 n3 p2

d1 p2 25 n3 p2

d1 p1 25 n2 p2

d1 p2 25 n2 p2

d1 p1 25 n2 p3

d1 p2 25 n2 p3

Q : SELECT * WHERE {
?d treats ?p . #t1
?d experience ?e . #t2
?d supervises ?n . #t3
?n providesCare ?pt . #t4
?n type ERNurse } #t5

(a) Knowledge base D

(b) Query Q = t1t2t3t4t5

(c) Results of Q on D

Fig. 1. A Knowledge Base, a SPARQL query and its results

in short). When executing Q on our dummy KB the query produces 8 results
(figure 1c). On a real KB containing hundreds of doctors and patients, this query
would produce thousands of results, which would not be manageable for the user.
To illustrate our method, we set a small threshold of plethoric answers K = 3,
so Q is considered failing as its number of results exceeds this threshold.

A top-K method could be used to reduce the number of results, such as order-
ing patients alphabetically, but this would only return information about a few
patients. Our approach will focus on explaining plethoric answers based on fail-
ure causes, so the query can be modified to return fewer answers. In our example,
there are three failure causes: t1t3, t1t5 and t4. As every subquery of Q containing
one of these subqueries fails, each of the failure causes must be resolved in order
to reach the desired number of answers. Each failure cause can be interpreted to
explain plethoric answers, which will in turn suggest possible corrections.

– t1t3 and t1t5 indicate that asking for both patients and nurses produces
plethoric answers. They suggest splitting the query into two parts, one con-
cerning patients, and the other concerning nurses.

– t4, indicates that nurses are assigned to a plethoric number of patients. It
suggests removing t4 from the query, or adding some additional conditions.

We also provide the succeeding queries which are not subqueries of any other
succeeding query: t2t3t5 and t1t2. They partially meet the user’s requirement and
can be used as alternative queries, knowing that they have at most K results.

The interpretation of failure causes, and their presentation to a user along
with alternative queries in an interactive query refining system is planned for
future work, and is not further studied in this paper. We focus here on the
efficient computation of the failure causes, for use in a query rewriting system.



3 Related Work

Existing approaches dealing with the plethoric answers problem can be divided
into two categories: those focusing on data and those focusing on queries.

Data-oriented methods suppose that the query submitted by the user is cor-
rect, and present results in an organised fashion, so that certain information is
easily visible. Top-K methods are the most widely used type of data-oriented
methods. They order results based on user preferences and return only the top
K answers. Ilyas et al. present top-K query processing techniques for relational
database systems [9]. Other data-oriented strategies have been proposed for cases
where user preferences are unknown. Regret-minimization strategies combine
features from top-K and skyline methods [10]. They return a set of K answers
which maximizes the minimal satisfaction of any user with any preference func-
tion. Finally, grouping methods aggregate results into categories, and show the
user the common features of each category [11, 12]. If the initial query correctly
matches the user’s requirement, data-oriented methods can be useful to sort
through large result sets. However, if the original query contains an underlying
issue, these methods are not appropriate, as they do not attempt to fix the query.

Query-oriented methods modify the user’s query so that it returns fewer an-
swers. In the field of fuzzy queries, intensification strategies are used to make
patterns present in the user’s query more restrictive [13, 14]. Alternatively, new
patterns are added to the query [15]. They are chosen based on a measure of
correlation between predicates so that they are semantically close to the origi-
nal query and reduce the number of answers. In the field of knowledge graphs,
recent work on the why-not and why-so problems – where an expected answer is
missing or an unexpected answer appears in the response – can be extended to
the plethoric answers problem [16]. Exact algorithms and heuristics are proposed
to refine a user’s query. A final approach, which is most similar to ours, consid-
ers subqueries of the original query, to find the parts with few enough answers
[17]. However, this algorithm does not consider failure causes, and uses no infer-
ence rules to avoid exploring parts of the subqueries search space. Query-based
solutions are more appropriate to address an underlying issue in the original
query. However, as none of the existing approaches study the cause of plethoric
answers, the query intensification is done blindly. So patterns causing multiple
results may be missed or take several attempts to find.

