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Hyperparameter selection for the Discrete
Mumford-Shah functional

Charles-Gérard Lucas1, Barbara Pascal2,
Nelly Pustelnik1,3, Member, IEEE, and Patrice Abry1, Fellow, IEEE

Abstract—This work focuses on joint piecewise smooth image
reconstruction and contour detection, formulated as the mini-
mization of a discrete Mumford-Shah functional, performed via
a theoretically grounded alternating minimization scheme. The
bottleneck of such variational approaches lies in the need to fine-
tune their hyperparameters, while not having access to ground
truth data. To that aim, a Stein-like strategy providing optimal
hyperparameters is designed, based on the minimization of an
unbiased estimate of the quadratic risk. Efficient and automated
minimization of the estimate of the risk crucially relies on an
unbiased estimate of the gradient of the risk with respect to
hyperparameters, whose practical implementation is performed
thanks to a forward differentiation of the alternating scheme
minimizing the Mumford-Shah functional, requiring exact differ-
entiation of the proximity operators involved. Intensive numerical
experiments are performed on synthetic images with different
geometries and noise levels, assessing the accuracy and the
robustness of the proposed procedure. The resulting parameter-
free piecewise-smooth reconstruction and contour detection pro-
cedure, not requiring prior image processing expertise, is thus
amenable to real-world applications.

Index Terms—Mumford-Shah functional, contour detection,
non-convex minimization, Stein Unbiased Risk Estimate.

I. INTRODUCTION

Context – Image processing is characterized by several key
tasks such as image recovery (e.g., debluring and/or denois-
ing), feature extraction, segmentation, and contour detection,
to name a few. To provide the user with the requested informa-
tion, it is standard to perform successively a certain number of
these tasks. A first major drawback of cascading tasks, is that
important information might be thrown away at each stage. A
second key issue is that each task might introduce estimation
variance and/or regularization bias, which may accumulate and
lead to subsequent errors on the target quantity. Finally, the
selection of hyperparameters, e.g., regularization parameters,
needs to be performed for each task independently, which
might turn sub-optimal overall in minimizing the final error
on the output estimate.

The benefit of performing jointly several steps has been
illustrated in the context of texture segmentation [1], providing
a comparison between a two-step procedure (extract relevant
local texture features followed by segmentation) against an
original single-step procedure intertwining the estimation of
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relevant features and the segmentation procedure. Both strate-
gies lead to strongly convex optimization schemes and fair
comparisons can be provided by having recourse to an au-
tomatic hyperparameters selection procedure relying on Stein
Unbiased Risk Estimator [2].

Following this line, recent contributions in the image pro-
cessing literature have been dedicated to joint image denois-
ing/restoration and contour detection [3]–[5]. However, the
automatic tuning of hyperparameters in this context has not
been dealt with yet and this is the object of the present
contribution.
Contour detection in image processing – This work focuses
on performing jointly piecewise smooth denoising and contour
detection on images. In many classical approaches, image re-
construction is embedded into a variational formalism [6], [7],
which amounts to find a minimizer of a functional consisting
of the sum of a data fidelity term and a prior penalization, i.e.,

minimize
u

1

2
‖u− z‖22 + γp(Du) (1)

where γ > 0, z ∈ R|Ω| denotes the observed degraded
image, defined on a grid of pixels Ω, and D : R|Ω| → R|E|
is a discrete difference operator such that Du lives on a
lattice of contours E . Appropriate choice of the penalization
term p, yield e.g. the Potts functional, when p = ‖·‖0, or
the Blake and Zisserman functional [8], [9], corresponding
to p(Du) =

∑
b min{‖Dbu‖qq, sq}, for some q ∈ [1,∞),

with Db being associated with several rows of D. In the
same vein, considering a convex relaxation of Potts functional,
contour detection can be obtained from the minimization of the
Rudin-Osher-Fatemi functional [10], which favors piecewise
constant estimate when considering p(Du) =

∑
b ‖Dbu‖2.

An alternative solution relies on a bi-convex formulation that
can trace back to the Mumford-Shah [11] or Geman and
Geman functionals [12], which may be written in the discrete
variational formulation setting as:

minimize
u∈R|Ω|,e∈R|E|

1

2
‖u− z‖22 + β‖(1− e)�Du‖22 + λh(e), (2)

where � denotes the component-wise product, h denotes a
convex function enforcing sparsity and β > 0 and λ > 0
are regularization parameters. This Discrete Mumford-Shah
(D-MS) functional provides a piecewise-smooth reconstructed
image û as well as a sparse estimated contours ê.

To achieve segmentation into K regions, Cai and Steidl
designed an iterated thresolding strategy [13] applied as a post-
processing onto the minimizer of Rudin Osher Fatemi (ROF)
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functional. The resulting state-of-the-art two-step procedure,
referred to as Threshold ROF (T-ROF), was proven to be
equivalent to minimizing the K-region piecewise constant
Mumford-Shah functional. From this thresholded solution, it
is then straightforward to identify the contours of the image.
However, such an indirect contour extraction procedure re-
stricts to closed contours. Fig. 1 shows a comparison between
D-MS and T-ROF methods on a piecewise smooth image.
The Mumford-Shah estimate is piecewise smooth preserving
the discontinuities of the image while the ROF estimate is
piecewise constant, leading to staircasing effects. We observe
that T-ROF erroneously detects interfaces in areas on which
the image is piecewise smooth, as opposed to the D-MS whose
estimated contour variable is approximately zero everywhere
except at the location of the original signal’s discontinuity.
Hyperparameter selection – All aforementioned procedures
for image denoising and contour detection involve hyperpa-
rameters, β and λ in (2). To reach satisfactory performance,
the fine-tuning of these parameters is crucial. Although central
in signal and image processing, this difficult task is still an
ongoing challenge, particularly for variational methods.

A first class of methods relying on hierarchical Bayesian
approaches and has been widely used, both in signal and image
processing [14]–[17]. The drawbacks of Bayesian methods are
that they rapidly become computationally heavy as the model
for observed data gets more complicated, and their computa-
tional cost increases with the number of hyperparameters to
be tuned. For specific 1D denoising problems, efficient hybrid
variational/Bayesian strategies can be designed [18].

Several other classes of methods, such as cross-validation
or Stein Unbiased Risk Estimate (SURE) formulation, can be
formulated as a bilevel optimization problem. Cross-validation
relies on a given labeled data set composed of noisy samples
with their associated ground truth [19], [20]. However, in
several real world applications, such as medical imaging [21]
or nonlinear physics problems [22], obtaining a large enough
labeled dataset is very challenging, if not impossible. Hence,
SURE, initially proposed in [2], has long been favored for its
combined simplicity and efficiency. Stein-based hyperparam-
eter strategies rely on an additive Gaussian noise model to
design an estimate of the inaccessible true risk, defined as
the quadratic error between the estimate and ground truth.
The major advantage of these approaches is that they do
not require to access ground truth. Then, the selection of
optimal hyperparameters is done by minimizing SURE and
by making use of Finite Difference strategies [23], [24] or/and
Monte Carlo averaging [25]–[27], to yield tractable and fast
implementation of Stein-based risk estimates.

