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Aloïs Duguet, Christian Artigues, Laurent Houssin, Sandra U. Ngueveu

LAAS-CNRS, Université de Toulouse, CNRS, UPS, INP, France

Abstract
This work considers non-convex mixed-integer nonlinear programming

where nonlinearity comes in the presence of the two-dimensional euclidean
norm in the objective or the constraints. We build from the euclidean
norm piecewise linearization proposed by (Camino et al. [2021]), that
allows to solve such non-convex problems via mixed-integer linear pro-
gramming with an arbitrary approximation guarantee. Theoretical results
that make this linearization able to satisfy any given approximation level
with the minimum number of pieces are established. An extension of the
piecewise linearization approach sharing the same theoretical properties
is proposed for elliptic constraints and/or objective. An application of
the elliptic linearization to a non-convex beam layout mixed optimization
problem coming from an industrial application shows the practical appeal
of the approach.

1 Introduction
This work deals with non-convex mixed-integer non linear programming (MINLP)
problems involving euclidean norms either in the objective, the constraints or
both. Typical examples are minimization or maximization of distances be-
tween objects, as well as convex proximity or separation constraints. Recent
applications involve service infrastructure placement in 5G networks (Santoyo-
González and Cervelló-Pastor [2018]), relay node deployment in wireless net-
works (Zhou et al. [2018]) and beam layout optimization in telecommunication
satellites (Camino et al. [2014, 2021]). We will use the latter problem as a
case-study.

MINLP problems are very challenging. Exact methods are generally based
on Branch-and-Bound (Smith and Pantelides [1999]) to ensure global optimality,
using different relaxations (Nowak [2005], Adams and Sherali [1986]), for exam-
ple convex relaxation (Liberti [2004]) or convex envelopes (Tardella [2007]).
To exhibit these relaxations, numerous works deal with problem reformula-
tion to simplify the computation of the relaxation or to strengthen it (Liberti
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[2004], Liberti et al. [2009b], Sherali and Liberti [2008], Smith and Pantelides
[1999]). A family of reformulation methods commonly used is the reformulation-
linearization technique (RLT) (Sherali and Liberti [2008], Sherali and Adams
[1999]). Applying this method requires two steps: first, reformulate the problem
to add valid nonlinear constraints; second, linearize by replacing variable prod-
ucts by new continuous variables. Generally, MINLP problems are considered
harder to solve than Mixed-Integer Linear Programming (MILP) ones, leading
to the use of reformulation methods (Geißler et al. [2012], Liberti et al. [2009a]).

Indeed, MILP solvers are often able to tackle industrial-sized problems (Borghetti
et al. [2008], Camponogara et al. [2011]). Linearizing a MINLP problem con-
sists in replacing all nonlinear functions of the problem by piecewise linear ones.
Theoretical advantages of MINLP linearizations are discussed in (Geißler et al.
[2012]). In some cases, there are methods to obtain guarantees on the solution of
the linear approximation of the MINLP problem, which motivate linearization.
However, linearization also has drawbacks like the fastly increasing number of
variables and constraints needed to represent a piecewise linear function de-
pending on the dimension of the input (Hughes and Anderson [1996], Smith
[2000]). Another drawback is the control of the approximation error (Geißler
et al. [2012]).

Despite those disadvantages, linearization is a widely used method to solve
MINLP problems and linearizing methods published are numerous. There are
some valid for any dimensions in (Geißler et al. [2012], Zhang and Wang [2008])
and others for two dimensions or more in (D’Ambrosio et al. [2010], Misener
et al. [2009], Rovatti et al. [2014], Silva and Camponogara [2014]).

A particularly relevant topic in linearization is the modeling of a piecewise
linear function. Indeed, good properties of formulations have been identified,
such as the locally ideal property, which means that each vertex of the linear
relaxation is integral (Padberg [2000], Keha et al. [2004]). A comparison of
formulations with the focus on this property is available in (Sridhar et al. [2013]),
and a formulation using a logarithmic number of binary variables and constraints
in the number of pieces is described in (Vielma and Nemhauser [2011]).

Eventually, as MINLP linearizations only yield an approximation of the orig-
inal problem, being able to quantify the approximation error is a major advan-
tage. There are at least two general ways of controlling the approximation when
the linearization is only in the objective function. The first is a trial and error
procedure: linearize the MINLP problem, check the quality of the solution can-
didate found, and if it is not good enough try to linearize with more pieces to
better approximate the nonlinear functions. For example, many linearization
schemes only refine the linearization around the solution candidate (Burlacu
et al. [2020]). Despite being an easy linearization scheme, this yields a disad-
vantage: it is not known when this scheme will stop. It is why the second way
of linearizing is to enforce before optimisation that the biggest approximation
error made by the linearization will be smaller than δ > 0, which means that
the optimal value of the approximated MINLP is no more than δ away from the
optimal value of the MINLP. Examples of the second way of controling the ap-
proximation error are described in (Rosen and Pardalos [1986], Dunham [1986]).
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Building a piecewise linear bounding of the nonlinear functions is part of the
second general way of controlling the approximation error. Such boundings are
used in (Geißler et al. [2012], Rebennack and Kallrath [2015a], Ngueveu [2019],
Rebennack and Krasko [2020]). The first way of controlling the approximation
error introduces less linear pieces in the linearization, leading to smaller MILP,
while the latter ensures the respect of the approximation error bound in one
MILP resolution. In this work, the second way of controlling the approximation
error is chosen because of two reasons: the euclidean norm has properties to
rely on to construct a piecewise linear approximation with the second way of
controlling the approximation error and when linearizing constraints, ensuring
the satisfaction of this constraints at the first MILP resolution is an advantage.

Another interesting property is the parcimonious number of pieces. As the
number of pieces used in a piecewise linear function increases, the MILP problem
associated will require an increasing number of binary variables and constraints,
which means that the problem is expected to take more time to be solved. Thus
using as few pieces as possible to achieve a satisfying approximation error is of
particular interest.

This article focuses on using the lowest number of pieces to satisfy a given
approximation level rather than minimizing the approximation level with a given
number of pieces. To our knowledge, articles in the litterature are few to choose
the same point of view (Rosen and Pardalos [1986], Rebennack and Kallrath
[2015b], Ngueveu [2019], Rebennack and Krasko [2020]). The goal of this article
is to develop such a linearizing method for the euclidean norm, building on the
linearization approach proposed by (Camino et al. [2021]).

This article has two main goals: first, to prove that given an approximation
level the linearizing method described in (Camino et al. [2021]) can be used
to obtain a piecewise linear bounding of the euclidean norm of R2 that uses
the minimal number of pieces. The second goal is to extend this bounding
method to other functions while keeping the same properties. In particular we
will address the linearization of the elliptic norm that has an application in the
telecommunication satellite domain to evaluate the gain obtained by covering
user areas with elliptic beams rather than circular ones.

The article is organized as follows: Section 2 describes the euclidean norm
linearization of (Camino et al. [2021]), and proves that given an approximation
error threshold, it creates a piecewise linear bounding with the minimal number
of pieces. In section 3, it is shown that the linearizing method of (Camino et al.
[2021]) can be used to linearize the euclidean norm of R2 in the objective func-
tion, and that it can be adapted to linearize norm with level set that are ellipses.
In section 4, the interest of linearizing elliptic constraints is demonstrated on
the beam layout satellite telecommunication problem. Eventually, conclusions
are drawn in section 5.
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Figure 1: Linearization of the euclidean norm of R2 for 8 directions (Camino
et al. [2021]

)

2 Euclidean Norm Linearization
In this section, the linearization scheme of the euclidean norm of R2 of (Camino
et al. [2021]) is described, then the approximation error used all along this article
is defined, tailored for the linearization discussed, and finally it is proved that,
given an approximation level to respect, the linearization of (Camino et al.
[2021]) can be used to create a piecewise linear bounding with the minimal
number of pieces.

