
HAL Id: hal-03356093
https://hal.science/hal-03356093v1

Submitted on 27 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Checking Constraint Satisfaction
Victor Jung, Jean-Charles Régin

To cite this version:
Victor Jung, Jean-Charles Régin. Checking Constraint Satisfaction. Lecture Notes in Computer
Science, 2021. �hal-03356093�

https://hal.science/hal-03356093v1
https://hal.archives-ouvertes.fr

Checking Constraint Satisfaction

Victor Jung[0000−1111−2222−3333] and Jean-Charles Régin[0000−0001−6204−5894]

Université Côte d’Azur, CNRS, I3S, France
{victor.jung,jean-charles.regin}@univ-cotedazur.fr

Abstract. We address the problem of verifying a constraint by a set
of solutions S. This problem is present in almost all systems aiming at
learning or acquiring constraints or constraint parameters. We propose
an original approach based on MDDs. Indeed, the set of solutions can
be represented by the MDD denoted by MDDS . Checking whether S
satisfies a given constraint C can be done using MDD(C), the MDD that
contains the set of solutions of C, and by searching if the intersection
between MDD(S) and MDD(C) is equal to MDD(S). This step is
equivalent to searching whether MDD(S) is included in MDD(C). Thus,
we give an inclusion algorithm to speed up these calculations. Then,
we generalize this approach for the computation of global constraint
parameters satisfying C. Next, we introduce the notion of properties on
the MDD nodes and define a new algorithm allowing to compute in only
one step the set of parameters we are looking for. Finally, we present
experimental results showing the interest of our approach.

Keywords: Multi-valued Decision Diagram · Inclusion · Constraint Learn-
ing.

1 Introduction

Many works in Constraint Programming try to improve the quality of a model
by adding new implicit constraints[11], redundant constraints [4] or global con-
straints [8]. All these works face a common problem: the verification of the
satisfaction of constraints by a given set of solutions. Some choose a brute force
approach [8,11], others prefer a more specific but ad-hoc approach [2]. In all
cases, these methods go through the solutions to test if they satisfy constraints.
Constraints are not necessarily tested individually, but the solutions can be con-
sidered one after the other.

In this paper, we propose a more global and efficient method to test whether
a set of solutions verifies one or a set of constraints. Multi-valued decision dia-
grams (MDDs) are a very efficient data structure to represent a set of solutions
in a compressed way and for which many operators are available to combine
MDDs without decompressing them. We therefore propose to use MDD(S) the
MDD which corresponds to the set of solutions S. We show that we can simply
test if S satisfies a constraint C, by using MDD(C), the MDD that represents
the solutions of C, and then by performing the intersection between MDD(S)

2 Jung and Régin

and MDD(C). This method is simple to implement since it only requires con-
structing the two MDDs and performing their intersection, for which efficient
algorithms are available, and then testing whether the resulting MDD is similar
to MDD(S). However it has an important flaw: it will create and calculate a
MDD even if the intersection will not be equal to MDD(S). It therefore risks
doing many operations unnecessarily. To avoid this we introduce an inclusion op-
erator between MDDs since this is what we want to test: is MDD(S) included
in MDD(C)?

This operator is efficient when it is a question of verifying a precise and
unique constraint, but not very efficient when it is a question of searching for
the parameters of a constraint such that the resulting constraint is satisfied by
a set of solutions. Finding the parameters of a global constraint so that it is
satisfied by a set of solutions is a recurrent problem at present ([11], [12], [8],
[2], [4]). To solve this problem we propose to work with MDD(S) which we
enrich by introducing the notion of node properties. Then, a process called ”the
parent-child propagation of the parameters” is performed through the MDD.
More precisely, the global constraint is expressed by properties including the
parameters and these properties are propagated in MDD(S) in order to compute
for each sub-tree of the MDD those which are compatible with the constraint.
Thus, we determine the most restrictive parameters of the constraint that are
satisfied by the MDD.

This article is organized as follows. First, we give some basic definitions.
Then, we present a general scheme to check the satisfaction of a constraint and
improve it by defining a new operation between MDDs. Next, we address the
problem of finding parameters of global constraints by introducing the notion of
node properties. Finally, we provide benchmarks and results testing the different
approaches described in this article, and we conclude.

2 Preliminaries

2.1 Constraint Programming

A finite constraint networkN . is defined as a set of n variables X = {x1, . . . , xn},
a set of current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set
of possible values for variable xi, and a set C of constraints between variables.
We introduce the particular notation D0 = {D0(x1), . . . , D0(xn)} to represent
the set of initial domains of N on which constraint definitions were stated. A
constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir) is a subset
T (C) of the Cartesian product D0(xi1)×· · ·×D0(xir) that specifies the allowed
combinations of values for the variables xi1 , . . . , xir . An element of D0(xi1)×· · ·×
D0(xir) is called a tuple on X(C). A value a for a variable x is often denoted by
(x, a). Let C be a constraint. A tuple τ on X(C) is valid if ∀(x, a) ∈ τ, a ∈ D(x).
C is consistent iff there exists a tuple τ of T (C) which is valid. A value a ∈ D(x)
is consistent with C iff x 6∈ X(C) or there exists a valid tuple τ of T (C) with
(x, a) ∈ τ . We denote by #(a, τ) the number of occurences of the value a in a
tuple τ .