While failure causes have not previously been considered for the plethoric
answers problem, they have been used for other unexpected answers problems.
For the why-not problem, a divide-and-conquer approach is used, first studying
a query’s triple patterns and then its SPARQL operators [18]. A failure cause
shows users which triple pattern or operator causes an answer to be absent. For
the empty answers problem, Godfrey [19] suggested providing users with failure
causes (called MFS) and alternate subqueries (called XSS). MFS have subse-
quently been used in interactive and automatic query relaxation to accelerate
the process, by pruning the search space of queries which necessarily fail [20, 21].
We propose extending the definitions of MFS and XSS to deal with the plethoric
answers problem in the context of RDF KBs.



4 Preliminaries and Problem Statement

We describe the formalism and semantics of RDF and SPARQL necessary for
this paper. We use the notations and definitions provided by Pérez et al. [22].

4.1 Basic Notions

Data Model We consider three pairwise disjoint infinite sets: I the set of IRIs,
B the set of blank nodes, and L the set of literals. We denote by T the union
I∪B∪L. An RDF triple is a triple (subject, predicate, object) ∈ (I∪B)×I×T .

RDF Queries Consider V a set of variables disjoint from T . A triple t (subject,
predicate, object) ∈ (I ∪ L ∪ V )× (I ∪ V )× (I ∪ L ∪ V ) is a triple pattern. We
denote by s(t), p(t), o(t), and var(t) the subject, predicate, object and variables
of t. RDF queries are defined as conjunctions of triple patterns Q = t1 · · · tn.
The variables of a query are var(Q) =

⋃
var(ti). We define an order on queries

using triple pattern inclusion. Given Q = t1 · · · tn, Q′ = ti · · · tj is a subquery of
Q, denoted by Q′ ⊆ Q, iff {i, · · · , j} ⊆ {1, · · · , n}. Then Q is a superquery of Q′.

Query Evaluation A mapping µ from V to T is a partial function µ : V → T .
For a triple pattern t, we denote by µ(t) the triple obtained by replacing the
variables in t according to µ. The domain of µ, dom(µ), is the subset of V
where µ is defined. Two mappings µ1 and µ2 are compatible if ∀x ∈ dom(µ1) ∩
dom(µ2), µ1(x) = µ2(x). The join of two sets of mappings Ω1 and Ω2 is: Ω1 ▷◁
Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}. The evaluation
of a triple pattern t over a KB D, is [[t]]D = {µ | dom(µ) = var(t) ∧ µ(t) ∈ D}.
The evaluation of a query Q = t1 · · · tn over D is [[Q]]D = [[t1]]D ▷◁ · · · ▷◁ [[tn]]D.

4.2 Notions of MFIS and XSS

In the plethoric answers problem, for a threshold K, a failing subquery of a query
Q is a query that returns more than K answers and a succeeding subquery of
a query Q is a query that returns at most K answers. We introduce a Boolean
property of query failure: FAILK(Q,D) = |[[Q]]D| > K. As the evaluation of the
empty query returns one answer mapping no variables, it succeeds (if K > 0).

The notion of Minimal Failing Subqueries (MFS) was introduced for the
empty answers problem [19]. In that problem, the failure property is monotonic,
i.e. if a query fails, its superqueries fail. With this monotony, MFS are the small-
est parts of a query that cause failure. In the plethoric answers problem, there
is no such monotony. A failing query can have a succeeding superquery: in our
example t2t5 fails but t2t3t5 succeeds. We therefore define two new notions.

Definition 1. A Failure Inducing Subquery (FIS) of a query Q is one of its
failing subqueries whose superqueries all fail.

