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Properties, Extensions and Application of
Piecewise Linearization for Euclidean Norm
Optimization in R?

Alois Duguet, Christian Artigues, Laurent Houssin, Sandra U. Ngueveu

LAAS-CNRS, Université de Toulouse, CNRS, UPS, INP, France

Abstract

This paper considers non-convex mixed-integer nonlinear program-
ming where nonlinearity comes in the presence of the two-dimensional
euclidean norm in the objective or the constraints. We build from the
euclidean norm piecewise linearization proposed by [Camino et al., 2019],
that allows to solve such non-convex problems via mixed-integer linear
programming with an arbitrary approximation guarantee. Theoretical re-
sults that make this linearization able to satisfy any given approximation
level with the minimum number of pieces are established. An extension of
the piecewise linearization approach sharing the same theoretical proper-
ties is proposed for elliptic constraints and/or objective. An application of
the elliptic linearization to a non-convex beam layout mixed optimization
problem coming from an industrial application shows the practical appeal
of the approach.

1 Introduction

This paper deals with non-convex mixed-integer non linear programming (MINLP)
problems involving euclidean norms either in the objective, the constraints or
both. Typical examples are minimization or maximization of distances be-
tween objects, as well as convex proximity or separation constraints. Recent
applications involve service infrastructure placement in 5G networks [Santoyo-
Gonzdlez and Cervell6-Pastor, 2018], relay node deployment in wireless networks
[Zhou et al., 2018] and beam layout optimization in telecommunication satellites
[Camino et al., 2014, 2019]. We will use the latter problem as a case-study.
MINLP problems are very challenging. Exact methods are generally based
on Branch-and-Bound [Smith and Pantelides, 1999] to ensure global optimality,
using different relaxations [Nowak, 2005, Adams and Sherali, 1986], for exam-
ple convex relaxation [Liberti, 2004] or convex envelopes [Tardella, 2007]. To
exhibit these relaxations, a large amount of works deals with problem reformu-
lation to simplify the computation of the relaxation or to strengthen it [Liberti,



2004, Liberti et al., 2009b, Sherali and Liberti, 2008, Smith and Pantelides,
1999]. A family of reformulation methods commonly used is the reformulation-
linearization technique (RLT) [Sherali and Liberti, 2008, Sherali and Adams,
1999]. Applying this method requires two steps: first, reformulate the problem
to add valid nonlinear constraints; second, linearize by replacing variable prod-
ucts by new continuous variables. Generally, MINLP problems are considered
harder to solve than Mixed-Integer Linear Programming (MILP) ones, leading
to the use of reformulation methods [Geifiler et al., 2012, Liberti et al., 2009a).

Indeed, MILP solvers are ofen able to tackle industrial-sized problems [Borghetti
et al., 2008, Camponogara et al., 2011]. Linearizing a MINLP problem consists
in replacing all nonlinear functions of the problem by piecewise linear ones.
Theoretical advantages of MINLP linearizations are discussed in [Geifller et al.,
2012]. In some cases, there are methods to obtain guarantee on the solution of
the linear approximation of the MINLP problem, which gives sense to lineariza-
tion. However, linearization has also drawbacks like the fastly increasing number
of variables and constraints needed to represent a piecewise linear function de-
pending on the dimension of the input [Hughes and Anderson, 1996, Smith,
2000]. Another drawback is the control of the approximation error [Geifiler
et al., 2012].

Despite those disadvantages, linearization is a widely used method to solve
MINLP problems and linearizing methods published are numerous. There are
linearizing methods valid for any dimensions in [Geifiler et al., 2012, Zhang
and Wang, 2008] and for two dimensions or more in [D’Ambrosio et al., 2010,
Misener et al., 2009, Rovatti et al., 2014, Silva and Camponogara, 2014].

A particularly relevant topic in linearization is the modeling of a piecewise
linear function. Indeed, good properties of formulations have been identified,
such as the locally ideal property, which means that every vertex of the linear
relaxation is integral [Padberg, 2000, Keha et al., 2004]. A comparison of for-
mulations depending on this property is available in [Sridhar et al., 2013], and
a formulation using a number of binary variables and constraints logarithmic in
the number of pieces is in [Vielma and Nemhauser, 2011].

Eventually, as MINLP linearization only yield an approximation of the start-
ing problem, being able of quantifying the approximation error is a major ad-
vantage. There is at least two general ways of controlling the approximation
when the linearization is only in the objective function. The first is a trial and
error procedure: linearize the MINLP problem, check the quality of the solution
found, and if it is not good enough try to linearize with more pieces to better ap-
proximate the nonlinear functions. Despite being an easy linearization scheme,
this yields two disadvantages: it is not known when this scheme will stop, and
the error is measured only on one point. It is why the second way of linearizing is
to enforce before optimisation that the biggest approximation error made by the
linearization will be smaller than § > 0 which means that the optimal value of
the approximated MINLP is no more than é away from the optimal value of the
MINLP. Examples of the second way of controling the approximation error are
described in [Rosen and Pardalos, 1986, Dunham, 1986]. Building a piecewise
linear bounding of the nonlinear functions is part of the second general way of



controlling the approximation error. Such boundings are used in [Geifller et al.,
2012, Rebennack and Kallrath, 2015a, Ngueveu, 2019, Rebennack and Krasko,
2020]. The last property to introduce is that as the number of pieces used in
a piecewise linear function increases, the MILP problem associated will require
an increasing number of binary variables and constraints, which means that the
problem will take longer to be solved. That leads to the goal of using as few
pieces as possible to achieve a satisfying approximation error.

This article focuses on using the lowest number of pieces to satisfy a given
approximation level rather than minimizing the approximation level with a given
number of pieces. To our knowledge, articles in the litterature are few to choose
the same point of view [Rosen and Pardalos, 1986, Rebennack and Kallrath,
2015b, Ngueveu, 2019, Rebennack and Krasko, 2020]. The goal of this article
is to develop such a linearizing method for the euclidean norm, building on the
linearization approach proposed by [Camino et al., 2019].

