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Abstract
Algorithmic Fairness is an established area of machine learning, willing to reduce the influence

of biases in the data. Yet, despite its wide range of applications, very few works consider the
multi-class classification setting from the fairness perspective. We extend both definitions of
exact and approximate fairness in the case of Demographic Parity to multi-class classification.
We specify the corresponding expressions of the optimal fair classifiers. This suggests a plug-in
data-driven procedure, for which we establish theoretical guarantees. The enhanced estimator is
proved to mimic the behavior of the optimal rule both in terms of fairness and risk. Notably,
fairness guarantees are distribution-free. The approach is evaluated on both synthetic and real
datasets and turns out to be very effective in decision making with a preset level of unfairness.
In addition, our method is competitive with the state-of-the-art in-processing fairlearn in the
specific binary classification setting.

1 Introduction
Algorithmic fairness has become very popular during the last decade [1, 2, 4, 5, 7, 8, 13, 23, 30, 32]
because it helps addressing an important social problem: mitigating historical bias contained in
the data. This is a crucial issue in many applications such as loan assessment, health care, or even
criminal sentencing. The common objective in algorithmic fairness is to reduce the influence of
a sensitive attribute on a prediction. Several notions of fairness have already been considered in
the literature for the binary classification problem [4, 31]. All of them impose some independence
condition between the sensitive feature and the prediction. In some applications (e.g. loan agreement),
this independence is desired on some or all values of the label space, see Equality of odds or Equal
opportunity [19]. In this paper, we focus on the well established Demographic Parity (DP) [5] that
requires the independence between the sensitive feature and the prediction function, while not relying
on labels. DP has a recognized interest in various applications, such as for loan agreement without
gender attributes or for crime prediction without ethnicity discrimination [3, 14, 18, 22].

All the previously mentioned references focus either on the regression or the binary classification
frameworks. However, many (modern) applications fall within the scope of multi-class classification,
e.g., image recognition, text categorization. Moreover, most real world applications can be tackled
from the multi-class perspective. For instance, criminal recidivism is often treated as a binary
problem, while it may be more suitable to distinguish between the different stratum of the problem
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and provide thinner description of the criminal behavior. However, extension of previous works to
the multi-class setting is tricky, in particular since the adequate notion of fairness in this framework
is not clearly defined and should be handled with caution.

Up to our knowledge, imposing fairness constraint in the multi-class problem has only been
briefly discussed in [29], while focusing on Support Vector Machine (SVM) fair prediction. However,
their fairness approach relies on properly selecting a subset of the data that is unbiased from the
fairness perspective, and hereby differs significantly from the one presented here. We aim at enforcing
fairness using the dataset as a whole! Besides, from a high-level perspective, the procedure described
in [29] chooses to impose fairness on each component of the score function. It is clear that such
methodology can be generalized to any convex empirical risk minimization (ERM) problem such
as SVM or quadratic risk. However, since the decision rule in the multi-class setting relies on the
maximizer over scores, we do not adopt this quite unnatural approach and rather directly impose
fairness on the maximizer itself. Our main contributions are the following:

• We extend DP notion of exact and approximate fairness to the multi-class classification
problem;

• We give optimal solutions for the multi-class classifier problem under exact or approximate
DP constraints;

• We build a data-driven procedure that mimics the performance of the optimal rule both in
terms of risk and fairness. Notably, our fairness guarantees are distribution-free;

• The robustness of our approach is illustrated on synthetic datasets with various bias levels, as
well as on several real datasets. It proves to be very effective for decision making with a preset
level of unfairness.

Related works. There are mainly three ways to build fair prediction: i) pre-processing methods
mitigate bias in the data before applying classical Machine Learning algorithms; ii) in-processing
methods reduce bias during training; iii) pro-processing methods enforce fairness after fitting. The
present work falls within the last category. In a related study, [8] exhibit fair binary classifiers under
Equal Opportunity constraints. In contrast, we focus on the multi-class setting, while imposing DP
constraints.

Another line of works considers algorithmic fairness from an optimal transport perspective [7,
10, 16, 17]. A fair prediction is built upon Wasserstein barycenters of conditional distributions
with respect to the sensitive feature. Such argumentation extends with little effort to a multi-class
setting, even though the proper fairness definition in this context remains a question to investigate.
This approach provides a fair classifier based on empirical risk minimization (ERM) with fairness
constraints on each underlying score. However, fairness constraints on scores do not properly
translate to fairness at the level of the classifier in the multi-class setting. Hence, we opt in the
present work to enforce fairness directly at the level of the classifier.

Up to our knowledge, only few works study fairness in the multi-class setting. As previously
detailed, [29] enforces fairness by sub-sample selection and is in-processing. In contrast, we keep
the whole sample and enforce fairness in a post-processing manner. The multi-class framework is
also considered in [27]. However, the authors do not provide an explicit formulation of the optimal
fair rule. Furthermore, their theoretical fairness guarantee is not distribution free. Finally, they only
consider numerical experiments for binary classification. Our method definitely provides valuable
benefits on all these aspects.
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Outline of the paper. In the context of exact fairness, Section 2 defines DP fairness in
the multi-class setting and explicit expression of the optimal fair classifier are provided. The
corresponding data-driven procedure together with its statistical guarantees on risk and fairness are
presented in Section 3. Section 4 extends the previous study to the case of approximate fairness.
Section 5 details the algorithm implementation in the general approximate fairness setting, while
numerical experiments are provided in Section 6.

2 Exact fairness in multi-class classification
This section focuses on exact fairness in multi-class classification. In particular, the optimal classifier
for multi-class classification with exact DP constraint is established.