Definition 2. A Minimal Failure Inducing Subquery (MFIS) of a query Q is
one of its FIS having no subqueries that are FIS.



∅

t1 t2 t3 t4 t5

t1t2 t1t3 t1t4 t1t5 t2t3 t2t4 t2t5 t3t4 t3t5 t4t5

t1t2t3 t1t2t4 t1t2t5 t1t3t4 t1t3t5 t1t4t5 t2t3t4 t2t3t5 t2t4t5 t3t4t5

t1t2t3t4 t1t2t3t5 t1t2t4t5 t1t3t4t5 t2t3t4t5

t1t2t3t4t5

Q : Failure

Q : Success

Q : MFIS

Q : XSS

Fig. 2. Lattice of subqueries of Q = t1t2t3t4t5

If the failure condition is monotonic, MFIS and MFS are equivalent notions. The
notion of maXimal Succeeding Subqueries (XSS) was also defined for the empty
answers problem. They are the succeeding queries that are most similar to the
original query and can be used as alternative queries. The notion of XSS applies
to the plethoric answers problem, as it does not require monotony.

Definition 3. A maXimal Succeeding Subquery (XSS) of a query Q is a suc-
ceeding subquery whose superqueries are all FISs.

Problem Statement We are concerned with efficiently computing the MFIS and
XSS for an RDF query Q and a given threshold K in a KB D.

5 Computing MFIS and XSS

We discuss here MFIS and XSS computation. First, a baseline algorithm is pre-
sented, then improved versions are introduced by leveraging various properties.

5.1 Baseline

A baseline approach to calculate all MFIS and XSS is to execute every sub-
query of the original query. Figure 2 shows the lattice of subqueries of Q from
our running example. In this first algorithm, which we call Base, the lattice is
explored in a Breadth-First order, so we start by executing the query with the
most triple patterns. For a query with n triple patterns, Base requires 2n − 1
query executions (the empty query is not executed), which is time-consuming
for queries with many triple patterns. To make the search for MFIS and XSS
more efficient, we want to reduce the number of queries to be executed.

5.2 General properties

A first improvement is to avoid executing queries irrelevant to the search for
MFIS and XSS, with a property deduced from the definitions of MFIS and XSS.

Property 1. If a subquery Q′ succeeds, and Q′′ ⊂ Q′, then Q′′ is neither an MFIS
nor an XSS.



Var/Full(Q, D, K)
inputs : A failing query Q = t1 ∧ ... ∧ tn, a KB D, a threshold K
outputs: MFIS and XSS of Q

1 mfis ← ∅, xss ← ∅, fis ← ∅, queryStatus ← ∅, list ← {Q}
2 while list ̸= ∅ do
3 Q′ ← first query of list in BFS ordering
4 list← list− {Q′}
5 parents fis ← true
6 foreach t ∈ triplePatterns(Q)− triplePatterns(Q′) do
7 parents fis ← parents fis ∧ ((Q′ ∧ t) ∈ fis)
8 if parents fis then
9 if Q′ /∈ queryStatus then

10 queryStatus [Q′] ← FAILK(Q′, D)
11 if queryStatus [Q′] then // if Q′ fails
12 fis← fis ∪ {Q′}
13 mfis← mfis− superQueries(Q′)
14 mfis← mfis ∪ {Q′}
15 foreach t ∈ triplePatterns(Q′) do
16 if (Q′ − t) ̸∈ list then
17 list← list ∪ (Q′ − t)
18 if var(Q′ − t) = var(Q′) then
19 queryStatus [Q′ − t] ← true
20 else if cardmax(p(t), D) = 1 ∧ s(t) ∈ var(Q′ − t) then
21 queryStatus [Q′ − t] ← true

22 else // Q′ is successful, and therefore an XSS
23 xss← xss ∪ {Q′}
24 return mfis, xss

Algorithm 1: Enumerate the MFIS and XSS of a query Q

When using this property to avoid query executions, query success or failure
is not known over the whole lattice but partial knowledge is sufficient here. Next,
we consider deduction rules that predict query failures without executing them.
As we run a breadth-first-search, a query is studied after all its superqueries, so
we can leverage properties deducing the failure of a query from the failure of
its superqueries.