This article has two main goals : first, to prove that given an approximation
level the linearizing method described in [Camino et al., 2019] can be used to
obtain a piecewise linear bounding of the euclidean norm of R? that uses the
minimal number of pieces. The second goal is to extend this bounding method
to other functions while keeping the same properties. In particular we will
address the linearization of the elliptic norm that has an application in the
telecommunication satellite domain to evaluate the gain obtained by covering
user areas with elliptic beams rather than circular ones.

The article is organized as follows: Section 2 describes the euclidean norm
linearization of [Camino et al., 2019], and proves that given an approximation
level, it creates a piecewise linear bounding with the minimal number of pieces.
In section 3, it is shown that the linearizing method of [Camino et al., 2019] can
be used to linearize the euclidean norm of R? in the objective function, and that
it can be adapted to linearize norm with level set that are ellipses. In section
4, the interest of linearizing elliptic constraints is demonstrated on the beam
layout satellite telecommunication problem. Eventually, conclusions are drawn
in section 5.

2 Euclidean Norm Linearization

In this section, the linearization scheme of the euclidean norm of R? of [Camino
et al., 2019] is described, then the approximation error used all along this article
is defined, tailored for the linearization discussed, and finally it is proved that,
given an approximation level to respect, the linearization of [Camino et al., 2019]
can be used to create a piecewise linear bounding with the minimal number of
pieces.

2.1 Method Description

The method of [Camino et al., 2019] describes how to linearize a constraint
with the euclidean norm of R? in the form of (1) or (4). However, it cannot be
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Figure 1: Linearization of the euclidean norm of R? for P = 8 directions [Camino
et al., 2019]

applied to a sum of euclidean norm. The linearization is based on the evaluation
of multiple scalar products between the vector appearing in the euclidean norm
and unit vectors regularly spaced out. Let || - ||2 be the euclidean norm of R™.
Let us consider constraint (1), for A € RT.

lel: <A zeR? (1)

This constraint is satisfied if x is in the centered disk with radius A. Set
u; = (cos 22%,Sin 217“) for i = 1,...,p with p the number of scalar product that
will be used for the linearization. The directions u; for ¢ = 1, ..., 8 are depicted
in figure 1(a). The linearization consists in replacing (1) by (2), with . being

the usual scalar product.

zui <A Vi=1,...p (2)

Throughout this article, the word "polygon" means a solid plane region inside
a closed polygonal chain without intersections. A polygonal chain is a union
of segments where one segment intersects with the following and the former
segment of the chain, and only at its endpoints. In addition, it is closed if the
startpoint and the endpoint are the same. If constraint (2) is satisfied, x is in the
blue polygon of figure 1(b), and according to [Camino et al., 2019, Proposition
1] another bound on ||z||2 is known :

A
cos

l|z]2 <

= 3)

p

In addition, if one of the constraints of (2) is not satisfied, = is out of the
blue polygon, and [Camino et al., 2019, Proposition 2] gives that :



|lz]]2 > A (4)

In this example, (2) is a relaxation of (1), thus some z satisfying (2) might
be infeasible for (1), but of course a stricter constraint than (1) can be obtained
by linearizing it with :

zuy < ACOS% Vi=1,..,p (5)

which leads to the green polygon of figure 1(b) being the feasible set of (5).
The linearization of constraint (4) differs from that of (1) because (4) is

nonconvex. Thus the big-M technique are used, but the principle stays the

same. The linearization is displayed below, where M; must be a valid upper

bound of A — z.u; which can be easily obtained as soon as the coordinates are
bounded.

. i ZA—Mi<1—bi) Vi = 1,...,]) (6)
P

> bi=1 (7)
i=1

b; binary variable Vi=1,....,p (8)

Remark that the polygons created by the linearization of (1) into both (2)
and (5) are convex regular convex polygons with p sides, for all p > 3, because
they are both convex, equiangulars and equilaterals. Note that in the rest of
this article, regular polygon will be used for convex regular polygon.

A last remark would be that the blue polygon is the "smallest" regular poly-
gon of 8 sides containing the black disk because every segment’s middle point
touches the circle forming the disk, and that the green polygon is the "biggest"
inside the black disk because every vertex touches the circle forming the disk. In
the following, the focus is on the approximation of the frontier of constraints of
type ||z]]2 < A or ||z|]2 > A, and the blue polygon is denoted an outer approz-
tmation of the disk while the green polygon is denoted an inner approximation
of the disk. The terms outer approximation and inner approximation as used
in this paper are properly defined in the following subsection.

2.2 Approximation Error

An approximation error tailored for the euclidean norm is defined for the study
of the linearization of [Camino et al., 2019]. It measures the highest proportion
of euclidean norm of two points inside the difference of a disk B(zg,A) and
another set. If the set contains the disk, it is denoted an outer approximation,
and if it is included in the disk, it is denoted an inner approximation.
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Figure 2: Illustration of definition 2.2

Let n € N* and 29 € R™. Let B(zg,A) = {z € R" : ||z — zoll2 < A} be
the disk of radius A and center zg, with A € RT.

Let BL C R" and a* € R* be such that B(zg,A) C B} and a* =
max{||z — zo||2 : € B{\B(20,A)}.

Finally, let By C R™ and a~ € RT be such that By C B(zo,A) and a~ =
min{||z — zo||2 : = € B(zo,A)\BA}.