2.1 Method Description
The method of (Camino et al. [2021]) describes how to linearize a constraint
with a single euclidean norm of R2 term, for both inequality sense. However,
it cannot be applied to a sum of euclidean norm. The linearization is based on
the evaluation of multiple scalar products between the vector appearing in the
euclidean norm and unit vectors regularly spaced out. Let ||·||2 be the euclidean
norm of Rn. Let us consider constraint (1), for ∆ ∈ R+.

||x||2 ≤ ∆ x ∈ R2 (1)

This constraint is satisfied if x is in the centered disk with radius ∆. Set
ui = (cos 2iπ

p , sin
2iπ
p ) for i = 1, ..., p with p the number of scalar products that

will be used for the linearization. The directions ui for i = 1, ..., 8 are depicted
in Figure 1(a). The linearization consists in replacing (1) by (2), with . being
the usual scalar product.

x.ui ≤ ∆ ∀i = 1, ..., p (2)
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Throughout this article, the word "polygon" denotes a solid plane region
inside a closed polygonal chain without intersections. A polygonal chain is
a union of segments where one segment intersects with the following and the
former segment of the chain, and only at its endpoints. In addition, it is closed
if the startpoint and the endpoint are the same. If constraint (2) is satisfied, x
is in the blue polygon of Figure 1(b), and according to ([Camino et al., 2021,
Proposition 1]) another bound on ||x||2 is known :

||x||2 ≤
∆

cos πp
(3)

In addition, if one of the constraints of (2) is not satisfied, x is out of the
blue polygon, and ([Camino et al., 2021, Proposition 2]) gives that :

||x||2 ≥ ∆ (4)

In this example, (2) is a relaxation of (1), thus some x satisfying (2) might
be infeasible for (1), but of course a stricter constraint than (1) can be obtained
by linearizing it with :

x.ui ≤ ∆ cos π
P
∀i = 1, ..., p (5)

which leads to the green polygon of Figure 1(b) being the feasible set of (5).
The linearization of constraint (4) differs from that of (1) because (4) is

nonconvex. Thus the big-M technique is used, but the principle stays the same.
The linearization is displayed below, where Mi must be a valid upper bound of
∆− x.ui which is easily obtained if the coordinates are bounded.

x.ui ≥ ∆−Mi(1− bi) ∀i = 1, ..., p (6)
p∑
i=1

bi = 1 (7)

bi binary variable ∀i = 1, ..., p (8)

Remark that the polygons created by the linearization of (1) into both (2)
and (5) are convex regular polygons with p sides, for all p ≥ 3, because they are
both convex, equiangulars and equilaterals. Note that in the rest of this work,
regular polygon is used for convex regular polygon.

A last remark would be that the blue polygon in Figure 1 is the "smallest"
regular polygon of 8 sides containing the black disk because each segment mid-
dle point touches the circle forming the disk, and that the green polygon is the
"biggest" inside the black disk because each vertex touches the circle forming
the disk. In the following, the focus is on the approximation of the frontier of
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P+ \B(x0,∆)
B(x0,∆) \ P−
P−

x0
point of distance a+ to x0
point of distance a− to x0
C(x0, a

+)
C(x0, a

−)

Figure 2: Illustration of Definition 1

constraints of type ||x||2 ≤ ∆ or ||x||2 ≥ ∆, and the blue polygon is denoted
an outer approximation of the disk while the green polygon is denoted an inner
approximation of the disk. The terms outer approximation and inner approxi-
mation as used in this work are properly defined in the following subsection.

2.2 Approximation error
An approximation error tailored for the euclidean norm is defined for the study
of the linearization of (Camino et al. [2021]) in Definition 1. It measures the
highest proportion of euclidean norm of two points inside the difference of a
disk B(x0,∆) and a polygon. If the polygon contains the disk, it is denoted
an outer approximation, and if it is included in the disk, it is denoted an inner
approximation.

Definition 1. Let n ∈ N∗ and x0 ∈ R2. Let B(x0,∆) = {x ∈ R2 :
||x− x0||2 ≤ ∆} be the disk of radius ∆ and center x0, with ∆ ∈ R+. Let P+ be
a polygon and a+ ∈ R+ be such that B(x0,∆) ⊂ P+ and a+ = sup{||x− x0||2 :
x ∈ P+\B(x0,∆)}. Finally, let P− be a polygon and a− ∈ R+ be such that
P− ⊂ B(x0,∆) and a− = inf{||x− x0||2 : x ∈ B(x0,∆)\P−}. We define:

• P+ an outer approximation of B(x0,∆) with error ε := a+

∆ − 1

• P− an inner approximation of B(x0,∆) with error ε := ∆
a− − 1

• P+ and P− a bounding of B(x0,∆) with error ε := max{a+

∆ , ∆
a− } − 1

The −1 term in the formula of error ε is added so that an approximation
with error ε = 0 is exact. A similar definition can be made for constraints
||x− x0||2 ≥ ∆. Figure 2 illustrates the definition. P+ is the region in cyan,
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maximum norm circle
outer approximation
disk to estimate
inner approximation
minimum norm circle
x0

Figure 3: Bounding of a disk by (2) and (5) for p = 4 scalar products

black and blue while P− is the region in blue and B(x0,∆) is the black and
blue region. The cyan region is P+ \B(x0,∆), with point of maximal distance
from x0 the purple one, with distance the radius of outer dotted circle. The
black region is B(x0,∆) \ P−, with point of minimal distance from x0 the red
one, with distance the radius of the inner dashed circle.

In this article, polygons P+ (resp. P−) that interest us are those defined with
points x ∈ R2 satisfying constraints (5) (resp. constraints (2)) or constraints
(5) with reversed inequality (resp. constraints (2) with reversed inequality). It
is illustrated in Figure 3 where the black disk is bounded by the cyan and blue
squares induced by the linearization of (2) and (5) for p = 4. The maximal
norm of the outer approximation square (resp. the minimal norm of the inner
approximation square) is depicted by the dotted circle (resp. the dashed circle).
The approximation error is the maximum between the ratio of radius of cyan
and black circles and the ratio of radius of black and blue circles minus one.

It turns out that the approximation error associated to (2) and (5) are both
1

cos πp
−1 because the intervals in which approximation errors occur are [∆, ∆

cos πp
]

and [∆ cos πp ,∆] respectively. Remark that the approximation error tends to 0
when the number of scalar products p tends to infinity, thus the linearizing
method of (Camino et al. [2021]) is an approximation that can be as good as
needed by choosing p big enough.

2.3 Uniform Inner Approximation
In the following results, we show that for a number of sides p fixed, regular
polygons with all vertices on the circle are the only polygons with minimal error
to approximate a disk. First we show that such a polygon can be found among
convex polygons, after introducing a useful notation for the approximation error
of a disk by a polygon.
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Notation 2. Let P be a polygon inside a disk D centered at (0, 0). ε(P) denote
the approximation error of the disk D by the polygon P according to Definition
1.