However, the strategy to find the optimal hyperparameters
for a specific criterion has a huge impact on the solution both
in terms of quality assessment and in terms of computational
load. The most standard approach consists in computing a
chosen error criterion over a grid of parameters [26], [28],
[29], and to select the parameter of the grid for which
the error is minimal. Such a grid search procedure suffers
from a high computation cost, especially when dealing with
L ≥ 2 regularization parameters. To circumvent this difficulty,
efficient automated minimization methods are required. It

was early envisionned by Chaux et al. [30], who proposed
and assessed numerically an empirical descent algorithm for
automatic choice of regularization parameters, but with no
convergence guarantee. A deeper theoretical analysis was then
provided by Deledalle et al. [27], evidencing sufficient con-
ditions so that Stein Unbiased Risk Estimate is differentiable
with respect to hyperparameters, thus enabling to define the
Stein Unbiased GrAdient of the Risk (SUGAR) estimator and
to provide a practical implementation based on an iterative
differentiation strategy. Combining SUGAR with a quasi-
Newton descent procedure, a fast algorithm was designed
to achieve optimal hyperparameters selection for objective
functions of the form (1). This strategy, later extended in [29],
[31] for correlated noise, proved its efficiency for texture
segmentation [31], piecewise linear signal denoising [22],
and in spatial-spectral deconvolution for large multispectral
data [32].
Contributions – This work focuses on the D-MS functional
(2) for joint image denoising and contour detection, whose
optimization is performed with SL-PAM, a nonconvex al-
ternated minimization scheme, with descent parameters gen-
uinely chosen to ensure fast convergence. The difficult problem
of the selection of the regularization parameters of the D-
MS functional is addressed considering a Stein Unbiased Risk
Estimate (SURE), combined with a Finite Difference Monte
Carlo (FDMC) strategy making its practical computation
tractable. Intensive numerical experiments demonstrate that
FDMC SURE approximates very accurately the true quadratic
error on the denoised image.

Further, the optimal regularization parameters obtained by
minimizing FDMC SURE via exhaustive grid search are
shown to lead to denoised estimates with high signal-to-
noise ratio and relevant contours. Then, to provide a fast
procedure selecting the regularization parameters, a Stein
Unbiased GrAdient Risk estimate (SUGAR) adapted to D-
MS functional (2) is designed, involving the Jacobian of the
parametric estimator obtained from (2). Practical implemen-
tation of SUGAR requires iterative differentiation of the SL-
PAM minimiation scheme, for which closed-form formulas
are provided. An averaging Monte Carlo strategy is discussed,
providing a robust FDMC SUGAR estimator. The resulting
procedure compares favorably against exhaustive grid search
in terms of signal-to-noise ratio, while requiring a significantly
smaller computational cost. To the best of our knowledge,
the proposed automated D-MS bi-level scheme constitutes a
first automated, prior-free and fast discrete Mumford-Shah-
like formalism with automated selection of regularization
parameters.
Outline – Section II recalls the nonconvex alternated min-
imization scheme SL-PAM minimizing the D-MS func-
tional (2), as well as the main results existing in the literature
presenting fast hyperparameters search strategies relying on
both SURE and SUGAR. The proposed automated and fast
procedure is described in Section III. Numerical experiments
are provided in Section IV.
Notations – Let H a real Hilbert space, and f : H →
(+∞,+∞] a function which is proper, convex, and lower-
semicontinuous and τ > 0 a real parameter, the proximity
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(a) Original image (b) Noisy Observation (c) T-ROF (state-of-the-art) (d) D-MS

Fig. 1. Comparison of state-of-the-art convex variational formulation T-ROF and the studied non-convex D-MS performing image denoising and contour
extraction. From left to right: (a) Original noise-free piecewise smooth image, (b) Observations z corrupted by an additive Gaussian noise, (c) State-of-the-art
ROF piecewise constant estimate and contours derived from thresholding into K = 3 regions (displayed in red), and (d) Studied D-MS piecewise smooth
approximation and estimated contours (displayed in red).

operator of τf at point v ∈ H is uniquely defined by
proxτf (v) = arg min

u∈H

1
2‖u − v‖

2
2 + τf(v). Additionally, let

G be a real Hilbert space and let A : H → G a Lipschitzian
map, we denote by LA > 0 the Lipschitz modulus of A, such
that, for every (x, y) ∈ H×H, ‖A(x)−A(y)‖ ≤ LA‖x−y‖.
Further, for every (x, y) ∈ R×R, we denote Ix>y = 1 if x > y
and 0 otherwise. Finally, IN denotes the identity matrix acting
on RN , and 1N (resp. 0N ) is the vector of RN containing only
ones (resp. zeros).

II. ALGORITHM AND PARAMETER ESTIMATIONS

A. Minimization of the discrete Mumford-Shah functional

The D-MS functional introduced in Eq. (2) being noncon-
vex, standard proximal algorithms [33]–[35] cannot be used
directly for its minimization. However, the fact that the func-
tional is separately convex with respect to each variable advo-
cates the use of alternating schemes. Among the vast variety
of existing alternating algorithms benefiting from convergence
guarantees [36]–[38], a numerically efficient procedure for
the minimization of D-MS like functionals appears to be
the Semi-Linearized Proximal Alternating Minimization (SL-
PAM) scheme proposed in [38], whose iterations in the general
setting of Problem 1 are recalled in Algorithm 1.