We note:

. BX an outer approximation of B(zg,A) with error e := % -1

o B, an of B(xg,A) with error € := aA* -1

« B and B a bounding of B(zo,A) with error € := max{%, A1-1

The —1 term in the formula of € is added so that an approximation with error
e = 0 is exact. A similar definition can be made for constraints ||z — x|z > A.
Figure 2 illustrates the definition. Bz is the region in cyan, black and blue
while B} is the region in blue and B(xo,A) is the black and blue region. The
cyan region is BY \ B(zo, A), with point of maximal distance from z, the purple
one, and minimal distance any point on the boundary of B(zg,A). The black
region is B(xo,A) \ B,, with point of minimal distance from zo the red one,
and maximal norm point any point in the boundary of B(zg, A).

In this article, B{ (resp. Bj) is the set of € R? satisfying constraints
(5) (resp. constraints (2)) or constraints (5) with reversed inequality (resp.
constraints (2) with reversed inequality). It is illustrated in figure 3 where the
black disk is bounded by the two red squares induced by the linearization of (2)
and (5) for P = 4. The maximal norm of the outer approximation square (resp.
the minimal norm of the inner approximation square) is depicted by the cyan
circle (resp. the blue circle). The approximation error is the maximum between
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Figure 3: Bounding of a disk by (2) and (5) for p = 4 scalar products

the ratio of radius of cyan and black circles and the ratio of radius of black and
blue circles minus one.
It turns out that the approximation error associated to (2) and (5) are both

L —1 because the intervals in which approximation errors occur are [A

cos &
andp [A cos %, A] respectively. Remark that the approximation error tends to 0
when the number of scalar products p tends to infinity, thus the linearizing
method of [Camino et al., 2019] is an approximation that can be as good as
needed by choosing p big enough.

’cos%]

2.3 Minimality of the Number of Scalar Product Used in
the Linearization Scheme

This subsection is dedicated to the proof of theorem 2.3 that states that the
linearizing scheme of [Camino et al., 2019] needs the minimum number of scalar
products to satisfy a given euclidean norm approximation error threshold ¢
as defined in definition 2.2. It creates a piecewise linear bounding for a given
approximation error threshold that uses the minimal number of pieces. More
precisely, what is proved is the following:

Let ¢¢ > 0 be the approximation error threshold to be satisfied for the
approximation of a disk D by a polygon. Let p € N be such that

p =min{k € N*: —1<eg, k>2}

cos T
then a polygon contained in (resp. containing) the disk D satisfying the ap-
proximation error threshold ¢y has at least p sides, and the inner approximation
(resp. outer approximation) of the disk with p scalar products given by the
linearizing scheme of [Camino et al., 2019] produces a polygon with p sides
satisfying the approximation error threshold.



Notation 1. Let P be a polygon inside a disk D centered at (0,0). ¢(P) denote
the approximation error of the disk D by the polygon P according to definition
2.2.

The proof of theorem 2.3 treats separately the outer approximation and the
inner approximation. The inner approximation case is dealt entirely before a
justification that the proof scheme is similar for the outer approximation case
is given.

The proof for the inner approximation case will be carried out through the
following steps:

1. The number of sides of a non-convex polygon P is stricly greater than the
number of sides of its convex envelope conv(P) and €(P) > e(conv(P))

2. given a number of sides p, a polygon of p sides satisfying the minimal
approximation error is given by the inner approximation of a disk by p
scalar products

3. the minimal approximation error decreases with the number of sides p of
the polygons

4. conclusion of the proof of the theorem

For the sake of clarity, part 1 of the proof is stated as a lemma. Let D be
the unit disk. Let P C D be a simple nonconvex polygon, where simple means
that no edges of P intersect except in the extreme points. Let P’ = conv(P)
be the convex envelope of P. Then, P’ C D, P’ has strictly less sides than P
and €(P) > e(P’) Proof First, P C D implies that P’ C D because D is convex.
Second, a polygon is convex is equivalent to every angles of the polygon are
lower than w. Now as P is not convex, its convex envelope P’ has strictly less
sides because at least one vertex of P has an angle strictly greater than m and
thus will not be a vertex of P’. Third, P C P’ = conv(P) implies that the
set over which is calculated the minimum a~ needed for the calculation of the
approximation error in definition 2.2 is smaller for P’ than for P, thus leading
to €(P) > e(conv(P)). O

According to the lemma, a polygon with the minimal number of sides to
satisfy the approximation error threshold should be convex.

For part 2 of the proof let A be the set of convex polygons of p sides lying
inside D the unit disk centered at (0,0). The minus symbol refers to the inner
approximation case:

A, = {P : P CDand P is a convex polygon with p sides}

The unit disk is centered at (0,0) because the number of sides of a polygon is
invariant by homothetic transformation so it is always possible to return to this
case from any disk centered at 2y € R%. Showing that the regular polygon with
p sides on the circle is a solution of (9) is enough to prove part 2 of the proof.
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Figure 4: Inflation of P by z; = (0,0)
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A definition of a specific transformation of a polygon is needed to show that
this regular polygon of p sides is a solution of (9).

[inflation] Let P € Ay and let € Int(P) = {z € P\ Fr(P)} the interior of
P. Let "inflation of P by 2" denote the polygon P, with vertices v € V obtained
by intersection of the unit disk and the ray with initial point x and direction
T with w a vertex of P.

The two figures (4) and (5) illustrate this definition. They show the same
dashed red polygon P inflated by two different x, with circles showing the
minimal norm of the polygons P and P.: in the first figure 3 = (0,0), and in
the second z5 = (—0.25, —0.5). The inflated polygons P’ are in red, with dotted
red lines showing the movement of the vertices. Finally, the dashed and solid
blue circles are centered at (0,0). They have for radius a~ of definition 2.2 for
the approximation of Ba the unit disk centered at (0,0), respectively for P and
P

Let P, be the inflation of P by = € Int(P). Then:

1. P! is a polygon
. Int(P) C Int(P.)

. The vertices of P, are on the circle

2
3
4. P! is convex
5. P! has the same number of sides as P
6

- €(P;) < €(P)
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Figure 5: Inflation of P by zo = (—0.25,—0.5)

Proof 1. P! is a polygon if its frontier is a closed polygonal chain without
intersections. As the vertices of P! come from vertices of P, by adding the
straight line segments induced by the straight line segments of P, P, must
be in a closed polygonal chain. To prove that there are no intersections in
this polygonal chain, remark that the p rays used to build the inflation are
intersecting in z, and that an intersection of the polygonal chain of P/, would
mean that two of those rays intersect in another point meaning that the two
rays overlap, which is impossible because P is convex and = € Int(P).