Let P be a polygon inside the unit disk D, ε(P ) is −1 plus the inverse of the
minimal norm of a point of D\P .
Lemma 3. Let D be the unit disk. Let P ⊂ D be a simple nonconvex polygon,
where simple means that no edges of P intersect except in the extreme points.
Let P ′ = conv(P) be the convex envelope of P. Then, P ′ ⊂ D, P ′ has strictly
less sides than P and ε(P) ≥ ε(P ′)
Proof. First, P ⊂ D implies that P ′ ⊂ D because D is convex. Second, a poly-
gon is convex is equivalent to every angles of the polygon are lower than π.
Now as P is not convex, its convex envelope P ′ has strictly less sides because at
least one vertex of P has an angle strictly greater than π and thus will not be a
vertex of P ′. Third, P ⊂ P ′ = conv(P) implies that the set over which is calcu-
lated the minimum a− needed for the calculation of the approximation error in
Definition 1 is smaller for P ′ than for P, thus leading to ε(P) ≥ ε(conv(P)).

According to Lemma 3, a nonconvex polygon with p sides cannot have a
smaller error than its convex envelope to approximate a disk. Thus there is a
convex polygon with p sides that has the minimal error to approximate the disk.
Thus, let A−p be the set of convex polygons of p sides lying inside D the unit
disk centered at (0, 0). The minus symbol refers to the inner approximation
case:

A−p = {P : P ⊂ D and P is a convex polygon with p sides}
The unit disk is centered at (0, 0) because the number of sides of a polygon is
invariant by homothetic transformation so it is always possible to return to this
case from any disk centered at x0 ∈ R2. The goal is to show that a regular
polygon with p sides and all vertices on the circle is an optimal solution of (9).

(P−p )
{

min ε(P)
s.c. P ∈ A−p

(9)

A definition of a specific transformation of a polygon is introduced to show
that this regular polygon of p sides is a solution of (9).
Definition 4 (inflation). Let P ∈ A−P and let x ∈ Int(P) = {x ∈ P \ Fr(P)}
the interior of P. Let "inflation of P by x" denote the polygon P ′x with vertices
v ∈ V with each v obtained by intersection of the unit disk and the ray with
initial point x and direction −→xw with w a vertex of P.

Figures (4) and (5) illustrate this definition. They show the same dashed red
polygon P inflated by two different x, with circles showing the minimal norm
of the polygons P and P ′x: in the first figure x1 = (0, 0), and in the second
x2 = (−0.25,−0.5). The inflated polygons P ′ are in red, with dotted red lines
showing the movement of the vertices. Finally, the dashed and solid blue circles
are centered at (0, 0). Their radius are the a− of Definition 1.
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P
P ′x1

unit circle
C−P′x1
C−P

Figure 4: Inflation of P by x1 = (0, 0)

P
P ′x2

unit circle
C−P′x2
C−P

Figure 5: Inflation of P by x2 = (−0.25,−0.5)
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Proposition 5. Let P ′x be the inflation of P by x ∈ Int(P). Then:

1. P ′x is a polygon

2. Int(P) ⊂ Int(P ′x)

3. The vertices of P ′x are on the circle

4. P ′x is convex

5. P ′x has the same number of sides as P

6. ε(P ′x) ≤ ε(P)
Proof. 1. P ′x is a polygon if its frontier is a closed polygonal chain without
intersections. As the vertices of P ′x come from vertices of P, by adding the
straight line segments induced by the straight line segments of P, P ′x must
be in a closed polygonal chain. To prove that there are no intersections in
this polygonal chain, remark that the p rays used to build the inflation are
intersecting in x, and that an intersection of the polygonal chain of P ′x would
mean that two of those rays intersect in another point meaning that the two
rays overlap, which is impossible because P is convex and x ∈ Int(P).
2. P can be decomposed into p triangles in the following way: each triangle
has for vertices x, and two vertices of P connected by an edge. Decompose P ′x
in the same way. Each triangle T of P is included in one triangle T ′ of P ′x:
the one for which the two vertices of T moved to the two vertices of T ′ with
the inflation. The inclusion stands because those two vertices have been moved
along the sides of triangle T in the opposite direction of the third vertex x.
3. By definition of inflation.
4. A polygon with all vertices on the unit circle and with no self intersection as
seen in the proof of point 1 is convex because the angle of each vertex with its
two neighbours is strictly less than π.
5. P ′x has no more than p vertices by definition. Suppose by contradiction that
P ′x has at least one vertex less than P. Thus, there exists a vertex v′ of P ′x that
has been obtained by two different vertices v1 and v2 of P. It means that those
two vertices lies in the same ray with initial point x. Thus, say v1 is a linear
combination of x and v2, which contradicts it being an extreme point because
P is convex.
6. By point 2, it is known that D\Int(P ′) ⊂ D\Int(P), thus min{||x||2 : x ∈
D\Int(P ′)} ≥ min{||x||2 : x ∈ D\Int(P)}, leading to point 6.

Points 3, 4, 5 and 6 of Proposition 5 show that there is a polygon with each
vertex on the circle that is solution of (9). Thus the focus is on the analysis of
such polygons. The approximation error is calculated with the point of minimal
norm of D\Int(P)}. The following proposition states which point of D\Int(P)}
is this minimal norm point.
Proposition 6. Let P ∈ A−P be a polygon with vertices on the circle. If (0, 0) ∈
Int(P), then the minimal norm point x ∈ D\Int(P) is ||−−→OD||2 where D is the
middle point of the longest side of P.
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Proof. It is obvious that the minimal norm point is on a side of P because
(0, 0) ∈ Int(P).

Every side of polygon P has endpoints of norm one, and a computation shows
that the minimal norm point of a side with this property is its middle point M .
Moreover, by considering the triangle decomposition of a polygon like in proof
of point 2 of Proposition 5 with additional point the origin (0, 0), it is possible
to compute the norm of M with the angle α of the triangle at point (0, 0). The
computation gives that its norm is cos α2 =: g(α). As (0, 0) ∈ Int(P), α ∈]0, π[.

Finally, g′(α) < 0 on ]0, π[ so the norm of the middle point of a side of P
decreases when the angle α increases, which is equivalent to when the length of
the side increases, leading to the result.

The hypothesis made for Proposition 6 is not a limiting one because if the
origin (0, 0) /∈ Int(P), the approximation error of P is infinite whereas there
always exists a polygon with a finite approximation error so it is not an optimal
solution of (9).

Proposition 7 shows that this is the longest side of a polygon with vertices
on the circle that determines the approximation error of the polygon.

Proposition 7. The only solutions of (9) are regular polygons of p sides with
all vertices on the circle and their objective value is 1

cos πp
− 1.

Proof. Let (α1, ..., αP ) be the angles at (0, 0) associated to each of the p triangles
of P as in the proof of Proposition 6. A solution of (9) is a polygon with all
vertices on the circle that is also solution of:

min
P∈A−p

max
i=1,...,p

αi (10)

The only solution of (10) is αi = 2π
p i = 1, ..., p. Thus the p triangles making the

polygon have the same angle at (0, 0) and thus they are all similar. Going back
to the polygon, it means that every sides have same length. As the polygon
is equilateral and inscriptible in a circle, it is a regular polygon with p sides.
Finally, the optimal value is 1

cos πp
− 1 by calculating the norm of the middle

point of any of the side of the regular polygon of p sides with vertices on the
circle.

