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Abstract
Algorithmic Fairness is an established area of machine learning, willing to reduce the influence

of hidden bias in the data. Yet, despite its wide range of applications, very few works consider the
multi-class classification setting from the fairness perspective. We focus on this question and extend
the definition of approximate fairness in the case of Demographic Parity to multi-class classification.
We specify the corresponding expressions of the optimal fair classifiers. This suggests a plug-in
data-driven procedure, for which we establish theoretical guarantees. The enhanced estimator is
proved to mimic the behavior of the optimal rule both in terms of fairness and risk. Notably, fairness
guarantees are distribution-free. The approach is evaluated on both synthetic and real datasets and
reveals very effective in decision making with a preset level of unfairness. In addition, our method is
competitive (if not better) with the state-of-the-art in binary and multi-class tasks.

1 Introduction
Algorithmic fairness has become very popular during the last decade Zemel et al. [2013], Lum and
Johndrow [2016], Calders et al. [2009], Zafar et al. [2017], Agarwal et al. [2019, 2018], Donini et al. [2018b],
Chzhen et al. [2019], Chiappa et al. [2020], Barocas et al. [2018] as it addresses an important social concern:
mitigating historical bias contained in the data. This is a crucial issue in many applications such as loan
assessment or criminal sentencing among others. The main objective in algorithmic fairness consists
in reducing the influence of a sensitive attribute on a prediction. Several notions of fairness have been
considered in the literature for binary classification Zafar et al. [2019], Barocas et al. [2018]. All of them
impose some independence condition between the sensitive feature and the prediction. This independence
can be desired on some or all values of the label space, see Equality of odds or Equal opportunity [Hardt
et al., 2016b]. In this paper, we focus on the well established Demographic Parity (DP) [Calders et al.,
2009] that requires the independence between the sensitive feature and the prediction function, while not
relying on labels. DP has a recognized interest in many applications, such as loan agreement without
gender attributes or crime prediction without ethnicity discrimination [Hajian et al., 2011, Kamiran et al.,
2013, Barocas and Selbst, 2014, Feldman et al., 2015]. Previously mentioned references consider either
the regression or the binary classification frameworks, although most (modern) applications fall within
the scope of multi-class classification (e.g. image recognition or text categorization). As an example,
one might cite hiring tools based on Machine Learning (ML) models to give candidates one- to five-star
ratings and favors men for software developers and other technical positions [Dastin, 2018].

The present work fills two gaps in the literature: i) it extends algorithmic fairness to the multi-class
setting; ii) it properly studies the approximate fairness (also called as ε-fairness) from the theoretical point
of view. Indeed, approximate fairness is known to be very efficient from a practical perspective Barocas
et al. [2018], Zafar et al. [2019]. Nevertheless, main existing theoretical results only focus on exact fairness
constraints, that is, they do not allow for deviating from a perfectly fair algorithm.

1.1 Main contributions
Overall, we emphasize that the present paper considers both the theoretical and the practical aspects of
approximate fairness under the popular demographic parity constraint. Up to our knowledge, this is the
first contribution that combines both aspects in the multi-class setting.

We establish a closed formula of the optimal predictor for both exact and approximate fairness
constraints. Our proposed procedure is a post-processing algorithm which relies on solving a constrained
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minimization problem. Specifically, in a first step we estimate the conditional probabilities of the output
label given the sensitive attribute and the feature vectors, while a second step of the algorithm is dedicated
to enforce fairness by shifting the estimated conditional probabilities in an optimal manner. We derive
fairness and risk guarantees for our estimation procedure with explicit finite sample bounds. We also
highlight the numerical performance of our algorithm and show that it performs as good as state-of-the-art
multi-class methods for fair (or approximate fair) prediction. One of the main striking features of our
procedure is that it can be applied to any off-the-shelf estimator of the conditional probabilities and it
succeeds to enforce fairness at any pre-specified level.

We want to underline that the extensions, with respect to the existing literature, to multi-class and
to approximate fairness are two theoretical aspects of the contribution. Both considerations involve
additional technical arguments. In particular, dealing with approximate fairness is a new technical
challenge. It is worth noticing that even in the binary classification setting, the control of the unfairness
of the algorithms has not been analyzed theoretically.

Let us now summarize our main contributions:

• We provide an optimal solution for the multi-class problem under exact or approximate DP
constraints. In particular, we derive a closed formula for the optimal (approximate) fair classifier.

• Based on this formula, we build a data-driven procedure that mimics the performance of the optimal
rule both in terms of risk and fairness. Notably, our fairness guarantees are distribution-free and
are established both in expectation and with high probability.

• We also established rates of convergence for the resulting classifier w.r.t. a suitable risk that
combines both the error rate and the unfairness measure. A salient point of our theoretical findings
is that our procedure achieves fast rates of convergence under a Margin type assumption.

• The approach is illustrated on several real and synthetic datasets with various bias levels. It provides
robust and effective decision making rules with a preset level of unfairness.

1.2 Related works
There are mainly three ways to build fair prediction: i) pre-processing methods mitigate bias in the data
before applying classical ML algorithms, see for instance Adebayo and Kagal [2016], Calmon et al. [2017],
Zemel et al. [2013]; ii) in-processing methods reduce bias during training, see for instance [Agarwal et al.,
2018, Donini et al., 2018a, Agarwal et al., 2019]; iii) post-processing methods enforce fairness after fitting,
see for instance Hardt et al. [2016a], Chiappa et al. [2020], Chzhen et al. [2020b], Le Gouic et al. [2020].
The present work falls within the last category. In a related study, [Chzhen et al., 2019] exhibits fair
binary classifiers under Equal Opportunity constraints. In contrast, we focus on the multi-class setting,
while imposing DP constraints and we also treat the case of approximate fairness.

Up to our knowledge, only few works consider fairness in the multi-class setting. In Ye and Xie [2020],
the authors enforce fairness by sub-sample selection and is in-processing. In contrast, we keep the whole
sample and enforce fairness in a post-processing manner. Besides, from a high-level perspective, the
procedure described in [Ye and Xie, 2020] imposes fairness on each component of the score function. It
is clear that such methodology can be generalized to any convex empirical risk minimization (ERM)
problem such as SVM or quadratic risk. But, since the decision rule in the multi-class setting relies on
the maximizer over scores, we rather directly impose fairness on the maximizer itself.

The multi-class framework is also considered in [Zhang et al., 2018, Tavker et al., 2020, Alghamdi
et al., 2022]. However, the authors in [Zhang et al., 2018, Tavker et al., 2020] do not provide an explicit
formulation of the optimal fair rule and their theoretical fairness guarantee is not distribution free. In
addition, they only consider numerical experiments for binary classification. Finally, the recent work in
[Alghamdi et al., 2022] consider projecting an unfair classifier into a set of fair classifiers. However, as
illustrated in Section 4.3, their method seems to fail in exact fairness. Our method provides valuable
benefits on all these aspects.

1.3 Outline of the paper
In Section 2, we define the Demographic Parity constraint and the notion of exact/approximate fair
classifier in the multi-class classification setup. An explicit expression of the optimal fair classifier is also
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provided in Section 2. The corresponding data-driven procedure together with its statistical guarantees
on risk and fairness are presented in Section 3. The numerical performance of the procedure is illustrated
on both synthetic and real datasets in Section 4. The paper concludes with a discussion and perspective
Section 5. For ease of readability, proofs and technical arguments are postponed to the Appendix of the
paper.

2 Multi-class classification with demographic parity
Let (X,S, Y ) be a random tuple with distribution P, where X ∈ X ⊂ Rd, S ∈ S := {−1, 1} and
Y ∈ [K] := {1, . . . ,K} with K a fixed number of classes. The distribution of the sensitive feature S is
denoted by (πs)s∈S , and we assume that mins∈S πs > 0, meaning that we have access to both sensitive
groups with non zero probability. A classification rule g is a function mapping X × {−1, 1} onto [K], and
its performance is evaluated through the misclassification risk

R(g) := P (g(X,S) 6= Y ) .

For k ∈ [K], we denote pk(X,S) := P (Y = k|X,S) the conditional probabilities. Recall that a Bayes
classifier minimizing the misclassification risk R(·) over the set G of all classifiers and is then given by

g∗(x, s) ∈ arg max
k

pk(x, s) , for all (x, s) ∈ X × S .

We introduce in Section 2.1 the Demographic parity constraint as well as the definition of an approximate
fair classifier. The characterization of the optimal fair classifier and its main properties are provided in
Section 2.2.

2.1 Demographic parity
We consider DP constraint [Calders et al., 2009] that asks for independence of the prediction function
from the sensitive feature S. This definition naturally extends the DP constraint considered in binary
classification [Agarwal et al., 2019, Chiappa et al., 2020, Gordaliza et al., 2019, Jiang et al., 2019, Oneto
et al., 2019].

Approximate fairness, also referred to as ε-fairness, is highly popular from a practical perspective, in
particular when a strict fairness constraint strongly deflates the accuracy of the method. In this context,
the user is allowed to adjust the fairness constraint if relevant or needed. Of course, such modularity
has a cost: the solution is less fair than the exact fair one. Moreover, the chosen unfairness level has no
convincing interpretation. Without clear justification, some empirical rules exist such as the forth-firth
that tolerates an unfairness of 0.2 [Holzer and Holzer, 2000, Collins, 2007, Feldman et al., 2015]. In this
section, we consider approximate fairness setting without discussing the issue of properly selecting of the
unfairness level ε.

We define the notion of ε-fairness in the particular case of Demographic Parity.

Definition 2.1 (ε-fairness w.r.t. DP). The unfairness of a classifier g ∈ G is quantified by

U(g) := max
k∈[K]

|P (g(X,S) = k|S = 1)− P (g(X,S) = k|S = −1)| .

A classifier g is ε-fair if and only if U(g) ≤ ε. In particular, ε = 0 means that g is exactly fair.

Alternative measures of unfairness could be considered. The maximum can for instance be replaced by
a summation over k ∈ [K]. While both measures have their advantages, picking the maximum simplifies
fairness evaluation in empirical studies.

2.2 Optimal fair classifier
Our goal is to derive an explicit formulation of the optimal ε-fair classifiers w.r.t. the misclassification
risk, denoted by g∗ε−fair, which solves ming∈Gε−fair R(g) where Gε−fair is the set of all ε-fair prediction
functions. Its computation requires to properly balance misclassification risk together with fairness
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criterion. The first step is to write the Lagrangian of the above problem: for λ(1) = (λ(1)
1 , . . . , λ

(1)
K ) ∈ RK+

and λ(2) = (λ(2)
1 , . . . , λ

(2)
K ) ∈ RK+ , we define the ε-fair-risk as

Rλ(1),λ(2) (g) := R(g) +
K∑
k=1

λ
(1)
k [P (g(X,S) = k|S = 1)− P (g(X,S) = k|S = −1)− ε]

+
K∑
k=1

λ
(2)
k [P (g(X,S) = k|S = −1)− P (g(X,S) = k|S = 1)− ε] .