2. P can be decomposed into p triangles in the following way: each triangle
has for vertices x, and two vertices of P connected by an edge. Decompose P,
in the same way. Each triangle T of P is included in one triangle 7" of P.:
the one for which the two vertices of T' moved to the two vertices of T” with
the inflation. The inclusion stands because those two vertices have been moved
along the sides of triangle T" in the opposite direction of the third vertex x.

3. By definition of inflation.

4. A polygon with all vertices on the unit circle and with no self intersection as
seen in the proof of part 1 is convex because the angle of every vertex with its
two neighbours is strictly less than .

5. P! has no more than p vertices by definition. Suppose by contradiction that
P, has at least one vertex less than P. Thus, there exists a vertex v’ of P, that
has been obtained by two different vertices v; and vy of P. It means that those
two vertices lies in the same ray with initial point . Thus, say v; is a linear
combination of x and vs, which contradicts it being an extreme point because
P is convex.

6. By 2, it is known that D\Int(P’) C D\Int(P), thus min{||z|l, : z €
D\Int(P')} > min{||z||, : € D\Int(P)}, leading to 6. O

Point 6 of proposition 2.3 gives that there is a polygon with each vertex
on the circle that is solution of (9). Thus the focus is on the analysis of such

10



polygons. The approximation error is calculated with the point of minimal norm
of D\Int(P)}. The following proposition states which point of D\Int(P)} is
this minimal norm point.

Let P € Ap be a polygon with vertices on the circle. If (0,0) € Int(P), then

the minimal norm point « € D\Int(P) is ||@||2 where D is the middle point
of the longest side of P.

Proof It is obvious that the minimal norm point is on a side of P because
(0,0) € Int(P).

Every side of the polygon P has endpoints of norm one, and a computation
shows that the minimal norm point of a side with this property is its middle
point M. Moreover, by considering the triangle decomposition of a polygon like
in proof of point 2 of proposition 2.3 with additional point the origin (0,0), it
is possible to compute the norm of M with the angle « of the triangle at point
(0,0). The computation gives that its norm is cos § =: g(a). As (0,0) € Int(P),
a €]0, 7.

Finally, ¢’(«r) < 0 on ]0,7[ so the norm of the middle point of a side of P
decreases when the angle « increases, which is equivalent to when the length of
the side increases, leading to the result. O

The hypothesis made for proposition 2.3 is not a limiting one because if the
origin (0,0) ¢ Int(P), the approximation error of P is infinite whereas there
always exists a polygon with a finite approximation error so it is not an optimal
solution of (9).

This result shows that this is the longest side of a polygon with vertices on
the circle that will determine the approximation error of the polygon. It leads
to the following result:

The regular polygon of p sides with all vertices on the circle is an optimal

solution of (9) and its objective value is 1+ — 1.
Proof Let (aq,...,ap) be the angles at (0,0) associated to each of the p
triangles of P as in the last proof. A solution of (9) is a polygon with all

vertices on the circle that is also solution of:

min  max «; (10)
PeA, i=1...p
The only solution of (10) is a; = 27“ it = 1,...,p. Thus the p triangles making
the polygons have the same angle at (0,0) and thus they are all similar. Going
back to the polygon, it means that every sides have the same length. As the
polygon is equilateral and inscriptible in a circle, it is a regular polygon with

p sides. Finally, the optimal value is ﬁ — 1 by calculating the norm of the
P

middle point of any of the side of the regular polygon of p sides with vertices
on the circle. O

It ends part 2 of the proof of theorem 2.3. For part 3, the result is once
again in a lemma: The solution of (9) decreases with p.

Proof According to theorem 2.3, the optimal objective value of (9) is —4% —1,
P

cos

which decreases with p. O

11



All the pieces of the proof of theorem 2.3 are put together in the following:
Prooflproof of theorem 2.3] Let ¢g > 0. Let D be the unit disk centered at
(0,0). Let p = min{k € N* : —L-—1 < ¢y, k > 2}. Then theorem 2.3 and lemma

cos T

2.3 gives that a polygon satisfyi];lg the approximation error threshold €y has at
least p sides and a regular polygon with p sides satisfies the approximation error
threshold €g. As the inner approximation of a disk with p scalar products yields
a regular polygon with p sides, it satisfies the approximation error threshold.

If D was not the unit disk, an homothetic transformation would bring back
D to the unit disk and the same transformation applied to the polygon would
not change its number of sides, so the result is valid for any disk.

Finally, the outer approximation case can be treated in the same manner.
Indeed, part 1 is also true, with in bonus the equality €(P) = e(conv(P)). Part
2 is proved in a similar way, with two replacements:

o replace the inflation of definition 2.3 by a deflation: the sides of the poly-
gon are moved in the direction of the center of the disk so as to keep them
parallel to there initial position until they are tangent to the circle

« replace the angles «; associated to each of the p triangles at point (0,0) in
the proof of theorem 2.3 by angles directly on the vertices of the deflated
polygon

Finally, part 3 and part 4 are proved in an analoguous way. O

3 Extensions of the Euclidean Norm Lineariza-
tion

In this section, two extensions of the linearization of [Camino et al., 2019] are
discussed. Moreover, the result of 2.3 is transposable to the extensions. The
first is the linearization of the euclidean norm of R? directly in the objective
function. An optimal polyhedron in terms of number of pieces for a given error
€ is constructed. This result is based on the absolutely homogeneous property
of a norm. The second extension concerns constraints, and is valid with a class
of norms of elliptic level set. This result comes from the fact that an ellipse is a
linear deformation of a circle, so that an optimal polygon overestimating a disk
with a given error gives an optimal polygon overestimating an ellipse simply by
applying the linear deformation that transforms the circle into the ellipse.

