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A GEOMETRIC STEINBERG FORMULA

PRAMOD N. ACHAR AND SIMON RICHE

Dedicated to the memory of Jim Humphreys

Abstract. We prove an isomorphism for simple perverse sheaves on the affine Grass-
mannian of a connected reductive algebraic group that is a geometric counterpart (in

light of the Finkelberg-Mirković conjecture) of the Steinberg tensor product formula

for simple representations of reductive groups over fields of positive characteristic.

1. Introduction

1.1. Overview. The main result of the present paper is a formula expressing Iwahori-
equivariant simple perverse sheaves on the affine Grassmannian of a connected reductive
algebraic group in terms of convolution of simple perverse sheaves associated with “re-
stricted” elements of the affine Weyl group and simple perverse sheaves in the Satake
category. In view of the Finkelberg–Mirković conjecture, this can be viewed as a geo-
metric counterpart of the Steinberg tensor product theorem for simple representations
of reductive groups. One of our motivations for studying this question is that it allows
us (using ideas from [ABBGM]) to define and study a conjectural geometric model for
blocks of representations of the Frobenius kernel of this reductive group; see [AR2].

1.2. The Finkelberg–Mirković conjecture. Before stating this result, let us recall
the Finkelberg–Mirković conjecture.

Consider a connected reductive algebraic group G over an algebraically closed field
F of characteristic p 6= 0, with a choice of Borel subgroup B ⊂ G and maximal torus
T ⊂ B, and set Y = X∗(T ). Let LG be the loop group of G, let L+G be its arc group,
and consider the affine Grassmannian Gr = LG/L+G. Next, let k be either a finite field
of characteristic ` 6= p, or an algebraic closure of such a field. Then we can consider
the category PervL+G(Gr,k) of L+G-equivariant (étale) k-perverse sheaves of Gr, which

admits a natural structure of monoidal category with monoidal product ?L
+G. Recall that

the geometric Satake equivalence [MV] provides an equivalence of monoidal categories

Sat : (PervL+G(Gr,k), ?L
+G)

∼−→ (Rep(G∨k ),⊗)

where G∨k is a split connected reductive algebraic group over k, with a canonical maximal
torus T∨k whose lattice of characters is Y and such that the root datum of (G∨k , T

∨
k )

is dual to that of (G,T ), and Rep(G∨k ) is its category of finite-dimensional algebraic
representations. We will also denote by B∨k ⊂ G∨k the Borel subgroup whose roots are
the negative coroots of (G,T ) (with respect to our choice of B, considered as a negative
Borel subgroup in G). We have a canonical autoequivalence

sw : PervL+G(Gr,k)
∼−→ PervL+G(Gr,k)

induced by the automorphism of LG given by g 7→ g−1.
Let us denote by W the Weyl group of (G,T ) and by R∨ ⊂ Y the coroot system of

(G,T ), and consider the affine Weyl group Waff := W nZR∨ and the “extended” version
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Wext := W n Y. The group Waff is known to admit a canonical generating subset Saff

(depending on the choice of B) such that (Waff , Saff) is a Coxeter system, and Wext is a
semidirect product ofWaff by an abelian group Ω acting by Coxeter group automorphisms,
and is naturally endowed with a length function. Let Iu be the preimage of the unipotent
radical of B under the canonical morphism L+G → G; then the Iu-orbits on Gr are in
a canonical bijection with the subset WS

ext ⊂ Wext of elements w which have minimal

length in the coset wW . Consider also a connected reductive algebraic group qG over k
whose Frobenius twist qG(1) is G∨k , and denote by qT ⊂ qB ⊂ qG the maximal torus and

Borel subgroup such that qT(1) = T∨k and qB(1) = B∨k . The Frobenius morphism of qG (or
of any of its subgroups) will simply be denoted Fr.

We identify the character lattice of qT with Y, in such a way that the pullback under

the Frobenius morphism Fr : qT → T∨k is given by λ 7→ `λ. Let Y+ ⊂ Y be the set

of dominant weights for qG (or dominant coweights for G) with respect to the choice of

positive roots that makes qB the negative Borel subgroup. For λ ∈ Y+ we denote by L(λ)

the simple qG-module of highest weight λ.

The group Waff is the affine Weyl group of qG in the sense of [Ja]. We will denote
the “dot action” of Waff and Wext on Y by ·`. If ` ≥ h where h is the Coxeter number

of qG, we can consider the extended principal block Rep[0](
qG) in the category Rep( qG) of

finite-dimensional algebraic qG-modules, namely the Serre subcategory generated by the

simple qG-modules of the form L(w−1 ·` 0) with w ∈WS
ext.

The following statement is known as the Finkelberg–Mirković conjecture. Here we
consider the category PervIu(Gr,k) of Iu-equivariant k-perverse sheaves on Gr, with the

natural convolution action (again denoted ?L
+G) of the category PervL+G(Gr,k). The

simple Iu-equivariant perverse sheaf supported on the closure of the Iu-orbit labeled by
w ∈WS

ext is denoted by Lw.

Conjecture 1.1 (Finkelberg–Mirković conjecture, [FM]). Assume that ` ≥ h, and that
Y/ZR∨ has no `-torsion. There exists an equivalence of categories

FM : PervIu(Gr,k)
∼−→ Rep[0](

qG)

which identifies the natural highest weight structures on both sides, and satisfies

FM(Lw) ∼= L(w−1 ·` 0) for any w ∈WS
ext.

Moreover, for F in PervIu(Gr,k) and G in PervL+G(Gr,k) there exists a bifunctorial
isomorphism

FM(F ?L
+G G) ∼= FM(F)⊗ Fr∗

(
Sat(sw∗G)

)
.

Remark 1.2. (1) The combinatorics involved in Conjecture 1.1 takes a more natural
form if we work with the “opposite” affine Grassmannian Grop = L+G\LG (with
its action of L+G and Iu induced by right multiplication on LG). It is however
much more common to work with Gr rather than Grop, and for this reason we
will work with the conjecture as formulated in Conjecture 1.1.

(2) If ` ≥ h, the group Y/ZR∨ can have `-torsion only if G has a component on type
A`. This can create troubles with Conjecture 1.1; e.g., the extended principal
block of SL` in characteristic ` has its simple objects in a natural bijection with
WS

ext∩Waff , which does not match the combinatorics of the category PervIu(Gr,k)
for G = PGL`.

(3) A proof of Conjecture 1.1 seems within reach (maybe under stronger assump-
tions), but is not available as of now.

1.3. The geometric Steinberg formula. From now on we assume for simplicity that
the center ofG is a torus. (Most questions we are interested in can be reduced to this case.)
The main results of the paper are statements which correspond under Conjecture 1.1 (and
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some “singular” analogues) to the following two classical results in representation theory.

(Here, L(1)(λ) denotes the simple qG(1)-module of highest weight λ, and qG1 denotes the

Frobenius kernel of qG.)

(1) (Steinberg’s tensor product formula, [Ja, Proposition II.3.16]) For any λ ∈ Y+

restricted and any µ ∈ Y+ we have

L(λ+ `µ) ∼= L(λ)⊗ Fr∗(L(1)(µ)).

(2) ([Ja, Propositions II.3.10 and II.3.15]) For λ ∈ Y+ restricted, End
|G1

(L(λ)) = k.

More precisely, instead of (2) we will prove an analogue of the following equivalent state-
ment:

(3) For any λ ∈ Y+ restricted, the functor

Rep(G∨k )→ Rep( qG)

defined by V 7→ L(λ)⊗ Fr∗(−) is fully faithful.

The geometric counterpart of L(1)(µ) (for µ ∈ Y+) is provided by the geometric Satake
equivalence: it is a classical fact that the simple objects in PervL+G(Gr,k) are in canonical
bijection with Y+, and that if we denote by ICµ the simple object attached to µ ∈ Y+,
then we have Sat(ICµ) = L(1)(µ) for any µ ∈ Y+. Using the geometry of alcoves one
can naturally define a subset W res

ext ⊂ Wext of “restricted elements” which provides a
replacement for the restricted dominant weights for G∨k ; see §2.4 for details. This subset
is contained in WS

ext.
We can now state the main result of the paper, which provides a geometric counterpart

to the properties (1)–(3) above. In this statement, w◦ denotes the longest element of W ,
and tλ := en λ denotes the element of Wext corresponding to a weight λ ∈ Y.

Theorem 1.3. For any w ∈W res
ext, the functor

Lw ?
L+G (−) : PervL+G(Gr,k)→ PervIu(Gr,k)

is fully faithful, and satisfies Lw ?
L+G ICµ ∼= Lwtw◦(µ) for any µ ∈ Y+.

(We remark that WS
ext is stable under multiplication on the right by tλ for λ antidom-

inant, so that wtw◦(µ) is a valid label of an Iu-orbit.)
Our proof of Theorem 1.3 follows arguments found in [ABBGM], where the authors

prove the isomorphism Lw ?
L+G ICµ ∼= Lwtw◦(µ) when k is an algebraic closure of Q`. As

presented there, the proof uses some special features of the characteristic-0 setting (e.g. the
decomposition theorem); however, a closer analysis of their arguments reveals that they
prove the full faithfulness statement in Theorem 1.3 in the case of positive-characteristic
coefficients too. (Note that when k has characteristic 0 the Satake category is semisimple,
so that this full faithfulness statement is an immediate consequence of the isomorphism
of simple perverse sheaves.) It is then not difficult to deduce the isomorphism for simple
objects.

Remark 1.4. (1) Let us emphasize that there is no assumption on ` in Theorem 1.3.
Such an assumption is needed only to (conjecturally) relate this statement to
Representation Theory.

(2) In the body of the paper we will also prove a “Whittaker” variant of Theorem 1.3,
for any choice of a subset A ⊂ Saff generating a finite subgroup. (The case stated
above corresponds to A = ∅.) This is motivated by a “singular” variant of
Conjecture 1.1, which postulates the existence of a similar equivalence relating a

singular block of Rep( qG) (with “singularity” determined by A) with a category
of perverse sheaves on Gr satisfying a Whittaker condition relative to a group
attached to A.
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(3) In this paper we work with perverse sheaves for the étale topology because we want
to cover also the “Whittaker” categories, which have no counterpart at this point
in the “classical” setting of perverse sheaves for the analytic topology. However,
in case A = ∅ our category is just the category of Iu-equivariant perverse sheaves
on Gr, which also makes sense in the classical setting; in this special case our
proof of Theorem 1.3 applies in both settings.

1.4. Contents. In Section 2 we prove a number of preliminary results of a combinato-
rial nature regarding the extended affine Weyl group Wext. In Section 3 we define our
categories of perverse sheaves Perv(IAu ,XA)(Gr,k) (and their analogues for sheaves on the
affine flag variety Fl) and the “averaging” functors relating them. All the results from
these sections are known in some form, but we found it convenient to state them and give
(sketches of) proofs. Finally, in Section 4 we prove Theorem 1.3.