In order to characterize the optimal fair classifier, we also require the following technical condition.

Assumption 2.2 (Continuity assumption). The mapping t 7→ P (pk(X,S)− pj(X,S) ≤ t|S = s) is
assumed continuous, for any k, j ∈ [K] and s ∈ S.

Assumption 2.2 implies that the distribution of the differences pk(X,S)− pj(X,S) has no atoms. It
is required to derive a closed expression for g∗ε−fair and insures an accurate calibration of the fairness
at the prescribed level. Notice that in the binary case (K = 2), it boils down to the continuity of
t 7→ P (pk(X,S) ≤ t|S = s) considered in [Chzhen et al., 2019]. However when K ≥ 3, these two
conditions differ and we stress that Assumption 2.2 is a well tailored condition for the multi-class problem.
We are now in position to provide a characterization of optimal ε-fair classifier.

Theorem 2.3. Let H : R2K
+ → R be the function

H(λ(1), λ(2)) =
∑
s∈S

EX|S=s

[
max
k

(
πspk(X, s)− s(λ(1)

k − λ
(2)
k )
)]

+ ε

K∑
k=1

(λ(1)
k + λ

(2)
k ) .

Let Assumption 2.2 be satisfied and define (λ∗(1), λ∗(2)) ∈ arg min(λ(1),λ(2))∈R2K
+
H(λ(1), λ(2)). Then,

g∗ε−fair ∈ arg ming∈Gε−fair R(g) if and only if g∗ε−fair ∈ arg ming∈G Rλ∗(1),λ∗(2)(g).
In addition, for all (x, s) ∈ X × S, we can rewrite the optimal classifier as

g∗ε−fair(x, s) = arg max
k∈[K]

(
πspk(x, s)− s(λ∗(1)

k − λ∗(2)
k )

)
.

Theorem 2.3 entails a closed form expression of optimal fair classifiers, which is the bedrock of our
procedure: any optimal fair classifier is simply maximizing scores, that are obtained by shifting the original
conditional probabilities in a proper manner. The above result also points out that the optimum of the
risk R over the class of fair classifiers also minimizes the fair-risk Rλ∗(1),λ∗(2) . Hence, by construction,
Rλ∗(1),λ∗(2) is a risk measure that efficiently balances both classification accuracy and unfairness. An
important consequence of the proof of Theorem 2.3 is the following proposition that more precisely
characterizes the Lagrange multipliers (λ∗(1), λ∗(2)), and the level of unfairness of the ε-fair predictor.

Proposition 2.4. Let ε ≥ 0. For each k ∈ [K], we have that λ∗(1)
k λ

∗(2)
k = 0 and λ

∗(1)
k + λ

∗(2)
k ≥ 0.

Besides, if for some k

i) λ
∗(1)
k > 0, then PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
= ε,

ii) λ
∗(2)
k > 0, then PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
= −ε.

From the above result, we easily deduce the following corollary.

Corollary 2.5. Let ε ≥ 0. It holds that

i) either the Bayes classifiers satisfies U(g∗) ≤ ε and then g∗ = g∗ε−fair. In this case λ∗(1) = λ∗(2) = 0;

ii) or the ε-fair classifier satisfies U(g∗ε−fair) = ε.

A straightforward consequence of the above Proposition 2.4 and Corollary 2.5 is that

0 ≤ R(g∗ε−fair) = Rλ∗(1),λ∗(2)(g∗ε−fair) ≤ Rλ∗(1),λ∗(2)(g) ≤ R(g) + C (U(g)− ε) ,

for all g ∈ G and for some constant C > 0 that depends on K. In the case of exact fairness (e.g. ε = 0)
the following remark gives a specific characterization of the exact fair classifier.
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Remark 2.6 (Exact fairness). All previous results simplify in the exact fairness case setting where ε = 0.
Considering the reparametrization β∗k := λ

∗(1)
k − λ∗(2)

k ∈ R, we deduce the optimal fair classifier in this
case

g∗fair(x, s) ∈ arg max
k

(πspk(x, s)− sβ∗k) , (x, s) ∈ X × S,

where
β∗ ∈ arg min

β∈RK

∑
s∈S

EX|S=s

[
max
k

(πspk(X, s)− sβk)
]
.

In view of Corollary 2.5, we have U(g∗fair) = 0.

Binary classification Finally, we conclude this section with a particular focus on the binary classifica-
tion setting where specific characterization of the optimal fair predictor can be obtained.

Corollary 2.7. Let ε ≥ 0. In the binary setting (K = 2 with label space Y = {0, 1}), the fairness
constraint reduces to a single condition and the optimal fair classifier simplifies as

g∗fair(x, s) = 1{p1(x,s)≥ 1
2 + sβ∗

2πs }
, (x, s) ∈ X × S ,

where, with the notation Fs(t) = P (p1(X,S) ≤ t | S = s) we have

i) β∗ = 0 if
∣∣F1

( 1
2
)
− F−1

( 1
2
)∣∣ ≤ ε;

ii) β∗ is solution in β of
∣∣∣F1

(
β+π1
2π1

)
= F−1

(
−β+π−1

2π−1

)∣∣∣ = ε otherwise.

The proof of this result follows directly from Theorem 2.3 by considering classifiers g that satisfy
the fairness constraint |P (g(X,S) = 1 | S = −1)− P (g(X,S) = 1 | S = 1)| ≤ ε. This constraint ensures
that the condition is also satisfied for g(X,S) = 0 since g is a binary function.

The above result highlights several important facts about the characterization of the optimal fair
classifier in the binary setting. First, the optimal rule is deduced just by thresholding the conditional
probability p1. The thresholding is not at the classical level 1/2 (e.g. without fairness constraint) but
at a shifting of this value by sβ∗

2πs to enforce fairness. Second, observe that the rule only depends on p1
(and not p0) for the same reason as in classical binary classification, that is p0 = 1− p1. This yields to a
reduction of the number of Lagrange parameters into a single one β∗. Notice that the case β∗ = 0 means
that the Bayes rule is already fair and then coincides with the ε-fair optimal predictor. In contrast, if
β∗ 6= 0, the optimal ε-fair rule differs from the Bayes rule and the modification of the rule is deduced by
shifting the conditional probability.

3 Data-driven procedure
This section is devoted to the definition and the theoretical study of our empirical procedure that relies
on the plug-in principle. The construction of our estimator is formally presented in Section 3.1 while its
statistical properties are provided in Section 3.2.

3.1 Plug-in estimator
The enhanced estimation procedure is in two steps. According to the definition of the optimal ε-fair
predictor given in Theorem 2.3, we first build estimators of the conditional probabilities (pk)k and then
proceed with the estimation of the parameters λ∗ and (πs)s∈S . Notably, our data-driven procedure is
semi-supervised as it relies on two independent datasets, one labeled and another unlabeled.

The first labeled dataset Dn = (Xi, Si, Yi)i=1,...,n contains i.i.d. samples from the distribution P. It
allows to train estimators (p̂k)k of the conditional probabilities (pk)k by the means of any machine learning
supervised algorithm, e.g., Random Forest, SVM. At this level, it is important to stress a key feature of
the algorithm. Ones the empirical conditional probabilities p̂k are trained, the theoretical analysis of
the risk and the unfairness of the plug-in rule requires continuity conditions on the random variables
p̂k(X,S) (conditional on the learning sample, see Assumption 2.2). Notably, this is automatically satisfied
whenever perturbing (p̂k)k with a continuous random noise (with a small magnitude to avoid deflating
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the statistical properties of the estimate). We insure such a property simply by randomization. Indeed,
let u be a non negative real number. For each k ∈ [K], we introduce

p̄k(X,S, ζk) := p̂k(X,S) + ζk,

with (ζk)k∈[K] being i.i.d. according to a uniform distribution on [0, u]. This perturbation improves the
fairness calibration in both theory and practice due to the fact that atoms for the random variables
p̂k(X,S)− p̂j(X,S) are avoided in this case.

The second unlabeled dataset D′N contains N i.i.d. copies of (X,S). It is used to calibrate fairness.
For s ∈ S, the number of observations corresponding to S = s is denoted by Ns, so that N−1 +N1 = N .
On the one hand, the feature vectors in D′N are denoted by Xs

1 , . . . , X
s
Ns

and are i.i.d. data from
the distribution PXs of X|S = s. On the other hand, the sensitive features from D′N are denotes by
(S1, . . . , SN ). The latter are i.i.d. and are used to compute empirical frequencies (π̂s)s∈S as estimates
of (πs)s∈S (recall that πs = P(S = s)). Now notice that the estimation of parameters (λ∗(1), λ∗(2))
only involves marginal distributions of PX|S=s and PS . Therefore, this estimation part relies on the
estimators π̂s, on the feature vectors (Xs

1 , . . . , X
s
Ns

), and on independent copies (ζsk,i)k∈[K],i∈[Ns] of a
Uniform distribution on [0, u] (for s ∈ S). In particular, we define (λ̂(1), λ̂(2)) as a minimizer over R2K

+ of
Ĥ(λ(1), λ(2)) that is defined by (see the population counterpart given in Theorem 2.3)

Ĥ(λ(1), λ(2)) :=
∑
s∈S

1
Ns

Ns∑
i=1

[
max
k

(
π̂sp̄k(Xs

i , s, ζ
s
k,i)− s(λ

(1)
k − λ

(2)
k )
)]

+ ε

K∑
k=1

(λ(1)
k + λ

(2)
k ) . (1)

Finally, our randomized fair algorithm ĝ is defined as

ĝε(x, s) = arg max
k∈[K]

(
π̂sp̄k(x, s, ζk)− s(λ̂(1)

k − λ̂
(2)
k )
)
, (x, s) ∈ X × S , (2)

Note that the construction of the plug-in rule ĝ relies on (x, s) but also on the perturbations ζk and ζsk,i
for k ∈ [K], i ∈ [Ns], and s ∈ S, that are easily collected as i.i.d. uniform random variables.

Remark 3.1. Classical datasets often contain only labeled samples. Then, our approach requires to split
the data into two independent samples Dn and D′N , by removing labels in the latter. As illustrated in
Section 4.2, this splitting step is important to get the right level of fairness.