Problem 1 (Nonconvex and nonsmooth minimization). Let f :
R|Ω| → (−∞,+∞], h : R|E| → (−∞,+∞] two proper lower
semi-continuous functions and g : R|Ω| × R|E| → (−∞+∞]
a C1 function. We aim to estimate:

(û, ê) ∈ Argmin
u∈R|Ω|,e∈R|E|

Ψ(u, e) := f(u)+g(u, e)+h(e). (3)

The algorithmic scheme SL-PAM (Algorithm 1) is an hybrid
version between PAM [36] and PALM [37]. The key ingredient
for the efficiency of SL-PAM consists in avoiding the lin-
earization with respect to the variable e[k], enabling to choose
larger descent steps. Under some technical assumptions, such
as the existence of a closed-form expressions of the involved
proximity operators, the sequence

(
u[k], e[k]

)
k∈N converges

toward a critical point of Ψ(u, e).
The piecewise smooth image denoising and contour detec-

tion strategy defined by (2) and on which this paper focuses
corresponds to a particularization of Problem 1. The three

Algorithm 1 SL-PAM

Initialization: u[0] = z, e[0] = 1|E|, γ > 1 and ξ > 0.
While |Ψ(u[k+1], e[k+1])−Ψ(u[k], e[k])| > ξ

Set ck = γL∇ug(·,e[k]) and dk > 0

ũ[k] = u[k] − 1
ck
∇ug(u[k], e[k])

u[k+1] = prox 1
ck
f

(
ũ[k]

)
e[k+1] = prox 1

dk
(h+g(u[k+1],·))

(
e[k]
)

terms of the objective function Ψ of Eq. (3) are particularized
to 

f(u) =
1

2
‖u− z‖22,

g(u, e) = β

|E|∑
i=1

(1− ei)2(Diu)2,

h(e) = λ

|E|∑
i=1

hi(ei)

(4)

where, for all i ∈ {1, . . . , |E|}, Di denotes the ith-row of
the discrete gradient operator D, and hi : R 7→ (−∞,+∞]
is a separable proper, lower semi-continuous, and convex
function having a proximal operator with known closed-form
expression. The iterations of Algorithm 1 specified to the
minimization of D-MS lead to Algorithm 2 [38].

For a detailed discussion of the convergence behavior de-
pending on the choice of the descent steps γ and dk, the reader
is referred to [38]. The most efficient setting appears to choose
both of them the smallest possible.

B. Stein Unbiased Risk Estimator

As previously discussed in introduction, many variational
approaches for image restoration and contour detection
consists in designing a parametric estimator û(z; Θ),
e.g. defined as a minimizer of (1) or (2), which aims
at providing the best possible estimate of a quantity of
interest u from noisy observations z. By construction,
the quality of this estimate crucially relies on the precise
selection of the hyperparameters Θ, which can be for instance
the regularization parameters β and λ in D-MS functional (2).
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Algorithm 2 SL-PAM to solve D-MS (2)
Input: Data z. Set β > 0, λ > 0.
Initialization: u[0] = z, e[0] = 1|E| ∈ R|E|.
Set γ > 1 and ξ > 0.
While |Ψ(u[k+1], e[k+1])−Ψ(u[k], e[k])| > ξ

Set ck = γβ‖D‖2 and dk > 0.
ũ[k] = u[k] − 1

ck
∇ug(u[k], e[k])

u[k+1] = prox 1
ck
f (ũ[k])

For all i ∈ {1, . . . , |E|}
ẽ

[k]
i =

β(Diu
[k+1])2 +

dke
[k]
i

2

β(Diu
[k+1])2 +

dk
2

e
[k+1]
i = prox λ

2β(Diu
[k+1])2+dk

hi
(ẽ

[k]
i )

1) Quadratic risk based parameter selection: The hyper-
parameters tuning task is commonly formulated as the mini-
mization of the following quadratic risk:

Q[û](Θ) = E[‖û(z; Θ)− u‖22], (5)

measuring the expected reconstruction error made when esti-
mating ground truth u by û(z; Θ). The expectation in Eq. (5)
runs over the realizations of the noise corrupting z.

In practice, u being unknown and the number of observed
samples z being limited, if not reduced to one, the exact
quadratic risk Q[û](Θ) of Eq. (5) is not accessible. Thus, the
minimization of the quadratic risk Q[û](Θ) is replaced by the
minimization of some estimate Q̂(z; Θ|σ2) computed from a
single noisy sample z, not requiring the knowledge of ground
truth but only some prior knowledge σ2 about the noise:

Θ̂ ∈ Argmin
Θ

Q̂(z; Θ|σ2). (6)

Then, the design of a fast gradient-based hyperparam-
eter selection strategy providing optimal hyperparameter
from the minimization of (6) requires an unbiased estimate
∂ΘQ̂(z; Θ|σ2) of the gradient of the quadratic risk with
respect to hyperparameters Θ. Such a general procedure is
sketched in Algorithm 3.

Algorithm 3 Automated selection of hyperparameters.
Input: Data z
Parameters: prior knowledge about the noise σ2.
Initialization: Set Θ[0] ∈ RL.
for t = 0 to Tmax − 1 do

Compute Q̂(z; Θ[t] |σ2)
Compute ∂ΘQ̂(z; Θ[t] |σ2)
Update Θ[t] to Θ[t+1] via a gradient descent step

end for
Output: Θ∗ = Θ[Tmax]

2) Stein Unbiased Risk Estimate: To address the fact that
the ground truth u is unknown, the pioneer work of Stein [2]
proposed an unbiased estimate of the quadratic risk, based

on an i.i.d. Gaussian noise additive model in which the
observations are supposed to write

z = u+ σζ, ζ ∼ N (0N , IN ) (7)

with N = |Ω| is the number of pixels and σ2 the known
variance of the noise. Then, under integrability and regularity
assumptions, together with the observation model (7), the so-
called Stein Unbiased Risk Estimator (SURE) was derived
in [2], and has then been intensively used in signal and image
processing [1], [22], [30], [39], [40]. In most applications,
the original Stein estimator is not usable directly and further
strategies are necessary to yield a practical estimator. The
present work focuses on a strategy combining Finite Differ-
ence approximated differentiation and Monte Carlo averaging,
which was first described by [26]. Making use of a Finite
Difference step ε > 0 and a Monte Carlo vector δ ∈ RN drawn
from N (0N , IN ), Finite Difference Monte Carlo (FDMC)
SURE is defined as:

SUREε,δ(z; Θ|σ2) := ‖(û(z; Θ)− z)‖22

+
2

ε
〈û(z + εδ; Θ)− û(z; Θ), σ2δ〉 − σ2N, (8)

Under the Lipschitzianity with respect to z of û(z; Θ) and
the natural unambiguity property û(0N ,Θ) = 0N , the true
inaccessible quadratic risk estimator (5) satisfies the following
asymptotic unbiasedness property:

lim
ε−→0

E[SUREε,δ(z; Θ|σ2)] = Q[û](Θ), (9)

where the expectation is to be understood on both the
realizations of the observation noise ζ appearing in Eq. (7),
and the realizations of the Monte Carlo vector δ. Eq. (9)
ensures that, for small enough Finite Difference step ε, and
provided that N is large enough so that the Monte Carlo
strategy is relevant, a minimizer of SUREε,δ(z; Θ|σ2) is an
approximately optimal set of hyperparameters in terms of
quadratic risk.