3.1 Linearization in the Objective Function

The euclidean norm linearization can be used to linearize the euclidean norm of
R? in a constraint, but also in the objective function as shown in this subsection.
After introducing the parametric equation of a positive cone, the construction
of the optimal piecewise linear bounding of the euclidean norm of R? for a given
error is shown.

12



The surface generated by the euclidean norm of R? is the positive cone C

(11).
C = {(ZL‘1,$2,.’E3) X3 = ||(SC1,I’2)||2,ZL'1 € R,IEQ € R} (11)

= {(21,22,73) €R® : 27 + 23 — 22 =0 and x3 > 0}

Before introducing the bounding of the positive cone, recall the definition of
equally spaced unit vectors for the linearization, with an integer p > 2,

2imr . um .
u; = (cos —,sin—) fori=1,...,p
p p
and let C;f and C, be defined as in (12) and (13),

C; = {($1,$2,f;(931,$2)) @ = (21,32) € R?} (12)
C, ={(z1, 22, f, (v1,22)) 1 @ = (w1, 72) € R?} (13)

with f,f(z1,22) and f, (21, 22) equal to:

(z1,22)"

+ —
fp (@1,22) = max cos Z (14)
fp (@1,m2) = i:rrllaxp(xl,xg)T.ui (15)

The surface induced by the inner approximation of p scalar products is de-
noted C; because it is an overestimation of C in the sense that given (z1,22) €
R2, z3 such that (z1,72,23) € C and x4 such that (z1,29,73) € C;‘, then
r3 < x?f

Similarly, the surface induced by the outer approximation of p scalar prod-
ucts is an underestimation of C and is denoted C,, .

The terms underestimation, overestimation and bounding for functions are
defined more precisely below.

Let f, f~, fT:R? = RT. Fy:={x € R?: f(x) = 0} is the level set of 0 of
f. Let Fy := {z € R? : f~(z) = 0}. Then there exists ¢ > 0 such that for all
z € R? \ Fy

flz) = (=)
f(x)

It is denoted f is underestimated by f~ with approzimation errore. If f¥(x) =0
on Fy and there exists € > 0 such that for all z € R?\ F,

€10, ¢ (16)

€ [0, ¢ (17)
It is denoted f is overestimated by f with approximation error c.

13



Figure 6: Linear bounding of the positive cone seen from above for P = 4 scalar
products

If f=, f* are such that f~(z) = f*(z) = 0 on Fy and there exists ¢ > 0
such that both (16) and (17) are satisfied, then it is denoted f is bounded by
f~ and fT with approximation error e. If in addition f~ and fT are piecewise
linear functions, it is refered as a linear bounding.

In figure 6, a 3D representation of C in red, C, in cyan and C;‘ in blue is
shown.

Let p € N, p > 2. ||z is linearly bounded by f,” and f," with approximation

error —— — 1.
COSs ;

Proof The proof that f is overestimated by f]j with approximation error

—CO;E — 1 is given here. The inner approximation case is similar.
p

Proving (18) is sufficient since it is equivalent to (17) for f*(z) = f,5(z),
f(z) =||z||2 and e = =15 — 1.

cos &
P

@) ) L] veer? (18)

afl, =" cos T

Remark that C;‘ is stable by a 2?’7 angle rotation around axis xs because the
regular polygon with p sides used to construct C;‘ has this property. Thus
proving (18) for z € X, = {(acosB,asinf) : @ > 0,8 € [-7, 7]} is sufficient
because Zf := {(x1, z2, f;} (1,22)) : (x1,22) € X} is the set of points on one
face of the outer approximation C;‘ . Moreover, (19) is a parametrisation of the
face Zf.

Z+ ={(ay cosﬁ,6+,a+) cap > 0,04 € [—ay sinz,a+ sin z]} (19)
p p p

p

Vectors of Z} can all be written uniquely as ayu + fyv with ay > 0 and
B4 € [—aysin 7, ay sin 7]. (20) is a parametrisation of Z, which is the piece of
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C estimated by Z}.

Zy ={(acosf,asinf,a) :a>0,8€ [—%,%]} (20)
. z s s
Let & € X,. We will show that 1 < 727 < oir Let a > 0 and § € [-2, 2]

so that © = (acos B, asinB). It is known that f(x) = a. To find the point
(ay cos T, By, op) of Z}, it suffices to solve (21).

acosﬂzourcos% (21)
asinff = [
The solution is (22).
— cos 3
= Yooz (22)
B+ = asinp
Thus:
fr(z cos 3 1 T
||£U(| : T cosE €l cos z] VB[] (23)
2 p P p
And the upper bound of the interval [1, ﬁ] is reached for § = 0. Thus
P
€= CO; = is the approximation error. O
Let the required approximation error be ¢ € [, —1—[ with p € N,

cos % ) cos ﬁ
p > 2. Then the linear bounding of the euclidean norm by f,” and f;r uses the
minimum number of pieces.

Proof The number of sides of the polygon induced by the euclidean norm
linearization for a constraint is optimal. Moreover, the linear bounding of the
euclidean norm uses the same number of pieces for the same approximation
error. As this linear bounding is constructed upon the polygon, it gives a lower
bound of the number of pieces for the linear bounding, lower bound that is
reached. O

Thus the euclidean norm linearization of [Camino et al., 2019] can be used
to derive a linear bounding which uses the minimum number of pieces for two
piecewise linear functions to bound the euclidean norm of R2.