Property 2. Given a query Q and triple pattern t, if var(Q ∧ t) = var(Q) then
Q ∧ t fails ⇒ Q fails.

Property 2 states that, if removing a triple pattern from a query does not remove
any variables, then the number of answers cannot decrease. In our example,
adding t5 (?n type ERNurse) to a query containing variable n adds a constraint
on n, and so cannot increase the number of answers.

Adding properties 1 and 2 to Base creates an improved algorithm, Var,
shown in algorithm 1 (lines 20 and 21 do not apply, they are used in the next
version). The main data structures are a list (list) of subqueries to evaluate and a
map (queryStatus) storing the result of their evaluations: failure or success (lines
9-10). From the list, we consider queries from the lattice in a breadth-first order



∅

t1 t2 t3 t4t4 t5

t1t2 t1t3t1t3 t1t4 t1t5t1t5 t2t3 t2t4 t2t5 t3t4 t3t5 t4t5

t1t2t3 t1t2t4 t1t2t5 t1t3t4 t1t3t5 t1t4t5 t2t3t4 t2t3t5 t2t4t5 t3t4t5

t1t2t3t4 t1t2t3t5 t1t2t4t5 t1t3t4t5 t2t3t4t5

t1t2t3t4t5Q : Failure

Q : Sucess

Q : MFIS

Q : XSS

Q : not executed

(unknown)

Q : not executed

(failure) variable property cardinality property

Fig. 3. Lattice of subqueries of Q with Full algorithm

(lines 1-4). According to property 1, every direct superquery of Q′ has to be an
FIS for further consideration (lines 5-8). On query failure, the sets fis and mfis
are updated (lines 12-14): the subquery Q′ being considered replaces its direct
superqueries in the mfis set as those can no longer be minimal (lines 13-14). We
then consider every direct subquery of Q′ (lines 15-21) for future evaluation (line
17), checking if property 2 is applicable (line 18) to predict its failure without
executing it. If, instead, Q′ succeeded, it is added to the xss set (line 23).

5.3 Cardinality-based Property

The last improvement leverages a property involving both the query and the
data. We consider triple patterns that add a piece of information to each answer
but do not overall change the number of answers. In the running example if
t2 (?d experience ?e) is removed from a query, as each person has at most one
experience, each answer will lose a piece of information, but no two answers
will become identical. So the number of answers will not decrease. We focus
on predicates with maximum cardinality 1, of which any subject has at most
one occurrence.

Definition 4. The global maximum cardinality of a predicate p in a dataset D
is [23]: cardmax(p,D) = max

s|∃ p,o:(s,p,o)∈D
|{(s, p, o) | (s, p, o) ∈ D}|

Property 3. Given a query Q, and a triple pattern t with a fixed predicate p(t),
if cardmax(p(t), D) = 1 and s(t) ∈ var(Q) then Q ∧ t fails ⇒ Q fails.

The complete algorithm, Full, is created by adding property 3 to Var (lines
20-21).

Figure 3 shows the lattice of subqueries of the query from the motivating
example, and the subqueries avoided by Full. For example, t2 has maximum
cardinality 1, the subject of t2 (d) is one of the variables of t1t3t4t5, and t1t2t3t4t5
fails. We deduce that t1t3t4t5 fails using property 3. In our example, Full only
executes 6 queries (rather than 31 for Base and 9 for Var).

Other cardinality definitions, like Class Cardinality [23], consider a smaller
set of subjects than global cardinalities so may provide more precise values.



But these are query specific so a single cardinality value does not hold over the
whole lattice. Cardinalities would need to be calculated at each query evaluation.
Extending our approach with other cardinalities is a perspective for future work.