2. Combinatorics of the affine Weyl group

2.1. The extended affine affine Weyl group. Let F, G, B, T , Y, W be as in §1.2.
We will denote by X := X∗(T ) the character lattice of T , by R ⊂ X the root system
of (G,T ), and by R∨ ⊂ Y the coroot system; the natural bijection from R to R∨ will
be denoted α 7→ α∨ as usual. We will denote by R+ ⊂ R the system of positive roots
consisting of the T -weights in Lie(G)/Lie(B), and by Rs the associated basis of R. The
corresponding sets of dominant coweights and strictly dominant coweights will be denoted
Y+ and Y++ respectively. If we denote by S ⊂W the subset consisting of the reflections
sα∨ for α ∈ Rs, then it is well known that (W,S) is a Coxeter system. The longest
element in this group will be denoted w◦. We will assume that X/ZR has no torsion, or
in other words that the scheme-theoretic center of G is connected. This condition ensures
that there exists ς ∈ Y such that 〈α, ς〉 = 1 for all α ∈ Rs; we fix such an element once
and for all.

The affine Weyl group associated with G is the semidirect product

Waff := W n ZR∨,

where ZR∨ ⊂ Y is the lattice generated by R∨. For λ ∈ ZR∨, we will write tλ for the
corresponding element of Waff . It is a standard fact that if we denote by Saff ⊂Waff the
subset consisting of S together with the elements tβ∨sβ∨ where β∨ ∈ R∨ is a maximal
short coroot, then the pair (Waff , Saff) is a Coxeter system. Moreover, classical results
of Iwahori–Matsumoto [IM] show that the associated length function on Waff can be
described by the following formula for w ∈W and λ ∈ ZR∨:

(2.1) `(wtλ) =
∑
α∈R+

w(α)∈R+

|〈λ, α〉|+
∑
α∈R+

w(α)∈−R+

|1 + 〈λ, α〉|.

The formula on the right-hand side of (2.1) makes sense more generally for λ ∈ Y,
which allows us to extend the function ` to the larger group

Wext := W n Y.

The subgroup Waff ⊂Wext is normal, and if we set

Ω := {w ∈Wext | `(w) = 0}

then Ω is a finitely generated abelian group acting on Waff (via conjugation) by Coxeter
group automorphisms, and multiplication induces a group isomorphism

Ω nWaff
∼−→Wext;

moreover `(ωw) = `(wω) = `(w) for any w ∈ Wext and ω ∈ Ω. We can also extend the
Bruhat order ≤ on Waff to Wext by declaring that for ω, ω′ ∈ Ω and w,w′ ∈Waff we have
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ωw ≤ ω′w′ iff ω = ω′ and w ≤ w′. (The same rule will then also apply when switching
the order of ω and w.)

The following property holds for general Coxeter groups, and can be checked using the
characterization of the Bruhat order in terms of reduced expressions and the exchange
condition.

Lemma 2.1. Let x, y, w ∈ Wext, and assume that `(xy) = `(x) + `(y) and `(xw) =
`(x) + `(w). Then y ≤ w if and only if xy ≤ xw.

2.2. Coset representatives. If A ⊂ Saff is a subset, we will denote by WA the subgroup
of Waff generated by A; if this subgroup is finite we will say that A is finitary, and we
will denote by wA the longest element in WA. In this case, the theory of Coxeter systems
guarantees that for any w ∈Wext the cosets WAw and wWA each admit a unique minimal
element (and a unique maximal element) with respect to the Bruhat order. If w is
minimal in WAw, resp. in wWA, then for any x ∈ WA we have `(xw) = `(x) + `(w),
resp. `(wx) = `(w) + `(x). In fact, it is easily seen that

(2.2) w is minimal in WAw iff `(wAw) = `(wA) + `(w).

The following claim is well known (see e.g. the discussion in [So, p. 86]).

Lemma 2.2. Let w ∈Wext be an element which is minimal in wWA. If s ∈ Saff and sw
is not minimal in swWA, then sw = wr for some r ∈ A; in particular, if s ∈ Saff satisfies
sw < w, then sw is minimal in swWA.

Below we will consider the restriction of the Bruhat order to the subset of elements w
in Wext which are minimal in wWA (resp. in WAw). If y, w ∈ Wext are minimal in their
respective cosets yWA and wWA, and if y′, w′ are the maximal elements in these cosets,
it is a standard fact (see [Do, Lemma 2.2]) that the following conditions are equivalent:

(1) y ≤ w;
(2) y′ ≤ w′;
(3) there exist y′′ ∈ yWA and w′′ ∈ wWA such that y′′ ≤ w′′.

Of course, a similar property holds for cosets in WA\Wext.

Remark 2.3. One can similarly consider minimal and maximal elements in double cosets
of the form WAwWA′ where A,A′ ⊂ Saff are finitary subsets. The analogues of (1)–(3)
are also equivalent in this setting, as proved in [Do, Lemma 2.2].

In particular, we will consider these notions in the case A = S, so that WA = W . (In
this case, we have already introduced the notation w◦ for the longest element in W , so
that the notation wS will not be used.) The maximal and minimal elements in cosets
can be described explicitly in this case, as follows. First one notices that the quotients
Wext/W and W\Wext are in canonical bijection with Y, so that every right coset is of
the form Wtλ, and likewise for left cosets. For any λ ∈ Y the minimal element in Wtλ,
resp. tλW , will be denoted wL

λ , resp. wR
λ ; we will also denote by dom(λ) the unique

dominant W -translate of λ. By [MR, Lemma 2.4] we have

(2.3) wL
λ = vλtλ = tdom(λ)vλ,

where vλ ∈W is the element of minimal length such that vλ(λ) = dom(λ). We moreover
have

`(wL
λ) = `(tλ)− `(vλ) = `(tdom(λ))− `(vλ).

We clearly have

(2.4) wR
λ = (wL

−λ)−1,

and the maximal element in Wtλ, resp. in tλW , is w◦w
L
λ , resp. wR

λw◦.
We will denote by WS

ext ⊂ Wext the subset of elements w which are minimal in their
coset wW ; we therefore have WS

ext = {wR
λ : λ ∈ Y}.
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In the following lemma we characterize the elements in WS
ext which satisfy a certain

minimality property with respect to left multiplication by elements of WA. (This state-
ment makes sense, and holds true with identical proof, for any choice of a Coxeter system
and a finitary pair of subsets of the simple reflections.)

Lemma 2.4. Let A ⊂ Saff be a finitary subset. For w ∈ Wext, the following conditions
are equivalent:

(1) w ∈WS
ext and wv is minimal in WAwv for any v ∈W ;

(2) w ∈WS
ext and ww◦ is minimal in WAww◦;

(3) w is minimal in WAw and vw ∈WS
ext for any v ∈WA;

(4) w is minimal in WAw and wAw ∈WS
ext;

(5) `(wAww◦) = `(wA) + `(w) + `(w◦).

We will denote by AWS
ext ⊂ WS

ext the subset of elements which satisfy the conditions
of Lemma 2.4.

Proof. Of course (1) implies (2), and (2) implies (1) by (the right-coset analogue of)
Lemma 2.2. It is clear that (2) implies (5). If (5) holds, then by (2.2) ww◦ is minimal in
WAww◦. We also deduce that

`(ww◦) ≥ `(wAww◦)− `(wA) = `(w) + `(w◦),

hence `(ww◦) = `(w) + `(w◦), which implies that w belongs to WS
ext by (2.2). The

equivalence with (3)–(4) is obtained similarly, switching the roles of A and S. �

As explained in Remark 2.3, there is a general theory of minimal elements in double
cosets in Coxeter groups. If w ∈ AWS

ext then w is minimal in WAwW ; however not every
element which is minimal in its double coset belongs to AWS

ext. Specifically, one can show
that the minimal element of a double coset WAwW lies in AWS

ext if and only if the set
WAwW ∩WS

ext has cardinality equal to that of WA. In the special case where A = S, the
following lemma gives another description of this set.

Lemma 2.5. Let λ ∈ Y. We have wR
λ ∈ SWS

ext iff λ ∈ Y++. Moreover in this case we
have wR

λ = tλw◦.

Proof. We will use the characterization of SWS
ext given by condition (2) in Lemma 2.4.

Using (2.3) and (2.4) we see that

wR
λw◦ = (v−λ)−1t−dom(−λ)w◦ = (v−λ)−1w◦t−w◦dom(−λ) = (v−λ)−1w◦tdom(λ)

since dom(−λ) = −w◦dom(λ). Now wL
dom(λ) = tdom(λ) by (2.3), so that wR

λw◦ is minimal

in WwR
λw◦ iff (v−λ)−1w◦ = e, i.e. iff v−λ = w◦. This is clearly equivalent to the condition

that −λ ∈ −Y++, i.e. that λ ∈ Y++. �

2.3. Alcoves. Consider the vector space V := Y ⊗Z R, and the action of Wext given by
(tλw) · v = w(v) + λ for w ∈W and λ ∈ Y, where W acts on V via its natural action on
Y. In V we have the affine hyperplanes defined by

Hβ,n := {v ∈ V | 〈β, v〉 = n}

for β ∈ R and n ∈ Z, which are permuted by the action of Wext. The connected
components of the complement of the union of these hyperplanes are called alcoves; if we
set

Afund := {v ∈ V | ∀β ∈ R+, 0 < 〈β, v〉 < 1},
then Afund is an alcove (called the fundamental alcove), and moreover if we denote by A
the set of alcoves then the assignment w 7→ w(Afund) induces a bijection

Wext/Ω
∼−→ A ,
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where Ω is as in §2.1. If

C = {v ∈ V | ∀β ∈ R+, 〈β, v〉 > 0},
then it is a standard fact that

(2.5) WS
ext = {w ∈Wext | w−1(Afund) ⊂ C}.

2.4. Restricted elements. For µ ∈ Y we set

Πµ := {v ∈ V | ∀α ∈ Rs, 〈α, µ〉 − 1 < 〈α, v〉 < 〈α, µ〉};
our assumption on X/ZR ensures that each alcove is contained in a subset of this form.
Recall the element ς defined in §2.1. We define the subset of restricted elements in Wext

by setting
W res

ext := {w ∈Wext | w−1(Afund) ⊂ Πς}.
(Of course, this subset does not depend on the choice of ς.) The relation between W res

ext

and WS
ext is as follows: if w ∈Wext, there exists µ ∈ Y such that w−1(Afund) ⊂ Πµ; then

w ∈ WS
ext if and only if µ ∈ Y++. With this notation we have tς−µw

−1(Afund) ⊂ Πς ,
i.e. wtµ−ς ∈W res

ext , and of course

w = (wtµ−ς)tς−µ.