3.2 Extension to Elliptic Constraints

As mentionned previously, it is possible to adapt the linearization of [Camino
et al., 2019] for norms with elliptic level sets in constraints. Such constraints
are denoted elliptic constraints. A gathering of useful definitions on ellipses is
followed by the construction of the linear bounding of elliptic constraints using
the minimal number of pieces.
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Recall that an ellipse £ with center (u,v), width a, height b (i.e. with no
angle between the horizontal axis and the major axis) is a subset of R? such
that:

2 2

@=w? , (=)

— =1 Y(z,y) € R? (24)

by adding an angle 6, width and height are replaced by semi-major axis a and
semi-minor axis b:

((x —u)cos® — (y —v)sinf)?*  ((z —u)sinf+ (y —v)cosh)? )
a? + b2 N

V(z,y) € R?  (25)

In this subsection, the previous results on the approximation error of the

euclidean norm linearization are extended to norms with ellipses as level sets.

Such a norm is denoted || - ||4,5,09, and its definition is written:
9 (w1 cosf — xosin@)?  ((wqsin 6 + x5 cos f)
[E P a2 + b2

Vo = (z1,29) € R? a,b € R} (26)
The vocabulary used for ellipses is defined below:

« the shape of an ellipse is denoted (a,b) where a and b are the semi-major
axis and semi-minor axis respectively (which means a > b > 0).

o the angle of an ellipse 0 refer to the angle between the horizontal axis and

the major axis, with 6 € [-7, T].

Remark that any non-degenerate ellipse can be obtained by a linear trans-
formation of a circle: a circle is a specific ellipse with a = b = R and 6§ = 0
with R the radius of the circle. This linear transformation is a change of basis
to an orthogonal basis followed by a translation. Without the translation, ¢ is
the linear transformation from a circle of radius 1 centered at the origin and an
ellipse of shape (a,b), angle § and centered at the origin:

Gap0 : R — R? (27)
(z,y) — (ax cosf — by sin @, ax sin @ + by cos b)) (28)

As this transformation is linear with the inverse transformation gb;}w is
also linear (see figure 7) and it preserves the norm ratio between two colinear
vectors. Thus, the regular polygon with p sides obtained by the euclidean norm
linearization is, after transformation by ¢, 4 ¢, a polygon that uses the minimum
number of sides to satisfy a given approximation error for the ellipse of shape
(a,b) and angle 6.

This analysis shows that constraints involving elliptic norms can also be
linearized by the euclidean norm linearization, after a suitable change of basis
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o (0
) = N

J,e

Figure 7: Linear transformation between a circle and an ellipse

(as well as linearization of ellipses in the objective function). A procedure to
linearize a constraint ||x||q,pe < A is thus to replace it by (29).

oupo@lapow <dA Vi=1,..,p (29)

with d = —~+ for an inner approximation and d = 1 for an outer approximation.

cos =

A downside of this linearization is that a, b and 0 have to be constants of the
model or it would induce nonlinear terms. It means that to linearize a constraint
"z is in an ellipse" with the ellipse’s shape and angle not fixed, a discretization of
the possible ellipses parameters that yields many constraints is needed: with n
tuples (a, b, §) and p scalar products, it is necessary to use np big-M constraints
instead of p for the circle to achieve the same approximation error. Thus, the
model is not suited for really fine discretization of possible ellipses.

However, the next section presents an application for which the proposed
linearization is useful.

4 Application to the Beam Layout Problem

The interest of the extension of the euclidean norm linearization is demonstrated
on a mixed continous/discrete optimisation problem with elliptic constraints.
The considered problem is derived from a beam layout problem arising in satel-
lite telecommunications. The original problem has been tackled in [Camino
et al., 2014, 2016, 2019, 2021] and does not involve elliptic constraints. We refer
to [Camino et al., 2021] for a state-of-the-art review on this problem. Infor-
mally, a satellite equipped with a multibeam antenna has to cover a set of end
users inside a predefined area on earth by means of a set of movable beams (see
Figure 8). In the original problem the projected surface of the beam is circular.
Hence, a user is covered if its coordinates are inside one of the beam disks, i.e. if
a proximity constraint between the user and the beam center is satisfied. There
are also separation constraints between the beam centers depending on discrete
beam /reflector assignment constraints as explained in details below. However,
in modern multibeam antennas systems the beam shape need not be circular as
reconfigurable antennas allow to obtain different beam shapes including elliptic
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ones [Rao et al., 2006]. Adding the possibility of elliptic beam shape in addi-
tion to circular ones obviously increases the covering power of the system by a
better potential adaptation to the area containing the end users. However, the
complexity of proximity and separation constraint modeling is increased, due
to the extra constraints required for linearization of ellipses as explained above.
The aim of the experimental study carried out in this section is to determine
if this complexity increase is compensated by the gain in the objective function
for a limited amount of CPU time compared to the model allowing only circular
beams.

The first subsection explains the modeling of the beam layout problem, while
the second provides the numerical results.

4.1 Problem Definition and Formulation

A multibeam satellite is a telecommunication satellite that uses relatively narrow
beams to provide a service to users on earth. It has different reflector antennas
and each beam is associated to a reflector antenna.

In the considered beam layout problem, a multibeam satellite provides ser-
vices via beams b € B, each produced by a reflector » € R. On earth, user
stations s € S of coordinates (X,,Y;) are characterised by their traffic demand
T, € RT. They can be covered by a beam of the multibeam satellite. A station
s is considered covered by the satellite if at least one beam b covers the station.
Each beam covers a portion of the earth in the shape of an ellipse of prede-
fined parameters. The goal is to maximise the traffic covered while satisfying
a maximum capacity of covering by a beam and some separation constraints
coming from technology constraints: each beam of the satellite is associated to
a reflector and two beams of the same reflector cannot be too close from each
other as explained in [Camino et al., 2014]. It forces two beams of the same
reflector enlarged by a factor x to not intersect. Beams used in [Camino et al.,
2019] covers a circular region on earth, but, as mentioned above, it is technically
possible to use beams of elliptic shapes.

