
HAL Id: hal-03356159
https://hal.science/hal-03356159

Submitted on 27 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Borders of Theories for Cooperative Querying over
Uncertain Databases

Chourouk Belheouane, Stephane Jean, Brice Chardin, Allel Hadjali, Hamid
Azzoune

To cite this version:
Chourouk Belheouane, Stephane Jean, Brice Chardin, Allel Hadjali, Hamid Azzoune. Borders of Theo-
ries for Cooperative Querying over Uncertain Databases. 2018 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Jul 2018, Rio de Janeiro, Brazil. pp.1-8, �10.1109/FUZZ-IEEE.2018.8491443�.
�hal-03356159�

https://hal.science/hal-03356159
https://hal.archives-ouvertes.fr

Borders of Theories for Cooperative Querying over
Uncertain Databases

Chourouk Belheouane 1,2, Stéphane Jean2, Brice Chardin2, Allel Hadjali2, Hamid Azzoune1
1LRIA, USTHB

BP 32 El Alia, Bab Ezzouar 16111, Algérie
Email: {cbelheouane, hazzoune}@usthb.dz
2 LIAS, ISAE-ENSMA/Poitiers University

1, Avenue Clement Ader, 86960 Futuroscope Cedex, France
Email: {stephane.jean, brice.chardin, allel.hadjali}@ensma.fr

Abstract—In many real applications, data are intrinsically
uncertain due to measurement errors, interpretability issues,
information incompleteness, etc. In those uncertain databases,
users usually express quality requirements when the system
evaluates their queries. However, as they may not be familiar
with the contents of the queried database, their queries may
be failing i.e., they may return no results or results that
do not satisfy the expected degree of certainty. To provide
users with relevant information in order to obtain alternative
satisfactory results, we introduce a cooperative approach based
on the dualization concept. This approach computes a set of
meaningful subqueries (MFSs and XSSs) of the initial failing
query, which is of paramount importance for query reformulation
and relaxation purposes. The conducted experiments show that
our proposition, a Mixed Dualization Matrix-Based approach
(MDMB), outperforms existing algorithms, especially for large
queries.

I. INTRODUCTION

With the Big data era, managing data uncertainty is one of
the major challenging issues that has attracted the interest of
several researchers. To represent data uncertainty, most of the
existing approaches use either the probability or possibility
theory. In the present work, we use the possibility theory
mainly because it provides a simple and qualitative way to
represent uncertainty.

Querying uncertain data generates answers that are associ-
ated with certainty degrees expressing the satisfaction of the
query. However, as users may overestimate the certainty of
the information available, the submitted query may fail, i.e.,
return an empty set of answers. Instead of just reporting that
no results were found, a more cooperative answer consists in
identifying the causes of the failure, as well as some successful
subqueries – with non-empty results.

To this end, we introduce an approach based on hypergraph
dualization to improve the efficiency of cooperative query
processing in the context of uncertain databases. Dualization
– i.e. the computation of the transversal hypergraph [1] – has
been widely used to solve several problems such as mining
frequent itemsets, association rules and functional dependen-
cies, or transforming Boolean expressions between CNF and
DNF. One of the most attractive properties of dualization lies
in the large panel of efficient evaluation strategies available. To
the best of our knowledge, it is the first time that dualization

is used in handling the failing queries problem, known also as
the empty answer problem.

Our approach to tackle the empty answer problem is to com-
pute (i) failure causes (Minimal Failing Subqueries: MFSs)
which are of interest for query reformulation or relaxation, and
(ii) successful subqueries (maXimal Succeeding Subqueries:
XSSs) that provide non-empty alternative answers [2]. This
computation procedure consists of 3 steps: 1) a binary matrix
representing the satisfaction of the predicates involved in the
failing query is first calculated, 2) a set of XSSs is then
extracted from the matrix and finally, 3) a set of MFSs is
identified using a hypergraph dualization-based method.

In this paper, we substantially develop and improve the
third step of this process over our previous work [3]. The
novelty of this contribution consists in identifying and defining
the requirements for dualization, proving its applicability for
the empty answer problem, and evaluating its performance
benefits. As a result, our new Mixed Dualization Matrix-Based
approach (MDMB) handles large queries (with up to 25 predi-
cates) with acceptable response times, while previous existing
approaches did not scale well w.r.t. the number of predicates.
To that end, MDMB benefits from an efficient general-purpose
dualization algorithm called Sparse Hypergraph Dualization
(SHD) [4].

The paper is structured as follows: In Section II we discuss
related work and emphasize the motivation of the present
study. We introduce in Section III some basic notions along
with the problem statement. Section IV is dedicated to the
presentation of dualization concepts used in our approach.
Our proposed Mixed Dualization Matrix-Based approach is
then detailed in Section V. We present our implementation and
experimental evaluation of MDMB in Section VI and conclude
in Section VII.

II. RELATED WORK

The empty answer problem has been addressed by several
complementary approaches such as query auto-completion,
query relaxation or database completion. In this section, we
focus on works providing cooperative answers to the user
based on the computation of MFSs and XSSs.