2.4 Minimality of the Number of Scalar Product Used in
the Linearization Scheme

This subsection is dedicated to the proof of Theorem 8 that states that the
linearizing scheme of (Camino et al. [2021]) needs the minimum number of
scalar products to satisfy a given euclidean norm approximation error threshold
ε0 as defined in Definition 1. It creates a piecewise linear bounding for a given
approximation error threshold that uses the minimal number of pieces. More
precisely, the result is the following:
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Theorem 8. Let ε0 > 0 be the approximation error threshold to be satisfied for
the approximation of a disk D by a polygon. Let p ∈ N be such that

p = min{k ∈ N∗ : 1
cos πk

− 1 ≤ ε0, k > 2}

then a polygon contained in (resp. containing) the disk D satisfying the approxi-
mation error threshold ε0 has at least p sides, and the inner approximation (resp.
outer approximation) of the disk with p scalar products given by the linearizing
scheme of (Camino et al. [2021]) produces a polygon with p sides satisfying the
approximation error threshold.

The proof of Theorem 8 treats separately the outer approximation and the
inner approximation. The inner approximation case is dealt entirely before a
justification that the proof scheme is similar for the outer approximation case
is given.

A corollary of Proposition 7 is stated before proof of Theorem 8.

Corollary 9. The optimal value of (9) decreases with p.

Proof. According to Proposition 7, the optimal objective value of (9) is 1
cos πp

−1,
which decreases with p.

Theorem 8. Let ε0 > 0. Let D be the unit disk centered at (0, 0). Let p =
min{k ∈ N∗ : 1

cos πk
− 1 ≤ ε0, k > 2}. Then Proposition 7 and Corollary 9

give that a polygon satisfying the approximation error threshold ε0 has at least
p sides and a regular polygon with p sides satisfies the approximation error
threshold ε0. As the inner approximation of a disk with p scalar products yields
a regular polygon with p sides, it satisfies the approximation error threshold.

If D was not the unit disk, an homothetic transformation would bring back
D to the unit disk and the same transformation applied to the polygon would
not change neither its number of sides nor the error of approximating the disk,
so the result is valid for any disk.

Finally, the outer approximation case can be treated in the same manner.
Indeed, Lemma 3 is also true, with in bonus the equality ε(P) = ε(conv(P)).
Proposition 7 is proved in a similar way, with two replacements:

• replace the inflation of Definition 4 by a deflation: the sides of the polygon
are moved in the direction of the center of the disk so as to keep them
parallel to there initial position until they are tangent to the circle

• replace the angles αi associated to each of the p triangles at point (0, 0) in
the proof of Theorem 7 by angles directly on the vertices of the deflated
polygon

Finally, the equivalent to Corollary 9 as well as the final proof are easily adapt-
able.
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3 Extensions of the Euclidean Norm Lineariza-
tion

In this section, two extensions of the linearization of (Camino et al. [2021]) are
discussed. Moreover, the result of Theorem 8 is transposable to the extensions.

The first is the linearization of the euclidean norm of R2 directly in the
objective function. An optimal polyhedron in terms of number of pieces for a
given error ε is constructed. This result is based on the absolutely homogeneous
property of a norm and Theorem 8. One application to that linearization is
that an arbitrary nonconvex twice differentiable function f can be decomposed
in a Difference of Convex function (DC) f(x) = g(x)− ρ||x||2, ρ > 0 sufficiently
large [Muts, 2021, Section 3.2]). Thus, it is possible to compute piecewise lin-
ear under- and overestimators of f by replacing ||x||2 with a piecewise linear
function. However, this decomposition has a drawback which is that these es-
timators can be weak (Muts and Nowak [2020]). Another interest is to avoid
having to deal with a non differentiable function.

The second extension concerns constraints, and is valid with a class of norms
of elliptic level set. This result comes from the fact that an ellipse is a linear
deformation of a circle, so that an optimal polygon overestimating a disk with
a given error gives an optimal polygon overestimating an ellipse simply by ap-
plying the linear deformation that transforms the circle into the ellipse. An
application to the beam layout problem is shown in Section 4.

3.1 Linearization in the Objective Function
The euclidean norm linearization can be used to linearize the euclidean norm of
R2 in a constraint, but also in the objective function as shown in this subsection.
After introducing the parametric equation of a positive cone, the construction
of the optimal piecewise linear bounding of the euclidean norm of R2 for a given
error is shown.

The surface generated by the euclidean norm of R2 is the positive cone C
(11).

C = {(x1, x2, x3) : x3 = ||(x1, x2)||2, x1 ∈ R, x2 ∈ R} (11)
= {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 − x2

3 = 0 and x3 ≥ 0}

Before introducing the bounding of the positive cone, recall the definition of
equally spaced unit vectors for the linearization, with an integer p > 2,

ui = (cos 2iπ
p
, sin 2iπ

p
) for i = 1, ..., p

and let C+
p and C−p be defined as in (12) and (13),

C+
p = {(x1, x2, f

+
p (x1, x2)) : x = (x1, x2) ∈ R2} (12)

C−p = {(x1, x2, f
−
p (x1, x2)) : x = (x1, x2) ∈ R2} (13)
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with f+
p (x1, x2) and f−p (x1, x2) equal to:

f+
p (x1, x2) = max

i=1,...,p

(x1, x2)T .ui

cos πp
(14)

f−p (x1, x2) = max
i=1,...,p

(x1, x2)T .ui (15)

The surface induced by the inner approximation of p scalar products is de-
noted C+

p because it is an overestimation of C in the sense that given (x1, x2) ∈
R2, x3 such that (x1, x2, x3) ∈ C and x+

3 such that (x1, x2, x
+
3 ) ∈ C+

p , then
x3 ≤ x+

3 .
Similarly, the surface induced by the outer approximation of p scalar prod-

ucts is an underestimation of C and is denoted C−p .
The terms underestimation, overestimation and bounding for functions are

defined more precisely below.

Definition 10. Let f : R2 → R+ be a function. Let F0 := {x ∈ R2 : f(x) = 0}
be the level set of 0 of f . Let f−, f+ : R2 → R+ be functions with level sets of
0 the set F0. If there exists ε > 0 such that for all x ∈ R2 \ F0:

f(x)− f−(x)
f−(x) ∈ [0, ε] (16)

Then it is said that f is underestimated by f− with approximation error ε. If
there exists ε > 0 such that for all x ∈ R2 \ F0:

f+(x)− f(x)
f(x) ∈ [0, ε] (17)

Then it is said that f is overestimated by f+ with approximation error ε.
If there exists ε > 0 such that at the same time (16) and (17) are satisfied,

then it is said that f is bounded by f− and f+ with approximation error ε. If in
addition f− and f+ are piecewise linear functions, it is called a linear bounding.

In Figure 6, a 3D representation of C in red, C−p in cyan and C+
p in blue is

shown.

Proposition 11. Let p ∈ N, p > 2. ||x||2 is linearly bounded by f−p and f+
p

with approximation error 1
cos πp

− 1.

Proof. The proof that f is overestimated by f+
p with approximation error 1

cos πp
−

1 is given here. The inner approximation case is similar.
Proving (18) is sufficient since it is equivalent to (17) for f+(x) = f+

p (x),
f(x) = ||x||2 and ε = 1

cos πp
− 1.

f+
p (x)
||x||2

∈ [1, 1
cos πp

] ∀x ∈ R2 (18)
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Figure 6: Linear bounding of the positive cone seen from above for p = 4 scalar
products

Remark that C+
p is stable by a 2π

p angle rotation around axis x3 because the
regular polygon with p sides used to construct C+

p has this property. Thus
proving (18) for x ∈ Xp = {(α cosβ, α sin β) : α ≥ 0, β ∈ [−πp ,

π
p ]} is sufficient

because Z+
p := {(x1, x2, f

+
p (x1, x2)) : (x1, x2) ∈ Xp} is the set of points on one

face of the outer approximation C+
p . Moreover, (19) is a parametrisation of the

face Z+
p .