Checking Constraint Satisfaction 3

We present some constraints that we will use in the rest of this paper.
A global cardinality constraint (gcc) constrains the number of times every

value can be taken by a set of variables. This is certainly one of the most useful
constraints in practice. Note that the alldiff constraint corresponds to a gcc
in which every value can be taken at most once.

Definition 1 A global cardinality constraint is a constraint C in which
each value ai ∈ D(X(C)) is associated with two positive integers li and ui with
li ≤ ui defined by
gcc(X, l, u) = {τ |τ is a tuple on X(C) and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui}

Definition 2 Given X a set of variables, l and u two integers with l ≤ u and
V a set of values. The among constraint ensures that at least l variables of X
and at most u will take a value in V , that is
among(X,V, l, u) = {τ | τ is a tuple on X(C) and l ≤

∑
a∈V #(a, τ) ≤ u}

This constraint has been introduced in CHIP [1].
The sequence constraint [1] is a conjunction of sliding among constraints.

Definition 3 Given X a set of variables, q, l and u three integers with l ≤ u and
V a set of values. The sequence constraint holds if and only if for 1 ≤ i ≤ nq+1
among({xi, ..., xi+q−1}, V, l, u) holds. More precisely
Sequence(X,V, q, l, u) = { τ | τ is a tuple on X(C) and for each sequence S

of q consecutive variables: l ≤
∑

v∈V #(v, τ, S) ≤ u}

2.2 Multi-valued Decision Diagram

The decision diagrams considered in this paper are reduced, ordered multi-valued
decision diagrams (MDD) [7,13,3], which are a generalization of binary decision
diagrams [5]. They use a fixed variable ordering for canonical representation and
shared sub-graphs for compression obtained by means of a reduction operation.
An MDD is a rooted directed acyclic graph (DAG) used to represent some multi-
valued functions f : {0...d− 1}n → true, false. Given the n input variables, the
DAG contains n+ 1 layers of nodes, such that each variable is represented at a
specific layer of the graph. Each node on a given layer has at most d outgoing arcs
to nodes in the next layer of the graph. Each arc is labeled by its corresponding
integer. The arc (u, a, v) is from node u to node v and labeled by a. Sometimes
it is convenient to say that v is a child of u. All outgoing arcs of the layer n
reach tt, the true terminal node (the false terminal node is typically omitted).
There is an equivalence between f(a1, ..., an) = true and the existence of a path
from the root node to the tt whose arcs are labeled a1, ..., an.

The reduction of an MDD is an important operation that may reduce the
MDD size by an exponential factor. It consists in removing nodes that have
no successor and merging equivalent nodes, i.e. nodes having the same set of
neighbors associated with the same labels. This means that only nodes of the
same layer can be merged.

4 Jung and Régin

MDD of a constraint. Let C be a constraint defined on X(C). The MDD
associated with C, denoted by MDD(C), is an MDD modeling the set of tuples
of C. More precisely, MDD(C) is defined on X(C), such that the arc labels of
the layer of the variable x correspond to values of x, and a path of MDD(C)
(that is a path from the root node to the tt node) where ai is the label of layer
i corresponds to a tuple (a1, ..., an) on X(C).

Operators We reproduce here the description of the generic Function apply
[9,10] because we will see that the inclusion can be easily modelled thanks to it1.
From the MDDs mdd1 and mdd2 it computes mddr = mdd1 ⊕mdd2, where ⊕
is union, intersection, difference, symmetric difference, complementary of union
and complementary of intersection. Function apply is mainly based on the pos-
sible combinations of labeled arcs. It proceeds by associating nodes of the two
MDDs operands. Each node x of the resulting MDD is associated with a node
x1 of the first MDD and a node x2 of the second MDD represented by a pair
(x1, x2). First, the root is created from the two roots. Then, the layers are succes-
sively built. From the nodes of layer i−1 the nodes of layer i are built as follows.
For each node x = (x1, x2) of layer i − 1, the arcs outgoing from nodes x1 and
x2 and labeled by the same value v are considered. We recall that there is only
one arc leaving a node x with a given label. Thus, there are four possibilities de-
pending on whether there are y1 and y2 such that (x1, v, y1) and (x2, v, y2) exist
or not. The action that is performed for each of these possibilities will define the
operation performed for the given layer. For instance, a union is defined by cre-
ating a node y = (y1, y2) and an arc (x, v, y) each time one of the arcs (x1, v, y1)
or (x2, v, y2) exists. An intersection is defined by creating a node y = (y1, y2)
and an arc (x, v, y) when both arcs (x1, v, y1) and (x2, v, y2) exist. Thus, these
operations can be simply defined by expressing the condition for creating a node
and an arc.