3) Risk estimate minimization: The gradient-based strategy
sketched at Algorithm 3 when

Q̂(z; Θ|σ2) = SUREε,δ(z; Θ|σ2) (10)

relies on the FDMC Stein Unbiased GrAdient Risk (SUGAR)
estimate defined as:

SUGARε,δ(z; Θ|σ2) = 2∂Θû(z; Θ)∗(û(z; Θ)− z)

+
2

ε
(∂Θû(z + εδ; Θ)− ∂Θû(z; Θ))

∗
σ2δ, (11)

where ∂Θû(z; Θ) denotes the Jacobian of the parametric
estimator û(z; Θ) with respect to the hyperparameters Θ. The
first proposal of such Stein Unbiased GrAdient Risk (SUGAR)
estimate was formulated by [27] for i.i.d. Gaussian noise, and
then extended in [31] for correlated noise. The main difficulty
when it comes to practical implementation is to evaluate the
Jacobian matrices. In [27], [31], the authors proposed an
efficient implementation when û(z; Θ) is estimated from the
resolution of a convex minimization problem of the form (1)
while in this contribution we extend it in the context of
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interface detection involving a minimization problem such as
(2) solved with SL-PAM described in Section II-A.

Under technical assumptions such as Lipschitzianity of
û(z; Θ) with respect to Θ and z, it has been proved in [27] that
the quadratic risk estimator (8) is weakly differentiable with
respect to Θ and its gradient is exactly the gradient estimator
recalled in (11), i.e.,

∂ΘSUREε,δ(z; Θ|σ2) = SUGARε,δ(z; Θ|σ2). (12)

Eq. (12) ensures that the gradient estimate
SUGARε,δ(z; Θ|σ2) is indeed the gradient of the
quadratic risk estimate SUREε,δ(z; Θ|σ2) with respect
to hyperparameters Θ, justifying the use of the gradient
descent approach of Algorithm 3 to solve a particular
instance of Problem (6) when Q̂(z; Θ|σ2) is defined by (10).
Additionally, FDMC SUGAR estimator introduced in (11) is
an asymptotically unbiased estimator of the gradient of the
true quadratic risk, i.e.

lim
ε−→0

E[SUGARε,δ(z; Θ|σ2)] = ∂ΘQ[û](Θ), (13)

where ∂ΘQ[û](Θ) is the true inaccessible gradient of
quadratic risk with respect to hyperparameters Θ, and the
expectation is to be understood on both the realizations of the
observation noise ζ appearing in Eq. (7) and the realizations
of the Monte Carlo vector δ. The asymptotic unbiasedness of
the gradient estimate ensures that the risk profile around its
minimum is well enough reproduced by Stein-like estimates
so that Algorithm 3 can be reasonably supposed to output a
good approximation of the true optimal hyperparameters.

III. HYPERPARAMETER SELECTION FOR D-MS
The regularization parameters β and λ involved in the

definition of the D-MS functional in Eq. (2) have intricated
influence on the obtained reconstructed image and estimated
contours, mainly due to the nonconvex coupling term ‖(1 −
e) �Du‖22. This makes the selection of optimal parameters
a tedious task, which we propose to handle by particularizing
the Stein-based automated hyperparameter selection procedure
reminded in detail in Section II-B to the D-MS functional
when minimized via an SL-PAM scheme as described in
Section II-A.

A. Specificities of D-MS
The minimization of the D-MS functional of Eq. (2) pro-

vides both a piecewise smooth image reconstruction, denoted
û(z;β, λ) and a set of detected contours, encapsulated into
ê(z;β, λ), depending on the choice of hyperparameters Θ =
(β, λ) ∈ R+ × R+. In such a context, we should ideally
minimize a global error criterion

Θ̂ ∈ Argmin
Θ

d(x̂(z; Θ),x), (14)

measuring the ability of the piecewise-smooth image and
contour estimates x̂(z; Θ) = (û(z;β, λ), ê(z;β, λ)) to ap-
proximate the original data x = (u, e), using a measure of
similarity d. If d is chosen to be a quadratic risk, it reads:

d(x̂(z; Θ), x) = E[‖û(z; Θ)− u‖22] + ζE[‖ê(z; Θ)− e‖22],
(15)

where ζ ≥ 0. However, the degradation model only described
how the observed image z relates to the ground truth image
u, no prior knowledge about how the ground truth contours e
are affected by the observation noise being assumed. Further,
measuring the accuracy of the contours is a tedious task,
involving complicated criteria, such as the Jaccard index [41].
For these reasons, in the present work, the quadratic error on
which the choice of hyperparameter relies is chosen to be the
quadratic estimation error on the reconstructed image (i.e.
ζ = 0). Hence, the particularized FDMC SURE of Eq. (8)
only involves the denoised image û(z;β, λ), obtained from
Algorithm 2 applied to the noisy image z, with regularization
parameters set to given values β and λ.

B. Differentiated SL-PAM

Practical evaluation of the risk and gradient of the risk
estimates from Eq. (8) and (11), requires to compute the
Jacobian of the D-MS estimator. No closed-form expression
being available for û(z;β, λ), the derivatives are obtained
from the iterative differentiation of the recursive scheme
of Algorithm 2. This strategy raises several technical is-
sues. Indeed, following [27] and [31], the Jacobian matrices
∂Θû(z;β, λ) and ∂Θû(z + εδ;β, λ) are computed iteratively
from a differentiated recursive scheme. Particularized to the
case of D-MS estimates, the chain differentiation of the SL-
PAM scheme of Algorithm 2 is derived in Algorithm 4. For
ease of computation, a specific choice of dk = ηβ‖D‖2 is
considered, without inducing any loss of generality.

Algorithm 4 Iterative differentiation of SL-PAM
Input: Data z̃ = {z, z + εδ}. Set Θ = (β, λ) ∈ R+ ×R+.
Initialization: u[0] = z̃, e[0] = 1|E|,
∂Θũ

[0] = ∂Θu
[0] = 0N , ∂Θẽ

[0] = ∂Θe
[0] = 0|E|.

Set γ > 1 and η > 0.
While |Ψ(u[k+1], e[k+1])−Ψ(u[k], e[k])| > ξ

Set ck = γβ‖D‖2 and dk = ηβ‖D‖2

ũ[k+1] = u(k) − 1
ck
∇ug(u[k], e[k])

u[k+1] = prox 1
ck
f(·;z̃)

(
ũ[k+1]

)
Compute ∂Θũ

[k+1] from Eq. (17)
Compute ∂Θu

[k+1] from Eq. (18)
For all i ∈ {1, . . . , |E|}

ẽ
[k]
i =

β(Diu
[k+1])2 +

dke
[k]
i

2

β(Diu
[k+1])2 +

dk
2

e
[k+1]
i = prox λ

2β(Diu
[k+1])2+dk

hi
(ẽ

[k]
i )

Compute ∂Θẽ
[k+1]
i from Eq. (19)

Compute ∂Θe
[k+1]
i from Eq. (20)

1) General procedure: The purpose is to differentiate
the mapping Θ 7→ (û(z; Θ), ê(z; Θ)), where the estimates
(û(z; Θ), ê(z; Θ)) are obtained solving (2) for fixed z.