Among the first works to have addressed the MFSs
and XSSs computation problem in the context of relational
databases, we find the work of Godfrey [2]. His main con-
tributions were (1) the definition of the complexity of the
MFSs and XSSs computation problem and (2) the proposition
of the ISHMAEL algorithm that computes either MFSs or
XSSs by exploring the lattice of subqueries of the initial query.
This work was adapted to the RDF context by Fokou et al.
[5], for which they proposed the LBA approach to compute
both MFSs and XSSs. LBA was then extended in αLBA [6]
to take into account uncertain RDF data. McSherry [7] also
proposed an approach (abbreviated as MCS in this paper)
based on the exploration of the subquery lattice to compute
MFSs, for use during interactive query relaxation sessions.
The main limitation of the aforementioned four approaches
is that they require an exponential number of queries against
the database (w.r.t, the number of predicates |Q|) which limits
their scalability for large queries.

Instead of exploring the subquery lattice, Jannach [8] pro-
posed to compute an intermediary representation of the data as
a binary matrix using only |Q| queries. The XSSs can then be
extracted directly from this matrix, requiring no further access
to the database. This idea was followed in several works. Pivert
and Smits [9] proposed an approach that calculates gradual
MFSs using a summary computed by a disjunctive query for
a set of thresholds. For the different satisfaction thresholds
involved, the summary represents fuzzy cardinalities, namely
how many tuples from the database satisfy each conjunctive
subquery of Q. However, just as αLBA, their approach is
designed to consider sets of thresholds, while we focus on
a single certainty requirement provided by the user to reduce
the size of the search space. Our previous approach, Matrix-
Based Search (MBS) [3], computes XSSs and MFSs in the
context of uncertain relational databases for relatively small
queries (≤ 16 predicates). MBS is similar to MCS in its
construction of a binary matrix, but with a single disjunctive
query composed of the failing query’s predicates. Table I
summarizes the application domains and main characteristics
of the aforementioned approaches.

The main strength of MBS is that it executes a single
query against the database. However, as we will show in
Section VI, this approach does not scale for large queries
during the computation of MFSs. Indeed, according to [3],
the MFS computation time of MBS exceeds 50% of the total
for queries with 16 predicates or more. Yet, large queries are
generated in a number of domains such as database integration,
automated query formulation or graphical query languages. As
a consequence, we aim in this work at improving the MFS
computation time.

III. PRELIMINARIES AND PROBLEM STATEMENT

Among the large number of uncertainty models proposed
in the literature [10] [11], we consider in this work the model
based on possibilistic certainty proposed by Bosc et al [10]
due to its simple and qualitative nature. Moreover, relational
algebra operators are easily extended to this model [12].

TABLE I
RELATED WORK CHARACTERISTICS

Approach Database #Queries Search Answer
ISHMAEL [2] Relational multiple lattice MFS or XSS
LBA [5] RDF multiple lattice MFS and XSS
αLBA [6] Uncertain RDF multiple lattice MFS and XSS
MCS [7] Recom. Syst. multiple lattice MFS
MBS [3] Uncertain Rel. 1 matrix MFS and XSS
Jannach [8] Recom. Syst. |Q| matrix MFS or XSS
Pivert [9] Gradual Queries 1 summary MFS and XSS

A. Certainty-Based Model

In this model, uncertainty in data is represented by a couple
(v, α) where v is the value of a tuple t for an attribute a and
α ∈]0, 1] is the certainty degree (called necessity degree in
the possibilistic theory). By default, a value has a certainty
equals to 1. For instance, 〈1, John, (Paris, 0.6)〉 denotes the
existence of a person named John, who lives in Paris with a
certainty equal to 0.6.

By associating an additional degree β to each tuple t of
an uncertain relation r, we can represent maybe tuples in this
model which expresses the certainty that t exists in r. We
assume that β = 1 for all tuples since a value of β 6= 1
does not result in any particular difficulty. In the case where
a tuple t may have different values for a given attribute
a, the representation used consists in defining a disjunctive
set of values with a degree of certainty: (v1 ∨ · · · ∨ vn, α).
Again, we assume that uncertainty is represented with only
one value for the sake of simplicity, but our approach could
be easily extended to handle multiple uncertainty values by
using techniques developed in [12].

B. MFSs and XSSs

In our approach, we deal with conjunctive queries Q =
p1 ∧ p2 ∧ · · · ∧ pd where each pi is a valid predicate on
an uncertain relation R. The relation R considered could
itself be the result of a complex query involving all relational
algebra and aggregation operators, and not only conjunctions
of predicates. Let us consider the uncertain relation in Table II
and a query searching for mechanics who live in Bern (Q :
Job = Mechanic ∧ City = Bern). Tuple 6 will be selected
with a certainty degree equal to min(0.3, 0.8) (in accordance
with the calculus of necessity measures [13]). We denote by
[[Q]]D the evaluation of Q over an uncertain database D and
by degree(r,Q) the certainty degree of each result r ∈ [[Q]]D.