3.2 Statistical guarantees
We are now in position to derive fairness and risk guarantees of our plug-in procedure. We need the
following additional notation: πmin := mins∈S πs and Nmin = min(N1;N−1).

3.2.1 Universal fairness guarantee

We first focus on fairness assessment and prove that the plug-in estimator ĝ is asymptotically ε-fair,
that is, it satisfies the requirement of Definition 2.1. This control on the fairness will be established
both in expectation and with high probability. In addition, we prove that the convergence rate of the
unfairness to zero is parametric with the number of unlabeled data N . Notably, the fairness guarantee is
distribution-free and holds for any estimators of the conditional probabilities.

Theorem 3.2. Let ε ≥ 0. There exists a constant C > 0 depending only on K and πmin such that, for
any estimators p̂k of the conditional probabilities, we have

E [U(ĝε)] ≤ ε+ C√
N

.

This first finite-sample bound on the fairness illustrates a key feature of our post-processing approach.
It makes (asymptotically) ε-fair any off-the-shelf (unconstrained/unfair) estimators of the conditional
probabilities. This post-processing step is especially appealing when the cost of re-training an existing
learning algorithm is high. While the former result provides a control of the unfairness on our algorithm
in expectation, it is also appealing to have a thinner analysis of the unfairness through a high probability
control.
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Theorem 3.3. Let 0 < δ < 1 and define Cδ = 4K
√

2 log( 4K
δ ). Assume that ε >

√
2Cδ√
πminN

and that

N ≥ 2 log(1/δ)
π2

min
. Then there exists an event A(δ) that holds with probability 1− (K + 2)δ on which we

have
Cδ√
Nmin

< ε, and ∀k ∈ [K], λ̂
(1)
k λ̂

(2)
k = 0.

Besides on A(δ), the following holds

1) either |U(ĝε)− ε| ≤ Cδ√
Nmin

;

2) or U(ĝε) < ε− Cδ√
Nmin

, and then we have ĝ = ĝε (for each k ∈ [K], λ̂(1)
k = λ̂

(2)
k = 0).

This result has several levels of understanding. It highlights that the bound on the unfairness
established in Theorem 3.2 is also valid with high probability, that is, there exists some constant C > 0
such that U(ĝε) ≤ ε+ C√

Nmin
with high probability. However, this result covers two significantly different

situations for ĝε: the first case is when the unfairness of ĝε is small w.r.t. to ε. This means that the
unconstrained classifier ĝ is already ε-fair and the action of the fairness constraint on our prediction
function is null. In this case, we have ĝε = ĝ. The second case, which is also the most expected one,
is when at least one coordinate of the Lagrangian is non zero (e.g. either λ̂(1)

k or λ̂(2)
k is non zero for

some k). Here, imposing the fairness constraint is relevant and the unfairness of ĝε falls within a small
interval around ε.

From another perspective, all these conclusions are valid under some conditions on the desired level of
unfairness ε and the sample size N . It is assumed that N is large enough to make the fairness constraint
meaningful. However, it could be interesting to consider the case where ε is smaller than the rate 1√

πminN
.

(Observe that πminN is the expectation of Nmin.) In this case, our statements shows that all values
of ε ∈ [0, 1√

πminN
] lead, from the theoretical perspective, to the same bound on the unfairness of the

resulting classifier.

3.2.2 Consistency result

In this part, we provide a control on the misclassification risk of ĝε. Let us define the `1-norm in RK
between the estimator p̂ := (p̂1, . . . , p̂K) and the vector of the conditional probabilities p := (p1, . . . , pK)
by ‖p̂(X,S)− p(X,S)‖1 =

∑
k∈[K] |p̂k(X,S)− pk(X,S)|. We then derive the following bound.

Theorem 3.4. Let Assumption 2.2 be satisfied. Assume that N

log(N) ≥ 2π−2
min, then it holds that

E[Rλ∗(1),λ∗(2)(ĝε)]−Rλ∗(1),λ∗(2)(g∗ε−fair) ≤ C
(
E [‖p̂(X,S)− p(X,S)‖1] +

∑
s∈S

E [|π̂s − πs|] + log(N)√
N

+ u

)
,

where C > 0 depends on K and πmin.

This result highlights that the excess fair-risk of ĝ depends on i) the L1-risk of p̂ for estimating the
conditional probabilities; ii) the efficiency of the estimators (π̂s)s∈S ; iii) a bound on the unfairness of
the classifier; and iv) the upper-bound u on the regularizing perturbations. In view of Theorem 3.3, ĝε
is consistent w.r.t. the misclassification risk as soon as the estimator p̂ is consistent in L1-norm. In
particular, we can establish the following result.

Corollary 3.5. Let ε ≥ 0, if E [‖p̂(X,S)− p(X,S)‖1]→ 0 and u = un → 0 when n→∞, we have

|E [R(ĝε)]−R(g∗ε−fair)| → 0, as n,N →∞ .

Theorem 3.2 and Corrolary 3.5 directly imply that ĝε performs asymptotically as well as g∗ε−fair both
in terms of fairness and accuracy provided that the estimators of pk are consistent w.r.t. the L1 risk.
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3.2.3 Rates of convergence

This section is dedicated to the study of rates of convergence w.r.t the excess fair-risk. To this end, we
require additional assumptions on the regression functions pk.
Assumption 3.6. (Smoothness assumption) For all k ∈ [K], the regression function pk is Lipschitz.

The bound on the excess-risk provided in Theorem 3.4 depends on E [‖p̂(X,S)− p(X,S)‖1]. Imposing
additional regularity constraint on p, this term can further be controlled. For instance, if we assume that
for each k ∈ [K], the regression functions pk are Lipschitz then well established nonparametric estimators
of pk, such as local polynomials or kernel based methods, lead to

E [‖p̂(X,S)− p(X,S)‖1] ≤ Cn−1/(2+d) .

In this case a straightforward consequence of Theorem 3.4 is that for u ≤ n−1/(2+d)

E[Rλ∗(1),λ∗(2)(ĝε)]−Rλ∗(1),λ∗(2)(g∗ε−fair) ≤ C
(
n−1/(2+d)

∨
N−1/2

)
.

In particular, if N is sufficiently large, that is N−1/2 = O
(
n−1/(2+d)), the obtained rates is of the same

order as the minimax rates in classification setting without fairness constraint Audibert and Tsybakov
[2007]. Interestingly, it is possible to obtain faster rates under a stronger assumption than Assumption 2.2.
Assumption 3.7. (Density assumption) For any k, j ∈ [K] and s ∈ S, we assume that conditional on
S = s, the random variable pk(X,S)− pj(X,S) admits a bounded density.

Note that under Assumption 3.7, the Tsybakov’s margin condition is satisfied with parameter α = 1.
Taking advantage of the margin condition, we can establish the following result.

Theorem 3.8. For ε > 0 and for a sample size N such that N

log(N) ≥ 2π−2
min, the following holds

E[Rλ∗(1),λ∗(2)(ĝε)]−Rλ∗(1),λ∗(2)(g∗ε−fair) ≤ C
(
E
[
‖p̂(X,S)− p(X,S)‖2

∞
]

+ log2(N)
N

+ u2
)

,

where C > 0 depends on K and πmin.
The major consequence of the above result is that fast rates of convergence (faster than n−1/2) can be

obtained for the excess fair-risk. Specifically, if under Assumption 3.6, the estimator satisfies

E [‖p̂(X,S)− p(X,S)‖∞] ≤ C log(n)n−1/(2+d) , (3)

(which is again the case for popular methods) under Assumption 3.7, it holds that

E[Rλ∗(1),λ∗(2)(ĝε)]−Rλ∗(1),λ∗(2)(g∗ε−fair) ≤ C log2(n)
(
n−2/(2+d)

∨
N−1

)
.

Interestingly, if the size of the unlabeled sample N is sufficiently large (N ≥ log(n)−2n2/(2+d)), then up to
a logarithmic factor the established rates of convergence is of the same order as the minimax fast rates of
convergence for plug-in classifiers (see Audibert and Tsybakov [2007]) in supervised classification without
fairness constraint. Hence, we manage to show that fast rates can be also achieved in the algorithmic
fairness framework under Margin type assumption. Note that the condition required in Equation (3) is,
for instance fulfilled by local polynomial estimator or kNN classifiers under Assumption 3.6. Finally, we
also want to point out that we restrict our analysis to the case where the regression functions pk are
Lipschitz to ease the presentation. However, we can extend our results to the case where the regression
functions are in a Hölder class.

4 Numerical Evaluation
We now evaluate our method numerically1. Section 4.2 illustrates the efficiency of the ε-fairness algorithm
on synthetic data, while experiments on real datasets are provided in Section 4.3. Up to our knowledge,
imposing the fairness constraint in multi-class classification in a model-agnostic post-processing approach
is only addressed in [Alghamdi et al., 2022]. Therefore we will mainly compare our method to [Alghamdi
et al., 2022] for multi-class tasks and to the state-of-the-art in-processing approach [Agarwal et al., 2019]
that is designed for binary tasks.

1The source of our method can be found at https://github.com/curiousML/epsilon-fairness.
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4.1 Implementation of the algorithm
Let us focus on the implementation of the algorithm producing an ε-fairness classifier. Although the
exact fairness setting allows for improvements using accelerated gradient descent, we do not focus on this
point and simply identify the exact fair algorithm to the approximate fair one with ε = 0.

The proposed approximate fair algorithm is defined in Eq. (2) and requires to solve an optimization
problem in Eq. (1). The implementation–pseudo-code is provided in Algorithm 1.

Algorithm 1 ε-fairness calibration
Input: Approximate fairness parameter ε, new data point (x, s), base estimators (p̄k)k, unlabeled
sample D′N , (ζk)k and i.i.d uniform perturbations (ζsk,i)k,i,s in [0, 10−5].

Step 0. Split D′N and construct the samples (S1, . . . , SN ) and {Xs
1 , . . . , X

s
Ns
}, for s ∈ S;

Step 1. Compute the empirical frequencies (π̂s)s based on (S1, . . . , SN );
Step 2. Compute λ̂(1) = (λ̂(1)

1 , . . . , λ̂
(1)
K ) and λ̂(2) = (λ̂(2)

1 , . . . , λ̂
(2)
K ) as a solution of Eq. (1);

Sequential quadratic programming of Section 4.1 can be used for this step.
Step 3. Compute ĝ thanks to Eq. (2);

Output: ε-fair classification ĝ(x, s) at point (x, s).

First of all, base estimators (p̄k)k are needed as inputs of the algorithm. We emphasize that we
can fit any off-the-shelf estimators on the labeled dataset Dn. In particular, one can use efficient ML
algorithms that are already pre-trained and that are eventually expensive to re-train. This is one of the
main advantages of post-training approaches over in-processing ones. In addition, randomization in the
definition of p̄k provides good theoretical properties for fairness calibration (c.f. Section 3.2).