The deduction rule based on variables (property 2) is applicable to any query
in any dataset as it relies only on information contained within the original query.
However, the cardinality-based condition (property 3) requires additional infor-
mation: if cardinalities are not enforced by the schema, they must be calculated
for all predicates. For frequently modified KBs, cardinalities would need to be up-
dated each time the data is changed. This requires KB administrators to provide
updated cardinality values or users to regularly query the KB to obtain cardi-
nalities, which is costly. So we provide two versions of our algorithm: the Full
version with all optimization properties, and the variable-only version, Var.

6 Experimental Evaluation

Hardware Our experiments were run on a Ubuntu Server LTS system with an
Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz and 32GB RAM. The results
presented are the average of five consecutive runs of the algorithms. To prevent
a cold start effect, a preliminary run is performed but not included in the results.

Algorithms The Base, Var and Full algorithms are implemented3 in Oracle
Java 1.8 64bits and run using the Jena TDB triplestore. Cardinalities are pre-
computed for the Full algorithm. We set the threshold for plethoric answers
K=100, as it is the default limit used by the DBpedia SPARQL endpoint. As
Cartesian products are costly to execute, queries containing Cartesian products
are split into connected parts so that in each part every triple pattern shares a
variable with at least one other triple pattern, and so that separate parts share
no variables. Each part is then executed separately, the number of answers of
the original query being the product of the number of results of each part.

Synthetic Dataset and Queries We used a dataset of 11M triples, generated
with the WatDiv benchmark. We have considered 21 queries with 4 to 12 triple
patterns. There are 7 star queries (all triple patterns have the same subject), 7
chain queries (subject of triple pattern j+1 is the object of triple pattern j) and 7
composite queries (any other configuration). All chain queries and some star and
composite queries are based on the WatDiv test cases (IL-1-10, F1, F2, F4, C2,
C3). We added new composite and star queries to have varied characteristics.

Real Dataset and Queries We used the 3.9 version of the English DBpedia
dataset, which contains 812M triples. Queries come from the LSQ project [8]
which recorded user-submitted queries to DBpedia (version 3.5.1) between April
30 and June 20, 2010. Some minor adaptations were made as some original
URIs were not compatible with version 3.9 of DBpedia. We have used 9 star or
composite queries, containing 4 to 10 triple patterns.

3 Our implementation is available at https://forge.lias-lab.fr/projects/tma4kb with a
tutorial to reproduce experiments.



Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

Maximum 15 31 63 127 255 511 1,023 63 127 255 511 1,023 2,047 4,095

Base 15 31 63 127 255 511 1,023 10 15 21 28 36 45 55 42 34 20 294 139 94 158

Var 8 16 9 39 65 255 257 5 10 16 22 29 37 46 20 34 14 141 58 32 48

Full 2 4 2 12 3 8 9 5 10 12 11 19 22 24 12 5 11 8 13 6 6
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Fig. 4. # Executed queries Watdiv 11M triples

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

Base 1,241 53,084 65,803 1.49E+06 468,390 2.99E+06 2.86E+06 15,105 46,905 91,191 287,551 104,359 183,047 990,878 3,028 2,055 6,277 53,522 468,908 9,237 13,616

Var 115 6,348 747 473 470 354,024 2,062 7,092 22,998 45,895 95,961 53,483 180,140 284,739 1,044 2,062 2,200 24,707 329,354 1,323 4,672

Full 22 1,954 114 163 23 5,163 158 7,106 23,003 29,998 34,571 33,275 103,982 170,148 913 100 1,727 332 8,821 1,128 4,325
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Fig. 5. Execution time Watdiv 11M triples

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Base 15 12 31 31 63 96 255 511 1,023

Var 8 5 16 8 9 49 118 243 130

Full 8 3 16 8 5 49 118 243 130
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Fig. 6. # Executed queries DBpedia

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Base 51,851 58,496 128,271 90,528 281,931 317,574 314,957 1.21E+06 1.95E+07

Var 251 87 37,301 1,235 18 136,549 136,722 567,861 6.87E+06

Full 226 75 37,267 1,053 27 136,602 136,765 567,606 6.88E+06
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Fig. 7. Execution time DBpedia

6.1 Results

Synthetic Dataset and Queries First we study the performance of the three algo-
rithms on a WatDiv generated dataset of 11M triples. The number of executed
queries and the execution time for each algorithm are given in figures 4 and 5.