Function apply, given in Algorithm 1 takes as parameters the two MDDs,
two arrays op, V having as many elements as layers, and typeOp the operation
type (i.e. intersection, union...). For each layer i, op[i] contains 4 entries, each
one representing the fact that we create an arc or not for a combination of arc
existence in the two MDDs and V [i] represents the set of values needed by the
complementary set. If it is equal to nil then V [i] will be equal to the union of the
values of the neighbors of the considered nodes. At the end the resulting MDD
is reduced by calling pReduce algorithm [9].

The values of op[i] defining the binary operations are defined as follows for
the different combinations:

1 Unlike Perez and Régin [9], the complementary of an MDD M is computed by
making the difference between the universal MDD and M . This avoids the need of
a dedicated algorithm.

Checking Constraint Satisfaction 5

op[0] op[1] op[2] op[3]
¬a1 ∧ ¬a2 ¬a1 ∧ a2 a1 ∧ ¬a2 a1 ∧ a2

layer [1..r-1] r [1..r-1] r [1..r-1] r [1..r-1] r
A ∩ B F F F F F F T T
A ∪ B F F T T T T T T
A− B F F F F T T T F

Algorithm 1 Generic Apply Function.
apply(mdd1,mdd2, op, V, typeOp): (MDD, bool)

// L[i] is the set of nodes in layer i.
root← createNode(root(mdd1), root(mdd2))
L[0]← {root}
for each i ∈ 1..r do

L[i]← ∅
for each node x ∈ L[i− 1] do

get x1 and x2 from x = (x1, x2)

if V [i] = nil then V [i]← values(ω+(x1) ∪ ω+(x2))
for each v ∈ V [i] do

if 6 ∃(x1, v, y1) ∈ ω+(x1) then

if 6 ∃(x2, v, y2) ∈ ω+(x2) ∧ op[0] then createArc(L, i, x, v, w[i])

if ∃(x2, v, y2) ∈ ω+(x2)∧ op[1] then addArcAndNode(L, i, x, v, nil, y2)

else
if 6 ∃(x2, v, y2) ∈ ω+(x2)∧op[2] then addArcAndNode(L, i, x, v, y1, nil)

if ∃(x2, v, y2) ∈ ω+(x2) ∧ op[3] then addArcAndNode(L, i, x, v, y1, y2)

if typeOp = Inclusion then
if ∃(x1, v, y1) ∈ ω+(x1)∧ 6 ∃(x2, v, y2) ∈ ω+(x2) then return (nil, false)

if typeOp = Inclusion then return (nil, true)
merge all nodes of L[r] into t
pReduce(L)
return (root, true)

addArcAndNode(L, i, x, y1, v, y2)
if 6 ∃y ∈ L[i] s.t. y = (y1, y2) then

y ← createNode(y1, y2)
add y to L[i]

createArc(L, i, x, v, y)

3 Checking constraint satisfaction

A first solution to test whether a set of solutions S satisfies a constraint C is to
represent S by an MDD, denoted MDD(S), then use MDD(C) the MDD of the
constraint C and calculate the intersection between MDD(S) and MDD(C).
If this intersection is equal to MDD(S) then this means that all solutions of S
satisfy the constraint C. The proof of the soundness of this approach is quite
immediate : an MDD is a set of solutions, so if the intersection does not modify
MDD(S) then it means that any solution of MDD(S) is also a solution of
MDD(C) and therefore this solution satisfies the constraint.

This approach is not particularly efficient, because it systematically requires
the intermediate calculation of an intersection between MDDs. However, we

6 Jung and Régin

are not interested in this intersection2. What matters is to know whether this
intersection is similar to the initial MDD. We can reduce what we are trying
to do in a single step: we check a relation of inclusion. Indeed, answering the
question MDD(S) ∩ MDD(C) = MDD(S)? is equivalent to answering the
following question: MDD(S) ⊆ MDD(C)? As this operator does not exist in
the literature, we propose to create it.

3.1 Operator of Inclusion

The inclusion operator between MDDs is easily done using the generic function
apply. Let’s consider that we want to know if MDD1 is included in MDD2. We
use the same rules as the intersection operator with a notable exception: if an
edge a is in MDD1 but not in MDD2, then we end the algorithm by returning
false. In this case there is at least one solution in MDD1 which is not in MDD2

so MDD1 cannot be included in MDD2. For the three other cases we can easily
find those of the intersection. Using the terminology of the preliminaries, we have
clearly: ¬a1 implies that no arc is created and a1 ∧ a2 implies an arc creation,
since the solutions are common.