Once (p̄k)k are computed, the fair classifier ĝ relies on the estimators λ̂(1) and λ̂(2) computed in Step 2.
of the algorithm. This requires solving the minimization problem in Equation (1). The corresponding
objective function is convex but non-smooth due to the evaluation of the max function. We regularize
the objective function by replacing the hard-max by a soft-max. Namely, for β a positive real number
designating the temperature parameter and a = (a1, . . . , aK)> ∈ RK , we set

softmax(a) :=
K∑
k=1

σβ(a)k · ak, where σβ(a)k := exp(ak/β)∑K

k=1
exp(ak/β)

.

Whenever β → 0, the soft-max reduces to the max function. Problem (1) with the soft-max relaxation
is smooth enough to be solved by a constrained optimization method, such as sequential quadratic
programming [Fu et al., 2019, Nie, 2007]. Empirical study shows that β = 0.005 enables a good accuracy
of the algorithm, without deviating too much from the original solution.

Instead of regularizing the objective function, one can alternatively use sampling methods such as
cross-entropy optimization [Rubinstein, 1999] on the original objective function. Despite their precision,
the downside of this method is the induced computational complexity, that grows much faster with the
dimension than the complexity induced by smoothing techniques. Hence, the regularization approach has
been preferred in the following numerical study.

4.2 Evaluation on synthetic data
Before illustrating our method on real datasets, we choose to evaluate our methodology on synthetic data,
in order to better understand its performance.

4.2.1 Synthetic data

Let us define the synthetic data (X,S, Y ). For all k ∈ [K] we set P(Y = k) = 1/K. Conditional on
Y = k, features X ∈ Rd follow a Gaussian mixture of m components:

(X|Y = k) ∼ 1
m

m∑
i=1
Nd(ck + µki , Id)
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Figure 1: Unfairness of the Bayes classifier g∗ w.r.t. parameter p. We report the means and standard
deviations over 30 simulations.

with ck ∼ Ud(−1, 1), and µk1 , . . . , µ
k
m ∼ Nd(0, Id); while the sensitive feature S ∈ {−1,+1} follows a

Bernoulli contamination with parameter p or 1− p depending on k:

(S|Y = k) ∼ 2 · B(p)− 1 if k ≤ bK/2c and (S|Y = k) ∼ 2 · B(1− p)− 1 if k > bK/2c .

From this model, we can deduce an expression of the Bayes classifier g∗. Indeed for each k ∈ [K], since
conditional on Y = k, the random variables X and S are independent and P(Y = k) = 1/K, we have
from the Bayes formula

pk(x, s) =
fX|Y=k(x)P(S = s|Y = k)∑K
j=1 fX|Y=j(x)P(S = s|Y = j)

,

where fX|Y=k is the density of X conditional on Y = k. In view of the expression of the conditional
probabilities pk, the Bayes classifier g∗ can be expressed as

g∗(x, s) ∈ arg max
k∈[K]

fX|Y=k(x)P(S = s|Y = k) .

We exploit the above formula to evaluate the unfairness of g∗ w.r.t. the parameter p. Figure 1 displays the
obtained results. Interestingly, we see that parameter p measures the historical bias in the dataset. Hence,
this synthetic data structure enables to challenge different aspects of the algorithm. In particular, the
data becomes fair when p = 0.5 and completely unfair when p ∈ {0, 1} (see also Figure 9 in Appendix D
for an illustration). As default parameters, we set K = 6, p = 0.75, m = 10, and d = 20.

4.2.2 Simulation scheme

We compare our method to the unfair approach. We set u = 10−5 and estimate the conditional probabilities
pk by Random Forest (RF) with default parameters in scikit-learn. We generate n = 5000 synthetic
examples and split the data into three sets (60% training, 20% hold-out and 20% unlabeled).

The performance of a classifier g is evaluated by its empirical accuracy Acc(g) on the hold-out set T

Acc(g) = 1
|T |

∑
(X,S,Y )∈T

1{g(X,S)=Y } .

The unfairness of g is measured on the hold-out set by the empirical counterpart Û(g) of the unfairness
given in Definition 2.1, that is,

Û(g) = max
k∈[K]

∣∣ν̂g|−1(k)− ν̂g|1(k)
∣∣ ,

where ν̂g|s(k) = 1
|T s|

∑
(X,S,Y )∈T s

1{g(X,S)=k} is the empirical distribution of g(X,S)|S = s on the condi-

tional hold-out test T s = {(X,S, Y ) ∈ T | S = s}.
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Figure 2: (Accuracy, Unfairness) phase diagrams w.r.t. Left the level of bias p between 0.5 and 0.99;
Right the accuracy-fairness trade-off parameter ε. Top-left corner gives the best trade-off.

Figure 3: Empirical distribution of ĝ on 30 simulations. Left: unfair classifier; Right: exactly-fair classifier.

4.2.3 Fairness versus Accuracy

Figure 2-Left illustrates how fairness and accuracy vary across different levels of unfairness, quantified
by p ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}, in both the unfair and fair random forests with ε ∈ {0, 0.05, 0.1}.
Figure 2-Right presents the fairness and accuracy of our ε-fairness method for ε ∈ {0, 0.05, 0.1, 0.15}.
Note that the performance evolves as expected: enforcing fairness degrades the accuracy and the trade-off
accuracy-fairness is controlled by the parameter ε. From Figure 2-Right, for exact fairness (ε = 0), the
gain in fairness is particularly salient and effective. By contrast, whenever ε = 0.15, the fair classifier
becomes similar to the unfair method, confirming the result in Section 4.2.1 that the original unfairness
of the problem is around ε = 0.15. From Figure 2-Left, we additionally notice that: 1) the fairness
efficiency of the algorithm is particularly significant for datasets with large historical bias (p = 0.9 or
0.99); 2) our method succeeds at reaching the required unfairness level up to small approximation terms
(vertical curves as soon as the unfairness bound ε is reached); 3) as claimed in Theorem 3.3, when the
unconstrained classifier is already ε-fair, the action of the fairness constraint on ĝε−fair is null and we
have ĝε−fair = ĝ (horizontal parts of the curves). We also illustrates in Figure 3 that the distribution of
ĝfair is independent from S.

Splitting the sample When an unlabeled dataset is not available, the samples Dn and D′N follow from
splitting the initial dataset, see Remark 3.1. Our theoretical study relies strongly on the independence
between both datasets Dn and D′N . Figure 4 numerically illustrates the importance of such condition
for the fairness but also the accuracy of our proposed method. Indeed, whenever the splitting is not
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Figure 4: Empirical impact of data splitting on unfairness (Left – the lower the better) and accuracy
(Right: accuracy – the higher the better). Boxplots are generated over 30 repetitions with p = 0.75. The
non-splitting procedure involves two sets (80% training and 20% hold-out): in this particular case we use
the training set (instead of the unlabeled) to compute empirical frequencies (π̂s)s∈S .

performed (left parts of plots), the fairness performance of the fair algorithm may even be worse than the
unfair method. This emphasize that splitting is crucial and enables to avoid over-fitting on the training
set.

4.3 Application to real datasets
In this section, we illustrate the performance of our methodology on real data and compare it with a
benchmark of three State of the Art algorithms [Zhang et al., 2018, Agarwal et al., 2019, Alghamdi et al.,
2022].

4.3.1 Datasets

The performance of the method is evaluated on two real datasets : DRUG and CRIME. Hereafter, we
provide a short description of these datasets.

Drug Consumption (DRUG) This dataset Fehrman et al. [2017] contains demographic information
such as age, gender, and education level, as well as measures of personality traits thought to influence
drug use for 1885 respondents. The task is to predict cannabis use, where the 7 levels of drug use have
been simplified into K = 4 categories (never used, not used in the past year, used in the past year, and
used in the past day) for multi-class outcomes or K = 2 categories (used or not used in the past year) for
binary outcomes. The binary sensitive feature is education level (college degree or not).

Communities&Crime (CRIME) This dataset contains socio-economic, law enforcement, and crime
data about communities in the US with 1994 examples. The task is to predict the number of violent
crimes per 105 population which, we divide into K = 5 (multi-class outcomes) or K = 2 (binary outcomes)
balanced classes based on equidistant quantiles. Following Calders et al. [2013], the sensitive feature is a
binary variable that corresponds to the ethnicity.

4.3.2 Methodology

We illustrate our ε-fair method2 with linear and nonlinear multi-class classification methods. For linear
models, we consider one-versus-all logistic regression (reglog); for nonlinear models, Random Forest (RF)
and LightGBM (GBM). For reglog, we use the default parameters in scikit-learn. For RF and GBM, we
use a 3-fold cross-validation random search to select the best hyperparameters with the training set:
• For RF, we set the number of trees in {10, 11, . . . , 200}, the maximum depth of each tree in {2, 3, . . . , 16},
the minimum number of samples required to split an internal node in {2, 3, . . . , 10}, and the minimum
number of samples required to be at a leaf node in {1, . . . , 8};

2See https://github.com/curiousML/epsilon-fairness.
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Figure 5: (Accuracy, Unfairness) phase diagrams that shows the evolution, w.r.t. the accuracy-fairness
trade-off parameter ε ∈ [0, 0.1, 0.2, 0.3]. We report the means and standard deviations over the 30
repetitions. Top-left corner gives the best trade-off.

• For GBM, we set the L1 and L2 regularization term on weights both in {0, 0.1, 1, 2, 5, 10, 20, 50}, the
number of boosted trees in {10, 11, . . . , 200}, the maximum tree leaves in {6, 7, . . . , 50}, the maximum
depth of each tree in {2, 3, . . . , 16}, and the minimum number of samples required in a child node for a
split to occur in the tree in {10, 11, . . . , 100}.

Note that the numerical experiments presented in Figure 5 confirm our findings on synthetic data.
Our method have good performance in term of unfairness while the accuracy slightly increases when the
level ε of desired fairness increases. Besides, the performance of the ε-fair classifier becomes closer to the
base (unfair) when the fairness constraint is released.

4.3.3 Benchmarks

We aim at highlighting the numerical efficiency of our method in terms of accuracy-fairness trade-off
curves. For this purpose, we compare our ε-fairness method to the following benchmarks :

Fair-learn For binary classification tasks, the current state-of-the-art is established by the in-processing
approach [Agarwal et al., 2019]3. The authors present a reduction-based algorithm, which is an extention of
the Fair-Lasso. The Fair-Lasso algorithm is a variant of the traditional Lasso algorithm that incorporates
fairness constraints, aiming at finding a fair solution while maintaining good predictive performance. We
use the following trade-off tolerances [0.0001, 0.5, 1, 2.5, 5, 10].