Z+
p = {(α+ cos π

p
, β+, α+) : α+ ≥ 0, β+ ∈ [−α+ sin π

p
, α+ sin π

p
]} (19)

Vectors of Z+
p can all be written uniquely as α+u + β+v with α+ > 0 and

β+ ∈ [−α+ sin π
p , α+ sin π

p ]. (20) is a parametrisation of Zp which is the piece of
C estimated by Z+

p .

Zp := {(α cosβ, α sin β, α) : α ≥ 0, β ∈ [−π
p
,
π

p
]} (20)

Let x ∈ Xp. We will show that 1 ≤ f+
p (x)
||x||2 ≤

1
cos πp

. Let α ≥ 0 and β ∈ [−πp ,
π
p ]

so that x = (α cosβ, α sin β). It is known that f(x) = α. To find the point
(α+ cos πp , β+, α+) of Z+

p , it suffices to solve (21).{
α cosβ = α+ cos πp
α sin β = β+

(21)

The solution is (22). {
α+ = α cos β

cos πp
β+ = α sin β

(22)
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Thus:

f+(x)
||x||2

= cosβ
cos πp

∈ [1, 1
cos πp

] ∀β ∈ [−π
p
,
π

p
] (23)

And the upper bound of the interval [1, 1
cos πp

] is reached for β = 0. Thus
ε = 1

cos πp
is the approximation error.

Corollary 12. Let the required approximation error be ε ∈ [ 1
cos πp

, 1
cos π

p−1
[, with

p ∈ N, p > 2. Then the linear bounding of the euclidean norm by f−p and f+
p

uses the minimum number of pieces.

Proof. The number of sides of the polygon induced by the euclidean norm lin-
earization for a constraint is optimal. Moreover, the linear bounding of the
euclidean norm uses the same number of pieces for the same approximation er-
ror. As this linear bounding is constructed upon the polygon, it gives a lower
bound of the number of pieces for the linear bounding, lower bound that is
reached.

Thus the euclidean norm linearization of (Camino et al. [2021]) can be used
to derive a linear bounding which uses the minimum number of pieces for two
piecewise linear functions to bound the euclidean norm of R2.

3.2 Extension to Elliptic Constraints
As mentionned previously, it is possible to adapt the linearization of (Camino
et al. [2021]) for norms with elliptic level sets in constraints. Such constraints
are denoted elliptic constraints. A gathering of useful definitions on ellipses is
followed by the construction of the linear bounding of elliptic constraints using
the minimal number of pieces.

Recall that an ellipse E with center (u, v), width a, height b (i.e. with no
angle between the horizontal axis and the major axis) is a subset of R2 such
that:

(x− u)2

a2 + (y − v)2

b2
= 1 ∀(x, y) ∈ R2 (24)

by adding an angle θ, width and height are replaced by semi-major axis a and
semi-minor axis b:

((x− u) cos θ − (y − v) sin θ)2

a2 + ((x− u) sin θ + (y − v) cos θ)2

b2
= 1

∀(x, y) ∈ R2 (25)

In this subsection, the previous results on the approximation error of the
euclidean norm linearization are extended to norms with ellipses as level sets.
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Figure 7: Linear transformation between a circle and an ellipse

Such a norm is denoted || · ||a,b,θ, and its definition is written:

||x||2a,b,θ = ((x1 cos θ − x2 sin θ)2

a2 + ((x1 sin θ + x2 cos θ)
b2

∀x = (x1, x2) ∈ R2, a, b ∈ R+
∗ (26)

The vocabulary used for ellipses is defined below:

• the shape of an ellipse is denoted (a, b) where a and b are the semi-major
axis and semi-minor axis respectively (which means a ≥ b > 0).

• the angle of an ellipse θ refer to the angle between the horizontal axis and
the major axis, with θ ∈ [−π2 ,

π
2 ].

Remark that any non-degenerate ellipse can be obtained by a linear trans-
formation of a circle: a circle is a specific ellipse with a = b = R and θ = 0
with R the radius of the circle. This linear transformation is a change of basis
to an orthogonal basis followed by a translation. Without the translation, φ is
the linear transformation from a circle of radius 1 centered at the origin and an
ellipse of shape (a,b), angle θ and centered at the origin:

φa,b,θ : R2 → R2 (27)
(x, y) 7→ (ax cos θ − by sin θ, ax sin θ + by cos θ) (28)

As this transformation is linear with the inverse transformation φ−1
a,b,θ is

also linear (see Figure 7) and it preserves the norm ratio between two colinear
vectors. Thus, the regular polygon with p sides obtained by the euclidean norm
linearization is, after transformation by φa,b,θ, a polygon that uses the minimum
number of sides to satisfy a given approximation error for the ellipse of shape
(a, b) and angle θ.

This analysis shows that constraints involving elliptic norms can also be
linearized by the euclidean norm linearization, after a suitable change of basis
(as well as linearization of ellipses in the objective function). A procedure to
linearize a constraint ||x||a,b,θ ≤ ∆ is thus to replace it by (29).

||φ−1
a,b,θ(x)||a,b,θ.ui ≤ d∆ ∀i = 1, ..., p (29)
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with d = 1
cos πp

for an inner approximation and d = 1 for an outer approximation.
A downside of this linearization is that a, b and θ have to be constants of the

model or it would induce nonlinear terms. It means that to linearize a constraint
"x is in an ellipse" with the ellipse’s shape and angle not fixed, a discretization of
the possible ellipses parameters that yields many constraints is needed: with n
tuples (a, b, θ) and p scalar products, it is necessary to use np big-M constraints
instead of p for the circle to achieve the same approximation error. Thus, the
model is not suited for really fine discretization of possible ellipses.

However, the next section presents an application for which the proposed
linearization is useful.

4 Application to the Beam Layout Problem
The interest of the extension of the euclidean norm linearization is demonstrated
on a mixed continous/discrete optimisation problem with elliptic constraints.
The considered problem is derived from a beam layout problem arising in satel-
lite telecommunications. The original problem has been tackled in (Camino
et al. [2014, 2016, 2021]) and does not involve elliptic constraints. We refer to
(Camino et al. [2021]) for a state-of-the-art review on this problem. Informally,
a satellite equipped with a multibeam antenna has to cover a set of end users
inside a predefined area on earth by means of a set of movable beams (see Fig-
ure 8). In the original problem the projected surface of the beam is circular.
Hence, a user is covered if its coordinates are inside one of the beam disks, i.e. if
a proximity constraint between the user and the beam center is satisfied. There
are also separation constraints between the beam centers depending on discrete
beam/reflector assignment constraints as explained in details below. However,
in modern multibeam antennas systems the beam shape need not be circular as
reconfigurable antennas allow to obtain different beam shapes including elliptic
ones (Rao et al. [2006]). Adding the possibility of elliptic beam shape in addi-
tion to circular ones obviously increases the covering power of the system by a
better potential adaptation to the area containing the end users. However, the
complexity of proximity and separation constraint modeling is increased, due
to the extra constraints required for linearization of ellipses as explained above.
The aim of the experimental study carried out in this section is to determine
if this complexity increase is compensated by the gain in the objective function
for a limited amount of CPU time compared to the model allowing only circular
beams.

The first subsection explains the modeling of the beam layout problem, while
the second provides the numerical results.