We consider a threshold query Qα where only results with
certainty degrees greater than or equal to a given threshold
α are selected. The evaluation of a threshold query Qα on
an uncertain database D is defined by: [[Qα]]D = {r ∈
[[Q]]D | degree(r,Q) ≥ α}. Given a threshold query Qα =
p1 ∧ · · · ∧ pd, a threshold query Q′α = pi ∧ · · · ∧ pj is a
subquery of Qα, Q′α ⊆ Qα, iff {pi, · · · , pj} ⊆ {p1, · · · , pd}.
If {pi, · · · , pj} ⊂ {p1, · · · , pd}, we say that Q′α is a proper
subquery of Qα (Q′α ⊂ Qα).

A failing subquery Q∗α of a threshold query Qα is a
subquery whose evaluation returns an empty set: [[Q∗α]]D = ∅.

Definition 1: A Minimal Failing Subquery (MFS) Q∗α is a
failing subquery for which none of its proper subqueries is
failing: [[Q∗α]]D = ∅ ∧ @ Q′α ⊂ Q∗α such that [[Q′α]]D = ∅.
The set of all MFSs of a query Qα is denoted by mfs(Qα).

Conversely, a succeeding subquery Q∗α of a threshold query
Qα is a subquery whose evaluation returns at least one result:
[[Q∗α]]D 6= ∅.

Definition 2: A Maximal Succeeding Subquery (XSS) Q∗α
of a query Qα is a succeeding subquery that is not a proper
subquery of any succeeding subquery: [[Q∗α]]D 6= ∅ ∧
@ Q′α such that Q∗α ⊂ Q′α ∧ [[Q′α]]D 6= ∅.
The set of all XSSs of a query Qα is denoted by xss(Qα).

IV. DUALIZATION AND BORDERS OF THEORIES

A. Basic Concepts of Dualization

In this section, we will introduce some aspects about
dualization and its applications. The interested reader can refer
to [1] or [14] for more details.

The dualization problem is the construction of the dual
hypergraph. Let H = (V, F) be a hypergraph where V is
the set of vertices and F the set of hyperedges. A hyperedge
E ∈ F is a non-empty subset of vertices: E ⊆ V ∧ E 6= ∅.

A subset T of V is a transversal of H if it intersects every
hyperedge of F:

∀ E ∈ F, T ∩ E 6= ∅.

A transversal T is called minimal if it is not a superset of
any other transversal:

T of H is minimal if @ T ′ ⊂ T | T ′ is a transversal.

The dual hypergraph of H is then defined as the hypergraph
(V,G) where G is the set of all minimal transversals of H.

Let us consider, for instance, the hypergraph H = (V, F)
where V = {a, b, c, d} and F = {{a}, {b, c}, {c, d}}. The
subset {a, c, d} is a transversal but is not minimal as its subset
{a, c} is also a transversal. The dual hypergraph of H is given
by dual(H) = (V, {{a, c}, {a, b, d}}).

When clear from context, we will omit the set of vertices
and use dual(F) to denote the set of hyperedges of the dual
hypergraph.

Dualization have been used in many domains to answer
problems such as:
• mining frequent itemsets,
• mining inclusion and functional dependencies,
• mining association and strong rules,
• computing minimal keys and hitting set,
• transforming Boolean expressions between CNF and

DNF,
• computing negative and positive borders of a monotone

Boolean function on a lattice,
and therefore offers many efficient implementations.

In this section, we will show that computing MFSs from
XSSs is equivalent to the problem of computing a negative
border from a positive one, thus allowing the use of dualization

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

: Bd+ : S : Bd− : L \ S

Fig. 1. Borders of a theory S in a lattice

for this task. In this context, borders – MFSs and XSSs – are
seen as a compact representation of respectively all failing and
all non-failing subqueries in the search space, here the lattice
of all possible subqueries of the original query.

First, we introduce the computation of borders in the general
case. A lattice is defined by a set L of symbols, called
language, and a partial order relation � on L where any two
elements of L share a unique supremum and infimum.

A monotone property P over a lattice is a monotone
Boolean function P : L → {0, 1} such that ∀a, b ∈ L2, a �
b ⇒ P (a) > P (b) (monotonically decreasing). Without loss
of generality, we only consider decreasing functions since
increasing functions can be accounted for by negation.

Let us now consider a set S of sentences from L such that
S is closed under the relation �:

∀a, b ∈ L2, b ∈ s ∧ a � b⇒ a ∈ S.

Since P is monotone, the set of sentences verifying P
is closed under �. This set of sentences is called a theory
T h(L, P) = {a ∈ L | P (a) = 1}.

The border Bd(S) of S consists of the union of a positive
and a negative border. The positive border of S is the set of
all largest elements of S and the negative border is the set of
all smallest elements of L \ S, more formally:

Bd(S) = Bd+(S) ∪Bd−(S),

where

Bd+(S) = {a ∈ S | ∀ b ∈ L, a � b⇒ b /∈ S} (1)

and

Bd−(S) = {a ∈ L \ S | ∀ b ∈ L, b � a⇒ b ∈ S} (2)

Figure 1 illustrates the notions of borders for a given closed
set of sentences S = {∅, a, b, c, d, ab, ad, bc, bd, cd, bcd}.