We notice that it is not necessary to keep in memory the MDD that is built.
Indeed, we just need to know if we can create each new level. To do this, only
the last level that has just been built is useful and must be kept in memory, the
others being no longer useful can be destroyed. The reduction of the built MDD
is no longer useful either since we are only interested in the ability to build an
MDD from the root to tt. Function apply must therefore return true instead of
performing the reduction at the end. This allows us to save time compared to
the previous method.

4 Inferring parameters of global constraints

The inclusion operator allows to answer in an efficient way to the question of
the satisfaction of a constraint by a set of solutions S. However, in practice, the
question that is often asked is more general: given a global constraint C involving
a set of parameters, for which parameters S satisfies this constraint?

Let us consider P a set of parameters and C(P) a constraint defined using
these parameters. Formally, we can present the problem in the following way:
What are the sets P such that ∀s ∈ S, s satisfies C(P)?

A first way to proceed is to check for each set of parameters P if we have
MDDS ⊆MDDC(P).

We propose to add additional information, called properties, to each node
of an MDD. This idea has similarities with the scheme introduced by J. Hooker
et al.[6]. This information is used to memorize the valid parameters from the
root to the node in relation to the constraint under consideration. When we

2 We could also perform the intersection between MDD(S) and the negation of
MDD(C) and check whether it is empty or not. However the computation of the
negation is required so it does not improve the classical intersection.

Checking Constraint Satisfaction 7

will reach tt, we will know the parameters that are checked by all the solu-
tions. In addition, retaining all the parameter sets is superfluous and we can be
satisfied with retaining the more restrictive parameters. Other acceptable pa-
rameters may be derived from these restrictive parameters. For example, if the
constraint sequence(X,V, q = 3, l = 1, u = 2) is satisfied then the constraints
sequence(X,V, q = 3, l = 0, u = 2), sequence(X,V, q = 3, l = 1, u = 3,) and
sequence(X,V, q = 3, l = 0, u = 3) are also satisfied. So, the more restrictive
parameters are (q = 3, l = 1, u = 2).

We present on an example the ideas of our algorithm. We will use the binary
representation of a sequence constraint. Indeed, for a sequence constraint, we
can abstract any X and V into a binary problem with V = {1}. If xi = 1 then
it means that xi takes its value in V (xi ∈ V) otherwise we have xi=0. So we
are in the presence of only binary variable and we are looking for the parameter
values (q, u, l) which are satisfied by S.

Fig. 1: Sequences for MDD(S)

Consider the red node f in MDD(S)
(Fig. 1). There are two paths to
access this node from the root:
take 0, 0 then 1 (which corre-
sponds to the blue path -left- on
the diagram) or take 1, 1 then 0
(which corresponds to the path in
green -right-). In total, there are 5
sub-MDDs (i.e. smaller MDDs con-
tained in the main MDD) hav-
ing this red node f as the ter-
minal node: 1 having as start-
ing point the general root ({0-0-
1, 1-1-0}), then 2 having as root
the two nodes of the first layer
({0-1}, {1-0}) and finally 2 hav-
ing as root the two nodes of the
second layer ({1}, {0}). Strictly
speaking, there are actually 6 sub-
MDDs, since the MDD consist-
ing only of the red node f ex-
ists.

Properties (i.e. satisfied sequences) are added to nodes:

– Node R. This node contains only the basic information, i.e. (q = 0, l =
0, u = 0), since the only way to reach this node is to start from it and take
no edge. This is the basic case, viable for all nodes.

– Node a (blue). In addition to the basic case, it is possible to reach this
node starting from the root and taking the value 0. As we take 0 times the
value 1, the satisfied Sequence is (q = 1, l = 0, u = 0).

8 Jung and Régin

– Node b (green). Same as for the previous node, except that we take once
the value 1. The satisfied Sequence is therefore (q = 1, l = 1, u = 1).

– Node c (blue). We retrieve the information from the parent node (there is
only one here). So we have (q = 0, l = 0, u = 0) and (q = 1, l = 0, u = 0).
There is only one edge that can be traversed, with a value of 0. If we add
0 to the preceding satisfied sequences, we obtain (q = 1, l = 0, u = 0) and
(q = 2, l = 0, u = 0). We retain these sequences.

– Node d (green). By the same reasoning, we obtain (q = 1, l = 1, u = 1)
and (q = 2, l = 2, u = 2).

– Node f (red). We start by looking at parent Node c (blue). By adding
the fact that we can reach the red node f by taking the value 1, we have
(q = 1, l = 0, u = 1), (q = 2, l = 0, u = 1) and (q = 3, l = 1, u = 1).
In the same way, looking at the side of parent Node d (green), we obtain
(q = 1, l = 0, u = 1), (q = 2, l = 1, u = 2) and (q = 3, l = 2, u = 2). We
notice that Sequence constraints of size 2 and size 3 are not compatible.
In this case, the union of the two Sequence constraints is performed (since
both are satisfied). We thus obtain (q = 1, l = 0, u = 1), (q = 2, l = 0, u = 2)
and (q = 3, l = 1, u = 2). We can then check that for each path leading to
the red node f , we take between 0 and 2 times the value 1 for a path of size
2, and between 1 and 2 times the value 1 for a path of size 3.