The recursive chain differentiation consists in differenti-
ating step by step Algorithm 2, each update of which can
be written as v(z; Θ) = Γ(u(z; Θ), e(z; Θ), τ(Θ)), where
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u : RN × RL → RN , e : RN × RL → R|E| and τ : RL → R
are functions of the observed noisy image z and of the
hyperparameters Θ, with respect to which the differentiation
is to be performed and v(z; Θ) ∈ K, where K = RN when
updating u or ũ, and K = R|E| when updating e or ẽ.

Then, applying the chain rule differentiation principle yields
the following partial derivative expression, for every compo-
nent θ of the hyperparameter vector Θ and for every index
j ∈ {1, . . . ,dim(K)}:

∂θvj=

N∑
`=1

(∂u`Γj)(∂θu`) +

|E|∑
m=1

(∂emΓj)(∂θem) + (∂τΓj)(∂θτ)

(16)
leading to the following closed form expression for ∂Θũ

[k+1],
∂Θu

[k+1], ∂Θẽ
[k+1]
i and ∂Θe

[k+1]
i , for i ∈ {1, . . . , |E|}.

2) Iterative differentiation of SL-PAM for D-MS: Applying
Formula (16) to each step of Algorithm 2 leads to Algorithm 4.
Proposition 1 provides closed-form expressions of the Jacobian
matrices of the iterates involved in the minimization of a D-
MS functional with h = ‖ · ‖1, thus allowing an easy and
direct implementation of FDMC SURE and FDMC SUGAR
estimates of Eq. (8) and (11).

Proposition 1. Considering the D-MS functional (2) when
h = ‖ · ‖1 and its minimization via SL-PAM Algorithm 2 with
dk = βd, d = η‖D‖22, for every θ ∈ {β, λ}:

∂θũ
[k] = ∂θu

[k] − 2β

ck

|E|∑
i=1

(1− e[k]
i )2 D∗iDi∂θu

[k]

+
4β

ck

|E|∑
i=1

(1− e[k]
i )∂θe

[k]
i D∗iDiu

[k],

(17)

∂θu
[k+1] =

ck
ck + 1

∂θũ
[k] +

ũ[k] − z
(βc+ 1)2

∂θck, (18)

where ∂βck = γ‖D‖2 and ∂λck = 0, and for every i ∈
{1, . . . , |E|}:

∂θ ẽ
[k]
i =

2Diu
[k+1]Di∂θu

[k+1] d
2 (1− e[k]

i )[(
Diu[k+1]

)2
+ d

2

]2 +
d
2∂θe

[k]
i(

Diu[k+1]
)2

+ d
2

,

(19)

∂θe
[k+1]
i = −∂uφ[k+1]

i ∂θu
[k+1] ẽ

[k]
i

|ẽ[k]
i |
I|ẽ[k]

i |>φ
[k+1]
i

+ ∂θ ẽ
[k]
i I|ẽ[k]

i |>φ
[k+1]
i
− ∂τφ

[k+1]
i ∂θτ

|ẽ[k]
i |

ẽ
[k]
i I|ẽ[k]

i |>φ
[k+1]
i

,

(20)
where

∂uφ
[k+1]
i ∂θu

[k+1] = − 4τDiu
[k+1]Di∂θu

[k+1][
2(Diu[k+1])

2
+d

]2 ,

∂τφ
[k+1]
i = 1

2(Diu[k+1])
2
+d
,

∂βτ = − λ
β2 , ∂λτ = 1

β .

(21)

Proof. The proof is given in Appendix A.

C. Monte Carlo averaging strategy

Following [31], the risk and gradient of the risk FDMC
Stein estimators, introduced in Eq. (8) and (11), are defined
from one realization of the Monte Carlo vector δ. Yet, in the
context of a parametric estimator û(z; Θ) obtained from the
minimization of a nonconvex objective functional, such as (2),
it can be necessary to go further, and to consider Monte Carlo
averaging strategies to get more robust risk and gradient of
the risk estimates.

The Monte Carlo averaging strategy consists in averaging
the FDMC Stein estimators of Eq. (8) and (11) over a certain
number R of random Monte Carlo vectors δ(r) ∈ RN ,
independently sampled from the standard Gaussian distribution
as stated properly in Definition 1.

Definition 1 (Monte Carlo averaged Stein estimators). Let
z ∈ H following the observation model of Eq. (7) and let
û(z; Θ) a parametric estimator of the underlying ground truth
u, depending on some hyperparameters stored in Θ ∈ RL.
For ε > 0 a Finite Difference step and ∆ = [δ(1), . . . , δ(R)] a
concatenation of independent Monte Carlo vectors sampled
from the standard Gaussian distribution. The Monte Carlo
averaged SURE is defined as

SURE
R

ε,∆(z; Θ) :=
1

R

R∑
r=1

SUREε,δ(r)(z; Θ), (22)

where SUREε,δ(r)(z; Θ) is the FDMC SURE (8). Similarly,
the Monte Carlo averaged SUGAR estimator writes

SUGAR
R

ε,∆(z; Θ) :=
1

R

R∑
r=1

SUGARε,δ(r)(z; Θ), (23)

involving SUGARε,δ(r)(z; Θ), the FDMC SUGAR esti-
mate (11).

Proposition 2. Let û(z; Θ) an estimator being uniformly
Lipschitz w.r.t the observations z and w.r.t the hyperparam-
eters Θ, with a Lipschitz modulus Lû(z;·) independent of
z, and satisfying the univocity condition û(0N ; Θ) = 0N .
For ε a infinitesimal positive Finite Difference step and
∆ =

[
δ(1), . . . , δ(R)

]
a collection of independent standard

Gaussian Monte Carlo vectors, the Monte Carlo averaged
estimates SURE

R

ε,∆(z; Θ) and SUGAR
R

ε,∆(z; Θ) are asymp-
totically unbiased estimates of respectively the risk and of the
gradient of the risk with respect to hyperparameters

lim
ε−→0

E[SURE
R

ε,∆(z; Θ|σ2)] = Q[û](Θ) (24)

and

lim
ε−→0

E[SUGAR
R

ε,∆(z; Θ|σ2)] = ∂ΘQ[û](Θ). (25)

Moreover, SUGAR
R

ε,∆(z; Θ|σ2) is exactly the gradient of

SURE
R

ε,∆(z; Θ|σ2) with respect to the hyperparameters Θ.