Fair-adversarial The paper Zhang et al. [2018]4 presents an in-processing method for reducing bias
using adversarial training: a primary model, which is trained to perform a specific task, and a bias
correction model, which is trained to reduce the bias in the primary model’s predictions. Note that
we cannot universally apply this method on any pre-trained classifier. We use a Neural Network
(NN) as the base classifier and set the following parameters: num_epochs = 200, batch_size = 128,
classifier_num_hidden_units = 50 (see the python package AIF360). We use the following trade-off
tolerances [0.01, 0.1, 0.5, 0.9, 1].

Fair-projection For multi-class classification tasks, we compare our result to the recent post-processing
approach Alghamdi et al. [2022]5. The authors propose a method based on information projection by
reweighting the outputs of a pre-trained classifier to satisfy specific group-fairness requirements. The
trade-off tolerances are [0, 0.1, 0.2, 0.5, 0.9].
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Figure 6: (Accuracy, Unfairness) phase diagrams that shows the evolution, w.r.t. the accuracy-fairness
trade-off tolerances. We report the means and standard deviations over 30 repetitions. Top-left corner
gives the best trade-off.

Figure 7: (Accuracy, Unfairness) phase diagrams that shows the evolution, w.r.t. the accuracy-fairness
trade-off tolerances. For ε-fair classifier we vary ε ∈ {0.01, 0.1, 0.3, 0.5, 0.9}. We report the means and
standard deviations over 30 repetitions. Top-left corner gives the best trade-off.
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Figure 8: (Accuracy, Unfairness) phase diagrams that shows the evolution, w.r.t. the accuracy-fairness
trade-off tolerances. We report the means and standard deviations over 30 repetitions. Top-left corner
gives the best trade-off.

4.3.4 Results

Performance in binary case (K = 2) We analyze the efficiency of the ε-fairness method compared to
fair-learn, fair-projection and fair-adversarial for binary classification. Numerical experiments
on DRUG and CRIME presented in Figure 6 reveal that our method is very efficient in both accuracy
and fairness and at least competitive (if not better) in several aspects :

1. Competitive fairness. Overall, our ε-fair classifier outperforms fair-projection classifier in
terms of exact fairness (ε = 0) and achieves similar performance as the state-of-the-art benchmark
fair-learn.

2. Competitive accuracy. Although we obtain similar accuracies using reglog and GBM, our
algorithm seems more efficient than fair-learn using RF. Compared to fair-projection our
algorithm is competitive in terms of accuracy for ε ≥ 0.1 in both datasets.

From Figure 7, our ε-fair predictor outperforms fair-adversarial predictor both in terms of accuracy
and fairness. Note that since fair-learn and fair-adversarial are in-processing methods their running
time (using the dedicated package) is much higher than our algorithm.

Performance in multi-class case (K ≥ 3). We analyze the efficiency of the ε-fairness method
compared to the baseline fair-projection for multi-class classification. The numerical experiments are
presented in Figure 8. In multi-class tasks, empirical results highlight the efficiency of our approach to
enforce fairness when ε decreases. Indeed, our methodology achieves better fairness results under the

3The method in [Agarwal et al., 2019] was developed for Equality of Odds but the code is also implemented for
Demographic Parity see https://github.com/fairlearn/fairlearn.

4We use IBM AIF360 library https://aif360.readthedocs.io/en/stable/modules/algorithms.html.
5The code can be found at https://github.com/HsiangHsu/Fair-Projection.
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DP constraint than fair-projection while maintaining competitive accuracy. Moreover, our fairness
calibration is close to the pre-specified level, regardless of the base algorithm (reglog, RF or GBM).

Finally, our methodology only use a portion of the dataset to train a classifier, while reserving the
remaining portion as unlabeled. Despite using relatively small datasets, consisting of about 1000 examples,
our approach performed better than other benchmark methods trained on full labeled datasets.

5 Conclusion
In the multi-class classification framework, we provide an optimal fair classification rule under DP
constraint and derive misclassification and fairness guarantees of the associated plug-in fair classifier
(see Algorithm 1). We handle both exact and approximate fairness settings and show that our approach
achieves distribution-free fairness and can be applied on top of any probabilistic base estimator. We also
establish rates of convergence for our procedure. Up to our knowledge, the present contribution is the
first statistical analysis in approximate fairness context. In particular, we consider here the multi-class
setting which has rarely been studied. We finally illustrate the proficiency of our procedure on various
synthetic and real datasets. Importantly, our algorithm is efficient for enforcing a pre-specified level of
fairness. A natural way for further research is to extend our methodology to other notions of fairness
such as equalized odds and also to consider settings of multi-category sensitive attributes. We believe that
the present work is a relevant step to handle these two problems. On the other hand, the calibration of
the level of unfairness ε ≥ 0 is an important empirical issue. As mentioned in the introduction, there are
some heuristics that provide guidelines for its calibration but one may ask for more advanced and robust
approaches. In particular, a future direction of research is to describe a methodology that statistically
justifies a data-driven calibration of this parameter in order to optimally compromise risk and unfairness.
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Appendix

In this section, we gather the proofs of our results. Section A is devoted to useful technical results. In
Section B we give the proof of the results related to the optimal fair predictors while Section C is dedicated
to the theoretical properties of our estimation procedure. Finally, we provide additional numerical results
in Section D. In all the sequel, C denotes a generic constant, whose value may vary from line to line.

A Technical results
Lemma A.1 (Hoeffding). Let Z ∼ B(N, p), with p ∈ (0, 1). We then have for all t > 0 and N > t

p

P(Z ≤ t) ≤ exp
(
−2N(p− t/N)2).

Lemma A.2. Let Z ∼ B(N, p). We have that

E
[
1{Z≥1}

Z

]
≤ 2

(N + 1)p

Proposition A.3. Let f : RM → R be a convex continuous function, and H ⊂ RM a closed convex set.
We consider the minimizer x∗ of the function f over the set H

x∗ ∈ arg min
x∈H

f(x).

Then, there exists a subgradient h in the subdifferential ∂f(x∗) of f at the point x∗ such that

hT (y− x∗) ≥ 0, ∀y ∈ H.

From the above proposition, it is easy to show the following result.
Corollary A.4. Let f : RM → R be a convex continuous function. Let H = RM+ . We consider the
minimizer x∗ of the function f over the set H. Let M := {m ∈ [M ], x∗m 6= 0}. Then there exists a
subgradient h ∈ ∂f(x∗), such that for all m ∈ [M ] we have hm ≥ 0 and in particular,

∀m ∈M, hm = 0.

B Proof of Section 2
We begin with an auxiliary lemma, which provides an alternative useful representation of Rλ(1),λ(2)(g).

Lemma B.1. Let ε ≥ 0, the ε-fair-risk of a classifier g with tuning parameters λ(1) = (λ(1)
1 , . . . , λ

(1)
K ) ∈

RK+ , λ(2) = (λ(2)
1 , . . . , λ

(2)
K ) ∈ RK+ reads as:

Rλ(1),λ(2)(g) =
∑
s∈S

EX|S=s

[
K∑
k=1

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)
1{g(X,S)6=k}

]
− ε

K∑
k=1

(λ(1)
k + λ

(2)
k ). (4)

Proof of Lemma B.1. Let (λ(1), λ(2)) ∈ R2K
+ and recall the following definition of the ε-fair risk

Rλ(1),λ(2)(g) = P (g(X,S) 6= Y )−
K∑
k=1

∑
s∈S

s(λ(1)
k − λ

(2)
k )EX|S=s

[
1{g(X,s)6=k}

]
− ε

K∑
k=1

(λ(1)
k + λ

(2)
k ). (5)

The result in (4) directly follows from the following decomposition

P (g(X,S) 6= Y ) =
K∑
k=1

E
[
1{g(X,S)6=k}1{Y=k}

]
=

K∑
k=1

∑
s∈S

E
[
1{g(X,S)6=k}1{S=s}pk(X,S)

]
=

K∑
k=1

∑
s∈S

EX|S=s
[
1{g(X,s)6=k}πspk(X, s)

]
.
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Proof of Theorem 2.3. The proof is divided into two parts. First, we provide the proof for ε > 0. Then
the second part is dedicated to the proof of the result when ε = 0 which corresponds to the case of exact
fairness.

Proof for approximate fairness From Lemma B.1, we deduce that g∗
λ(1),λ(2) should be defined for all

(x, s) ∈ X × S as
g∗λ(1),λ(2)(x, s) = arg max

k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)
, (6)

since it minimizes the risk Rλ(1),λ(2) . Now we should maximize Rλ(1),λ(2)(g∗λ(1),λ(2)) in the dual variables.
Notice that the ε-fair risk can be written as

Rλ(1),λ(2)(g∗λ(1),λ(2)) = 1−
∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)]
− ε

K∑
k=1

(λ(1)
k + λ

(2)
k ) .

Hence, a maximizer (λ∗(1), λ∗(2)) in R2K
+ of (λ(1), λ(2)) 7→ Rλ(1),λ(2)(g∗λ(1),λ(2)) is solution of

(λ∗(1), λ∗(2)) ∈ arg min
(λ(1),λ(2))∈R2K

+

∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X, s)− s(λ(1)

k − λ
(2)
k )
)]

+ ε

K∑
k=1

(λ(1)
k + λ

(2)
k )︸ ︷︷ ︸

H(λ(1),λ(2))

.

The rest of the proof consists in showing that such a calibration of the tuning parameters (λ(1), λ(2))
implies that g∗

λ∗(1),λ∗(2) is indeed ε-fair. Observe that

H(λ(1), λ(2)) ≥ ε
K∑
k=1

(λ(1)
k + λ

(2)
k ) ,

and then lim‖(λ(1),λ(2))‖2
2→∞H(λ(1), λ(2)) = +∞. Moreover, the mapping H is continuous and convex in

(λ(1), λ(2)). Therefore the minimum (λ∗(1), λ∗(2)) exists, and there exists some constant Cλ > 0 such that
for all k ∈ [K] and j ∈ {1, 2} we have |λ(j)

k | ≤ Cλ.
Let us derive a subgradient h∗ = (h∗(1), h∗(2)) of H at the optimum (λ∗(1), λ∗(2)) with h∗(1) =(

h
∗(1)
1 , . . . , h

∗(1)
K

)
and h∗(2) =

(
h
∗(2)
1 , . . . , h

∗(2)
K

)
being two vectors in RK . In order to express h∗ let us

build the subdifferential of the function f
(
x, (λ(1), λ(2))

)
:= maxk∈[K]

{
hsk
(
x, (λ(1), λ(2))

)}
at the point

(λ∗(1), λ∗(2)) with
hsk

(
x, (λ(1), λ(2))

)
= πspk(x, s)− s

(
λ

(1)
k − λ

(2)
k

)
.