Fig.2 shows a slightly more complete example.

Fig. 2: Satisfied sequence constraints for each node. Value q corresponds to the
index in the array associated with a node.

However, one thing is noticeable: it is possible to lose information (Fig. 3).
For example, the node b contains the information (q = 0, l = 0, u = 0), (q =

Checking Constraint Satisfaction 9

1, l = 0, u = 0) and (q = 2, l = 1, u = 1), but we can see that for paths of size
1 belonging to the MDD it is possible to take between 0 and 1 times the value
1. To solve this problem, we make the union of all the nodes of a layer (for each
layer) that we store in an accumulator. This operation can be performed at the
same time as the information is constructed.

Fig. 3: Simple example to show information loss. Value q correspond to the index
in the array associated with a node.

We remind that it is not necessary to retain all the information as represented
on the diagram: we can simply keep the last two layers since the construction is
done in a sliding way.

4.1 Implementation

The information is represented in the form of a property associated with each
node. Each constraint will define its own property. The propagation of informa-
tion from the MDD nodes is performed using a breadth-first approach, because
we need all parent nodes to be correctly defined before propagating to the chil-
dren. A depth-first approach would be strictly speaking impossible because all
children would have to be re-explored each time the parents are updated (which
is highly inefficient). During propagation, one looks to see if the child is already
carrying a property or not. Two cases are possible.

– The child’s property is already defined. In this case, the information already
present must be merged with the new information provided by the parent.
Function mergeWithProperty of a property is in charge of this.

10 Jung and Régin

– The child property is not defined. In this case we simply create new infor-
mation based only on the parents’ information. Function createProperty
of the property performs this operation.

Algorithm 2 is a possible implementation of this mechanism. The important
Functions are mergeWithProperty and createProperty. They depend on
the type of constraint that the property represents, so it is difficult to define a
general way to represent the information. Technically, Function createProp-
erty is quite simple. We believe that the real difficulty lies in the definition
of Function mergeWithProperty, because the information must be complete
and valid, i.e. it must represent the state of the constraint in a correct way for
the node that contains it at any moment of the propagation.

Algorithm 2 Propagation

propagatePropertyMDD, property
MDD.root.addProperty(property)
for each layer L in MDD do

for each node in L do
transferProperty(node)

return MDD.tt.getProperty().getResult()

transferProperty(node) for each (label, child) in node.children do
if child.hasProperty() then

child.getProperty().mergeWithProperty(node.getProperty(), label)

else child.addProperty(node.getProperty().createProperty(label))

Time complexity: in O((|A| − |N |)× O(mergeWithProperty) +
|N |× O(createProperty)), where |A| is the number of edges and |N | the
number of nodes. Function createProperty is called only once for each node,
that is |N | times globally. Function mergeWithProperty is globally called
|A| − |N | times. O(mergeWithProperty) and O(createProperty) are the
time complexity of the functions mergeWithProperty and createProp-
erty. As these functions depend on the constraint and the implementation, we
can’t give any further details.

Space complexity. We retain (i+1) information for each node of layer i. The space
complexity thus depends both on the layer where we are located (the last two
layers in reality) and on the number of nodes present in the layer. As it is not
possible to predict the number of nodes in a layer for any MDD, the complexity
remains rather vague.
Let Li be the number of nodes in the layer i and L the number of layers. The
space complexity is in: O(Max(i× |Li|+ (i+ 1)× |Li+1|)), ∀i s.t. 0 ≤ i < L

Checking Constraint Satisfaction 11

4.2 Properties definitions

We provide the definition of properties for sum (
∑

x∈X x = [min,max]), se-
quence, and cardinality constraints as examples. These constraints have been
chosen in relation to the problems we are working on, and not in relation to the
difficulty of implementation. These are also quite common constraints.

Sum Constraint. The sum property is quite simple to model (Algorithm 3). As
the result is an interval, we just need to use a pair (min,max) to represent the
data. Switching from a parent to a child is simply the addition of an interval
with an integer (the value of the arc), and the merge operation is a simple union
between two intervals. Each node contains the minimum and maximum value
that can be obtained by a path from the root to that node. The end node tt
therefore contains the minimum and maximum value that can be obtained by
taking any path through the MDD.