Given a positive border, the problem of computing its
associated negative border is equivalent to the computation
of a dual hypergraph [1].

Let E{ be the complement of a hyperedge E with respect
to the set of vertices V :

E{ = V \ E

.

Let the complement F { of a set of hyperedges F be the set
of the complements of each hyperedge:

F { = {E{ | E ∈ F}.

Positive and negative borders are then bound by the follow-
ing equations [1]:

Bd−(S) = dual(Bd+(S){) (3)

Bd+(S) = dual(Bd−(S)){ (4)

Following the example depicted in Figure 1,

Bd+ = {{a, b}, {a, d}, {b, c, d}},

Bd+{ = {{c, d}, {b, c}, {a}}, and

dual(Bd+{) = {{a, c}, {a, b, d}} = Bd−.

B. Dualization and the Empty Answer Problem

For this problem instance, the language L is the powerset of
predicates of the failing query, and the partial order is the set
inclusion on predicates. Each element of L therefore depicts a
subquery of the original query (which is itself the supremum
of the lattice).

Our objective is to compute MFSs from XSSs. To the
best of our knowledge, no work has addressed this problem
using dualization. The considered property is then whether the
subquery composed of these predicates provides non-empty
results:

P (Qα) = ([[Qα]]D 6= ∅).

The considered theory is then the set of succeeding sub-
queries of the original query Qα:

T h(L, P) = {Q∗α ⊆ Qα | [[Q∗α]]D 6= ∅}.

Since P is monotone, there exist positive and negative borders
of this theory, and by definition – equations (1) and (2) – the
positive border Bd+ is the set of all XSSs, and the negative
border Bd− is the set of all MFSs:

Bd+(T h(L, P)) = {XSS},

Bd−(T h(L, P)) = {MFS}.

Figure 2 illustrates these notions in the context of query
relaxation. Applying these notations to equations (3) and (4)
gives:

{MFS} = dual({XSS}{),

{XSS} = dual({MFS}){.

MFSs can therefore be computed from XSSs using hy-
pergraph dualization. We will show in section VI that using
optimized general-purpose algorithms for this computation
is more efficient than relying on existing query relaxation-
specific algorithms.

∅

p1 p2 p3 p4

p1 ∧ p2 p1 ∧ p3 p1 ∧ p4 p2 ∧ p3 p2 ∧ p4 p3 ∧ p4

p1 ∧ p2 ∧ p3 p1 ∧ p2 ∧ p4 p1 ∧ p3 ∧ p4 p2 ∧ p3 ∧ p4

p1 ∧ p2 ∧ p3 ∧ p4

Q : XSS Q : MFS

: Succeeding subqueries : Failing subqueries

Fig. 2. MFSs and XSSs as borders in the subquery lattice

TABLE II
EXAMPLE OF A RELATION IN AN UNCERTAIN DATABASE

id Name Age City Job
1 (John, 0.7) (26, 0.8) (Bern, 0.2) (Engineer, 0.3)
2 (Bob, 0.3) (27, 0.9) (Bern, 0.4) (Engineer, 0.5)
3 (Bob, 0.6) (24, 0.3) (Rome, 0.8) (Mechanic, 0.9)
4 (John, 0.6) (27, 0.2) (Paris, 0.6) (Engineer, 0.8)
5 (Mary, 0.7) (25, 0.7) (Paris, 0.6) (Engineer, 0.8)
6 (John, 0.9) (24, 0.8) (Bern, 0.3) (Mechanic, 0.8)

V. MDMB: A MIXED DUALIZATION MATRIX-BASED
APPROACH

The main objective of our approach is to compute the
sets of MFSs and XSSs for a failing threshold query Qα =
p1 ∧ p2 ∧ ... ∧ pd to assist the user in his understanding of
the query failure regarding the uncertain database. MDMB
computes the MFSs and XSSs in three steps: 1) computing a
binary representation of succeeding subqueries, 2) extracting
the XSSs, and 3) computing the MFSs. For completeness, steps
1 and 2 – from [3] – are outlined in this paper.

As a running example, let us consider an uncertain relation
representing individuals, elaborated in Table II, and the follow-
ing failing threshold query: Q0.4 : Name = John ∧ Age >
26 ∧ City = Bern ∧ Job = Engineer (p1 ∧ p2 ∧ p3 ∧ p4).

A. Computation of the Binary Matrix

In this first step, our approach computes a binary matrix
of Succeeding Subqueries of Qα (SSQs) where every row
is a subquery that satisfies at least one of the query predi-
cates. In the following, this matrix SSQs set, represented by
MSSQ(Qα, D) is defined as: MSSQ(Qα, D) = { SSQα ⊂
Qα | ∃r ∈ [[SSQα]]D ∧ @Q′α : SSQα ⊂ Q′α ∧ r ∈ [[Q′α]]D }.
Based on this set, the binary matrix is defined as follows:

Definition 3: The binary matrix M of a threshold query
Qα = p1 ∧ p2 ∧ ... ∧ pd on an uncertain database D
is a two-dimensional table created with subqueries SQ ∈
MSSQ(Qα, D) as rows and predicates pi ∈ Q as columns.
For a subquery SQ and a predicate pi ∈ Q, if pi ∈ SQ, then
M [SQ][pi] = 1, else M [SQ][pi] = 0.