4.1 Problem Definition and Formulation
Amultibeam satellite is a telecommunication satellite that uses relatively narrow
beams to provide a service to users on earth. It has different reflector antennas
and each beam is associated to a reflector antenna.
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Figure 8: Example of beam layout solution with only circles as beam shape

In the considered beam layout problem, a multibeam satellite provides ser-
vices via beams b ∈ B, each produced by a reflector r ∈ R. On earth, user
stations s ∈ S of coordinates (Xs, Ys) are characterised by their traffic demand
Ts ∈ R+. They can be covered by a beam of the multibeam satellite. A station
s is considered covered by the satellite if at least one beam b covers the station.
Each beam covers a portion of the earth in the shape of an ellipse of predefined
parameters, with W the radius if this shape is a circle. The goal is to maximise
the traffic covered while satisfying a maximum capacity of covering by a beam
and some separation constraints coming from technology constraints: each beam
of the satellite is associated to a reflector and two beams of the same reflector
cannot be too close from each other as explained in (Camino et al. [2014]). It
forces two beams of the same reflector enlarged by a factor κ to not intersect.
Beams used in (Camino et al. [2021]) covers a circular region on earth, but, as
mentioned above, it is technically possible to use beams of elliptic shapes.

Each beam can be an ellipse of shape (ak, 1
ak

), ak ≥ 1 with k ∈ K given,
and angle θ ∈ Θ given. This choice of shape ensures that every ellipse covers
the same surface on earth, thus no ellipse’s shape is advantaged over another.
A model of the beam layout problem is given in (30)-(44).
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Max
∑

b∈B,s∈S

Tsαs,b (30)

s.t.
∑
b∈B

αs,b ≤ 1 ∀s ∈ S (31)∑
r∈R

βb,r ≤ 1 ∀b ∈ B (32)∑
s∈S

αs,b ≤ |S|
∑
r∈R

βb,r ∀b ∈ B (33)∑
s∈S

αs,b ≥
∑
r∈R

βb,r ∀b ∈ B (34)∑
s∈S

Tsαs,b ≤ γ ∀b ∈ B (35)∑
k∈K,θ∈Θ

δb,k,θ = 1 ∀b ∈ B (36)

||(xb, yb)− (Xs, Ys)||ak, 1
ak
,θ ≤W + (2− αs,b − δb,k,θ)Ms

∀s ∈ S,∀b ∈ B, ∀k ∈ K,∀θ ∈ Θ (37)

γb,b′ ≥
∑
r′∈R βb,r′ +

∑
r′∈R βb′,r′ + βb,r + βb′,r − 3

∀b, b′ ∈ B, b′ > b,∀r ∈ R (38)

||(xb, yb)− (xb′ , yb′)||ak, 1
ak
,θ ≥ 2κW −N(1− γb,b′)

∀b, b′ ∈ B, b′ > b (39)
xb, yb ≥ 0 ∀b ∈ B (40)
αs,b ∈ {0, 1} ∀s ∈ S, ∀b ∈ B (41)
βb,r ∈ {0, 1} ∀b ∈ B, ∀r ∈ R (42)
γb,b′ ∈ {0, 1} ∀b, b′ ∈ B, b′ > b (43)
δb,k,θ ∈ {0, 1} ∀b ∈ B, ∀k ∈ K,∀θ ∈ Θ (44)

(30) is the maximisation of the covered traffic, with αs,b a binary variable
equal to 1 if user station s is covered by beam b. Constraint (31) forces a station
to be covered by at most one beam. Constraint (32) associates at most one
reflector antenna r to each beam b due to the binary variable βb,r. Constraints
(33) and (34) forces an unused beam to be associated to no stations and a used
beam to be associated to at least one station. Constraint (35) ensures that
each beam cannot cover more than a traffic of γ. Constraint (36) associates a
shape (ak, 1

ak
) and an angle θ ∈ Θ to a beam b through the use of the binary

variable δb,k,θ. Constraint (37) checks that each station s is in the beam b of
center (xb, yb) to which it is affected, withMs the big-M constant associated and

20



|| · ||ak, 1
ak
,θ the norm defined in (26) with level set for the value 1 the ellipse of

shape (ak, 1
ak

) and angle θ. Constraint (38) enforces that the binary variable γb,b′
is equal to 1 if beams b and b′ come from the same reflector antenna. Constraint
(39) ensures that two beams associated to the same reflector antenna b and b′
are not too close. Finally, (40)-(44) define variable types.

The details of the linearization into an MILP model are discussed here. The
nonlinearity comes from constraints (37) and (39). As explained in (29), the
linearization procedure is to apply a suitable linear transformation and then
apply the euclidean norm linearization. Moreover, constraint (38) needs to be
adapted to the linearization. Thus, the only constraints that change in the
linearization are (37), (38) and (39).

Let p be the number of scalar product used to linearize, according to an error
approximation ε wanted. Let φ−1

ak,
1
ak
,θ

be the linear transformation defined in
(29). For i = 1, ..., p, the linearization of (37) is (45). The right part contains
cos πp to ensure feasibility, which corresponds to the inner approximation of the
disk.

∀s ∈ S, ∀b ∈ B, ∀k ∈ K,∀θ ∈ Θ,∀i = 1, .., p :

φak, 1
ak
,θ

((
xb −Xs

yb − Ys

))
.

(
cos 2πi

p

sin 2πi
p

)
≤W cos π

P
+ (2− αs,b − δb,k,θ)Ms

(45)

Constraint (39) is not as easy to linearize. Indeed, this is not a convex con-
straint: it is about ensuring that two ellipses do not intersect. In the case of
ensuring that two disks do not intersect (created by two beams of circle shape),
it suffices to evaluate the distance between the two centers, that is to say apply
the euclidean norm linearization and then ensure with big-M constraints that
this distance is higher than what is necessary. For two ellipses, this lineariza-
tion scheme does not work. The convexity of an ellipse allows to model the
intersection with linear separation in a similar way as (Kallrath and Rebennack
[2014]).

Definition 13. Let A,B ⊂ R2. A and B are linearly separated if

∃v ∈ R2, ∃b ∈ R : ∀x ∈ A, ∀y ∈ B : x.v ≤ b ≤ y.v

The linear separation is illustrated in Figure 9: the two octogons are linearly
separated because a line d can be drawn between them, which corresponds to
the hyperplane d = {u ∈ R2 : u.v = b}. The ellipses approximations are
convex polygons so it suffices to test the linear separation with the vertices
of those polygons. The last problem for the linearization is that making scalar
products between variable vectors is a quadratic operation. To adress this issue,
the linear separation is tested only for a finite number Ndir of hyperplanes of
normal vectors vj = (cos 2jπ

p , sin 2jπ
p ) for j = 1, ..., Ndir. This means that a
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Figure 9: Linear separation of two ellipses outer approximations by the black
line

Figure 10: The linear separation is working with the two black lines and is not
working with the two blue ones

stronger version of the linear separation is ensured in the model, but with a
reasonably high value for Ndir, it is probably good enough compared to the
other approximations of the model.

Constraint (38) becomes (46)-(47). The new binary variables γb,b′,j replace
γb,b′ because for the linearization, selecting which line j is associated to vj for
j = 1, ..., Ndir ensures the linear separation.

Ndir∑
j=1

γb,b′,j ≥
∑
r∈R

βb,r +
∑
r∈R

βb′,r + βb,r + βb′,r − 3 (46)

∀r ∈ R,∀b, b′ ∈ B such that b′ > b (47)

Finally the linearization of (39) becomes (48)-(50). (Sx,bi , Sy,bi ) are the co-
ordinates of the vertex i of outer approximation of beam b. The outer approxi-
mation of the disk is used to ensure feasibility. N is the big-M constant of the
constraint.
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(
Sx,bi
Sy,bi

)
.