Here µ ∈ Y++ iff ς − µ ∈ −Y+. In conclusion, we have shown that

(2.6) WS
ext = {xtλ : x ∈W res

ext , λ ∈ −Y+}.
(In case G is semisimple, each element of WS

ext can be written uniquely as a product xtλ
with x ∈ W res

ext and λ ∈ −Y+, but in general this expression is not unique.) We will see
in Lemma 2.7 below that lengths always add in such an expression. These considerations
also show that for any fixed w ∈ Wext, there exists λ ∈ Y such that wtλ ∈ W res

ext ; in
fact the elements that satisfy this property form a torsor for the lattice of elements in Y
orthogonal to all roots.

Lemma 2.6. Let w ∈W , λ ∈ Y. Then wtλ ∈W res
ext if and only if for all α ∈ Rs we have

〈α, λ〉 =

{
0 if w(α) ∈ R+;

−1 if w(α) ∈ −R+.

In particular, if wtλ ∈W res
ext then λ ∈ −Y+.

Proof. For N � 0 we have 1
N ς ∈ Afund; hence wtλ belongs to W res

ext if and only if (t−λw
−1)·

( 1
N ς) ∈ Πς . Now we have

(t−λw
−1) · ( 1

N ς) = −λ+ 1
Nw
−1(ς),

so that for α ∈ Rs we have

〈α, (t−λw−1)( 1
N ς)〉 = −〈α, λ〉+ 1

N 〈w(α), ς〉.
On the right-hand side we have 〈w(α), ς〉 > 0 if w(α) ∈ R+, and 〈w(α), ς〉 < 0 if w(α) ∈
−R+. This implies that the left-hand side lies between 0 and 1 iff 〈α, λ〉 is 0 in the first
case, and −1 in the second case. �

Lemma 2.7. For any w ∈WS
ext and µ ∈ −Y+ we have `(wtµ) = `(tµ) + `(w).

Proof. By (2.6) we can write w = xtν with x ∈ W res
ext and ν ∈ −Y+. Write x = ytλ with

λ ∈ Y and y ∈W . By (2.1), for any η ∈ −Y+ we have

`(xtη) = `(ytλ+η) =
∑
α∈R+

y(α)∈R+

|〈α, λ+ η〉|+
∑
α∈R+

y(α)∈−R+

|1 + 〈α, λ+ η〉|.

By Lemma 2.6, in the right-hand side we have 〈α, λ〉 ≤ 0 for any α ∈ R+, and if moreover
y(α) ∈ −R+ then at least one simple root γ appearing in the decomposition of α as a
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sum of simple roots must satisfy y(γ) ∈ −R+; we therefore have 〈α, λ〉 ≤ −1 in this case.
Letting ρ denote one-half the sum of the positive roots, we see that

`(xtη) = −〈2ρ, λ+ η〉 − `(y).

Comparing these formulas for η = ν and η = ν + µ, and using the fact that `(tµ) =
−〈2ρ, µ〉, we deduce the desired formula. �

2.5. More on coset representatives. We fix a finitary subset A ⊂ Saff , and con-
sider the interaction between restricted elements and elements satisfying the conditions
in Lemma 2.4.

Lemma 2.8. Let y ∈W res
ext and λ ∈ −Y+. Then y ∈ AWS

ext iff ytλ ∈ AWS
ext.

Proof. Assume that y ∈ AWS
ext, i.e. that y is minimal in WAy and wAy ∈WS

ext. Then

`(wAytλ) = `(wAy) + `(tλ) = `(wA) + `(y) + `(tλ) = `(wA) + `(ytλ)

where the first and last equalities use Lemma 2.7. Hence ytλ is minimal in WAytλ by (2.2).
On the other hand wAytλ = (wAy)tλ belongs to WS

ext since WS
ext is stable under right

multiplication by elements of −Y+; hence ytλ ∈ AWS
ext.

Assume now that ytλ ∈ AWS
ext. We have

`(wAyw◦tw◦(λ)) = `(wAytλw◦) = `(wA) + `(ytλ) + `(w◦)

= `(wA) + `(y) + `(tλ) + `(w◦).

On the other hand we have

`(wAyw◦tw◦(λ)) ≤ `(wAyw◦) + `(tw◦(λ)) ≤ `(wA) + `(y) + `(w◦) + `(tw◦(λ)),

and `(tλ) = `(tw◦(λ)). Thus, these inequalities must be equalities, showing in particular

that `(wAyw◦) = `(wA) + `(y) + `(w◦), and hence that y ∈ AWS
ext. �

If we set AW res
ext := AWS

ext ∩W res
ext , then by (2.6) and Lemma 2.8 we have

(2.7) AWS
ext = {wtλ : w ∈ AW res

ext , λ ∈ −Y+}.

3. Whittaker-type perverse sheaves on affine Grassmannians and affine
flag varieties

3.1. Affine Grassmannian and affine flag variety. We now denote by z an inde-
terminate, and consider the functor LG, resp. L+G, from F-algebras to groups, which
sends R to G(R((z))), resp. G(R[[z]]). It is well known (see e.g. [Ra]) that LG is repre-
sented by a group ind-scheme over F, and that L+G is represented by a group scheme
over F. Moreover, the fppf quotient (LG/L+G)fppf is represented by an ind-projective
ind-scheme, which is denoted Gr and called the affine Grassmannian of G.

There is an obvious morphism of group schemes L+G→ G induced by the assignment
z 7→ 0. Let I ⊂ L+G and Iu ⊂ I be the preimages under this map of the Borel subgroup
B ⊂ G and its unipotent radical U ⊂ B, respectively. These are both subgroup schemes
of L+G. The group I is known as an Iwahori subgroup, and Iu as its pro-unipotent radical.

We will consider also the affine flag variety Fl of G, defined as the fppf quotient
(LG/I)fppf . Again Fl is represented by an ind-projective ind-scheme, and the natural
morphism π : Fl→ Gr is a Zariski locally trivial fibration with fibers isomorphic to G/B.

Let NG(T ) be the normalizer of the maximal torus T ⊂ G, so that NG(T )/T = W .
For each w ∈ W , choose a representative ẇ ∈ NG(T ). More generally, if w ∈ Wext, say
w = vtλ with v ∈W and λ ∈ Y, we set

ẇ = v̇zλ ∈ LG(F).
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For w ∈Wext we will denote by Flw the I-orbit of the image of ẇ in Fl; then it is well
known that Flw is also the Iu-orbit of the image of ẇ, that it is isomorphic to an affine
space of dimension `(w), and that we have

Flred =
⊔

w∈Wext

Flw and
(
Flw ⊂ Fly ⇔ w ≤ y

)
.

Similarly, for w ∈ WS
ext we will denote by Grw the I-orbit of the image of ẇ in Gr. It

is well known that Grw is also the Iu-orbit of the image of ẇ, that it is isomorphic to an
affine space of dimension `(w), and that we have

Grred =
⊔

w∈Wext

Grw and π−1(Grw) =
⊔
v∈W

Flwv.

The closure inclusion partial order on the set of I-orbits on Gr is governed by the restric-
tion of the Bruhat order to WS

ext (see §2.2), i.e. for w, y ∈WS
ext we have

Grw ⊂ Gry ⇔ w ≤ y.

Remark 3.1. It is common to label I-orbits on Gr by elements of Y; compared with
the labelling chosen here, the orbit usually associated with λ is GrwR

λ
where we use the

notation of §2.2.

3.2. Categories of Iu-equivariant sheaves. We now consider a prime number ` which
is invertible in F. We will consider fields k which fall into one of the following two classes:

(1) k is either a finite extension or an algebraic closure of Q`;
(2) k is either a finite extension or an algebraic closure of F`.

(When we need to distinguish these two cases, we will loosely say that k has characteristic
0 or k has positive characteristic.) In these settings we can consider the Iu-equivariant
derived categories Db

Iu
(Gr,k) and Db

Iu
(Fl,k) of étale k-sheaves on Gr and Fl respectively.

(More specifically, the case when k is a finite extension of Q` or F` is classical,1 see [BBD],
and the case of algebraic closures is deduced using a colimit construction.) These cate-
gories have natural perverse t-structures, whose hearts will be denoted PervIu(Gr,k) and
PervIu(Fl,k) respectively.

For any w ∈ Wext we have a “standard perverse sheaf” Dw in PervIu(Fl,k), defined
as the !-pushforward of the complex kFlw

[`(w)] under the embedding Flw → Fl, and
a “costandard perverse sheaf” Nw in PervIu(Fl,k), defined as the ∗-pushforward of the
complex kFlw

[`(w)] under the embedding Flw → Fl. (These complexes are indeed perverse
sheaves since this embedding is affine.) The image of the unique (up to scalar) nonzero
morphism Dw → Nw is simple, and will be denoted Lw; it is the intersection cohomology
complex associated with the constant local system on Flw. Then the objects (Lw : w ∈
Wext) are representatives for the isomorphism classes of simple objects in the abelian
category PervIu(Fl,k).

Similarly, for w ∈ WS
ext we have a “standard perverse sheaf” ∆w in PervIu(Gr,k),

defined as the !-pushforward of the complex kGrw
[`(w)] under the embedding Grw → Gr,

and a “costandard perverse sheaf” ∇w in PervIu(Gr,k), defined as the ∗-pushforward of
the complex kGrw

[`(w)] under the embedding Grw → Gr. (Once again, these complexes
are indeed perverse sheaves.) The image of the unique (up to scalar) nonzero morphism
∆w → ∇w is simple, and will be denoted Lw; it is the intersection cohomology complex
associated with the constant local system on Grw. Then the objects (Lw : w ∈ WS

ext)
are representatives for the isomorphism classes of simple objects in the abelian category
PervIu(Gr,k).

1Since Iu is not of finite type and Gr,Fl are ind-schemes rather than schemes, the definition of these

categories requires a little bit of care, but is standard; we will not review these details here. Similar
comments apply to various other equivariant derived categories considered below.
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Since the morphism π : Fl→ Gr is smooth with connected fibers, the functor

π† := π∗[dim(G/B)] ∼= π![−dim(G/B)] : Db
Iu(Gr,k)→ Db

Iu(Fl,k)

is t-exact for the perverse t-structures, its restriction to perverse sheaves is fully faithful,
and it sends simple perverse sheaves to simple perverse sheaves, see [BBD, Proposi-
tion 4.2.5]; more explicitly, in this case we have

(3.1) π†Lw ∼= Lww◦

for any w ∈WS
ext.