Algorithm 3 Sum Property

createProperty(label)
(min,max)← (thismin + label, thismax + label)
return (min,max)

mergeWithProperty(property, label)
thismin ← min(thismin, propertymin+ label)
thismax ← max(thismax, propertymax+ label)

getResult()
return this

Cardinality Constraint We represent the property of a global cardinality con-
straint as a values matrix of size |V |×2. Each value considered in the constraint
is associated with a pair (min,max) representing the minimum and maximum
number of times the value is taken. Moving from a parent to a child through an
arc labeled by a, amounts to incrementing by 1 the number of times the value
a is taken, which is a simple addition operation on the intervals. On the other
hand, performing the merge amounts, as for the sum, to performing a union
operation. Algorithm 4 is a possible implementation.

Sequence Constraint. The sequence property is the most complex of the three
(Algorithm 5). In itself, Function createProperty and mergeWithProp-
erty correspond, as for the cardinality constraint, to perform respectively an
addition on intervals and a union operation. The difference comes from the fact
that, for the sequence, it is necessary to have separate information, represented
here by accumulator. This peculiarity comes from the sliding and global as-
pect of the sequence constraint: each node contains information about a local
sequence, i.e. sequences that contain it as the final value. However, it is possible

12 Jung and Régin

Algorithm 4 Cardinality Property

createProperty(label)
values← ∅
for each value v in the GCC do

values[v]min ← this.values[v]min

values[v]max ← this.values[v]max

if label ∈ values then
values[label]min ← values[label]min + 1
values[label]max ← values[label]max + 1

property.values← values
return property

mergeWithProperty(property, label)
for each value v in the GCC do

add← 0
if v = label then

add← 1

values[v]min ← min(property.values[v]min + add, values[v]min)
values[v]max ← min(property.values[v]max + add, values[v]max)

getResult
return this

Algorithm 5 Sequence Property

createProperty(label)
values← ∅
values[0]← (0, 0)
add← (label is in the sequence values)? 1 : 0
for each i from 1 to depth + 1 do

values[i]min ← this.values[i− 1]min + add
values[i]max ← this.values[i− 1]max + add

property.values← values
property.depth← depth + 1
accumulate(property)
return property

mergeWithProperty(property, label)
add← (label is in the sequence values)? 1 : 0
for each i from 1 to depth do

values[i]min ← min(property.values[i− 1]min + add, values[i]min)
values[i]max ← max(property.values[i− 1]max + add, values[i]max)

accumulate(this)

accumulate(property)
for each i from 1 to property.depth do

accumulator[i]min ← min(property.values[i]min, accumulator[i]min)
accumulator[i]max ← max(property.values[i]max, accumulator[i]max)

getResult()
return accumulator

Checking Constraint Satisfaction 13

in this case to lose information - as shown in Fig.3. This accumulator can be
implemented in different ways: either by building it on the fly (memory gain but
time loss), in which case it is not necessary to retain the information on more
than two layers (the last two in a sliding manner), or by building it once the
propagation of the property is completed, but all the information of all the nodes
must be in memory (time gain but memory loss). Here, the accumulator is built
on the fly.

5 Experiments

5.1 Testing environment

The algorithms have been implemented in Java 12. The experiments were per-
formed on a Windows 10 machine using a Ryzen 2600 AMD CPU and 32 GB
of RAM for the car sequencing problem and on a machine having four E7- 4870
Intel processors, each having 10 cores with 256 GB of memory and running under
Scientific Linux for the nurse rostering problem.

The different tests comparing the methods presented in this paper were per-
formed using solutions from instances of Car Sequencing and Nurse Rostering
(represented as a MDD). The details of this instances can be found in appendix.
However, we give some important information:

Car Sequencing The Car Sequencing MDD contains 25942 nodes, 53985 arcs
and represents 2.6×1014 solutions. There are two options with capacity 1/2 and
2/3, 4 car classes (configurations) and a total of 100 cars.

Nurse Rostering The Nurse Rostering MDD contains 128325 nodes, 220600 arcs
and represents 1.2 × 1028 solutions. There are 6 nurses, 28 days and 3 shifts.
The scheduling has some predefined data : 1 means that the nurse is working
that day, - means that the nurse is not working that day and 0 means that it
is yet to be determined. Each day, each shift has a minimum number required
of nurse working that shift (we can have more, but never less). We have various
constraints, such that a nurse cannot work more than 7 days straight and must
have at least 2 free days in a row in a 2-weeks window.

Testing each raw solution individually requires testing 2.6×1014 and 1.2×1028

solutions (respectively for Car Sequencing and Nurse Rostering problems). Doing
such benchmark in a reasonable amount of time is out of the question.

5.2 Comparison between inclusion and intersection based inclusion

We will compare the two methods to compute the inclusion presented in this
paper. We do not take into account the time and space needed to create and
store the MDDs representing the constraints - we only focus on time and space
needed to compute the inclusion between two MDDs.