(
cos 2πk

Ndir

sin 2πk
Ndir

)
≤ wb,b′ +N(1− γb,b′,k) (48)(

Sx,b
′

i

Sy,b
′

i

)
.

(
cos 2πk

Ndir

sin 2πk
Ndir

)
≥ wb,b′ +N(1− γb,b′,k) (49)

∀b, b′ ∈ B such that b′ 6= b,∀i = 1, ..., P, ∀k = 1, ..., Ndir (50)

4.2 Computational Experiments
The goal of this section is to evaluate the potential of the extension of the
euclidean norm linearization to ellipses. The description of instances 1 as well
as the software and hardware used for the numerical experiments are described
in (4.2.1). Then, a comparison between the MILP models resulting from the
linearizations described previously and two MINLP models on the beam layout
problem is made to show the interest of the resolution of this problem by a
linearization. Finally, a comparison of the euclidean norm linearization (CL for
Circle Linearization) to its extension to ellipses (EL for Ellipse Linearization)
is done on the beam layout problem.

4.2.1 Description of instances and resolution set-up

A set of 100 instances is considered, corresponding to different sizes, different
number of scalar products p used in the linearizations and different densities.
There are five different sizes: the number of stations |S| vary in {20, 40, 60, 80, 100}
with associated number of beams |B| = min{ |S|8 , 10} which is |B| ∈ {3, 5, 7, 10}.
As for p, it is taken from the set {4, 8, 12, 16, 20}. As for densities, two different
values d ∈ {30, 70} are used. Thus there are 10 different instances for each
couple (size, density).

For each instance, the stations positions are drawn randomly from a set
of 157 positions from a real instance and there are three reflector antennas.
The ellipses allowed in the EL models are φa, 1

a ,θ
with a ∈ A = { 1

2 , 1, 2} and
θ ∈ Θ = { 2π

3 ,
4π
3 , 1}. Each ellipse allowed is visible on Figure 11. Moreover,

the capacity γ is fixed to 500 in all instances. It is a major limitation for the
objective value as the naive upper bound induced by the capacity is pretty close
to the objective value in many instances.

Examples of solutions are plotted in Figure 12 and 13. Black points are
stations not covered, colored points are covered stations, and the color indicates
the reflector antenna which possesses the beam covering the station. The big
advantage of using ellipses beam shapes is that there are much more possibilities
to cover stations with the same number of beams compared to only circles beam
shapes.

Due to the size of instances, the parameter Ndir has a really low impact on
both time and objective function value, so for every instances it is set to 10.

1All data and models are available upon request to the corresponding author, A. Duguet.
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Figure 11: Beam shapes allowed for the instances solved with the EL lineariza-
tion

Figure 12: Example of feasible solution for the circle model

For CL and ELmodels, each instance is solved on one core of a Xeon E5-2695
v3 @ 2.30GHz CPU with a RAM limit of 3.5 Go. The solver used is CPLEX
12.9 with the global thread count parameter set to 1. As for the resolution of
the MINLP model, the NEOS server (Czyzyk et al. [1998], Dolan [2001], Gropp
and Moré [1997]) with the BARON 21.1.13 solver were used, with a RAM of
3 Go, a single thread, an absolute gap tolerance of 10−6 and a relative gap
tolerance of 10−4 to match up with CPLEX. NEOS servers CPU used in our
experiments are different to the one used for CL and EL models, but as we
will see, the results make it clear that a difference in CPU is not sufficient to
make up for the worse performance of the MINLP models. The two MINLP
models tested, BARON-C for the beam layout problem where beam shapes are
only circles, and BARON-E for beam shapes with ellipses, are created according
to Equations (30)-(44), with the obvious simplifications for BARON-C because
only circles beam shapes are allowed.
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Figure 13: Example of feasible solution for the ellipse model

In Table 1, the number of binary variables, continuous variables, linear con-
straints as well as nonlinear constraints for all models are displayed. In addition,
the number of binary variables, continuous variables and constraints are shown
for some MILP models with p the number of scalar products used for the lin-
earization. It can be seen that the difference of constraints between MINLP
models and MILP models, as well as between models allowing circles beam
shapes and models allowing ellipses beam shapes is important. It can be ex-
plained by the constraints introduced during the linearization of constraints (37)
into (45) and (39) into (46)-(47). Comparatively, the number of binary variables
appear less fluctuating than the number of constraints across models.

4.2.2 Comparison with a MINLP Solver

All results displayed in Tables 2, 3 and 4 are limited in time by 3600 seconds.
The results for instances with densities 30 and 70 are aggregated, as well as the
10 instances with same parameter |S|, which means that instances are grouped
in batches of 20.

Table 2 compares instance by instance MILP models to MINLP models
with the objective value. There are 10 MILP models: the use of circles (CL)
or ellipses (EL) associated to the number of scalar product p ∈ {4, 8, 12, 16, 20}
of the linearization. There are two MINLP models, which are BARON-C and
BARON-E. Each cell of the table shows two numbers. The first one is the
number of times (out of the 20 instances) the objective value of the MILP model
is greater or equal to the MINLP model, while the second one is the number of
times the objective value of the MINLP model is greater or equal to the MILP
model. The EL models have a greater number of best objective value for each
batch, while for the CL models, 7 batches out of 50 have a greater number of
best objective value, 6 for |S| = 20 and 1 for |S| = 40. Thus the MINLP models
with BARON are not competitive with the MILP models with CPLEX in terms
of best objective values, and this difference is accentuated when the instance’s
size increases.
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BARON-C BARON-E
|S| #bin #var #Lcons #NLcons #bin #var #Lcons #NLcons
20 78 6 41 63 105 6 44 567
40 240 10 90 210 285 10 95 1890
60 568 16 176 508 640 16 184 4572
80 930 20 255 845 1020 20 265 7605
100 1130 20 275 1045 1220 20 285 9405

CL - p = 4 CL - p = 20 EL - p = 4 EL - p = 20
|S| #bin #var #cons #bin #var #cons #bin #var #cons #bin #var #cons
20 81 6 293 129 6 1301 126 15 2444 126 15 12044
40 255 10 930 415 10 4290 360 35 8095 360 35 40095
60 616 16 2208 1064 16 10336 856 80 19704 856 80 97784
80 1010 20 3635 1730 20 17155 1370 120 32665 1370 120 162265
100 1210 20 4455 1930 20 21175 1570 120 39885 1570 120 198285

Table 1: Number of variables, binary variables and constraints for different
models

In Table 3, the number of instances solved to optimality for each model is
displayed. It shows that BARON-E is unable to solve any instance to optimality.
Moreover, the EL models and BARON-C only solve instances with the smallest
number of stations to optimality while CL models can solve to optimality some
instances with 40 stations. It means that the MILP models have a greater
potential to find an optimal solution than the MINLP models.

Finally, Table 4 shows the number of instances with no integer solution with
strictly positive objective value (non trivial solution). For most instances with
at least 60 stations, BARON-C cannot find non trivial integer solutions, while
BARON-E only finds positive objective value for the smallest size of instances.
It proves that the MINLP model is too hard to be solved within one hour for
both BARON-C and BARON-E. In comparison, CL and EL models find a
positive objective value for most instances no matter the size. Thus the MILP
models are the most reliable to get a non trivial solution to the beam layout
problem.

To conclude, our comparison between MINLP models using the BARON
solver and MILP models with CPLEX shows that a MILP approximation of
the beam layout is a viable option for its resolution because the exact MINLP
models are too hard to be handled comparatively to our MILP models.