Proof. For each Monte Carlo vector δ(r), the FDMC
SUREε,δ(r) and SUGARε,δ(r) estimates, defined at
Eq. (8) and (11) are asymptotically unbiased and
SUGARε,δ(r) , is the derivative of SUREε,δ(r) , w.r.t.
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Θ, as reminded in Section II-B. Then, by linearity of
both the limit limε→0 and the summation over the R
Monte Carlo vectors, the Monte Carlo averaged estimates
SURE

R

ε,∆(z; Θ|σ2) and SUGAR
R

ε,∆(z; Θ|σ2) are also
unbiased and SUGAR

R

ε,∆(z; Θ|σ2) is the derivative of
SURE

R

ε,∆(z; Θ|σ2) w.r.t. Θ.

D. Averaged SUGAR D-MS

The framework presented in Section II-B, combined with
Proposition 2, enable us to design an automated strategy to
select the D-MS regularization parameters described below
and assessed in Section IV. First, R independent Monte Carlo
vectors δ(r) are sampled. The set ∆ = {δ(1), . . . , δ(R)} is
kept fixed throughout the procedure. Then, Algorithm 3 with
the averaged estimates Q̂(z; Θ|σ2) = SURE

R

ε,∆(z; Θ|σ2) and
∂ΘQ̂(z,Θ|σ2) = SUGAR

R

ε,∆(z; Θ|σ2), defined respectively
in Eq. (22) and (23), whose practical implementation is based
on Algorithm 4, provides the optimal hyperparameters. The
overall procedure is referred to as Averaged SUGAR D-MS.
Note that, for R = 1, ∆ = {δ(1)}, and one retrieves the stan-
dard SURE and SUGAR estimates presented in Section II-B.
In the case when R = 1, the automated hyperparameter
strategy is hence referred to as Standard SUGAR D-MS.

IV. PERFORMANCE ASSESSMENT

A. Settings

1) Data: To assess the relevance of SURE (8) in the
context of interface detection, as well as the efficiency of the
proposed automated minimization making use of the SUGAR
proposed in Section III, systematic experiments are performed
on test data. Two geometries are considered, i.e., two noise-
free piecewise smooth grey level images, depicted in the first
column of Fig. 2. While the first ground truth image, at the
top left of Fig. 2, presents rectilinear contours, the second
one, bottom left of Fig. 2, also contains an elliptic shape with
curved contours. The test set is then composed of degraded
versions of these two original images, obtained by adding an
independent identically distributed Gaussian noise of variance
σ2. Several noise levels are explored, corresponding to σ ∈
{0.01, 0.05, 0.1, 0.2, 0.3}. Realizations of the noisy images for
each geometry and each noise level are displayed in Fig. 2, the
signal-to-noise ratio decreasing progressively from the second
to the sixth column.

2) Algorithmic setup: SL-PAM – The minimization of the
D-MS functional (2) providing estimates of both the piecewise
smooth image and its salient contours, is performed running
Algorithm 2. The stopping criterion, based on the objective
function increments, is set to ξ = 10−4, while the descent steps
are tuned manually so as to obtain the fastest convergence,
leading to γ = 1.01 and dk = ηβ‖D‖22 with η = 1.01× 10−3

following [38].
Stein estimators – FDMC SURE (8) is computed with a Finite
Difference step

ε = 2
σ

Nα
, 0 < α < 1 (26)

where σ is the standard deviation of the noise on the observed
image z ∈ RN . Formula (26) derives from a heuristic reason-
ing developed in [27], in the context of `1-norm penalization.
The dependency of the Finite Difference step on the size of the
data is controlled via the exponent α, which is fixed at α = 0.3
for all the numerical simulations. In the systematic numerical
experiments, four values of the number R of realizations of
the Monte Carlo vector δ(r) are envisioned and systematically
compared: R ∈ {1, 5, 10, 20}.
BFGS algorithm – To perform the risk minimization de-
scribed in Algorithm 3 for different choices of Q̂(z; Θ |σ2)
and ∂ΘQ̂(z; Θ |σ2), as presented in Section III-D, we used
the GRadient-based Algorithm for Non-Smooth Optimization,
implemented in GRANSO toolbox1, consisting of the low
memory BFGS quasi-Newton algorithm proposed in [42] with
box constraints, enabling to enforce positivity of β and λ. The
maximal number of iterations of BFGS Algorithm 3 is set to
Tmax = 20, while the stopping criterion on the gradient norm
is set to 10−8. Further, it is well-documented that the initial-
ization of quasi-Newton algorithms might drastically impact
their convergence. Hence, we propose a model-based strategy
for initializing Algorithm 3. Inspired from the initialization
strategies proposed in [27], [31], hyperparameters Θ = (β, λ)
are initialized as

β(0) =
Nσ‖Dz‖22

4
and λ(0) =

β(0)‖Dz‖22
2N

, (27)

while, for κ = 0.9, the initial approximated inverse Hessian
involved in the BFGS strategy is set to

H(0) = diag

(∣∣∣∣∣ κβ(0)

∂βQ̂(z; Θ(0) |σ2)

∣∣∣∣∣ ,
∣∣∣∣∣ κλ(0)

∂λQ̂(z; Θ(0) |σ2)

∣∣∣∣∣
)
.

(28)

3) Performance criteria: In practice, standard and averaged
SURE are compared to the following quadratic error:

Q(û|u) := ‖û− u‖22. (29)

To assess the performance of D-MS denoising with automati-
cally selected hyperparameters, the quality of the reconstruc-
tion is quantified by the peak signal-to-noise ratio defined as:

PSNR(û|u) = 20log10

(
‖u‖
‖û− u‖

)
. (30)

B. SURE for D-MS

We first illustrate in Fig. 3 the asymptotic unbiasedness
of the standard and averaged SURE (respectively Eq. (9)
and Eq. (24)) on the example z displayed in Fig. 2 (top-
c) with noise level σ = 0.05. To better locate and compare
the minima, three level sets of SURE are displayed by the
MATLAB function contour.

Even though the overall shape of the standard SURE maps
are similar to the quadratic error profile, Fig. 3(a-c) shows
that the location of the minimum varies significantly with the
Monte Carlo vector δ(r). Averaged SURE also well reproduces
the quadratic error map while being more robust to achieve
the minimum (cf. Fig. 4).

1http://www.timmitchell.com/software/GRANSO/
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(a) σ = 0 (b) σ = 0.01 (c) σ = 0.05 (d) σ = 0.1 (e) σ = 0.2 (f) σ = 0.3

Fig. 2. Piecewise smooth grey level images (σ = 0) corrupted by i.i.d. Gaussian noise with level σ ∈ {0.01, 0.05, 0.1, 0.2, 0.3}.

This first set of experiments illustrate that the proposed
averaged SURE reproduces accurately the quadratic risk.