The results of [BGS, §3.3] show that the category PervIu(Fl,k) admits a natural struc-
ture of a highest weight category (in the sense of [Ri, §7]) with weight poset (Wext,≤),
standard objects the standard perverse sheaves (Dw : w ∈Wext), and costandard objects
the costandard perverse sheaves (Nw : w ∈ Wext). Similar comments apply to the cate-
gory PervIu(Gr,k) (where the weight poset is now WS

ext, equipped with the restriction of
the Bruhat order, and Dw,Nw are replaced by ∆w,∇w).

We will also occasionally consider the I-equivariant derived categories Db
I (Fl,k) and

Db
I (Gr,k). We have forgetful functors

ForIIu : Db
I (Fl,k)→ Db

Iu(Fl,k), ForIIu : Db
I (Gr,k)→ Db

Iu(Gr,k),

and the objects Dw,Nw and ∆w,∇w naturally “lift” to objects of Db
I (Fl,k) and Db

I (Gr,k)
respectively (which will be denoted by the same symbol). We also have “convolution”
bifunctors

Db
I (Fl,k)×Db

I (Fl,k)→ Db
I (Fl,k), Db

I (Fl,k)×Db
I (Gr,k)→ Db

I (Gr,k),

Db
Iu(Fl,k)×Db

I (Fl,k)→ Db
Iu(Fl,k), Db

Iu(Fl,k)×Db
I (Gr,k)→ Db

Iu(Gr,k),

which will all be denoted ?I , and are compatible in all the expected ways.

3.3. Relation with the Satake category. Below we will also consider the L+G-equiva-
riant derived category Db

L+G(Gr,k). Once again this category has a natural perverse
t-structure, whose heart will be denoted PervL+G(Gr,k). For λ ∈ Y+ we will denote by

Lλ the image of zλ in Gr, and by Grλ its L+G-orbit; then we have

Grλ =
⊔

µ∈W (λ)

GrwR
µ

and Grred =
⊔

λ∈Y+

Grλ.

The closure partial order on the set of L+G-orbits on Gr is determined by the restriction
of the Bruhat order to the set of elements w ∈ Wext that are minimal in WwW : see
Remark 2.3. More explicitly, for λ ∈ Y+, the maximal element in WtλW is w◦tλ, so that
for λ, µ ∈ Y+ we have

Grλ ⊂ Grµ ⇔ w◦tλ ≤ w◦tµ.
(It is a standard fact that this condition is also equivalent to the property that µ − λ is
a sum of positive coroots.)

The simple objects in the category PervL+G(Gr,k) are in natural bijection with Y+,

via the operation sending λ to the intersection cohomology complex ICλ associated with
the constant local system on Grλ. The forgetful functor

ForL
+G

Iu : Db
L+G(Gr,k)→ Db

Iu(Gr,k)

is t-exact, restricts to a fully faithful functor on perverse sheaves, and satisfies

ForL
+G

Iu (ICλ) = Ltw◦(λ)

for any λ ∈ Y+.
To each µ ∈ Y+ one can also associate the “standard” and “costandard” objects

defined respectively by

Iµ! = pτ≥0(jµ! kGrµ [〈2ρ, µ〉]), Iµ∗ = pτ≤0(jµ∗ kGrµ [〈2ρ, µ〉]),
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where jµ : Grµ ↪→ Gr is the inclusion and pτ≥0, pτ≤0 are the perverse truncation functors.
With this notation there exists (up to scalar) a unique nonzero morphism Iµ! → I

µ
∗ , and

its image is ICµ. Once again the category PervL+G(Gr,k) has a highest weight structure
with standard objects the perverse sheaves (Iµ! : µ ∈ Y+) and costandard objects the
perverse sheaves (Iµ∗ : µ ∈ Y+), see [BaR, Proposition 1.12.4]. (Contrary to the case of
Iu-equivariant perverse sheaves, the proof of this claim relies on some subtle results on
the geometry of L+G-orbits on Gr due to Mirković–Vilonen.)

As in the I-equivariant setting (see §3.2), we have a convolution product

(3.2) ?L
+G : Db

L+G(Gr,k)×Db
L+G(Gr,k)→ Db

L+G(Gr,k)

which equips Db
L+G(Gr,k) with the structure of a monoidal category. In this case it is

known that this product is t-exact (i.e., a product of perverse sheaves is perverse), and
hence induces a monoidal structure on the abelian category PervL+G(Gr,k); see [BaR,
§1.6.3] for details. The geometric Satake equivalence describes the monoidal category

(PervL+G(Gr,k), ?L
+G) in representation-theoretic terms: more explicitly, in [MV] the

authors construct a canonical affine k-group scheme G∨k equipped with a split maximal
torus T∨k whose group of characters is Y and a canonical equivalence of monoidal cate-
gories

Sat : (PervL+G(Gr,k), ?L
+G)

∼−→ (Rep(G∨k ),⊗).

They also show that G∨k is a split connected reductive group over k, and that the root
datum of (G∨k , T

∨
k ) is dual to that of (G,T ). Under this equivalence Iµ! , resp. Iµ∗ , corre-

sponds to the Weyl, resp. induced, module of highest weight µ.

3.4. Root subgroups and unipotent subgroups. Recall (see e.g. [Ja, §I.1.3]) that for
each root α ∈ R+ there is a homomorphism

ϕα : SL2 → G

such that for t ∈ T , x ∈ F and y ∈ F× we have

tϕα( 1 x
0 1 )t−1 = ϕα( 1 α(t)x

0 1
), tϕα( 1 0

x 1 )t−1 = ϕα(
1 0

α(t)−1x 1 ), ϕα(
y 0

0 y−1 ) = α∨(y).

The image of the map Ga → G given by x 7→ ϕα( 1 x
0 1 ) is often denoted Uα, and called the

root subgroup of G associated with α.
We will now explain how to define certain (positive, simple) root subgroups of LG,

attached to elements s ∈ Saff . (For a discussion of more general root subgroups of LG,
see [Fa, §3].) First, if s ∈ S, let αs ∈ Rs be the corresponding simple root, and let

U+
s := image of Uαs under the natural map G→ LG.

On the other hand, if s ∈ Saff rS, then recall that s = tβ∨sβ∨ for a maximal short coroot
β∨ ∈ R∨, corresponding to a maximal (long) root β ∈ R+. In this case, define

U+
s := image of the map Ga → LG given by x 7→ ϕβ( 1 0

z−1x 1
).

The construction above gives us an isomorphism Ga
∼= U+

s for each s ∈ Saff . (This
isomorphism is not canonical, but is fixed once and for all.)

A direct calculation (cf. [Fa, §3]) shows that for any s ∈ Saff , the group ṡIuṡ
−1 ∩ Iu is

normal in ṡIuṡ
−1, and that multiplication induces an isomorphism

U+
s n (ṡIuṡ

−1 ∩ Iu)
∼−→ ṡIuṡ

−1.

This identification gives rise to a quotient map

ψs : ṡIuṡ
−1 → U+

s
∼= Ga.

More generally, consider a finitary subset A ⊂ Saff . Then there is a parahoric group
scheme PA ⊂ LG such that

PA(F) =
⋃

w∈WA

I(F)ẇI(F).
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If we set IAu := ẇAIuẇ
−1
A , the intersection IAu ∩ Iu is the pro-unipotent radical of PA, and

the quotient PA/I
A
u ∩ Iu is a reductive algebraic group MA over F whose Weyl group is

WA. If we set U+
A := IAu /I

A
u ∩ Iu ⊂MA, then U+

A is the unipotent radical of a (positive)
Borel subgroup of MA. There is a canonical isomorphism

U+
A /[U

+
A , U

+
A ] ∼=

∏
s∈A

U+
s ,

which we use to define the map ψA : IAu → Ga as the composition

IAu → IAu /I
A
u ∩ Iu = U+

A → U+
A /[U

+
A , U

+
A ] ∼=

∏
s∈A

U+
s =

∏
s∈A

Ga
+−→ Ga.

An important special case of this construction is when A = S (so that WS = W ). In
this case we have PS = L+G, ISu is the inverse image of the unipotent radical U+ of the
Borel subgroup of G opposite to B (with respect to T ) under the evaluation morphism
L+G→ G, and the intersection ISu ∩ Iu is the kernel of this morphism.

3.5. Whittaker categories. We assume from now on that F has characteristic p > 0,
and that k contains a nontrivial p-th root of unity. This allows us to choose a nontrivial
homomorphism Z/pZ→ k×, which in turn determines an Artin–Schreier local system on
Ga, denoted by AS.

Let A ⊂ Saff be a finitary subset. We set XA := ψ∗AAS. Using the techniques spelled
out e.g. in [AR1, Appendix A] one can define the (IAu ,XA)-equivariant derived categories

Db
(IAu ,XA)(Fl,k) and Db

(IAu ,XA)(Gr,k)

of k-sheaves on Fl and Gr respectively. These categories admit natural perverse t-
structures, whose hearts will be denoted Perv(IAu ,XA)(Fl,k) and Perv(IAu ,XA)(Gr,k) re-
spectively.

For w ∈Wext we will denote by FlAw the IAu -orbit of the image of ẇ in Fl; then

Flred =
⊔

w∈Wext

FlAw.

By definition we have FlAw = ẇA · FlwAw; it follows that for y, w ∈Wext we have

FlAw ⊂ FlAy ⇔ wAw ≤ wAy.

Below we will mainly consider these orbits in the case where w and y are minimal in WAw
and WAy respectively; in this case, in view of the discussion in §2.2 we have the simpler
characterization

FlAw ⊂ FlAy ⇔ w ≤ y.

It is a standard fact that the orbit FlAw supports a nonzero (IAu ,XA)-equivariant local
system if and only if w has minimal length in the coset WAw; in this case there exists
a unique such local system of rank 1, and the corresponding standard, resp. costandard,
perverse sheaf (obtained by taking the !-pushforward, resp. ∗-pushforward, of the shift by

dim(FlAw) = `(wAw) of this local system under the embedding FlAw → Fl) will be denoted
DA
w , resp. N A

w . Once again there exists a unique (up to scalar) nonzero morphism
DA
w → N A

w , whose image will be denoted L A
w , and the objects

(L A
w : w ∈Wext minimal in WAw)

are representatives for the isomorphism classes of simple objects in the abelian category
Perv(IAu ,XA)(Fl,k).

In this setting also the abelian category Perv(IAu ,XA)(Fl,k) has a natural structure of a
highest weight category, with weight poset {w ∈ Wext | w minimal in WAw} (equipped
with the restriction of the Bruhat order). A basic example of an element minimal in its
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coset in WA\Wext is the identity element e. Since this element is minimal for the Bruhat
order, the canonical morphism DA

e → N A
e is an isomorphism, and we have

(3.3) DA
e = L A

e = N A
e .