This binary matrix is computed using a disjunction of the
predicates of the threshold failing query Qα. This disjunction
ensures that every subquery satisfying at least one predicate
and at most |Qα| − 1 predicates is included, which implies
that the matrix contains all the XSSs of Qα.

TABLE III
BINARY MATRIX OF OUR THRESHOLD QUERY EXAMPLE

Name=John Age ≥ 26 City=Bern Job=Engineer
1 1 0 0
0 1 1 1
1 0 0 1
0 0 0 1
1 0 0 0

Proposition 1: The binary matrix of a threshold query Qα
contains its XSSs.

Proof 1: Let Q∗ be an XSS of Qα. By definition, Q∗ ⊂ Qα.
Moreover, since Q∗ is successful, its evaluation on D contains
at least one result: ∃ r ∈ [[Q∗]]D. Finally, as Q∗ is maximal, it
cannot have a successful superquery: @ Q∗′α | Q∗α ⊂ Q∗′α ∧
r ∈ [[Q∗′α]]D. Thus, Q∗ ∈ MSSQ(Qα, D).

The size of the matrix cannot exceed the size of the
subquery lattice i.e., 2d − 2 rows (it is assumed that the
initial query fails and the empty query succeeds). This binary
matrix can easily be stored in main memory by using bitmap
structures. Additionally, our proposed approach only runs a
single query: no further access to the database is required after
this step, which significantly reduces XSSs computation time.

Table III shows the computed matrix for the running ex-
ample, where each row of this matrix represents an SSQ
of Q0.4. For example, the first row corresponds to the SSQ
Q′0.4 : Name = John∧Age > 26. This SSQ is successful as
the first row of Table II satisfies it.

B. Computing XSSs from the Binary Matrix

Since the binary matrix represents a set of succeeding
subqueries, it contains both maximal and non-maximal sub-
queries. The computation of the XSSs can be done by re-
moving the non-maximal SSQs from it. This problem can be
reduced to the computation of the skyline of query results
(also known as the maximum vector problem) [15]. Among
the existing skyline algorithms, in this work, we adapt the
nested loop algorithm.

Our algorithm computes the XSSs of a failing threshold
query Qα from its binary matrix by keeping a list of the
currently found XSSs. When a new SSQ SQ is read from
the binary matrix, SQ is compared to all queries in the list of
current XSSs. Three cases can occur: (1) SQ is a subquery
of one of the current XSSs. In this case, SQ is eliminated as
it cannot be an XSS, (2) SQ is a superquery of some current
XSSs. In this case, these queries are removed from the list
of current XSSs and SQ is added to this set, and (3) SQ
is neither a subquery nor a superquery of one of the current
XSSs (i.e., these queries are not comparable), SQ is added to
the list of current XSSs.

Let n be the size of the binary matrix. In the worst case,
every SSQ of the binary matrix will need to be compared
against every other SSQ of this matrix and our algorithm has
a worst-case runtime of O(n2). This complexity is polynomial
in n but exponential in d, the size of the query (whose upper-
bound is 2d − 2). As Godfrey has shown that enumerating

∅

p1 p2 p3 p4

p1 ∧ p2 p1 ∧ p3 p1 ∧ p4 p2 ∧ p3 p2 ∧ p4 p3 ∧ p4

p1 ∧ p2 ∧ p3 p1 ∧ p2 ∧ p4 p1 ∧ p3 ∧ p4 p2 ∧ p3 ∧ p4

p1 ∧ p2 ∧ p3 ∧ p4

Q : SSQ

Q : XSS
Q : successful query

QMFS :
Qfailing query :

Fig. 3. MFSs, XSSs and SSQs in the lattice of subqueries

the MFSs of a failing query is NP-hard [2], this result is not
surprising. In this work, which deal with large input queries,
our experiments presented in Section VI show that, even for
large queries (up to 25 predicates), our approach is efficient
in practice.

C. Computing MFSs from XSSs by Dualization

Following the relationship between MFSs from XSSs pre-
sented in Section IV, the computation of MFSs consists of
two steps: 1) computing the complement of each XSS and 2)
dualizing the hypergraph whose hyperedges consist of these
complements.

Complements in step 1 are computed straightforwardly
using sorted lists. For instance in our running example, the
complement of XSS1 = p1 ∧ p2 is (XSS1)

{ = p3 ∧ p4. To
comply with the input format of the next step, complements
are represented as sets of integers, where (XSS1)

{ = p3 ∧ p4
becomes {3, 4}.

For step 2, we chose the Sparse Hypergraph Dualization
(SHD) algorithm [4], for which the authors provide a reference
implementation1. We opted for SHD due to its efficiency, but
other dualization algorithms could have been selected instead.
SHD dualizes an hypergraph (V, F) in O(||F || × |V |) time
and O(||F ||) space [4], where ||F || represents the total size
of the hyperedges:

||F || =
∑
E∈F
|E|.