4.2.3 Comparison between the Ellipse Linearization and the Circle
Linearization

Each one of the 100 instances has been solved using the two different lineariza-
tions, CL and EL, for three different maximum computation times which are
600, 1800 and 3600 seconds, as well as for each parameter p. Looking specifi-
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|S| = 20 |S| = 40 |S| = 60
model p BARON-C BARON-E BARON-C BARON-E BARON-C BARON-E

CL

4 0 / 20 8 / 12 7 / 13 20 / 0 19 / 1 20 / 0
8 4 / 20 12 / 8 14 / 6 20 / 0 19 / 3 20 / 3
12 12 / 20 15 / 6 17 / 4 20 / 0 20 / 3 20 / 3
16 15 / 20 15 / 6 19 / 3 20 / 0 19 / 5 20 / 5
20 15 / 20 15 / 5 20 / 2 20 / 0 19 / 3 20 / 3

EL

4 15 / 5 20 / 0 13 / 7 20 / 0 20 / 0 20 / 0
8 18 / 2 20 / 0 19 / 1 20 / 0 20 / 0 20 / 0
12 18 / 2 20 / 0 20 / 0 20 / 0 20 / 0 20 / 0
16 19 / 1 20 / 0 20 / 0 20 / 0 20 / 0 20 / 0
20 19 / 1 20 / 0 20 / 0 20 / 0 20 / 0 20 / 0

|S| = 80 |S| = 100
model p BARON-C BARON-E BARON-C BARON-E

CL

4 20 / 0 20 / 0 20 / 1 20 / 1
8 19 / 1 20 / 1 19 / 3 20 / 3
12 19 / 3 20 / 3 18 / 3 20 / 3
16 20 / 0 20 / 0 20 / 3 20 / 3
20 20 / 3 20 / 3 19 / 2 20 / 2

EL

4 20 / 0 20 / 0 20 / 0 20 / 0
8 20 / 0 20 / 0 20 / 0 20 / 0
12 20 / 0 20 / 0 20 / 0 20 / 0
16 20 / 0 20 / 0 20 / 0 20 / 0
20 20 / 0 20 / 0 20 / 0 20 / 0

Table 2: Comparison between linearization and BARON models: number of
instances with a greater objective value

|S| BARON-C BARON-E CL EL
4 8 12 16 20 4 8 12 16 20

20 20 0 20 20 20 20 20 20 20 17 13 16
40 0 0 20 20 18 15 12 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Number of instances solved to optimality for the different models
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|S| BARON-C BARON-E CL EL
4 8 12 16 20 4 8 12 16 20

20 0 3 0 0 0 0 0 0 0 0 0 0
40 0 20 0 0 0 0 0 0 0 0 0 0
60 17 20 0 3 3 5 3 0 0 0 0 0
80 17 20 0 1 3 0 3 0 0 0 0 0
100 14 20 1 3 3 3 2 0 0 0 0 0

Table 4: Number of instances with no strictly positive objective value for the
different models

cally to the instances solved to optimality of CL and EL in Table 3, there are
few instances solved to optimality due to the size of the optimization problems
solved, and EL produces bigger optimization problems than CL so less instances
solved with EL are solved to optimality than for CL. There are only 17 % of
all instances solved to optimality with EL, and all those instances are with 20
stations. As for instances solved with CL, 37 % are solved to optimality, with
all 20 stations instances, and 85 % of 40 stations instances. None of the others
are solved to optimality. Thus, the following comparison should only be taken
as a practical comparison and not as a comparison of optimal value since most
of the instances are not solved to optimality.

Results of the resolution of the instances of the MILP models for low and
large densities respectively are shown in Figures 14 and 15. Each point repre-
sents a relative gap of a mean over 10 instances from a naive upper bound in
percentage. The gap is calculated with formula 100M−γ|B|M with M the mean
objective value and γ|B| the naive upper bound derived from the maximum
capacity |S| beams can cover. This naive upper bound is plotted in the dashed
black line. The points linked represents values obtained from instances with
the same model, the same time limit and the same number of stations |S|, thus
there are five different series of plots, representing the 5 different numbers of
stations used.

There are some visible facts on figures 14 and 15. For a high number of
stations, EL really benefit from extra computation time whereas CL doesn’t
need more than 600 seconds. So, when the instance size does not exceed 40
stations and when sufficient CPU time is allowed, EL outperforms CL. Another
noticeable trend is that high density instances are far closer to the naive upper
bound (the majority of the solutions are between 0 and 5 % away from it), while
low density instances are seldom at less than 5 % of difference. As before, the
combinatorics is the key to understand that point: higher density leads to more
possible covered stations by a beam. It is also visible that the objective value
obtained with CL are lower than for EL for small number of stations, and higher
for a high number. It can be explained by the size of EL optimization problems
that become unmanageable faster than for CL when the number of stations
increases. Indeed, the number of binary variables and constraints increases
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Figure 14: Results for low density instances
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Figure 15: Results for high density instances
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d \ time (s) 600 1800 3600
30 40 60 80
70 20 40 40

Table 5: Maximal number of stations for which EL has a better mean objective
function than CL

model \ p 4 8 12 16 20
EL 4 5 12 7 2
CL 0 1 4 11* 16*

Table 6: Number of best means depending on the number of scalar product P
used

faster in the EL models than in the CL model. It is due to the different
orientations and elongations allowed for ellipses.

Table 5 shows the maximum number of stations for which EL gives better
mean results than CL, depending on the density and the time limit. For high
density, EL are the best for 40 stations and less, while it is better than CL
with up to 80 stations for a low density and a time limit of 3600 seconds. This
can be interpreted by considering that the elliptic beams are more efficient to
capture users spread in less dense areas, while circular beams are sufficient for
highly dense areas. This would also suggest an adaptative selection of elliptic
or circular beams depending on the density of the subareas to be covered.

Table 6 gives indications on the impact of the number of scalar product p for
the linearization. The number of times a certain value of p gives better mean
results than the other values of p depending on the model is shown. ∗ expresses
that for two instances, the mean results for 16 and 20 scalar products are the
same. It is shown that the increase in size of EL optimization problems makes
it less efficient for a too high number of scalar product p.

Overall this application to the beam layout problem shows that, under the
above-described alloted CPU time and problem size limit conditions, the pro-
posed extension of the euclidean norm linearization of (Camino et al. [2021]) to
elliptic constraints are manageable and can allow a significant gain in practical
applications, even with respect to a direct MINLP model of the problem.

5 Conclusion
This work about the linearization of non-convex MINLP proposed theoretical
and practical results based on the euclidean norm linearization of (Camino et al.
[2021]). A linearization of the euclidean norm based on the scalar product be-
tween regularly spaced unit vectors and the vector that needs to be measured
has been developed. From a theoretical point of view, the guarantee that given
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any approximation error the linearization method uses the minimum number
of pieces has been proven, which means that the model uses polygons with the
least number of sides to approximate a circle with a modulable and measurable
approximation of nonlinear constraints. Moreover, it has been shown that lin-
earizing elliptic constraints while keeping the previously mentioned guarantee
is achievable, thus the linearization method can be applied to a wider range of
problems. As for the practical point of view, the elliptic constraint linearization
increases the model complexity with respect to the euclidean norm linearization,
which makes this linearization useful under CPU time and problem size limit
conditions. This work can be followed in many topics. From the theoretical
size, one may focus on MINLP linearization and approximation guarantee, for
example with piecewise linearization of more general functions of two variables,
with the euclidean norm of R2 being a case study. From the practical point of
view, heuristics and especially matheuristics could be derived from the proposed
linearization scheme to handle more efficiently larger problems.
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