These considerations have analogues for sheaves on Gr, as follows. For w ∈ WS
ext we

will denote by GrAw the IAu -orbit of the image of ẇ in Gr. Then

Grred =
⊔

w∈WS
ext

GrAw,

and for w, y ∈WS
ext we have GrAw ⊂ GrAy if and only if the maximal element in wAwW is

smaller than the maximal element in wAyW (for the Bruhat order). In the special case
where w, y ∈ AWS

ext, this condition is also equivalent to w ≤ y.

It is a standard fact that the orbit GrAw supports a nonzero (IAu ,XA)-equivariant local
system if and only if w ∈ AWS

ext (see [ACR, Appendix A] for similar considerations).
In this case there exists a unique such local system of rank 1, and the corresponding
standard, resp. costandard, perverse sheaf (obtained by taking the !-pushforward, resp. ∗-
pushforward, of the shift by dim(GrAw) = `(wAw) of this local system under the embedding

GrAw → Gr) will be denoted ∆A
w, resp. ∇Aw. Once again there exists a unique (up to scalar)

nonzero morphism ∆A
w → ∇Aw, whose image will be denoted LAw, and the objects

(LAw : w ∈ AWS
ext)

are representatives for the isomorphism classes of simple objects in the abelian cate-
gory Perv(IAu ,XA)(Gr,k). The standard and costandard objects defined above also endow
Perv(IAu ,XA)(Gr,k) with a natural structure of a highest weight category with weight poset
AWS

ext (with respect to the restriction of the Bruhat order).
In this setting again we have a t-exact functor

π† : Db
(IAu ,XA)(Gr,k)→ Db

(IAu ,XA)(Fl,k),

which restricts to a fully faithful functor on perverse sheaves and satisfies

(3.4) π†(LAw) ∼= L A
ww◦

if w ∈ AWS
ext. We also have natural functors

π∗, π! : Db
(IAu ,XA)(Fl,k)→ Db

(IAu ,XA)(Gr,k).

3.6. Averaging functors. Of course IAu contains IAu ∩ Iu, and by construction the re-
striction of XA to this subgroup is trivial. We therefore have a canonical forgetful functor

ForA : Db
(IAu ,XA)(Fl,k)→ Db

IAu ∩Iu
(Fl,k),

where the right-hand side is the (IAu ∩ Iu)-equivariant derived category of k-sheaves on
Fl. This functor is fully faithful, and the techniques of [AR1, Appendix A] show that it
admits left and right adjoints, denoted by

avAψ,!, avAψ,∗ : Db
IAu ∩Iu

(Fl,k)→ Db
(IAu ,XA)(Fl,k)

respectively; we have

avAψ,!(F) = (actA)!(XA �̃F)[2 dim(U+
A )], avAψ,∗(F) = (actA)∗(XA �̃F)

where actA : IAu ×I
A
u ∩Iu Fl→ Fl is the action morphism and XA �̃F is the unique complex

whose pullback to IAu × Fl is XA � F . Similarly we have a forgetful functor

For′A : Db
Iu(Fl,k)→ Db

IAu ∩Iu
(Fl,k),

which admits left and right adjoints denoted by

avA! , avA∗ : Db
IAu ∩Iu

(Fl,k)→ Db
Iu(Fl,k),
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and defined by formulas similar to those above (involving the constant local system instead
of XA).

We will set

AvAψ,! := avAψ,! ◦ For′A[−dim(U+
A )], AvAψ,∗ := avAψ,∗ ◦ For′A[dim(U+

A )],

AvA! := avA! ◦ ForA[−dim(U+
A )], AvA∗ := avA∗ ◦ ForA[dim(U+

A )];

then we have adjoint pairs (AvAψ,!,AvA∗ ) and (AvA! ,AvAψ,∗).
Similar considerations apply to sheaves on Gr; we will use the same notation for the

corresponding functors relating the categories Db
Iu

(Gr,k) and Db
(IAu ,XA)(Gr,k). The base

change theorem guarantees that we have canonical isomorphisms

(3.5) AvAψ,? ◦ π† ∼= π† ◦AvAψ,?, AvA? ◦ π† ∼= π† ◦AvA? for ? = ! or ∗.

3.7. Study of Whittaker averaging functors. The following claim is standard (see
e.g. [BBM, BY, ABBGM]).

Lemma 3.2. For sheaves on Fl and Gr, there exists a canonical isomorphism of functors

AvAψ,!
∼−→ AvAψ,∗,

and these functors are t-exact.

Proof sketch. To fix notation we consider sheaves on Fl; the case of Gr is similar. The
natural morphism of functors (actA)! → (actA)∗ induces a morphism of functors

avAψ,![−dim(U+
A )]→ avAψ,∗[dim(U+

A )],

from which we obtain a morphism AvAψ,! → AvAψ,∗. Since the category Db
Iu

(Fl,k) is
generated (as a triangulated category) by the essential image of the forgetful functor

ForIIu (see §3.2), to show that this morphism is an isomorphism it suffices to do so for
its composition with this functor. Now from the definitions we see that the compositions
AvAψ,!◦ForIIu and AvAψ,∗◦ForIIu can be described as convolution on the left with the objects

DA
e and N A

e respectively. Since these objects are canonically isomorphic (see (3.3)), we
deduce the desired isomorphism.

Since the functor AvAψ,!, resp. AvAψ,∗, is defined in terms of a !-pushforward, resp. ∗-
pushforward, along an affine morphism, it is left t-exact, resp. right t-exact, by [BBD,
Théorème 4.1.1, Corollaire 4.1.2]. Since these functors are isomorphic, they are therefore
t-exact. �

In view of Lemma 3.2, the functors AvAψ,! and AvAψ,∗ will be identified below, and

denoted simply by AvAψ . This lemma implies in particular that we have canonical isomor-
phisms

(3.6) AvAψ ◦ π∗ ∼= π∗ ◦AvAψ , AvAψ ◦ π!
∼= π! ◦AvAψ

The behavior of AvAψ on our “special” perverse sheaves is described as follows.

Lemma 3.3. (1) If w ∈Wext is minimal in WAw, then for y ∈WA we have

AvAψ (Dyw) ∼= DA
w , AvAψ (Nyw) ∼= N A

w .

(2) If w ∈ Wext is minimal in WAw, then for y ∈ WA the object AvAψ (Lyw) is

isomorphic to L A
w if y = e, and vanishes otherwise.

(3) Let w ∈ WS
ext, and write w = yx with y ∈ WA and x minimal in WAx. Then

x ∈WS
ext, and we have

AvAψ (∆w) ∼=

{
∆A
x if x ∈ AWS

ext;

0 otherwise
, AvAψ (∇w) ∼=

{
∇Ax if x ∈ AWS

ext;

0 otherwise.
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(4) Let w ∈ WS
ext. The object AvAψ (Lw) is isomorphic to LAw if w ∈ AWS

ext, and
vanishes otherwise.

Proof. For (1)–(2), the proof can be adapted from those of [BY, Lemmas 4.4.6 & 4.4.8].

(3) The fact that x ∈ WS
ext follows from Lemma 2.2. For the description of AvAψ (∆w)

and AvAψ (∇w), the same arguments as for (1) reduce the proof to the case y = e, i.e. w is
minimal in WAwW . In this case we observe that

AvAψ (∆w) ∼= AvAψ (π!Dw)
(3.6)∼= π!AvAψ (Dw)

(1)∼= π!D
A
w .

Now π!DA
w is isomorphic to ∆A

w if w ∈ AWS
ext, and 0 otherwise; see [ACR, Lemma A.1]

for a proof in the similar setting of Kac–Moody flag varieties. This proves the claim for
AvAψ (∆w); the case of AvAψ (∇w) is similar.

(4) We have

π†(AvAψ (Lw))
(3.5)∼= AvAψ (π†(Lw))

(3.1)∼= AvAψ (Lww◦).

By (2) the rightmost expression vanishes unless ww◦ is minimal in WAww◦, which by
definition is equivalent to w ∈ AWS

ext. In case w belongs to AWS
ext, the rightmost term

is isomorphic to L A
ww◦ . We have a simple perverse sheaf LAw on Gr, and comparing the

formula above with (3.4) we see that π†(AvAψ (Lw)) ∼= π†(LAw). The desired claim follows,

by full faithfulness of π† on perverse sheaves. �

3.8. Study of Iwahori averaging functors. We finish this section with some properties
of the averaging functors AvA! and AvA∗ .

Lemma 3.4. (1) The functors AvA! and AvA∗ are t-exact.
(2) There exists an isomorphism of functors

AvA! ◦AvAψ ◦ ForIIu
∼= AvA! (DA

e ) ?I (−)

which identifies the morphism AvA! ◦AvAψ ◦ ForIIu → ForIIu induced by adjunction

with the morphism induced by a surjection AvA! (DA
e )→ Le.

Proof. (1) The functor AvA∗ is the right adjoint of the exact functor AvAψ , so it is left
exact. On the other hand this functor is defined in terms of ∗-pushforward along an affine
morphism, so it is right exact by [BBD, Théorème 4.1.1]. It is therefore exact. Dual

arguments apply to AvA! .

(2) As explained in the course of the proof of Lemma 3.2 the functor AvAψ ◦ ForIIu
identifies with DA

e ?I (−). The desired claims follow. �

4. The geometric Steinberg formula

4.1. Statement. If A ⊂ Saff is a finitary subset, the same constructions as for (3.2)
provide a convolution bifunctor

?L
+G : Db

(IAu ,XA)(Gr,k)×Db
L+G(Gr,k)→ Db

(IAu ,XA)(Gr,k).

It is known that this bifunctor is again t-exact, in the sense that for F in Perv(IAu ,XA)(Gr,k)

and G in PervL+G(Gr,k) the convolution F ?L+GG is perverse; see [BGMRR, Lemma 2.3]
for details and references.

Recall the subsets AWS
ext and AW res

ext of Wext introduced in §2.2 and §2.5 respectively.
The following statement is the first main result of this paper, which gives a geomet-
ric counterpart of the Steinberg tensor product theorem for representations of reductive
groups over fields of positive characteristic (or of quantum groups at a root of unity).

Theorem 4.1. Let y ∈ AW res
ext. Then for any µ ∈ Y+ we have

LAy ?
L+G ICµ ∼= LAytw◦(µ) .
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Remark 4.2. Note that by (2.7) the element ytw◦(µ) belongs to AWS
ext, so it does indeed

label a simple object in Perv(IAu ,XA)(Gr,k); in fact, this equality shows that any label for a
simple object of Perv(IAu ,XA)(Gr,k) has the form ytw◦(µ) for y and µ as in Theorem 4.1. In
other words, this theorem describes all the simple objects in Perv(IAu ,XA)(Gr,k) in terms

of those whose label belongs to AW res
ext and the simple objects in the Satake category

PervL+G(Gr,k).