In the context of query relaxation, the computation of MFSs
from XSSs is therefore linear in both the number of predicates
and the size of the hypergraph, although the size of the
hypergraph is itself exponential in the number of predicates.
This algorithm also provides good results in practice even
though the problem of computing the dual hypergraph is NP-
hard.

Figure 3 illustrates the final output of our running example
(three MFSs and two XSSs) as well as intermediary results
(five SSQs) in the subquery lattice.

VI. EXPERIMENTAL EVALUATION

In this section, we investigate the scalability of our
approach, MDMB, and compare it with three algorithms from

1Available at http://research.nii.ac.jp/ uno/code/shd.html.

the state of the art.

Implemented Algorithms. MDMB is an improvement of
the MBS algorithm [3] to handle larger queries. MBS therefore
acts as a baseline to evaluate the benefits of our optimization.
MDMB is also compared to two alternative algorithms: MCS
[7] and LBA [5], described in section II. As these approaches
(MCS and LBA) have been proposed in non-uncertain con-
texts, we have adapted these algorithms in order to compare
experiments. This adaptation consists in adapting the original
predicates to include the verification of the certainty threshold.
For instance, the conjunction (Name = John ∧ Age > 26)
becomes (Name = John ∧ degree(Name) > α) ∧ (Age >
26 ∧ degree(Age) > α).

Datasets and Queries. Since there exists no benchmark
dedicated to the empty answer problem, we used a data
generator proposed by Börzsönyi et al. [15]. This generator
is widely used in skyline research to provide datasets with or
without correlation. More formally, it generates databases of
tuples (or points) with varying number of dimensions using
one of the following three value distributions:
• correlated (corr): tuples with higher values in one dimen-

sion tend to have higher values in all other dimensions,
• anti-correlated (anti): tuples with higher values in one

dimension tend to have lower values in at least one other
dimension,

• independent (indep): values are generated using uniform
distributions for each dimension.

Datasets are generated with standard parameters for results
with all four algorithms to be comparable. Generated values
range between 0 and 1, for a number of dimensions d between
4 and 25. The size of the dataset (i.e., the cardinality or number
of tuples) n varies from 500K to 8M rows. Unless stated
otherwise, the default number of dimensions is set to d = 18
and the default cardinality is n =1M.

The datasets are generated so that each one is included in
the other, in other words, the 500k dataset is a subset of the
1M dataset, which is itself a subset 2M on and so forth.
The degrees of certainty were generated randomly using a
uniform distribution between 0 and 1. We experimented with
different indexes to decrease the running time of the queries,
and found that the best performance was provided by using B-
tree indexes for each couple (d, d_v), where d is a dimension
and d_v its associated degree of certainty.

The parameters of the generated queries are chosen to
ensure that they are always failing for all query sizes on all
datasets: queries select tuples with values below 0.1 for each
dimension and a certainty degree above 0.9.

The number of MFSs and XSSs being a decisive parameter
for the runtime of the algorithms, the three possible distribu-
tions allowed by the generator display dissimilar characteris-
tics in that regard. Table IV gives an overview of these dis-
similarities. As expected, the number of MFSs increases with
the number of dimensions due to the exponential increase of
the number of subqueries. Additionally, the anti-correlated and
the independent datasets turn out to be the most challenging

as the number of MFSs sharply increases with the number
of dimensions. In the correlated dataset, the number of MFSs
remains comparatively quite small due to the nature of the
distribution, where low values in all dimension – as requested
by the original query – are more likely present.

Table IV also illustrates the evolution of the number of
MFSs with respect to the size of datasets n (d = 18). For
correlated datasets, the number of MFSs remains constant at
153 since generated data are similar and happen not to change
the failing status of subqueries. For the anti-correlated and
independent generators, larger datasets necessarily have more
successful queries, and the number of MFSs therefore varies,
with a tendency to increase.

In addition to these synthetic datasets, we also conducted
experiments on three real datasets that are commonly used to
evaluate skyline algorithms2 [16]: NBA (statistics of basketball
players during regular seasons), HOUSE (money spent in
one year by an American family for six different types of
expenditures) and WEATHER (average monthly precipitation
totals and elevation at over half a million sensor locations).
Since these datasets do not include uncertainty values, cer-
tainty degrees were also randomly generated. The properties
of these datasets are given in Table V. We can observe that
the WEATHER dataset is the most challenging on all three
criteria: cardinality, number of dimensions and number of
MFSs.

Experimental Setup. Algorithms are implemented in Java
1.8 64 bits on top of PostgreSQL 9.5, MySQL 5.6.17 and
Oracle 12c. Other Database Management Systems (DBMSs)
supporting the CASE operator (required to compute the ma-
trix) could also have been used. In this paper, we only
report results for PostgreSQL since other DBMSs provide
a comparable performance. Our prototype has been made
available3 with a tutorial to reproduce this evaluation.

Our experiments were conducted on a Linux-Ubuntu Server
16.04 LTS system with Intel XEON CPU E5-2630 v3
@2.4 GHz CPU and 8 GB RAM.