Each beam can be an ellipse of shape (ay, i), ap > 1 with k € K given,
and angle 6 € © given. This choice of shape ensures that every ellipse covers
the same surface on earth, thus no ellipse’s shape is advantaged over another.
A model of the beam layout problem is given in (30)-(41).
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Figure 8: Example of beam layout solution with only circles as beam shape
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(30) is the maximisation of the covered traffic, with o, a binary variable
equal to 1 if user station s is covered by beam b. Constraint (31) forces a
station to be covered by at most one beam. Constraint (32) associates a reflector
antenna 7 to each beam b due to the binary variable 3 .. Constraint (33) ensures
that each beam cannot cover more than a traffic of v. Constraint (34) associates
a shape (ag, i) and an angle § € © to a beam b through the use of the binary
variable dp 9. Constraint (35) checks that each station s is in the beam b of
center (zp,yp) to which it is affected, with M the big-M constant associated and
[l - Hamﬁﬂ the norm defined in (26) with level set for the value 1 the ellipse of
shape (ag, i) and angle . Constraint (36) enforces that the binary variable 7
is equal to 1 if beams b and b’ come from the same reflector antenna. Constraint
(37) ensures that two beams associated to the same reflector antenna b and b’
are not too close. Finally, (38)-(41) define variable types.

The details of the linearization into an MILP model are discussed here. The
nonlinearity comes from constraints (35) and (37). As explained in (29), the
linearization procedure is to apply a suitable linear transformation and then
apply the euclidean norm linearization. Moreover, constraint (36) needs to be
adapted to the linearization. Thus, the only constraints that change in the
linearization are (35), (36) and (37).

Let p be the number of scalar product used to linearize, according to an error

approximation € wanted. Let ¢;k1 1, be the linear transformation defined in

(29). Fori=1,...,p, the linearization of (35) is (42). The right part contains
cos T to ensure feasibility, which corresponds to the inner approximation of the
disk.

VseSVbe BVke K,VOcOVi=1,.p:
2mi

¢ak,1,9(< oy = Xy >)< s )SWcos;+(2—as7b—5b,k79)Ms
2%

yp — Ys sin =7
(42)

Constraint (37) is not as easy to linearize. Indeed, this is not a convex con-
straint: it is about ensuring that two ellipses do not intersect. In the case of
ensuring that two disks do not intersect (created by two beams of circle shape),
it suffices to evaluate the distance between the two centers, that is to say apply
the euclidean norm linearization and then ensure with big-M constraints that
this distance is higher than what is necessary. For two ellipses, this lineariza-
tion scheme does not work. The convexity of an ellipse allows to model the
intersection with linear separation in a similar way as [Kallrath and Rebennack,
2014].

Let A,B C R?. A and B are linearly separated if

JveR?, BeR : VeeA VyeB:zwv<b<yw
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Figure 9: Linear separation of two ellipses outer approximations by the black
line

U
Figure 10: The linear separation is working with the two black lines and is not
working with the two blue ones

The linear separation is illustrated in figure 9: the two octogons are linearly
separated because a line d can be drawn between them, which corresponds to
the hyperplane d = {u € R? : u.w = b}. The ellipses approximations are
convex polygons so it suffices to test the linear separation with the vertices
of those polygons. The last problem for the linearization is that making scalar
products between variable vectors is a quadratic operation. To adress this issue,
the linear separation is tested only for a finite number Ng;,. of hyperplanes of
normal vectors v; = (cos %,Sin 277”) for j = 1,..., Ngi». This means that a
stronger version of the linear separation is ensured in the model, but with a
reasonably high value for Ng;., it is probably good enough compared to the
other approximations of the model.

Constraint (36) becomes (43)-(44). The new binary variables v, 3 ; replace
Yb,pr because for the linearization, selecting which line j is associated to v; for

7 =1,..., Ng;, ensures the linear separation.

Nair

Z Vol > Z Bo,r + Z By + Bo,r + B — 3 (43)
j=1 r€R re€R

Vr € R,Vb,b' € B such that b’ > b (44)

Finally the linearization of (37) becomes (45)-(47). (S¥*,S¥"") are the co-

21



ordinates of the vertex i of outer approximation of beam b. The outer approxi-
mation of the disk is used to ensure feasibility. IV is the big-M constant of the
constraint.

SEb cos Rk
; : i) < wp — Yo
( Sf’b ) ( sin ]%;:i < wpy + N(l Yb,b ,k) (45)
gt cos Ak
it ’ . jr > ’ — ;
Vb,b' € B such that b’ # b,Vi =1,..., P,Vk = 1,..., Ngi, (47)

4.2 Computational Experiments

In this part, the goal is to evaluate the potential of the extension of the eu-
clidean norm linearization to ellipses. Thus, a comparison of the euclidean
norm linearization (CL for Circle Linearization) to its extension to ellipses (EL
for Ellipse Linearization) is done on the beam layout problem. Beams of elliptic
shapes are used for model EL, while only circles are used for model CL.