In the course of the proof of this theorem we will also establish the following result,
which is the second main result of the paper.

Theorem 4.3. For any y ∈ AW res
ext, the functor

Φy,A := LAy ?
L+G (−) : PervL+G(Gr,k)→ Perv(IAu ,XA)(Gr,k)

is fully faithful.

4.2. Preliminaries. Our goal in this subsection is to prove the technical Lemma 4.7,
which will be used crucially in the proofs of Theorems 4.1 and 4.3. This result will follow
from some claims (essentially taken from [ABBGM]) on dimensions of certain subschemes
of Gr. The starting point for these proofs is a lemma from [FGV] which is closely related
to the “geometric Casselman–Shalika formula” proved independently in [FGV] and [NP].

For the general theory of ind-schemes we refer to [Ra]. For any µ ∈ Y we have the
“semi-infinite orbits”

Sµ,Tµ ⊂ Gr,

where we follow the conventions of [MV] or [BaR]. (These are ind-schemes, endowed
with natural morphisms Sµ → Gr, Tµ → Gr which are representable by locally closed
immersions.) Recall that U , resp. U+, is the unipotent radical of B, resp. the Borel
subgroup opposite to B with respect to T ; we have the loop group LU associated with
U , resp. the loop group LU+ associated with U+, and

Tµ(F) = LU(F) · Lµ, Sµ(F) = LU+(F) · Lµ.

A crucial feature of these sub-ind-schemes is the fact that if λ ∈ Y+ and µ ∈ Y, then the

intersection Tµ ∩ Grλ, resp. Sµ ∩ Grλ, is empty unless λ − dom(µ) is a sum of positive
coroots, and that in this case this intersection is a scheme of finite type such that

dim(Grλ ∩ Sµ) = 〈ρ, λ+ µ〉, resp. dim(Grλ ∩ Tµ) = 〈ρ, λ− µ〉;

see [MV, Theorem 3.2] for the original reference and [BR, Theorem 1.5.2] for a more
detailed treatment and further references.

Let us fix, for any α ∈ −Rs, an isomorphism Uα ∼= Ga, where Uα ⊂ U is the root
subgroup associated with α (i.e. the image of the subgroup of lower-triangular unipotent
matrices under the morphism ϕ−α from §3.4). Then we obtain a group homomorphism

χ : U → U/(U,U)
∼←−

∏
α∈−Rs

Uα ∼=
∏

α∈−Rs

Ga
+−→ Ga.

We will also denote by χ+ : U+ → Ga the composition of χ with the isomorphism
U+ ∼−→ U given by g 7→ ẇ◦gẇ

−1
◦ , and denote by χLU , resp. χLU+ , the composition

LU Lχ−−→ LGa
res−−→ Ga, resp. LU+ Lχ+

−−−→ LGa
res−−→ Ga

where the first morphism is the morphism of loop groups induced by χ, resp. χ+, and
the second one is the “residue” morphism sending a Laurent series to the coefficient
of z−1 (see e.g. [BGMRR, §3.4]). Then for any µ ∈ Y there exist unique morphisms
χT
µ : Tµ → Ga and χS

µ : Sµ → Ga such that χT
µ (u · Lµ) = χLU (z−µuzµ) for any u ∈ LU

and χS
µ(u · Lµ) = χLU+(z−µuzµ) for any u ∈ LU+.

The starting point for our proofs is the following claim, taken from [FGV, Lemma 7.1.7].
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Lemma 4.4. Let µ ∈ Y and λ ∈ Y+ be such that µ 6= w◦(λ). Then the restriction of χS
µ

to any irreducible component of Sµ ∩Grλ is dominant.

We deduce the following.

Lemma 4.5. For any µ ∈ Y, the intersection Sµ ∩T0 := Sµ×Gr T0 is a scheme of finite
type, empty unless µ is a sum of positive coroots, and of dimension at most 〈ρ, µ〉. If
µ 6= 0, then we have

dim
(
Sµ ∩ (χT

0 )−1(0)
)
< 〈ρ, µ〉.

Proof. The fact that Sµ ∩ T0 is a scheme of finite type is noted in [BFGM, Proof of
Proposition 6.4]. For any λ ∈ Y, multiplication by zλẇ−1

◦ induces an isomorphism

Sµ ∩ T0
∼−→ Tλ+w◦(µ) ∩ Sλ.

Now by [BFGM, Proposition 6.4], if λ is sufficiently far in the antidominant cone the right-

hand side is contained in Grw◦(λ)+µ, and hence in Grw◦(λ)+µ ∩ Sλ, which as explained
above is empty unless the coweight w◦(λ) + µ − w◦(λ) = µ is a sum of positive coroots
and has dimension

〈ρ, w◦(λ) + µ+ λ〉 = 〈ρ, µ〉
in this case. Through this identification, the map χT

0 becomes the restriction of χS
λ. By

Lemma 4.4, if µ 6= 0 this map is nonconstant on any irreducible component of Grw◦(λ)+µ∩
Sλ, which implies that dim(Sµ ∩ (χT

0 )−1(0)) < 〈ρ, µ〉, as desired. �

Corollary 4.6. Let y ∈ WS
ext, µ ∈ Y+ and ν ∈ Y, and write y = wtλ with w ∈ W and

λ ∈ Y. The intersection (ẇSν)∩Gry is empty unless w◦(λ)−dom(ν) is a sum of positive
coroots, and in this case we have

dim
(
(ẇSν) ∩Gry

)
≤ 〈ρ, ν − λ〉.

Moreover, if y ∈W res
ext and ν 6= λ this inequality is strict.

Proof. Note that the coweight λ is necessarily antidominant here, by Lemma 2.6 and (2.6).
We have

(ẇSν) ∩Gry = (ẇSν) ∩ (I · ẇLλ) = ẇ ·
(
Sν ∩ (ẇ−1IẇLλ)

)
⊂ ẇ ·

(
Sν ∩Grw◦(λ)

)
.

The usual properties of intersections of spherical orbits with semi-infinite orbits recalled
at the beginning of the subsection show that the right-hand side is empty unless w◦(λ)−
dom(ν) is a sum of positive coroots, and has dimension 〈ρ, w◦(λ) + ν〉 = 〈ρ, ν − λ〉 in this
case. Our first claim follows.

Recall that for any β ∈ R and n ∈ Z we have a “root subgroup” Uβ,n ⊂ LG defined
as in [BGMRR, Proof of Lemma 3.10]. If we set

J :=
∏

β∈−R+

〈λ,β〉−1∏
i=nβ

Uβ,i ⊂ ẇ−1Iẇ where nβ =

{
0 if w(β) ∈ −R+;

1 otherwise,

and where the first product is ordered in any fixed arbitrary way, then since λ is an-
tidominant the composition of the product morphism with the map g 7→ g · Lλ induces
an isomorphism J

∼−→ ẇ−1Gry; in other words, if we set

J ′ :=
∏

β∈−R+

−1∏
i=nβ−〈λ,β〉

Uβ,i,

then the composition of the product morphism with the map g 7→ g · L0 induces an
isomorphism

J ′
∼−→ z−λẇ−1Gry.

This shows in particular that z−λẇ−1Gry ⊂ T0.
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Now, assume that y ∈ W res
ext . If β ∈ −Rs, then by Lemma 2.6 we have 〈λ, β〉 = nβ .

Hence in J ′ there is no factor corresponding to the opposite of a simple root, which implies
that z−λẇ−1Gry ⊂ (χT

0 )−1(0). Since

(ẇSν) ∩Gry = ẇzλ ·
(
Sν−λ ∩ (z−λẇ−1 ·Gry)

)
,

Lemma 4.5 then implies our second claim. �

Consider the “twisted product”

Gr ×̃Gr := LG×L
+G Gr

and the (proper) morphism m : Gr ×̃ Gr → Gr induced by multiplication in LG. Given
locally closed subschemes X,Y ⊂ Gr, we can consider the locally closed subscheme X ×̃
Y ⊂ Gr ×̃Gr defined as X ′ ×L+G Y where X ′ is the preimage of X in LG. In particular,
for y ∈ WS

ext and µ ∈ Y+ we have the twisted product Gry ×̃ Grµ ⊂ Gr ×̃ Gr; we will
denote by

my,µ : Gry ×̃Grµ → Gr

the morphism induced by m.

Lemma 4.7. Let y ∈WS
ext, µ ∈ Y+ and η ∈ Y. Then we have

dim(m−1
y,µ(ẏLη)) ≤ 〈ρ, µ+ η〉.

Moreover, this inequality is strict if y ∈W res
ext and η 6= w◦(µ).

Proof. Let us write y = wtλ with w ∈ W and λ ∈ Y; then λ is antidominant (see
Lemma 2.6 and (2.6)). We note that we have a decomposition into locally closed pieces

Gry ×̃Grµ =
⊔
ν∈Y

((ẇSν) ∩Gry) ×̃Grµ,

with only finitely many nonempty terms in the right-hand side; to compute the dimension
in this statement it therefore suffices to consider the intersections

m−1
y,µ(ẏLη) ∩

(
((ẇSν) ∩Gry) ×̃Grµ

)
= m−1

y,µ(ẇLλ+η) ∩
(
((ẇSν) ∩Gry) ×̃Grµ

)
for all ν ∈ Y.

Let us consider some ν ∈ Y such that (ẇSν)∩Gry 6= ∅, and choose g ∈ LU+ such that

ẇg ·Lν ∈ (ẇSν)∩Gry. Then if m−1
y,µ(ẇLλ+η)∩

(
((ẇSν)∩Gry) ×̃Grµ

)
is nonempty, there

exists a ∈ Grµ such that ẇgzν · a = ẇLλ+η; in particular we have Grµ ∩ Sλ+η−ν 6= ∅,
which implies that

(4.1) 〈ρ, µ+ λ+ η − ν〉 ≥ 0,

this inequality being strict unless λ+ η − ν = w◦(µ), i.e. ν = λ+ η − w◦(µ).
We claim that if m−1

y,µ(ẇLλ+η)∩
(
((ẇSν)∩Gry) ×̃Grµ

)
is nonempty, then the natural

morphism

m−1
y,µ(ẇLλ+η) ∩

(
((ẇSν) ∩Gry) ×̃Grµ

)
→ (ẇSν) ∩Gry

is a locally closed immersion. Indeed, if we denote by Xy,µ the image of Gry ×̃Grµ under
the proper morphism m (a closed subscheme of Gr), then the canonical morphism

Gry ×̃Grµ → Gry ×Xy,µ

is a closed immersion. If we denote by Y ηy,µ ⊂ Gry ×̃ Grµ the inverse image of Gry ×
{ẇLλ+η} under this map, then the natural morphism

Y ηy,µ → Gry

is a closed immersion, and hence so is its restriction

Y ηy,µ ∩
(
((ẇSν) ∩Gry) ×̃Grµ

)
→ (ẇSν) ∩Gry
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to the preimage of (ẇSν)∩Gry. Our claim follows, since m−1
y,µ(ẇLλ+η)∩

(
((ẇSν)∩Gry) ×̃

Grµ
)

is the intersection of the domain of the latter morphism with the open subscheme

((ẇSν) ∩Gry) ×̃Grµ.