We have that

∂f
(
x, (λ∗(1), λ∗(2))

)
= conv

{
∇hsk

(
x, (λ∗(1), λ∗(2))

)
: hsk

(
x, (λ∗(1), λ∗(2))

)
= max
j∈[K]

{
hsj

(
x, (λ∗(1), λ∗(2))

)}}
,

where ∇hsk
(
x, (λ(1), λ(2))

)
∈ R2K is the gradient of the function hsk w.r.t. (λ(1), λ(2)). Therefore, we

deduce that a subgradient h∗ of H at (λ∗(1), λ∗(2)) can be expressed for each k ∈ [K], and l ∈ {1, 2} as

h
∗(l)
k = (2l−3)

∑
s∈S

{
sPX|S=s

(
∀j 6= k (πspk(X, s)− s(λ∗(1)

k − λ∗(2)
k )) > (πspj(X, s)− s(λ∗(1)

j − λ∗(2)
j ))

)
+ s usk PX|S=s

(
∀j 6= k (πspk(X, s)− s(λ∗(1)

k − λ∗(2)
k )) ≥ (πspj(X, s)− s(λ∗(1)

j − λ∗(2)
j )),

∃j 6= k (πspk(X, s)− s(λ∗(1)
k − λ∗(2)

k )) = (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j ))
)}

+ ε ,

20



with usk ∈ [0, 1] for all k ∈ [K] and all s ∈ S. Thanks to Assumption 2.2, pk(X, s)− pj(X, s) has no atom
for all s ∈ S and then the second part of the r.h.s. of the above equation vanishes and we have

h
∗(l)
k =

(2l − 3)
∑
s∈S

sPX|S=s

(
∀j 6= k (πspk(X, s)− s(λ∗(1)

k − λ∗(2)
k )) > (πspj(X, s)− s(λ∗(1)

j − λ∗(2)
j ))

)
+ ε,

which can be written as

h
∗(l)
k = (2l − 3)

∑
s∈S

sPX|S=s

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
+ ε.

Now, we apply Corollary A.4 and deduce, from the above equation, that if

• λ∗(1)
k 6= 0 and λ∗(2)

k 6= 0, we then necessary have h
∗(l)
k = 0 for l ∈ {1, 2} and then

PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
= ε

PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
= − ε ,

which leads to a contradiction.

• λ∗(1)
k = 0 and λ∗(2)

k = 0, we get

PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
≤ ε

PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
≥ − ε ,

which gives ∣∣∣PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)∣∣∣ ≤ ε.
• Finally, if λ∗(1)

k λ
∗(2)
k = 0 and λ

∗(1)
k + λ

∗(2)
k > 0, we get∣∣∣PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)∣∣∣ = ε.

Hence, we have shown that for each k ∈ [K],∣∣∣PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)∣∣∣ ≤ ε,
which means that g∗

λ∗(1),λ∗(2) is ε-fair: U(g∗
λ∗(1),λ∗(2)) ≤ ε.

Furthermore, we also have that for each k ∈ [K], the vector (λ∗(1), λ∗(2)) meets the following constraint
λ
∗(1)
k λ

∗(2)
k = 0 and λ

∗(1)
k + λ

∗(2)
k ≥ 0. Since parameters (λ∗(1), λ∗(2)) are bounded, we then deduce that

for any classifier g (see for instance (5))

Rλ∗(1),λ∗(2)(g) ≤ R(g) + C (U(g)− ε) ,

therefore, for any g ∈ Gε−fair
Rλ∗(1),λ∗(2)(g) ≤ R(g). (7)

Besides, considering the three above cases, we notice that∣∣∣PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) = k

)∣∣∣ < ε⇒ λ
∗(1)
k = λ

∗(2)
k = 0.

Since g∗
λ∗(1),λ∗(2) ∈ Gε−fair, the above equation and Equation (7) imply that for any g ∈ Gε−fair

R(g∗λ∗(1),λ∗(2)) = Rλ∗(1),λ∗(2)(g∗λ∗(1),λ∗(2)) ≤ Rλ∗(1),λ∗(2)(g) ≤ R(g),

which concludes the proof.

21



Proof for exact fairness First, we apply Lemma B.1 with ε = 0 and then have

Rλ(1),λ(2)(g∗λ(1),λ(2)) = 1−
∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)]
,

with
g∗λ(1),λ(2)(x, s) = arg max

k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)
.

Therefore, it is not difficult to see that using the reparametrization

βk = λ
(1)
k − λ

(2)
k , k = 1, . . . ,K, (8)

we can write

Rλ(1),λ(2)(g∗λ(1),λ(2)) = Rβ(g∗β) = 1−
∑
s∈S

EX|S=s

[
max
k∈[K]

(πspk(X, s)− sβk)
]
. (9)

Hence, a maximizer β∗ in RK of β 7→ Rβ(g∗β) takes the form

β∗ ∈ arg min
β∈RK

∑
s∈S

EX|S=s

[
max
k∈[K]

(πspk(X, s)− sβk)
]
.

The above criterion is convex in β. Therefore, first order optimality conditions for the minimization over
β of the above criterion imply that, for each k ∈ [K],

0 =
∑
s∈S

sPX|S=s
(
∀j 6= k (πspk(X, s)− sβ∗k) > (πspj(X, s)− sβ∗j )

)
+ suskPX|S=s

(
∀j 6= k (πspk(X, s)− sβ∗k) ≥ (πspj(X, s)− sβ∗j ), ∃j 6= k (πspk(X, s)− sβ∗k) = (πspj(X, s)− sβ∗j )

)
,

with usk ∈ [0, 1] for all k ∈ [K] and s ∈ S. As in the case where ε > 0, we use Assumption 2.2 on the
distribution of pk(X, s)− pj(X, s) to show that the second part of the r.h.s. vanishes. Therefore for all
k ∈ [K]

PX|S=1
(
g∗β∗(X,S) 6= k

)
= PX|S=−1

(
g∗β∗(X,S) 6= k

)
,

meaning that the classifier g∗β∗ is fair. Furthermore, for any fair classifier g ∈ Gfair, we observe that

R(g∗β∗) = Rβ∗(g∗β∗) ≤ Rβ∗(g) = R(g),

so that g∗β∗ is also an optimal fair classifier.
Conversely, consider any optimal fair classifier g∗fair ∈ Gfair. Combining the fairness of g∗fair with the

optimality of β∗ over the family (Rβ(g∗β))β∈RK , we deduce

Rβ∗(g∗fair) = R(g∗fair) ≤ Rβ∗(g∗β∗) ≤ Rβ∗(g), for any g ∈ G .

Hence any optimal fair classifier is a minimizer of Rβ∗ over G.

C Proof of Section 3
We first introduce some notation. We recall that Nmin = min(N1, N−1) and denote by P̂X|S=s the
empirical measure with respect to (Xs

1 , . . . , X
s
Ns

) for s ∈ S. Furthermore, throughout this section, we
consider the following convention 0

0 = 0. Hence, if Ns = 0, we then have P̂X|S=s(A) = 0 for any event A.
We start this section with two results. Lemma-C.1 directly follows from similar arguments as in the

proof of Lemma B.8 in Chzhen et al. [2020a]. Its proof is hence omitted.
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Lemma C.1. Conditional on the data, we have that, for each s ∈ S and k ∈ [K],

P̂X|S=s

(
∃j 6= k, ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) = ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)

= 1
Ns

Ns∑
i=1

1{∃j 6=k,ĥs
k

(Xs
i
,λ̂

(1)
k
,λ̂

(2)
k

)=ĥs
j
(Xs

i
,λ̂

(1)
j
,λ̂

(2)
j

)
}

≤ K − 1
Ns

a.s. ,

where ĥsk : (x, λ(1), λ(2)) 7→ π̂sp̄k(x, s)− s
(
λ(1) − λ(2)).

Lemma C.2. Let us introduce for all k ∈ [K] the random variable

Âk =

∣∣∣∣∣∑
s∈S

s
(
PX|S=s − P̂X|S=s

)(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣ .

Then all k ∈ [K]

1. there exists C1 > 0, that depends on K such that

E
[
Âk1{Nmin≥1} | Dn, S1, . . . , SN

]
≤
C11{Nmin≥1}√

Nmin
;

2. for all δ > 0, the event Ak(δ) =
{
Âk ≤ K

√
2 log( 4K

δ )
Nmin

}⋂
{Nmin ≥ 1} holds with probability greater

than 1− δ.

Proof. 1. For this part, we work on the event {Nmin ≥ 1} conditionally on Dn and on S1, . . . , SN . For
s ∈ {−1, 1}, and k ∈ [K], we have∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j

)∣∣∣ =∣∣∣∣∣∣
(
PX|S=s − P̂X|S=s

)∀j 6= k, p̄k(X, s)− p̄j(X, s) >
s
(

(λ̂(1)
k − λ̂

(2)
k )− (λ̂(1)

j − (λ̂(2)
j )
)

π̂s

∣∣∣∣∣∣
≤

K∑
j=1

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) > t)

∣∣∣ .
Therefore, from the Dvoretzky-Kiefer-Wolfowitz Inequality, we deduce that, for each s ∈ S and
k ∈ [K]

E
[
Âk1{Nmin≥1} | Dn, S1, . . . , SN

]
≤
C11{Nmin≥1}√

Nmin
.

2. From the Dvoretzky-Kiefer-Wolfowitz Inequality, conditional on Dn and on (S1, . . . , SN ), we have
on the event {Nmin ≥ 1}, for each u > 0 and for all j, k ∈ [K], s ∈ S, and t > 0

P
(

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) > t)

∣∣∣ ≥ u) ≤ 2 exp(−2Nsu2) ≤ 2 exp(−2Nminu
2).

Since

Âk ≤
∑
s∈S

K∑
j=1

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) > t)

∣∣∣ ,
we deduce for each u > 0 and k ∈ [K]

P
(
Âk ≥ u

)
≤

∑
s∈S

K∑
j=1

P
(

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) > t)

∣∣∣ ≥ u

2K

)

≤ 4K exp
(
−u

2Nmin

2K2

)
.
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Hence, from the above inequality, we obtain that

1{Nmin≥1}P

Âk ≥ K
√

2 log( 4K
δ )

Nmin

∣∣∣∣∣∣ Dn, (S1, . . . , SN )

 ≤ 1{Nmin≥1}δ ≤ δ,

which yields the desired result.