In the following, execution times are the average of five
consecutive runs of the algorithms. To prevent a cold start
effect, each algorithm is executed once before the actual
measurements.

Experiment 1: scalability w.r.t query size. Figures 4, 5 and
6, illustrate the time to compute MFSs and XSSs using various
query sizes (i.e., number of dimensions) for each synthetic
dataset of 1M rows.

For the correlated dataset (Figure 4), all four algorithms pro-
vide response times in the order of a few milliseconds for small
queries (≤ 13 predicates), but MBS and MCS display a rapid
increase of their response time when the query includes more
than, respectively, 16 and 13 predicates. Comparatively, LBA
takes more time to compute MFSs for small queries, but scales
better by providing acceptable response times for queries with
up to 25 predicates. As MCS explores a large part of the

2These real datasets are available at https://github.com/sean-
chester/SkyBench

3At http://www.lias-lab.fr/forge/projects/mfs4udb.

TABLE IV
STATISTICS OF SYNTHETIC DATASETS

Dataset Dimension #MFSs and #XSSs vs query size, n= 1M #MFSs and #XSSs vs dataset size, d= 18
5 7 9 11 13 15 17 19 21 23 25 0.5 1 2 4 8

Correlated MFS 10 21 36 55 78 105 136 171 210 253 300 153 153 153 153 153
XSS 5 7 9 11 13 15 17 19 21 23 25 18 18 18 18 18

Anti-correlated MFS 9 32 70 135 231 372 547 761 1040 1384 1791 724 645 617 832 1445
XSS 8 15 24 38 56 83 137 211 294 387 517 113 175 307 444 535

Independent MFS 4 20 51 107 194 331 577 950 1380 1987 2729 566 747 1698 2747 2804
XSS 7 21 46 88 157 253 368 517 692 906 1136 296 432 552 555 472

subquery lattice each time a failing query is found, it does
not scale well for queries that have more than 13 predicates
and requires an important processing time, despite the fact
that it executes less queries than LBA. Our approach MDMB
outperforms all three others especially for large queries. This
is mainly due to the use of dualization to compute the set of
MFSs, which is highlighted by the comparison with MBS. The
dualization avoids an in-memory representation of the lattice
– such as in MBS – which significantly reduces the response
time.

For the anti-correlated (Figure 5) and independent datasets
(Figure 6), MBS gives better results then MCS and LBA
for small queries but displays, as in the correlated datasets,
a rapid increase in response time for queries of more then
16 predicates. As the subquery matrix is comparatively larger
(since there are more XSSs), its computation takes more time.
Another consequence of the augmentation of the number of
MFSs is that LBA needs to execute much more queries than
with the correlated dataset. Our approach MDMB outperforms
all three others especially for large queries and yet does not
exceed 1.6 seconds even on the most challenging dataset with
the largest query (d=25).

Since both approaches share the same pre-processing steps
up to the computation of XSSs, the difference between MBS
and MDMB illustrates the importance of using dedicated
dualization algorithms to compute MFSs. Indeed, for large
queries on all three datasets, dualization allows MDMB to
keep on providing acceptable response times where MBS did
not.

Experiment 2: scalability w.r.t dataset size. Figures 7, 8
and 9 illustrate the time to compute the MFSs and XSSs as
a function of the dataset size for respectively the correlated,
anti-correlated and independent datasets (d = 18). Results with
MCS do not appear in these figures due to its substantial
response time (respectively 279s, 372s and 275s n=0.5M).
This experiment confirms the previous results. On the corre-
lated datasets, MDMB, LBA and MBS scale well and only
require a few milliseconds to about 1 second to terminate
even on a dataset of 8M rows. The impact of our proposition
is more significant on the independent and anti-correlated
datasets where MDMB outperforms other algorithms. As these
datasets have more MFSs, the LBA and MCS algorithms need
to execute more queries, which induces a significant increase
of their execution times on large datasets. Comparatively, MBS
and MDMB only need to execute a single query to compute

TABLE V
STATISTICS OF REAL DATASETS

Dataset Cardinality Dimensions #MFSs
NBA 17 264 8 7
HOUSE 127 931 6 13
WEATHER 566 268 15 48

TABLE VI
PERFORMANCE ON REAL DATASETS

Algorithm NBA HOUSE WEATHER
msec. speedup msec. speedup sec. speedup

LBA 7.2 4.5× 13.4 5.15× 0.19 9.5×
MCS 1.4 0.88× 8.8 3.38× 4.45 222.5×
MDMB 1.6 - 2.6 - 0.02 -
MBS 0.6 0.38× 1.4 0.54× 0.10 5×

their matrix. MDMB outperforms the other approaches in these
experiments. However it does not scale well with large datasets
(8M). This is mainly explained by the quadratic complexity of
the XSS computation as the matrix becomes larger, but also
by the cost of dualization due to a larger number of XSSs and
MFSs.