We can see from results in Table 1 that the inclusion method is better in
every way than the intersection based inclusion. We observe improvements by a

14 Jung and Régin

Car Sequencing Nurse Rostering

Constraints Intersection Inclusion Intersection Inclusion

time memory time memory time memory time memory
GCC 95 48 50 29 7 052 1 716 2 820 1 186
Sum 85 47 46 30 - - - -

Sequence 187 98 38 27 15 320 3 244 5 039 1 402

Table 1: Intersection vs Inclusion (Average time in ms, memory in MB).

factor between 2 and 3 in time and between 1.5 and 3 in memory for GCC and
Sum constraints, and almost 5 in time for the sequence constraint.
This result was clearly expected, as the inclusion operation is at worst an inter-
section, without the reduce and compare part of the intersection based inclusion.

In the Car Sequencing problem, the GCC constraint expresses the number
of time a car has to be produced and the Sequence constraint represents the
maximum capacity of each option (that is, for any subsequence of q consecutive
cars, the maximum number of cars that can have this option). In the Nurse
Rostering problem, the GCC constraint expresses the demands for a shift (that
is the minimum number of nurses required for a given shift) and the Sequence
constraint expresses the fact that a nurse must have at least a certain number
of breaks in a sliding time window.
The Sum constraint does not have any powerful meaning in these problems, but
we decided to test it on at least one problem. We did not test the sum constraint
for the Nurse Rostering problem, hence the dash symbol.

5.3 Learning parameters of a global constraint

We compare the different methods (inclusion, intersection based inclusion and
properties) in order to determine the parameters of a global constraint. The
tested constraints are the sequence, sum and GCC constraints. To determine the
parameters with the inclusion and intersection based methods, a dichotomous
search on the parameters is performed. For example, if the constraint SUM(a,
b) is satisfied, we test if the constraint SUM(a, b/2) is satisfied: if it is, we test
SUM(a, b/4), otherwise we test SUM(a, b ∗ 3/4). We modify the parameters one
by one until they are fixed. However, for both methods, we do not compute the
sequence parameters for all possible values of q because it would take too much
time (we stop at q = 11). The time and memory used when building the MDDs
are integrated into the results.

As we can see from these results, using properties to compute the parameters
of a global constraint is better than performing successive inclusion checks by
at least a factor 65 in time (1 391ms vs 22ms for the sum constraint for the
Car Sequencing, in Table 2) and at most a factor 145 in time (283 994ms vs
1 952ms for the GCC constraint for the Nurse Rostering, in Table 3). For the
sequence constraint, we reach a factor of 75 with the properties even if we do not

Checking Constraint Satisfaction 15

GCC Sum Sequence

Methods Time Memory Time Memory Time Memory

Intersection 6 080 3 240 2 137 1 328 11 306 6 493
Inclusion 3 371 2 204 1 391 1 021 6 114 3 867

Properties 48 10 22 4 82 37

Table 2: Car Sequencing Problem (Time in ms, memory in MB).

GCC Sequence

Methods Time Memory Time Memory

Intersection 663 647 170 281 704 405 137 625
Inclusion 283 994 137 625 235 996 65 768

Properties 1 952 348 5 677 1 436

Table 3: Nurse Rostering Problem (Average time in ms, memory in MB).

compute all sequences with the other methods. Furthermore, a very big part of
the process is to build all the MDDs of the constraints, resulting in an increase
in both time and memory consumption, as expected. Once again we find the
factor 2 that we had in our previous comparison between the two methods of
inclusion.

5.4 Conclusion

This article sheds light on a new aspect of the interest of using MDDs in the
context of constraint programming. We have introduced a new inclusion oper-
ator that allows to answer the question of the satisfaction of a constraint more
efficiently than by using the classical sequence of operations on MDDs (intersec-
tion, reduction, comparison). In addition, we have shown that adding properties
to the nodes of a MDD allowing to represent locally the state of a constraint is a
very efficient way to obtain the parameters of a global constraint (we presented
GCC, sum and sequence), provided that this constraint can be formalized as a
node property. This method is much more advantageous than a succession of
inclusion operations, both from a temporal and spatial point of view, because it
does not require any constraint construction in the form of an MDD. The use of
inclusion is nevertheless of interest when the constraint is particularly complex,
unique, or very difficult to formalize in the form of a property. The question
of the use of properties for other constraints (other than global) seems to be
the next step in order to answer in more detail the problem of extracting the
parameters of a constraint from a set of solutions.

5.5 Acknowledgments

This work has been supported by the French government, through the 3IA Côte
d’Azur Investments in the Future project managed by the National Research
Agency (ANR) with the reference number ANR-19-P3IA-0002.