Let us now consider the proofs of Theorem 3.2 and Theorem 3.4.

Proof of Theorem 3.2. As in the proof of Theorem 2.3], we consider separately the cases of approximate
(ε > 0) and exact (ε = 0) fairness.

Unfairness control in the case of approximate fairness We first consider the case where ε > 0.
As in Lemma C.1, we first introduce, for s ∈ S and k ∈ [K],

ĥsk :
(
x, λ(1), λ(2)

)
7→ π̂sp̄k(x, s)− s

(
λ(1) − λ(2)

)
.

By construction, the estimator p̄k(X,S) is randomized and then satisfies an analog version of Assump-
tion 2.2. Therefore for all s ∈ S and k ∈ [K]

PX|S=s (ĝε(X,S) = k) = PX|S=s

(
∀j 6= k, ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
. (10)

Now, we consider similar arguments as in Proof of Theorem 2.3. First we observe that

Ĥ
(
λ(1), λ(2)

)
) ≥ ε

K∑
k=1

(λ(1)
k + λ

(2)
k ) , (11)

where Ĥ is the empirical version of H and is defined as

Ĥ(λ(1), λ(2)) =
∑
s∈S

ÊX|S=s

[
max
k∈[K]

(
πsp̄k(X, s)− s(λ(1)

k − λ
(2)
k )
)]

+ ε

K∑
k=1

(λ(1)
k + λ

(2)
k ) ,

with ÊX|S=s being the empirical expectation over the points Xi from the dataset D′N such that the
sensitive attribute Si = s. From Equation (11), we deduce that the minimizer (λ̂(1), λ̂(2)) exists and is
bounded by some C ′λ > 0 which depends neither on N nor on n. Furthermore, we have that a subgradient
ĥ of Ĥ can be expressed for each k ∈ [K] and l ∈ {1, 2} as follows

ĥ
(l)
k = (2l − 3)

∑
s∈S

{
sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)

+ s usk P̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) ≥ ĥsj(X, λ̂

(1)
j , λ̂

(2)
j ),

∃j 6= k ĥsk(X, λ̂(1)
k , λ̂

(2)
k ) = ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)}

+ ε , (12)

with usk ∈ [0, 1]. Applying Lemma C.1, we observe that the second term in r.h.s is such that

0 ≤ P̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) ≥ ĥsj(X, λ̂

(1)
j , λ̂

(2)
j ),

∃j 6= k ĥsk(X, λ̂(1)
k , λ̂

(2)
k ) = ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
≤ K − 1

Nmin
. (13)

Hereafter, we follow the same reasoning as in the proof of Theorem 2.3. We use Corallary A.4 and
consider the following cases for k ∈ [K].
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• if λ̂(1)
k = 0, and λ̂(2)

k = 0, we deduce that∣∣∣∣∣∑
s

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣ ≤ ε+ 2(K − 1)

Nmin
. (14)

• if there exists l ∈ {1, 2} such that λ̂(l)
k 6= 0, then ĥlk = 0.

Let us now deal with the unfairness of ĝε, recalled in (10). Bounding this quantity is a direct implication
of the above lines. On the one hand, let k ∈ [K] such that λ̂(1)

k = 0, and λ̂(2)
k = 0, then from Equation (14),

we have∣∣∣∣∣∑
s∈S

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣ =

∣∣∣∣∣∑
s∈S

sPX|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣

≤

∣∣∣∣∣∑
s∈S

s
(
PX|S=s − P̂X|S=s

)(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣+ ε+ 2(K − 1)

Nmin
. (15)

On the other hand, if for k ∈ [K] there exists l ∈ {1, 2} such that ĥlk = 0 then in view of Equation (12),
we also deduce that∣∣∣∣∣∑

s∈S
sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣
≤

∣∣∣∣∣∑
s∈S

s
(
PX|S=s − P̂X|S=s

)(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣+ ε+ 2(K − 1)

Nmin
.

Therefore, from the above inequalities, taking the maximum over k ∈ [K], we deduce from Lemma C.2
(point 1.) that conditional on Dn and on (S1, . . . , SN ),

E [U(ĝε)] ≤ ε+
(

KC1√
Nmin

+ 2(K − 1)
Nmin

)
1{Nmin≥1}+E

[
U(ĝε)1{Nmin=0}

]
≤ ε+

c11{Nmin≥1}√
Nmin

+CKP (Nmin = 0) ,

for some non negative constants c1 and CK that depend on K. Now, we observe that

P (Nmin = 0) = P (N1 = 0) + P (N−1 = 0)) ≤ exp(log(1− π1)N) + exp(log(1− π−1)N).

Therefore, applying Lemma A.2, we deduce that

E [U(ĝε)] ≤
C√

N min(π−1, π1)
.

Unfairness control in the case of exact fairness Along this proof, we need to adjust the notation
as in the case of the optimal rule, c.f. (8). As in Lemma C.1, we first introduce, for s ∈ S and k ∈ [K],

ĥsk : (x, β) 7→ π̂sp̄k(x, s)− sβ .

By construction, the estimator p̄k(X,S) satisfies Assumption 2.2, therefore for all s ∈ S and k ∈ [K]

PX|S=s (ĝ(X,S) = k) = PX|S=s

(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)
.

Considering the first order optimality conditions for β̂, we can show that, for all k ∈ [K] and s ∈ S, there
exists αsk ∈ [−1, 1] such that

sP̂X|S=s

(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)
+

αskP̂X|S=s

(
∀j 6= k, ĥsk(X, β̂k) ≥ ĥsj(X, β̂j), ∃j 6= k, ĥsk(X, β̂k) = ĥsj(X, β̂j)

)
= 0 .
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From the above equation, we deduce that

U(ĝ) = max
k=1...,K

∣∣PX|S=1 (ĝ(X,S) = k)− PX|S=−1 (ĝ(X,S) = k)
∣∣

≤ max
k=1,...,K

∑
s∈S

∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)∣∣∣
+ max
k=1,...,K

∑
s∈S

P̂X|S=s

(
∃j 6= k, ĥsk(X, β̂k) = ĥsj(X, β̂j)

)
.

Observe that for all k ∈ [K]∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)∣∣∣ =∣∣∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, p̄k(X, s)− p̄j(X, s) ≥

s(β̂k − β̂j)
π̂s

)∣∣∣∣∣
≤

K∑
j=1

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) ≥ t)

∣∣∣ .
Therefore, from the Dvoretzky-Kiefer-Wolfowitz Inequality conditional on Dn and on (S1, . . . , SN ), we
deduce that, for each s ∈ S and k ∈ [K]

E
[∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)∣∣∣] ≤ C√ 1
Ns

.

Applying Lemma C.1, we then get that, conditional on Dn and on (S1, . . . , SN ), we have that

E [U(ĝ)] ≤ C
∑
s∈S

√
1
Ns

,

for some positive constant C that depends in K. Since Ns is a binomial random variable with parameters
N and πs, we get

E [U(ĝ)] ≤ C
√

1
N
,

where C depends on K and min(π−1, π1).

Proof of Theorem 3.3. Let 0 < δ < 1 and let k ∈ [K]. From Equations (12), and (13) and using
Corallary A.4, we deduce that if λ(1)

k 6= 0, λ(2)
k 6= 0, then∑

s∈S
sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
≥ ε− 2(K − 1)

Nmin∑
s∈S

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
≤ −ε+ 2(K − 1)

Nmin
.

Therefore, since Cδ√
Nmin

≥ 2(K − 1)
Nmin

, we deduce that on Amin =
{
ε >

Cδ√
Nmin

}
0 <

∑
s∈S

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
< 0 ,

which leads to a contradiction. Therefore, on the event Amin, we necessary have λ̂(1)
k λ̂

(2)
k = 0 and λ̂

(1)
k +

λ̂
(2)
k ≥ 0. Note that on the event Amin, we have Nmin ≥ 1.
The remaining of the proof consists in dealing with the two sub-cases when λ̂(1)

k λ̂
(2)
k = 0 and λ̂

(1)
k +

λ̂
(2)
k ≥ 0. First, let us consider for k ∈ [K], the case where λ̂(1)

k 6= 0, and λ̂(2)
k = 0 (the case λ̂(1)

k = 0, and
λ̂

(2)
k 6= 0 follows in the same way). We observe that since ĥ1

k = 0, on the event Amin

0 ≤ ε− 2(K − 1)
Nmin

≤
∑
s

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
≤ ε+ 2(K − 1)

Nmin
. (16)
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Moreover, we have that for each k ∈ [K] such that λ̂(1)
k 6= 0, and λ̂(2)

k = 0∣∣∣∣∣
∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣− ε
∣∣∣∣∣ =∣∣∣∣∣

∣∣∣∣∣∑
s

sPX|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣ −∣∣∣∣∣∑

s

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣+∣∣∣∣∣∑

s

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣− ε

∣∣∣∣∣ .
Using first the triangle inequality and then the reverse triangle inequality, we get from Equation (16)∣∣∣∣∣

∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣− ε
∣∣∣∣∣ ≤∣∣∣∣∣∑

s∈S
s
(
PX|S=s − P̂X|S=s

)(
∀j 6= k ĥsk(X, λ̂(1)

k , λ̂
(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣+ 2(K − 1)

Nmin
, (17)

which yields together with Lemma C.2 (point 2.),∣∣∣∣∣
∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣− ε
∣∣∣∣∣ ≤

K
√

2 log( 4K
δ )

Nmin
+ 2(K − 1)

Nmin

 ≤ Cδ√
Nmin

. (18)

Now, observe that for the second sub-case when λ̂(1)
k = λ̂

(2)
k = 0, we get using Equation (15), applying

again Lemma C.2 (point 2.) the following bound∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣ ≤ ε+ Cδ√
Nmin

.

Combining these two bounds, we conclude that on the event A(δ) = Amin
⋂(
∩k∈[K]Ak(δ)

)
U(ĝε) < ε+ Cδ√

Nmin
,

which concludes the main part of the proof. Let us now focus on the particular case where on A(δ) we
have

U(ĝε) < ε− Cδ√
Nmin

.

Then for all k ∈ [K] we have ∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣ < ε− Cδ√
Nmin

.

Hence on the set A(δ), we deduce that the case related to (18) is not possible and then for each k, we
necessary have λ̂(1)

k = λ̂
(2)
k = 0 and then

ĝ = ĝε .