This claim implies that whenever m−1
y,µ(ẇLλ+η) ∩

(
((ẇSν) ∩Gry) ×̃Grµ

)
is nonempty

we have

dim
(
m−1
y,µ(ẏLη) ∩

(
((ẇSν) ∩Gry) ×̃Grµ

))
≤ dim((ẇSν) ∩Gry).

By Corollary 4.6 the right-hand side is at most 〈ρ, ν − λ〉; combining this observation
with (4.1) we deduce that

dim
(
m−1
y,µ(ẏLη) ∩

(
((ẇSν) ∩Gry) ×̃Grµ

))
≤ 〈ρ, µ+ η〉,

which implies our first claim, and moreover that this inequality is strict unless ν =
λ+ η − w◦(µ).

If we furthermore assume that y ∈W res
ext and η 6= w◦(µ), then λ+ η −w◦(µ) 6= λ. The

second claim in Corollary 4.6 shows that

dim
(
(ẇSλ+η−w◦(µ)) ∩Gry

)
< 〈ρ, η − w◦(µ)〉 = 〈ρ, µ+ η〉,

which shows our second claim. �

We finish this subsection with a reminder on some aspects of the geometric Satake
equivalence (see §3.3) that will be used in our proofs below. Recall the L+G-equivariant
derived category Db

L+G(Gr,k), its subcategory of perverse sheaves PervL+G(Gr,k), and

the (exact) convolution product ?L
+G introduced in §3.3. Below we will use the fact that

the monoidal category

(PervL+G(Gr,k), ?L
+G)

is rigid: every object F has a left and right dual F∨. (This fact can either be checked
directly or deduced from the geometric Satake equivalence.) We will not need an explicit
description of this operation, but only that for µ ∈ Y+ we have

(4.2) (Iµ! )∨ ∼= I−w◦(µ)
∗ , (Iµ∗ )∨ ∼= I−w◦(µ)

! , (ICµ)∨ ∼= IC−w◦(µ).

Our proof will also make use of the following result.

Proposition 4.8. For any λ, µ ∈ Y+ the object Iλ! ?L
+G Iµ! admits a filtration with

subquotients of the form Iν! with ν ∈ Y+. Dually, for any λ, µ ∈ Y+ the object Iλ∗ ?L
+GIµ∗

admits a filtration with subquotients of the form Iν∗ , with ν ∈ Y+.

This result is a geometric version of a theorem on tensor products of modules with
good filtrations (for reductive algebraic groups over fields of positive characteristic) first
due to Mathieu [Ma] in full generality. It can be deduced from this result using the geo-
metric Satake equivalence; a direct geometric proof can also be obtained from [BGMRR,
Theorem 4.16], see [JMW] for some details.

4.3. Proofs in case A = ∅. We can now come to the proofs of the special case A = ∅
of Theorems 4.1 and 4.3. The following result is a consequence of Lemma 4.7 that will
be required below.

Lemma 4.9. Let y ∈W res
ext, let µ ∈ Y+, and let η ∈ −Y+. We have

HomDb
Iu

(Gr,k)(∆y ?
L+G Iµ! ,∇ytη [1]) = 0,

and moreover

HomDb
Iu

(Gr,k)(∆y ?
L+G Iµ! ,∇ytη ) = 0

if η 6= w◦(µ). In case η = w◦(µ), we have

HomDb
Iu

(Gr,k)(∆y ?
L+G Iµ! ,∇ytw◦(µ)) 6= 0.
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Proof. Let Q = (pτ≤−1(jµ! kGrµ [〈2ρ, µ〉]))[1], so that we have a distinguished triangle

jµ! kGrµ [〈2ρ, µ〉]→ Iµ! → Q→ .

Note that Q ∈ pDb
L+G(Gr,k)≤−2. By the t-exactness of ?L

+G and the fact that ∆y and
∇ytη are perverse, we see that

Hom(∆y ?
L+G Q,∇ytη ) = Hom(∆y ?

L+G Q,∇ytη [1]) = 0.

Thus, to prove the lemma it is enough to show that the space

Hom(∆y ?
L+G (jµ! kGrµ [〈2ρ, µ〉]),∇ytη [i])

vanishes if i = 1 or if i = 0 and η 6= w◦(µ), and is nonzero if i = 0 and η = w◦(µ).
Using the notation introduced in §4.2, from the definition we see that

∆y ?
L+G (jµ! kGrµ [〈2ρ, µ〉]) = (my,µ)!k[`(y) + 〈2ρ, µ〉];

by the base change theorem we deduce that

Hom(∆y ?
L+G (jµ! kGrµ [〈2ρ, µ〉]),∇ytη [i])

∼= Hom
(
(mytη

y,µ)!k[`(y) + 〈2ρ, µ〉],kGrytη
[`(ytη) + i]

)
,

where m
ytη
y,µ is the restriction of my,µ to the preimage of Grytη . Now, Grytη is isomorphic

to an affine space, and by equivariance the cohomology sheaves of (m
ytη
y,µ)!k are constant

sheaves. The Hom-group above may therefore be computed after passing to stalks at
ẏLη ∈ Grytη . We deduce that

Hom(∆y ?
L+G (jµ! kGrµ [〈2ρ, µ〉]),∇ytη [i]) ∼= H`(y)+〈2ρ,µ〉−`(ytη)−i

c (m−1
y,µ(ẏLη);k)∗.

Here by Lemma 2.7 we have `(ytη) = `(y)− 〈2ρ, η〉, so that

(4.3) Hom(∆y ?
L+G (jµ! kGrµ [〈2ρ, µ〉]),∇ytη [i]) ∼= H〈2ρ,µ+η〉−i

c (m−1
y,µ(ẏLη);k)∗.

By Lemma 4.7, if η 6= w◦(µ) we have dim(m−1
y,µ(ẏLη)) < 〈ρ, µ+ η〉, so the right-hand side

of (4.3) vanishes for i = 0 and i = 1. If η = w◦(µ), then we have

dim(m−1
y,µ(ẏLη)) ≤ 〈ρ, µ+ η〉 = 0

(again by Lemma 4.7) and m−1
y,µ(ẏLη) 6= ∅ (since [ẏ : Lη] ∈ m−1

y,µ(ẏLη)); the right-hand
side of (4.3) therefore still vanishes for i = 1, and is nonzero for i = 0. �

We are now ready to prove Theorem 4.3 in the special case A = ∅.

Proof of Theorem 4.3 when A = ∅. The proof will consist of five steps.
Step 1. If F ,G ∈ PervL+G(Gr,k) and if F has a standard filtration and G has a

costandard filtration, then

Hom(∆y ?
L+G F ,∇y ?L

+G G[1]) = 0.

Of course we can assume that G = Iν∗ for some ν ∈ Y+. In the case where ν = 0, this claim
follows from Lemma 4.9. The general case reduces to this case using the isomorphism

Hom(∆y ?
L+G F ,∇y ?L

+G G[1]) ∼= Hom(∆y ?
L+G F ?L

+G G∨,∇y[1]),

since F ?L+G G∨ has a standard filtration by (4.2) and Theorem 4.8.
Step 2. Let c : ∆y → ∇y be the canonical map. If F ∈ PervL+G(Gr,k) has a standard

filtration and G ∈ PervL+G(Gr,k) has a costandard filtration, then the map

Hom(F ,G)→ Hom(∆y ?
L+G F ,∇y ?L

+G G) given by φ 7→ c ?L
+G φ

is an isomorphism. First we assume that G = I0
∗ ; in this case we will prove the claim

by induction on the length of a standard filtration of F . If F = Iµ! for some µ ∈ Y+,
then both sides vanish if µ 6= 0 by Lemma 4.9, and the map is clearly an isomorphism if
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µ = 0. Now suppose F has a standard filtration of length > 1, and choose some short
exact sequence 0 → F ′ → F → Iµ! → 0 where F ′ has a standard filtration and µ ∈ Y+.
We have a commutative diagram

0 Hom(Iµ! , I
0
∗) Hom(F , I0

∗) Hom(F ′, I0
∗) Hom(Iµ! , I

0
∗ [1])

0 Hom(∆y?Iµ! ,∇y) Hom(∆y?F ,∇y) Hom(∆y?F ′,∇y) Hom(∆y?Iµ! ,∇y[1]),

o o o

where we write ? for ?L
+G and all vertical arrows are as in the claim. The first and

third vertical arrows are isomorphisms by induction, and the fourth vertical arrow is an
isomorphism because both terms vanish (by Step 1). By the five lemma, the second
vertical arrow is also an isomorphism, finishing the proof in this case. Once this case is
established, we deduce the general case by adjunction, as in Step 1.

Step 3. If F ,G ∈ PervL+G(Gr,k) and if F has a standard filtration and G has a
costandard filtration, then the map

Hom(F ,G)→ Hom(Ly ?
L+G F , Ly ?L

+G G)

is an isomorphism. This follows from the observation that the map from Step 2 is the
composition of the map above with the natural map

Hom(Ly ?
L+G F , Ly ?L

+G G)→ Hom(∆y ?
L+G F ,∇y ?L

+G G),

which is injective by t-exactness of ?L
+G.

Step 4. If F ∈ PervL+G(Gr,k) has a standard filtration, and G ∈ PervL+G(Gr,k) is
arbitrary, then the map

Hom(F ,G)→ Hom(Ly ?
L+G F , Ly ?L

+G G)

is an isomorphism. Let Z ⊂ Gr be the support of G; this is a closed union of finitely many
L+G-orbits. By results of [MV] (see [BaR, §1.12.1]), the category PervL+G(Z,k) admits
a projective generator which admits a standard filtration. By duality, it therefore also
admits an injective generator which admits a costandard filtration; in particular there
exists a copresentation

0→ G → I → I ′

where I, I ′ ∈ PervL+G(Gr,k) have costandard filtrations. We then have a commutative
diagram

0 Hom(F ,G) Hom(F , I) Hom(F , I ′)

0 Hom(Ly ? F , Ly ? G) Hom(Ly ? F , Ly ? I) Hom(Ly ? F , Ly ? I ′),
o o

where we again write ? for ?L
+G. The last two vertical maps are isomorphisms by Step 3,

so by the five lemma the first is as well.

Step 5. Proof of full faithfulness of Ly ?
L+G (−) in general. This is very similar to

Step 4, using a presentation of F by perverse sheaves with standard filtrations. �

Using the special case of Theorem 4.3 proved above, we can now deduce the corre-
sponding special case of Theorem 4.1.