For all the queries tested, we verify that Var and Full execute at most as
many queries as Base. This is a guarantee of the properties presented in section
5. The improvement is less notable for chain (Q8 to Q14) and composite (Q15 to
Q21) queries. Indeed, these queries have subqueries containing Cartesian prod-
ucts. Since we execute Cartesian products by separating them into connected
parts, queries that have a succeeding superquery can be executed as part of a
Cartesian product. The number of queries executed by the Base algorithm if
Cartesian products were executed directly, 2n−1, is given in the Maximum bars
on figure 4. Overall Var and Full execute respectively 46% and 75% fewer
queries than Base. The execution times follow the same general trend. Full
is faster than Var, itself faster than Base. The improvement in execution time
is smaller than the improvement in query executions. Indeed, all query execu-
tions are not equal, and the executions avoided can have short execution times.
Overall Var saves 65% of the Base execution time, and Full saves 83%.

Real Dataset and Queries We show the number of executed queries and the run-
time of each algorithm in figures 6 and 7. As in the WatDiv experiments, Var



and Full execute at most as many queries as Base. However, we notice that
Full rarely executes fewer queries than Var. This can be explained by cardi-
nalities in DBpedia. Few of the predicates used have maximum cardinality 1, so
the cardinality property cannot be applied to them. Only 0.67% of predicates
in DBpedia have maximum cardinality 1, but 66% of predicates have maximum
cardinality 2. Upon further investigation, many predicates that should in theory
have maximum cardinality 1, such as BirthDate, in fact have maximum cardi-
nality 2. This can be due to errors in the data or uncertain information [24, 25].
Using a curated dataset would likely improve the benefit of the cardinality-based
pruning. Consequently, Var and Full have very similar execution times, each
saving around 78% of the baseline time.

Some queries, like Q9, have long execution times (over an hour). The execu-
tion time depends heavily on the time the triplestore takes to answer a query on
our server. It could be reduced by using a distributed solution or optimizing how
the query evaluation is performed by the triplestore. This has not yet been inves-
tigated and is a prospect of improvement. Our experiments show that for most
queries, Var and Full run in a few seconds, despite using a centralized server.

7 Conclusion

In this paper, we have addressed the plethoric answers problem in the context
of RDF queries. We have identified that none of the approaches proposed in the
literature try to identify why the user query produced plethoric answers. Yet,
several approaches developed for other unsatisfactory answers problems have
shown that the first step in a query adjustment process designed to meet the
user expectation should be understanding why the query failed.

Our goal was to fill this gap. We have first shown that the notions defined
for other unsatisfactory answers problem are too restrictive for our context and
defined a more general notion, named MFIS. Starting from a baseline method to
calculate all MFIS and XSS of a failing query, we have proposed improvements
based on query and data properties, to reduce the number of queries that need to
be executed, and therefore reduce the run-time of our algorithms. Experiments
using both synthetic and real data show that our optimized algorithms offer a
significant improvement. Var saves 71% of the baseline time and can be used
for any query, and Full saves 82% of the baseline time but requires additional
information: predicate cardinalities.

The next step will be to use the MFIS and XSS to aid in rewriting queries
with plethoric answers. Query modification can be performed entirely by the
user (i.e. we provide the MFIS and XSS and the user interprets them to adapt
their query), entirely automatically, or with an interactive approach, where the
user is guided through changes applied to their query.
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