Experiment 3: applicability to real datasets. Table VI
gives the performance of the algorithms on three real datasets.
Since NBA and HOUSE are relatively small and have few
dimensions, we do not obtain significant performance gains
with our new approach MDMB compared to MBS. This can be
explained by the small size of both the lattice and the datasets
which reduces the response time and the search space of MBS.
On WEATHER, the most challenging real dataset, we observe
that MDMB, MBS and LBA provide the MFSs and XSSs of
the queries in a few milliseconds. As with synthetic datasets,
MCS executes less queries than LBA but still needs more than
4 seconds to return the results as it explores several times a
large part of the subquery lattice, which has 215 nodes. Even if
the size of this dataset is still small compared to the synthetic
ones, MDMB outperforms other algorithms by a factor of 5×
to 222×.

VII. CONCLUSION

In this paper, we have proposed an efficient approach,
called MDMB, that computes both the MFSs and XSSs of
failing threshold queries over uncertain databases. The key
notion of MDMB is the dualization concept borrowed from
graph theory. As shown in the experimental evaluation, this

Fig. 4. time vs query size, corr, n=1M Fig. 5. time vs query size, anticorr, n=1M Fig. 6. time vs query size, indep, n=1M

Fig. 7. time vs dataset size, corr, d=18 Fig. 8. time vs dataset size, anticorr, d=18 Fig. 9. time vs dataset size, indep, d=18

modification greatly improves the computation time over our
previous MBS approach [3].

We have also compared MDMB with two algorithms from
the state of the art: LBA and MCS. MCS can only be used
for relatively small datasets and queries with few predicates as
it needs to explore several times a large part of the subquery
lattice, while LBA and MBS return the MFSs and XSSs in a
few milliseconds on real datasets and on the less challenging
synthetic datasets. The benefit of MDMB appears when using
large input queries, where LBA and MBS do not provide
acceptable performance for queries with 16 predicates or more,
while MDMB gives good response time even for the most
challenging queries.

ACKNOWLEDGMENT

We would like to acknowledge the worthy assistance and
technical support received from Mickaël Baron, Research
Engineer at ISAE-ENSMA.

REFERENCES

[1] H. Mannila and H. Toivonen, “Levelwise search and borders of theories
in knowledge discovery,” Data Min. Knowl. Discov., vol. 1, no. 3, pp.
241–258, 1997.

[2] P. Godfrey, “Minimization in Cooperative Response to Failing Database
Queries,” International Journal of Cooperative Information Systems,
vol. 6, no. 2, pp. 95–149, 1997.

[3] C. Belheouane, S. Jean, A. Hadjali, and H. Azzoune, “Handling failing
queries over uncertain databases,” in 2017 IEEE International Confer-
ence on Fuzzy Systems, FUZZ-IEEE 2017, Naples, Italy, July 9-12, 2017,
2017, pp. 1–6.

[4] K. Murakami and T. Uno, “Efficient algorithms for dualizing large-scale
hypergraphs,” Discrete Applied Mathematics, vol. 170, pp. 83–94, 2014.

[5] G. Fokou, S. Jean, A. Hadjali, and M. Baron, “Handling Failing RDF
Queries: From Diagnosis to Relaxation,” Knowledge and Information
Systems (KAIS), vol. 50, no. 1, pp. 167–195, 2017.

[6] I. Dellal, S. Jean, A. Hadjali, B. Chardin, and M. Baron, “On addressing
the empty answer problem in uncertain knowledge bases,” in Database
and Expert Systems Applications - 28th International Conference, DEXA
2017, Lyon, France, August 28-31, 2017, Proceedings, Part I, 2017, pp.
120–129.

[7] D. McSherry, “Incremental Relaxation of Unsuccessful Queries,” in
Advances in Case-Based Reasoning, 2004, vol. 3155, pp. 131–148.

[8] D. Jannach, “Fast Computation of Query Relaxations for Knowledge-
based Recommenders,” AI Communications, pp. 235–248, 2009.

[9] O. Pivert and G. Smits, “How to efficiently diagnose and repair fuzzy
database queries that fail,” in Fifty Years of Fuzzy Logic and its
Applications, 2015, pp. 499–517.

[10] P. Bosc, O. Pivert, and H. Prade, “An uncertain database model and a
query algebra based on possibilistic certainty,” in SoCPaR, 2010.

[11] P. Sen, A. Deshpande, and L. Getoor, “PrDB: Managing and Exploit-
ing Rich Correlations in Probabilistic Databases,” The VLDB Journal,
vol. 18, no. 5, pp. 1065–1090, 2009.

[12] O. Pivert and H. Prade, “A certainty-based model for uncertain
databases,” IEEE Transactions on Fuzzy Systems, pp. 1181–1196, 2015.

[13] D. Dubois and H. Prade, “Necessity measures and the resolution
principle,” IEEE Trans. on Systems, Man and Cybernetics, 1987.

[14] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and
R. S. Sharm, “Discovering all most specific sentences,” ACM Trans.
Database Syst., vol. 28, no. 2, pp. 140–174, 2003.

[15] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
ICDE, 2001, pp. 421–430.

[16] S. Chester, D. Šidlauskas, I. Assent, and K. S. Bøgh, “Scalable Paral-
lelization of Skyline Computation for Multi-core Processors,” in ICDE
2015, 2015, pp. 1083–1094.