A set of 100 instances is considered, corresponding to different sizes, different
number of scalar products p used in the linearizations and different densities.
As for sizes, there are five different sizes : the number of stations |S| vary in

{20, 40, 60, 80,100} with associated number of beams |B| = min{%, 10} which
is |B| € {3,5,7,10}. As for p, it was taken from the set {4,8,12,16,20}. Con-
cerning densities, two different values d € {30,70} are used. Thus there are 10
different instances for each couple (size, density). For each instance, the stations
positions are drawn randomly from a set of 157 positions from a real instance
and there are three reflector antennas. Each of those 100 instances have been
solved by the two different models, CL and EL, for three different maximum
computation times which are 600, 1800 and 3600 seconds. The ellipses allowed
in the EL model are ¢, 1 9 with a € A = {1,1,2} and § € © = {3F 4% 1}
Each ellipse allowed is visible on figure 11. Moreover, the capacity + is fixed to
500 in all instances. It is a major limitation for the objective value as the naive
upper bound induced by the capacity is pretty close to the objective value in
many instances. Examples of solutions are plotted in figure 12 and 13. Black
points are not covered stations, colored points are covered stations, and the color
indicate the reflector antenna which possesses the beam covering the station.

Due to the size of instances, the parameter Ng;,- has a really low impact on
both time and objective function value, so for every instances it is set to 10.

Every instance is solved on one core of a Xeon E5-2695 v3 @ 2.30GHz CPU
with a RAM limit of 3.5 Go. The solver used is CPLEX 12.9 with the global
thread count parameter set to 1.
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Figure 11: Beam shapes allowed for the instances solved with the EL lineariza-

L. & O

Figure 13: Example of feasible solution for the ellipse model
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Figure 14: Results for low density instances

Figures 14 and 15 show the results for low and large densities, respectively.
Each point represents a relative gap of a mean over 10 instances from a naive
upper bound in percentage. The gap is calculated with formula IOOMfT'YlB‘
with M the mean objective value and +|B| the naive upper bound derived
from the maximum capacity |S| beams can cover. This naive upper bound is
plotted in the dashed black line. The points linked represents values obtained
from instances with the same model, the same time limit and the same number
of stations |S|, thus there are five different series of plots, representing the 5
different numbers of stations used.

There are few instances solved to optimality due to the big size of the model
solved, and the EL model produces bigger models so less EL. model instances
are solved to optimality than CL model instances. There are only 12 % of
all instances solved with the EL model that are solved to optimality, and all
those instances are with 20 stations. As for instances solved with CL model,
35 % are solved to optimality, with all 20 stations instances, and 73 % of 40
stations instances. None of the others are solved to optimality. Thus, the
following comparison should only be taken as a practical comparison and not
as a comparison of optimal value since most of the instances are not solved to
optimality.

There are some visible facts on figures 14 and 15. For a high number of
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Figure 15: Results for high density instances

25




d \ time (s) | 600 | 1800 | 3600
30 40 | 60 | 80
70 20 | 40 | 40

Table 1: Maximal number of stations for which EL has a better mean objective
function than CL

stations, the EL model really benefits from extra computation time whereas
the CL model doesn’t need more than 600 seconds. So, when the instance
size does not exceed 80 stations and when sufficient CPU time is allowed, the
EL model outperforms the CL model. Another noticeable trend is that high
density instances are far closer to the naive upper bound (the majority of the
solutions are between 0 and 5 % away from it), while low density instances are
seldom at less than 5 % of difference. As before, the combinatorics is the key to
understand that point: higher density leads to more possible covered stations
by a beam. It is also visible that the objective value obtained with the circle
model are lower than for the ellipse model for small number of stations, and
higher for a high number. It can be explained by the size of the EL model that
becomes unmanageable with a high number of stations. Indeed, the number of
binary variables and constraints increases faster in the EL model than in the
CL model. It is due to the different orientations and elongations allowed for
ellipses.

Table 1 shows the maximum number of stations for which the EL model
gives better mean results than the CL model, depending on the density and the
time limit. For high density, the EL is the best for 40 stations and less, while
it is better than the CL model with up to 80 stations for a low density and
a time limit of 3600 seconds. This can be interpreted by considering that the
elliptic beams are more efficient to capture users spread in less dense areas, while
circular beams are sufficient for highly dense areas. This would also suggest an
adaptative selection of elliptic or circular beams depending on the density of
the subareas to be covered.

Table 2 gives indications on the impact of numbers of scalar product p for
the linearization. The number of times a certain value of p gives better mean
results than the other values of p depending on the model is shown. The %
express that for two instances, the mean results for 16 and 20 scalar products
are the same after rounding the mean objective value to the thousandth. This
shows that the size of the EL model makes it less efficient for a number of scalar
product p higher in the linearization.

Overall this application shows that, under the above-described alloted CPU
time and problem size limit conditions, the proposed extension of the euclidean
norm linearization of [Camino et al., 2019] to elliptic constraints are manageable
and allow to obtain significant gain in a practical application.
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model \p [ 4| 8] 12| 16 | 20
EL 415 12 7 2
CL 0|1] 4 |11%] 16*

Table 2: Number of best means depending on the number of scalar product P
used

5 Conclusion

This work about the linearization of non-convex MINLP proposed theoretical
and practical results based on the euclidean norm linearization of [Camino et al.,
2019]. A linearization of the euclidean norm based on the scalar product be-
tween regularly spaced unit vectors and the vector that needs to be measured
has been developed. From a theoretical point of view, the guarantee that given
any approximation error the linearization method uses the minimum number
of pieces has been proven, which means that the model uses polygons with the
least number of sides to approximate a circle with a modulable and measurable
approximation of nonlinear constraints. Moreover, it has been shown that lin-
earizing elliptic constraints while keeping the previously mentioned guarantee
is achievable, thus the linearization method can be applied to a wider range of
problems. As for the practical point of view, the elliptic constraint linearization
increases the model complexity with respect to the euclidean norm linearization,
which makes this linearization useful under CPU time and problem size limit
conditions. This work can be followed in many topics. From the theoretical
size, one may focus on MINLP linearization and approximation guarantee, for
example with piecewise linearization of more general functions of two variables,
with the euclidean norm of R? being a case study. From the practical point of
view, heuristics and especially matheuristics could be derived from the proposed
linearization scheme to handle more efficiently larger problems.
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