To conclude the proof, we observe that

P (A(δ)c) = P (Acmin) +
K∑
k=1

P (Ack(δ)) ≤ P
(
N1 ≤

C2
δ

ε2

)
+ P

(
N−1 ≤ C2

δ

ε2

)
+Kδ.
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But, from Lemma A.1, we have for each s ∈ S,

P
(
Ns ≤

C2
δ

ε2

)
≤ exp

(
−2N

(
πs −

C2
δ

ε2N

)2)
≤ exp

(
−N π2

s

2

)
≤ δ ,

provided that πs >
2C2

δ

Nε2 , and N ≥ 2 log(1/δ)
π2

min
. Since ε >

√
2Cδ√
πminN

, and N ≥ 2 log(1/δ)
π2

min
, the latter conditions

are satisfied. Therefore, we deduce that

P (A(δ)c) ≤ (K + 2)δ .

Proof of Theorem 3.4. We only consider the case ε > 0. The proof in the case of exact fairness relies on
similar arguments and then it is omitted. To ease the notation, we write ĝ instead of ĝε.

The proof goes conditional on the training data. First, let us decompose the excess fair-risk of the
classifier ĝ in a convenient way for our analysis

Rλ∗(1),λ∗(2)(ĝ)−Rλ∗(1),λ∗(2)(g∗ε−fair) =
(
Rλ∗(1),λ∗(2) (ĝ)−Rλ̂(1),λ̂(2)(ĝ)

)
+
(
Rλ̂(1),λ̂(2)(ĝ)−Rλ∗(1),λ∗(2)

(
g∗λ∗(1),λ∗(2)

))
. (19)

According to the first term, we have

(
Rλ∗(1),λ∗(2) (ĝ)−Rλ̂(1),λ̂(2)(ĝ)

)
=

K∑
k=1

(
λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε
]

+
K∑
k=1

(
λ
∗(2)
k − λ̂(2)

k

)[
−
∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε
]
.

Let δ = 1/N . If ε ≤
√

2Cδ√
πminN

, since parameters λ∗(l)k and λ̂(l)
k are bounded, we deduce from the above

equation and Theorem 3.2 that

E
[(
Rλ∗(1),λ∗(2) (ĝ)−Rλ̂(1),λ̂(2)(ĝ)

)]
≤ C min

(
ε,

√
2Cδ√
πminN

)
+ C√

N
≤ C log(N)√

N
, (20)

where C > 0 is a constant which depends on πmin and K. If ε >
√

2Cδ√
πminN

, we apply Theorem 3.3. We
have on the event A(1/N) that

• either λ̂(1)
k = 0, and then since λ∗(1)

k > 0 is bounded

(
λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε
]
≤ C (U(ĝ)− ε)) ≤ C log(N)√

Nmin
.

• or λ̂(1)
k > 0, in this case on A(1/N),

∑
s∈S sPX|S=s (ĝ(X,S) = k) > 0. From Equation (18) in the

proof of Theorem 3.3, we deduce

(
λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε
]
≤ C log(N)√

Nmin
.

Since on A(1/N), Nmin ≥ 1, we deduce that if ε >
√

2Cδ√
πminN

E

[
K∑
k=1

(
λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε
]]
≤ C

(
E
[ log(N)1{Nmin≥1}√

Nmin

]
+ P (A(1/N)c)

)
.
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According to Lemma C.2 we have P (A(1/N)c) ≤ K + 2
N

. Then we deduce form Lemma A.2 that

E

[
K∑
k=1

(
λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε
]]
≤ C log(N)√

N
.

Similar reasoning leads to

E

[
K∑
k=1

(
λ
∗(2)
k − λ̂(2)

k

)[
−
∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε
]]
≤ C log(N)√

N
.

Combining the two above inequalities and Equation (20), we obtain for ε > 0 and N large enough

E
[(
Rλ∗(1),λ∗(2) (ĝ)−Rλ̂(1),λ̂(2)(ĝ)

)]
≤ C log(N)√

N
. (21)

Then we have shown that the first term in the r.h.s. of Eq. (19) relies on the unfairness of the classifier
ĝ. Now, let us consider the second term in r.h.s. of Equation (19). Our goal will be to show that this
term mainly depends on the quality of the base estimators p̂k. Since

(
λ∗(1), λ∗(2)) is a maximizer of

R(λ(1),λ(2))(g∗(λ(1),λ(2))) over (λ(1), λ(2)), it is clear that, conditional on the data, Rλ∗(1),λ∗(2)(g∗λ∗(1),λ∗(2)) ≥
Rλ̂(1),λ̂(2)(g∗λ̂(1),λ̂(2)). (The parameter λ̂ is seen as fixed conditional on the data.) Therefore, we have

Rλ̂(1),λ̂(2)(ĝ)−Rλ∗(1),λ∗(2)

(
g∗λ∗(1),λ∗(2)

)
≤ Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g∗λ̂(1),λ̂(2)) .

By introducing ĝ∗
λ̂(1),λ̂(2) , we remove the estimation of λ∗(1), λ∗(2) from the study of Rλ̂(1),λ̂(2)(ĝ) −

Rλ∗(1),λ∗(2)

(
g∗
λ∗(1),λ∗(2)

)
. At this point, it becomes clear that bounding this term does not relies on the

unlabeled sample sizes Ns. Let us recall the definition of g∗
λ̂(1),λ̂(2) : conditional on the data

g∗
λ̂(1),λ̂(2) ∈ arg min

g∈G
Rλ̂(1),λ̂(2)(g) .

Then using similar arguments as those leading to Eq. (6) implies that

g∗
λ̂(1),λ̂(2)(x, s) ∈ arg max

k∈[K]

(
πspk(x, s)− s(λ̂(1)

k − λ̂
(2)
k

)
.

As a consequence, using the writing of the fair-risk provided by Lemma B.1

Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g∗λ̂(1),λ̂(2)) =∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X, s)− s(λ̂(1)

k − λ̂
(2)
k )
)
−

K∑
k=1

(
πspk(X, s)− s(λ̂(1)

k − λ̂
(2)
k )
)
1{ĝ(X,s)=k}

]
.

(22)

Because of the indicator function, there is only one non-zero element in the inner sum. Then we observe
that for each s ∈ S∣∣∣∣∣max

k∈[K]

(
πspk(X, s)− s(λ̂(1)

k − λ̂
(2)
k )
)
−

K∑
k=1

(
πspk(X,S)− s(λ̂(1)

k − λ̂
(2)
k )
)
1{ĝ(X,s)=k}

∣∣∣∣∣
≤ 2 max

k∈[K]

∣∣∣(πspk(X, s)− s(λ̂(1)
k − λ̂

(2)
k ))− (π̂sp̄k(X, s)− s(λ̂(1)

k − λ̂
(2)
k ))

∣∣∣
≤ 2

(
max
k∈[K]

|pk(X, s)− p̄k(X, s)|+ |πs − π̂s|
)

,
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where the last inequality is due to the fact that πs, π̂s, pk, and p̄k are all in [0, 1]. Therefore, recalling
that p̄k is a randomized version of p̂k we can write

Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g∗λ̂(1),λ̂(2)) ≤ C
(
‖p̂− p‖1 +

∑
s∈S
|π̂s − πs|+ u

)
,

and obtain the bound

Rλ̂(1),λ̂(2)(ĝ)−Rλ∗(1),λ∗(2)

(
g∗λ∗(1),λ∗(2)

)
≤ C

(
‖p̂− p‖1 +

∑
s∈S
|π̂s − πs|+ u

)
.

In view of Equation (20), the above inequality together with Equation (21) yield the desired result.

Proof of Theorem 3.8. Let us remind the reader that for each k ∈ [K], and s ∈ S

hsk(X, λ̂(1)
k , λ̂

(2)
k ) :=

(
πspk(X, s)− s(λ̂(1)

k − λ̂
(2)
k )
)
.

We start the proof with Equation (22),

Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g∗λ̂(1),λ̂(2)) =∑
s∈S

EX|S=s

[
max
k∈[K]

hsk(X, λ̂(1)
k , λ̂

(2)
k ))−

K∑
k=1

hsk(X, λ̂(1)
k , λ̂

(2)
k )1{ĝ(X,S)=k}

]
.

Furthermore, we have that

g∗
λ̂(1),λ̂(2)(X, s) ∈ arg max

k∈[K]
hsk

(
X, λ̂

(1)
k , λ̂

(2)
k

)
.

Therefore, we observe that

max
k∈[K]

hsk(X, λ̂(1)
k , λ̂

(2)
k ))−

K∑
k=1

hsk(X, λ̂(1)
k , λ̂

(2)
k )1{ĝ(X,S)=k} =

K∑
i=1,k 6=i

∣∣∣hsi (X, λ̂(1)
i , λ̂

(2)
i )− hsk(X, λ̂(1)

k , λ̂
(2)
k )
∣∣∣1{g∗

λ̂(1),λ̂(2) (X,s)=i}1{ĝ(X,s)=k}. (23)

Moreover, for k 6= i on the event
{
g∗
λ̂(1),λ̂(2)(X, s) = i, ĝ(X, s) = k

}
, we have from Equation (22)∣∣∣hsi (X, λ̂(1)

i , λ̂
(2)
i )− hsk(X, λ̂(1)

k , λ̂
(2)
k )
∣∣∣ ≤ 2 max

s∈S

(
max
k∈[K]

sup
x
|pk(x, s)− p̄k(x, s)|+ |πs − π̂s|

)
. (24)

Now, we observe that from Assumption 3.7, conditional on the data for each s ∈ S

PX|S=s

(∣∣∣hsi (X, λ̂(1)
i , λ̂

(2)
i )− hsk(X, λ̂(1)

k , λ̂
(2)
k )
∣∣∣ ≤ 2

(
max
k∈[K]

sup
x
|pk(x, s)− p̄k(x, s)|+ |πs − π̂s|

))
≤ C

(
max
k∈[K]

sup
x
|pk(x, s)− p̄k(x, s)|+ |πs − π̂s|

)
.

Combining the above inequality with Equation (22), Equation (23), and Equation (24), we obtain that

Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g∗λ̂(1),λ̂(2)) ≤ C
∑
s∈S

(
max
k∈[K]

sup
x
|pk(x, s)− p̄k(x, s)|+ |πs − π̂s|

)2

≤ C

(
‖p̂− p‖2

∞ + u2 +
∑
s∈S
|π̂s − πs|2

)
.

Finally, we deduce again the desired result from the above inequality, Equation (20), and Equation (21).

D Additional numerical experiments
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Figure 9: Example of synthetic data in binary case where d = 2 and m = 1. The level of unfairness is set
as follows: (1) p = 0.5 (no unfairness); (2) p = 0.75 (unfair dataset); (3) p = 1 (highly unfair dataset).
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