16 Jung and Régin

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Journal of
Mathematical and Computer Modelling 20(12), 97–123 (1994)

2. Beldiceanu, N., Simonis, H.: A constraint seeker: Finding and ranking global con-
straints from examples. In: Principles and Practice of Constraint Programming
- CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September
12-16, 2011. Proceedings. pp. 12–26 (2011)

3. Bergman, D., Ciré, A.A., van Hoeve, W., Hooker, J.N.: Decision Diagrams
for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms,
Springer (2016). https://doi.org/10.1007/978-3-319-42849-9, https://doi.org/

10.1007/978-3-319-42849-9

4. Bessière, C., Coletta, R., Petit, T.: Learning implied global constraints. In: IJCAI
2007, Proceedings of the 20th International Joint Conference on Artificial Intelli-
gence, Hyderabad, India, January 6-12, 2007. pp. 44–49 (2007)

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation 35(8),
677–691 (1986)

6. Hoda, S., van Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: CP. pp. 266–280 (2010)

7. Kam, T., Brayton, R.K.: Multi-valued decision diagrams. Tech. Rep. UCB/ERL
M90/125, EECS Department, University of California, Berkeley (Dec 1990), http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/1990/1671.html

8. Leo, K., Mears, C., Tack, G., de la Banda, M.G.: Globalizing constraint models. In:
Principles and Practice of Constraint Programming - 19th International Confer-
ence, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings. pp. 432–447
(2013)

9. Perez, G., Régin, J.C.: Efficient operations on MDDs for building constraint pro-
gramming models. In: International Joint Conference on Artificial Intelligence,
IJCAI-15. pp. 374–380. Argentina (2015)

10. Perez, G.: Decision Diagrams : Constraints and Algorithms. Ph.D. thesis, Univer-
sité Nice Sophia Antipolis (2017)

11. Picard-Cantin, É., Bouchard, M., Quimper, C., Sweeney, J.: Learning parameters
for the sequence constraint from solutions. In: Rueher, M. (ed.) Principles and
Practice of Constraint Programming - 22nd International Conference, CP 2016,
Toulouse, France, September 5-9, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9892, pp. 405–420. Springer (2016)

12. Picard-Cantin, É., Bouchard, M., Quimper, C., Sweeney, J.: Learning the param-
eters of global constraints using branch-and-bound. In: Beck, J.C. (ed.) Principles
and Practice of Constraint Programming - 23rd International Conference, CP 2017,
Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings. Lecture
Notes in Computer Science, vol. 10416, pp. 512–528. Springer (2017)

13. Srinivasan, A., Ham, T., Malik, S., Brayton, R.K.: Algorithms for dis-
crete function manipulation. In: 1990 IEEE International Conference on
Computer-Aided Design. Digest of Technical Papers. pp. 92–95 (1990).
https://doi.org/10.1109/ICCAD.1990.129849

https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-319-42849-9
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/1671.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1990/1671.html
https://doi.org/10.1109/ICCAD.1990.129849

Checking Constraint Satisfaction 17

5.6 Appendix

Car Sequencing The Car Sequencing MDD contains 25942 nodes, 53985 arcs
and represents 2.6×1014 solutions. There are two options with capacity 1/2 and
2/3, 4 car classes (configurations) and a total of 100 cars, defined as follow :

Table 4: Input of the Car Sequencing Problem
Option Capacity Car Class
Name m/N 1 2 3 4

Option 1 1/2 0 0 1 1
Option 2 2/3 0 1 0 1

Number of cars 15 37 21 27

Nurse Rostering The Nurse Rostering MDD contains 128325 nodes, 220600 arcs
and represents 1.2 × 1028 solutions. There are 6 nurses, 28 days and 3 shifts.
The scheduling has some predefined data : 1 means that the nurse is working
that day, - means that the nurse is not working that day and 0 means that it
is yet to be determined. Each day, each shift has a minimum number required
of nurse working that shift (we can have more, but never less). We have various
constraints, such that a nurse can’t work more than 7 days straight and must
have at least 2 free days in a row in a 2-weeks window.

18 Jung and Régin

Table 5: Input of the Nurse Rostering Problem

Nurses
Week 1 Week 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 - 1 1 1 - - 1 1 - 1 1 1 1
2 - - - - - - - - 0 0 0 0 0 0
3 0 0 0 0 - 0 0 0 0 - 0 0 - -
4 0 0 0 - 0 - - - - - - - - -
5 0 0 0 - 0 1 0 0 0 0 0 0 0 0
6 0 0 0 1 0 - 0 0 0 0 0 0 0 0

Demands per shift

Shift 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shift 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shift 3 1 1 1 1 1 0 0 1 1 1 1 1 0 0

Nurses
Week 3 Week 4

15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 - - - - - - - - - - - - - -
2 0 0 0 0 0 0 0 0 0 - 0 0 0 0
3 - - - - - - - - 0 0 0 0 0 0
4 - 0 - 0 0 - - 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 - 0 0 0 0
6 0 0 0 0 0 0 0 0 0 - - - - -

Demands per shift

Shift 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shift 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shift 3 1 1 0 1 1 0 0 1 1 1 1 1 0 0

	Checking Constraint Satisfaction