C. Automatic tuning of Θ = (β, λ) for D-MS

Although efficiently reaching the optimal hyperparameters,
the grid search minimization of averaged SURE suffers from
prohibitive computational time increasing with the resolution
of the grid. The necessary trade-off between accuracy and
computational time motivates the introduction of the auto-
mated gradient-based methods proposed in Section III.

1) Comparison between Standard and Averaged SUGAR
D-MS: Fig. 4 investigates the ability of the hyperparameter
selection strategies proposed in Section III-D for different
numbers R ∈ {5, 10, 20} of Monte Carlo vector δ(r) to
achieve the optimal hyperparameters minimizing the quadratic
error Q(û|u).

The optimal hyperparameters Θ∗(r) = (β∗(r), λ∗(r))
reached by the Standard SUGAR D-MS are scattered (Fig. 5
left), probably due to a lack of accuracy of the estimator
SUREε,δ(r) and thus of SUGARε,δ(r) . A first approach to
alleviate the variability of the result is to carry out an averaging
of R hyperparameters (β∗(r), λ∗(r)) obtained by the Standard
SUGAR D-MS method:

Θ∗
R

= (β∗
R
, λ∗

R
) =

1

R

R∑
r=1

(β∗(r), λ∗(r)). (31)

As it can be observed in Fig. 4 left, this improvement of the
method remains unsatisfactory, compared to Averaged SUGAR
D-MS which reaches more accurate hyperparameters.

The conclusions reached with this set of experiments are
twofold: first, we highlight that R = 5 realizations are
sufficient to achieve a good estimation of the optimal hy-
perparameters, second, we note that the proposed automated
procedure is 20 times faster compared to exhaustive search,
a grid search on averaged SURE requiring 60 minutes of
calculation, while Averaged SUGAR D-MS requires 3 minutes,
when using MATLAB R2018a and an Intel Core i5 processor.

2) Performance w.r.t noise level: We now focus on the
Averaged SUGAR D-MS for R = 5 and assess its performance
for the different geometries and noise levels displayed in
Fig. 2. Averaged PSNR for 10 realizations of the noise are

TABLE I
PSNR VALUES WITH 95% CONFIDENCE INTERVAL FOR TRUE NOISE

LEVEL σ AND FOR ESTIMATED NOISE LEVEL σ̂.

σ
Losange Ellipse

True σ Estimated σ̂ True σ Estimated σ̂
0.01 58.82± 0.04 57.46± 0.06 55.34± 0.03 46.03± 0.30
0.05 34.64± 0.14 34.20± 0.67 27.84± 2.95 25.10± 2.31
0.1 27.42± 0.93 24.49± 2.27 23.64± 2.60 21.75± 2.61
0.2 20.51± 2.40 19.83± 2.53 20.25± 2.37 18.64± 2.78
0.3 19.77± 2.16 17.39± 2.59 16.19± 3.00 15.41± 3.17

reported in Table I, denoised images and detected contours
are dispayed in Fig. 5 (1st and 3rd rows) for one realization
of the noise.

As expected, the PSNR decreases as the noise level in-
creases. Further, large error bars are observed mainly due to
the variability of the gradient descent scheme in Algorithm 3,
the realizations of the Monte Carlo vector, or the SL-PAM
non-convex minimization procedure.

3) Impact of the estimation of σ: On real data, the noise
level σ needed to implement Averaged SUGAR D-MS is un-
known. The most usual method to estimate the noise standard
deviation is the median absolute deviation (MAD) of 2D
discrete wavelet coefficients [43]:

σ̂ =
MAD

({
|ψH,k|, |ψV,k|, |ψD,k||k ∈ {1, . . . , N4 }

})
0.6745

, (32)

where ψH,k, ψV,k, ψD,k are the three wavelets coefficents
(horizontal, vertical and diagonal) at the finest scale. Table I
presents the PSNR values with the estimated noise level σ̂. In
addition, some estimates are depicted in Fig. 5 (2nd and 4th
rows).

The results with either estimated or true noise level are
similar, attesting the robustness of Averaged SUGAR D-MS
to the estimation of the noise level.

V. CONCLUSION

This work devises a procedure to automatically select the
hyperparameters of the D-MS functional allowing to perform
simultaneously image denoising and contour detection. To this
end, the Finite Difference Monte Carlo SURE was particular-
ized to the nonconvex D-MS functional under an additive i.i.d.
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SUREε,δ(1)(z; Θ|σ2) SUREε,δ(2)(z; Θ|σ2) SUREε,δ(3)(z; Θ|σ2) SUREε,∆(z; Θ|σ2) Q(û(z; Θ)|u)
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Fig. 3. Comparison between the quadratic error, standard and averaged SURE estimates for D-MS denoising of the image displayed in Fig. 2(top-c).
1st row – Map on a logarithmic grid of 40× 40 hyperparameters Θ = (β, λ): (a-c) SUREε,δ(r) (z; Θ|σ2) values for some realizations of the Monte Carlo
vector, (d) SUREε,∆(z; Θ|σ2) values for R = 5 realizations of the Monte Carlo vector and (e) quadratic error Q(û(z; Θ)|u) values with level sets (black
lines). 2nd row – Optimal solutions

(
û(z; ΘGrid), ê(z; ΘGrid)

)
obtained from a grid search over each map. The red (resp. yellow and green) cross corresponds

to the solution displayed in (j) (resp. (f)-(h) and (i)) associated with the minimum of the quadratic error grid (e) (resp. SURE estimate grids (a)-(c) and (d)).
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Fig. 4. Impact of the number of realizations R of the Monte Carlo vectors when selecting the hyperparameters with the methods described in
Section III-D. (left) R = 5 , (middle) R = 10 and (right) R = 20. (yellow) Standard SUGAR D-MS for different δ(r) leading to Θ∗(r), (pink) Mean
over the R realizations of Standard SUGAR D-MS leading to Θ∗R, (green) Averaged SUGAR D-MS, (red) optimum obtained by performing a grid search
minimization of the quadratic error. For the 3 maps, the background displays the logarithmic grid of 40× 40 hyperparameters Θ = (β, λ) of quadratic error
Q(û(z; Θ)|u) values with level sets (black lines).