Proof of Theorem 4.1 when A = ∅. First we claim that Ly ?
L+G ICµ is simple. Indeed,

otherwise there exists a surjective and noninjective morphism Ly ?
L+G ICµ � F for some

simple object F in PervIu(Gr,k). Now convolution commutes with Verdier duality, so

Ly ?
L+G ICµ is self-dual. Since the simple object F is also self-dual, we can apply Verdier

duality to obtain an injective and nonsurjective morphism F ↪→ Ly ?
L+GICµ. Composing
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these two maps, we obtain a nonzero endomorphism of Ly?
L+GICµ which is not a multiple

of the identity, proving that

dim HomDb
Iu

(Gr,k)(Ly ?
L+G ICµ, Ly ?L

+G ICµ) ≥ 2,

and therefore contradicting (the known special case of) Theorem 4.3.

On the other hand, we claim that the perverse sheaf Ly ?
L+G ICµ admits Lytw◦(µ) as a

composition factor. (This claim will complete the proof.) Indeed, we have a surjection

(4.4) ∆y ?
L+G ICµ � Ly ?

L+G ICµ.

Here since ∇ytw◦(µ) has Lytw◦(µ) as socle, the fact that Hom(∆y ?
L+G ICµ,∇ytw◦(µ)) 6= 0

(see Lemma 4.9) implies that ∆y ?
L+G ICµ admits Lytw◦(µ) as a composition factor. For

dimension reasons the support of the kernel of (4.4) does not intersect Grytw◦(µ) , so this
kernel does not admit Lytw◦(µ) as a composition factor, which implies the desired claim. �

Remark 4.10. The reasoning at the end of the preceding proof can be used to make
Lemma 4.9 a little bit more precise: in the notation of this statement we have

dim
(

HomDb
Iu

(Gr,k)(∆y ?
L+G Iµ! ,∇ytw◦(µ))

)
= 1.

Indeed, this follows from the observation that the support of the kernel of (4.4) does not
meet Grytw◦(µ) .

4.4. Proofs for general A. We now prove Theorems 4.1 and 4.3 for a general finitary
subset A ⊂ Saff .

Proof of Theorem 4.1. Recall the functor AvAψ studied in §3.7. It is clear that this functor

commutes with convolution on the right by L+G-equivariant objects. Applying AvAψ to

the isomorphism Ly ?
L+G ICµ ∼= Lytw◦(µ) from the case A = ∅ and using Lemma 3.3(4),

we deduce the desired isomorphism. �

Proof of Theorem 4.3. Since the case A = ∅ is now known, it is enough to show that for
F ,G ∈ PervL+G(Gr,k) the map

(4.5) Hom(Ly ?
L+G F , Ly ?L

+G G)→ Hom(LAy ?
L+G F , LAy ?L

+G G)

induced by AvAψ is an isomorphism. Since the functor (−) ?L
+G F is left adjoint to

(−) ?L
+G F∨, we may (and will) assume without loss of generality that F = IC0.

First, we claim that the map

(4.6) Hom(∆y, Ly ?
L+G G)→ Hom(∆A

y , L
A
y ?
L+G G)

induced by AvAψ is an isomorphism. Indeed, by adjunction we have

Hom(∆A
y , L

A
y ?
L+G G) ∼= Hom(AvAψ (∆y),AvAψ (Ly ?

L+G G))

∼= Hom(AvA! (AvAψ (∆y)), Ly ?
L+G G).

Thus, (4.6) can be identified with the map

(4.7) Hom(∆y, Ly ?
L+G G)→ Hom(AvA! (AvAψ (∆y)), Ly ?

L+G G)

induced by the adjunction morphism f : AvA! (AvAψ (∆y)) → ∆y. By Lemma 3.4(2)

we have AvA! (AvAψ (∆y)) ∼= AvA! (DA
e ) ?I ∆y, and our map is induced by a surjection

AvA! (DA
e ) → Le. It follows from [BR, Lemma 10.1] that the kernel of this surjection

admits a filtration with subquotients of the form Dv for v ∈ WA r {e}, each appearing
once. Since y is minimal in WAy, we have `(vy) = `(v) + `(y) for any such v, from which
one deduces that Dv ?

I ∆y
∼= ∆vy by standard arguments; we deduce that f is surjective,

and that its kernel K has a standard filtration with subquotients of the form ∆vy with
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v ∈WAr {e}. Thus (4.7) is injective, and to prove that it is surjective it suffices to show

that Hom(K, Ly ?L
+G G) = 0, which will follow if we prove that

Hom(∆vy, Ly ?
L+G G) = 0

when v ∈WA r {e}. This holds because the unique simple quotient of ∆vy, namely Lvy,

does not occur as a composition factor of Ly ?
L+G G, since these composition factors are

of the form Lytw◦ (ν) for some ν ∈ Y+ by Theorem 4.1, and thus in particular have their

label in AWS
ext. (Note that vy does not belong to AWS

ext since it is not minimal in the
coset WAvy = WAy.)

Next, we consider the commutative diagram

Hom(Ly, Ly ?
L+G G) Hom(∆y, Ly ?

L+G G)

Hom(LAy , L
A
y ?
L+G G) Hom(∆A

y , L
A
y ?
L+G G).

(4.5) (4.6)

Here the right-hand vertical arrow is an isomorphism as proved above, and both horizontal
maps are injective, because they are induced by the surjective morphisms ∆y → Ly and
∆A
y → LAy respectively. The upper arrow is in fact even an isomorphism, since the kernel of

the surjection ∆y → Ly has its composition factors of the form Lz with `(z) < `(y), while

all composition factors of Ly ?
L+G G are of the form Lytν with ν ∈ −Y+ by Theorem 4.1,

and hence have their label of length at least `(y) by Lemma 2.7. We deduce that all four
maps above are isomorphisms, which finishes the proof. �

4.5. A conjecture on the image of Φy,A. A special case of the functor in Theorem 4.3
has already appeared in the literature: it is the case when A = S (so that WA = W )
and y = tςw◦. For these choices, it is shown in [BGMRR] that this functor is in fact an
equivalence of categories. For general A and y, this functor cannot be an equivalence,
simply because not every simple object of Perv(IAu ,XA)(Gr,k) belongs to its essential im-
age. But one might still expect that in some cases it satisfies a property stronger than
full faithfulness. Namely, denote by Cy,A ⊂ Perv(IAu ,XA)(Gr,k) the Serre subcategory

generated by the simple objects of the form LAytλ with λ ∈ −Y+. Then by exactness
and Theorem 4.1, the functor Φy,A factors through a (fully faithful and exact) functor
PervL+G(Gr,k)→ Cy,A, which will still be denoted Φy,A.

Conjecture 4.11. Assume that y ∈ AW res
ext is minimal in AWS

ext for the Bruhat order.
Then the functor

Φy,A : PervL+G(Gr,k)→ Cy,A

is an equivalence of categories.

We see Conjecture 4.11 as giving “partially Whittaker models” for the Satake category,
in the spirit of [BGMRR]. As an evidence for this conjecture, let us note that it holds at
least in the following cases:

(1) when A = ∅ and y = e;
(2) when A = S and y = tςw◦;
(3) when k has characteristic 0.

In fact, in case (1) this claim is equivalent to the standard result—due to Mirković–
Vilonen [MV]—that the forgetful functor from PervL+G(Gr,k) to the category of perverse
sheaves constructible with respect to the stratification by L+G-orbits is an equivalence,
see [MV, Proposition 2.1]. In case (2), the functor Φtςw◦,S is the main object of study
of [BGMRR]; in this setting we have Ctςw◦,S = Perv(ISu ,XS)(Gr,k) by Lemma 2.5, tςw◦
is minimal for the Bruhat order because it has minimal length in SWS

ext (by the same
statement and Lemma 2.7), and the main result of [BGMRR] states that this functor
is an equivalence of categories. (Note that revisiting the arguments in [BGMRR, §4.3]
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involving parity complexes, one can prove directly that Φtςw◦,S is essentially surjective
once we know that it is fully faithful.) Finally, in case (3), parity considerations imply
that the category Cy,A is semisimple, which of course implies the statement.

4.6. An example. One can check that, given y ∈ AW res
ext minimal in AWS

ext for the
Bruhat order, Conjecture 4.11 is equivalent to the statement that

(4.8) Ext1
Perv(IAu ,XA)(Gr,k)(∆

A
y ?
L+G Iµ! ,∇

A
y ) = 0 for any µ ∈ Y+.

Let us denote by

mA
y,µ : GrAy ×̃Grµ → Gr

the morphism induced by m. As in the proof of Lemma 4.9, we have an embedding

(4.9) Ext1
Perv(IAu ,XA)(Gr,k)(∆

A
y ?
L+G Iµ! ,∇

A
y ) ↪→ H〈2ρ,µ〉−1

c

(
(mA

y,µ)−1(ẏL0);F
)∗

where F is the restriction to (mA
y,µ)−1(ẏL0) of the pullback of the rank one (IAu ,XA)-

equivariant local system on GrAy . Since GrAy = ẇA · GrwAy, left multiplication by ẇ−1
A

induces an isomorphism

(mA
y,µ)−1(ẏL0)

∼−→ m−1
wAy,µ(ẇ−1

A ẏL0).

The right-hand side is of the form studied in Lemma 4.7; if wAy is restricted then

dim((mA
y,µ)−1(ẏL0)) < 〈ρ, µ〉

provided µ 6= 0, which allows one to deduce (4.8) in this case. Unfortunately, this
condition is not always satisfied, and it can happen that dim((mA

y,µ)−1(ẏL0)) = 〈ρ, µ〉.
Indeed, consider the case G = GL2(F), with the standard choice of maximal torus and

(negative) Borel subgroup, and A = S. Here we have a canonical identification Y = Z2,
such that Y+ = {(a, b) ∈ Z2 | a ≥ b}, and we can take ς = (1, 0). If s is the unique
element in S, then y = tςs is restricted and minimal in SWS

ext (in fact `(y) = 0), but
sy = t(0,1) is not restricted. One can check that in this case we have

(mS
t(1,0)s,(1,−1))

−1(L(1,0)) =
{[

( z x0 1 ) : ( 1 −xz−1

0 1
)G(F[[z]])

]
: x ∈ F×

}
;

in particular, this scheme has dimension 1 = 〈ρ, (1,−1)〉. Here F is the restriction of the
Artin–Schreier local system, so that the right-hand side in (4.9) has dimension 1.

This example illustrates why our proof of Theorem 4.3 has to be different in case
A 6= ∅. (Note that in any case Conjecture 4.11 is known in the special case considered
here, as explained in §4.5.)
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