Gaussian degradation and a Monte Carlo averaged extension
was proposed. The gradients of both standard and averaged
SURE are derived leading to standard and averaged SUGAR
estimates, whose practical implementations are performed
based on an iterative differentiation of the nonconvex SL-
PAM scheme. Two fast gradient-based procedures minimizing
standard and averaged SURE take advantage of the standard
and averaged gradient estimates to yield Standard SUGAR D-
MS or Averaged SUGAR D-MS automated hyperparameters
selection strategies.
The validity of SURE as a risk estimator in this setting has
been practically assessed and the behavior of the proposed
gradient-based minimization scheme has been compared to a
grid search minimization. Numerical experiments on synthetic
images show that the proposed automated strategy yields
satisfactory hyperparameters while being robust to noise, even
for low signal-to-noise ratio, and requiring low computational
effort. Further, the proposed procedure achieves high quality
reconstruction and accurate contour detection, both in recti-
linear geometries and in more complex elliptic geometries,

evidencing contours with strong curvature.
Future work will extend the D-MS formalism to handle more
generic data fidelity or penalization terms by, first, customizing
Algorithm 1, and second, designing a generalized Averaged
SUGAR D-MS procedure for hyperparameter selection, en-
abling to consider richer observation models, including a linear
degradation operator and possibly correlated noise, following
the general framework developed in [31].
A MATLAB toolbox implementing the proposed automated
image denoising and contour detection procedure will be
publicly available.

APPENDIX A
ITERATIVE DIFFERENTIATION OF SL-PAM FOR D-MS
1) Update of ∂θũ[k]: For the function g given in Eq. (4),

the update rule of ũ[k] reads:

ũ[k] = u[k] − 1

ck
∇ug(u[k], e[k])

= u[k] − 2β

ck

|E|∑
i=1

(1− e[k]
i )2 D∗iDiu

[k].

(33)
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(a) σ = 0.001 (b) σ = 0.05 (c) σ = 0.1 (d) σ = 0.2 (e) σ = 0.3

Fig. 5. D-MS estimates û and ê (superimposed in red) of piecewise smooth
grey level images corrupted by i.i.d. Gaussian noise with noise level σ
displayed in Fig. 2. The D-MS hyperparameters are selected with the proposed
Averaged SUGAR D-MS using either the true standard deviation σ (first and
third rows) or the estimated standard deviation σ̂ (second and fourth rows).

The update of ũ[k] can be written:

ũ[k] = Γ(u[k], e[k], τ [k]), (34)

where
Γ(u, e, τ) = u− τ

|E|∑
i=1

(1− ei)
2 D∗iDiu,

τ [k] = 2β
ck
.

(35)

The derivative ∂θv of v = Γ(u, e, τ), for θ ∈ {β, λ}, is:

∂θv =∂θu− τ
|E|∑
i=1

(1− ei)
2 D∗iDi∂θu

+ 2τ

|E|∑
i=1

(1− ei)∂θei D∗iDiu

− ∂θτ
|E|∑
i=1

(1− ei)
2D∗iDiu,

(36)

and, since ck = βγ‖D‖2, for θ ∈ {β, λ},

∂θτ
[k] = ∂θ

(
2β

ck

)
= ∂θ

(
2

γ‖D‖2

)
= 0. (37)

2) Update of ∂θu[k] : The function f given in Eq. (4) has
a proximal operator with a closed form expression. Thus the
update rule of u[k] can be explicitely expressed as follows:

u[k+1] = prox 1
ck
f (ũ[k]) =

ckũ
[k] + z

ck + 1
. (38)

For the update of u[k+1], we thus have:

u[k+1] = Γ(ũ[k],0|E|, τ
[k]), (39)

where {
Γ(u, e, τ) = τu+z

τ+1 ,

τ [k] = ck.
(40)

The derivative ∂θv of v = Γ(v, e, τ), for θ ∈ {β, λ}, is:

∂θv =
τ

τ + 1
∂θu +

u− z
(τ + 1)2

∂θτ, (41)

and ∂βτ [k] = γ‖D‖2 and ∂λτ [k] = 0.
3) Update of ∂θẽ[k]: In Algorithm 2, the parameter for the

update of e[k+1] is set to dk = βd where d = η‖D‖22. This
choice is discussed in [38] and gives good numerical results
for some values of η. This setting simplifies the computation
of the derivatives due to the linear dependance of dk with β.
Indeed, the update rule of ẽ[k]

i , for every i ∈ {1, . . . , |E|}, can
be rewritten as follows:

ẽ
[k]
i =

(Diu
[k+1])2 +

de
[k]
i

2

(Diu[k+1])2 + d
2

. (42)

Thus, for every i ∈ {1, . . . , |E|},

ẽ
[k]
i = Γi(u

[k+1], e[k], τ [k]), (43)

where {
Γi(u, e, τ) =

(Diu)2+ τ
2 ei

(Diu)2+ τ
2
,

τ [k] = d.
(44)

The derivative ∂θv of v = Γ(u, e, τ), for θ ∈ {β, λ} and
for i ∈ {1, . . . , |E|}, is:

∂θvi =
2DiuDi∂θu

(Diu)
2

+ τ
2

−
2DiuDi∂θu

[
(Diu)

2
+ τ

2 ei

]
[
(Diu)

2
+ τ

2

]2
+

τ
2∂θei

(Diu)
2

+ τ
2

+
∂θτ
2 ei

(Diu)
2

+ τ
2

−
[(Diu)2 + τ

2 ei]
∂θτ
2[

(Diu)
2

+ τ
2

]2 ,

(45)
and ∂θτ [k] = 0, which yields to the result in Proposition 1.

4) Update of ∂θe[k] : For the update of e[k+1]
i , for every

i ∈ {1, . . . , |E|}, the fonction h in Eq. (4) is chosen with µi =
|.|. This latter function corresponds to the common `1-norm
penalization of the contour. The setting dk = βd simplifies
this update which now reads:

e
[k+1]
i = prox

φ
[k+1]
i |.|(ẽ

[k]
i ), φ

[k+1]
i = φi(u

[k+1]; τ), (46)

whereφi(u, τ) = τ

[2(Diu)2+d]
, τ = λ

β ,

proxφi(u,τ)|.|(ei) = max(0, 1− φi(u;τ)
|ei| )ei.

(47)

For every i ∈ {1, . . . , |E|},

e
[k+1]
i = Γi(u

[k+1], ẽ[k], τ [k]), (48)

where {
Γi(u, e, τ) = proxφi(u;τ)|.|(ei),

τ [k] = λ
β .

(49)
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The derivative ∂θv of v = Γ(u, e, τ), for θ ∈ {β, λ} and for
i ∈ {1, . . . , |E|}, is:

∂θvi =− ∂uφi∂θu
ei
|ei|
I|ei|>φi(u,τ) + ∂θeiI|ei|>φi(u,τ)

− ∂θτ[
2 (Diu)

2
+ d
] ei
|ei|
I|ei|>φi(u,τ),

(50)

with Jacobian matrices product

∂uφi∂θu = − τ[
2 (Diu)

2
+ d
]2 (4DiuDi∂θu) , (51)

and ∂βτ [k] = 1
β and ∂λτ [k] = − λ

β2 .
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