Let (X,S, Y ) be a random tuple with distribution P, where X ∈ X a subset of Rd, S ∈ S :=
{−1, 1}, and Y ∈ [K] := {1, . . . ,K} with K being a fixed number of classes. The distribution of
the sensitive feature S is denoted by (πs)s∈S , and we assume that mins∈S πs > 0. A classification
rule g is a function mapping X × {−1, 1} onto [K], whose performance is evaluated through the
misclassification risk

R(g) := P (g(X,S) 6= Y ) .

For k ∈ [K], we denote pk(X,S) := P (Y = k|X,S). Recall that a Bayes classifier minimizing the
misclassification risk R(·) over the set G of all classifiers is given by

g∗(x, s) ∈ arg max
k

pk(x, s) , for all (x, s) ∈ X × S .

2.1 Multi-class classification with demographic parity

We consider here DP constraint [5], that requires independence of the prediction function from the
sensitive feature S. Let first extend this notion to multi-class classification in the case of hard (exact
fairness) constraints

Definition 2.1 (Exact Demographic Parity). A classifier g ∈ G is exactly fair (denoted g ∈ Gfair)
with respect to the distribution P on X × S × [K] if, for each k ∈ [K],

P (g(X,S) = k|S = 1) = P (g(X,S) = k|S = −1) .

This definition naturally extends the DP constraint considered in binary classification [2, 7, 16,
21, 25]. When fairness comes into play, two important aspects of a classifier need to be assessed: the
misclassification risk R(·) and the unfairness, quantified as follows.

Definition 2.2 (Unfairness measure). The unfairness of a classifier g ∈ G is quantified by

U(g) := max
k∈[K]

|P (g(X,S) = k|S = 1)− P (g(X,S) = k|S = −1)| .

Naturally, taking into account the definition above, a classifier g is exactly fair if and only if U(g) = 0.

Alternative measures of unfairness could be considered. The maximum can for instance be
replaced by a summation over k. While both measures have their advantages, picking the maximum
simplifies fairness evaluation in empirical studies.
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2.2 Optimal exactly fair classifier

This section provides an explicit formulation of the optimal fair classifiers w.r.t. the misclassification
risk under DP constraint. An optimal exactly fair classifier g∗fair solves

min
g∈Gfair

R(g) .

Obtaining an optimal fair classifier requires to properly balance the misclassification risk together
with the fairness criterion. For this purpose, let consider the Lagrangian of the above problem and
introduce for λ = (λ1, . . . , λK) ∈ RK ,

Rλ(g) := R(g) +
K∑
k=1

λk [P (g(X,S) = k|S = 1)− P (g(X,S) = k|S = −1)] . (1)

We call this measure fair-risk and detail below how minimizing this risk for a properly chosen λ
gives the fair classifier g∗fair. We require besides the following technical condition.

Assumption 2.3 (Continuity assumption). The mapping t 7→ P (pk(X,S)− pj(X,S) ≤ t|S = s) is
assumed continuous, for any k, j ∈ [K] and s ∈ S.

Assumption 2.3 implies that the distribution of the differences pk(X,S)− pj(X,S) has no atoms.
It is required to derive a closed expression of g∗fair. Although it may sound unusual, it simplifies to
the continuity of t 7→ P (pk(X,S) ≤ t|S = s) considered in [8] for the binary case (K = 2). These
conditions however describe different sets of distributions when K ≥ 3. Assumption 2.3 is a tailored
condition for the multi-class problem.

We are now in a position to provide a characterization of optimal fair classification.

Proposition 2.4. Let Assumption 2.3 be satisfied and define

λ∗ ∈ arg min
λ∈RK

∑
s∈S

EX|S=s

[
max
k

(πspk(X, s)− sλk)
]
.

Then, g∗fair ∈ arg ming∈Gfair R(g) if and only if g∗fair ∈ arg ming∈G Rλ∗(g).

In other words, the optimum of the risk R(g) over the class of fair classifiers also maximizes the
fair-risk Rλ∗ . By construction, Rλ∗ is a risk measure which efficiently balances both classification
accuracy and unfairness. Proposition 2.4 directly implies that Rλ∗(g) ≥ Rλ∗(g∗fair) = R(g∗fair) ≥ 0, for
all g ∈ G. Furthermore, Prop. 2.4 entails a closed form expression of optimal exactly fair classifiers,
which is the bedrock of our procedure: any optimal fair classifier is simply maximizing scores, which
are obtained by shifting the original conditional probabilities in a optimal manner.

Corollary 2.5. Under Assumption 2.3, an optimal exactly fair classifier is characterized by

g∗fair(x, s) ∈ arg max
k

(πspk(x, s)− sλ∗k) , (x, s) ∈ X × S.

Remark 2.6. The binary setting corresponds to the case where K = 2 (with label space Y = {0, 1}).
In this specific setting, the fairness constraint reduces to a single constraint and the optimal rule
from Corollary 2.5 simplifies as

g∗fair(x, s) = 1{p1(x,s)≥ 1
2 + sλ∗

2πs
}, (x, s) ∈ X × S ,
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where λ∗ is solution in λ of

F1

(
λ+ π1

2π1

)
= F−1

(−λ+ π−1
2π−1

)
,

with Fs(t) = P (p1(X,S) ≤ t | S = s).

3 Data-driven procedure with statistical guarantees
We now provide a plug-in estimator for the optimal fair classifier g∗fair. This algorithm enjoys
strong theoretical guarantees in terms of both fairness and risk. In particular, Section 3.2 exhibits
distribution-free exact fairness guarantees.

3.1 Plug-in estimator

The enhanced estimation procedure is in two-steps. We first build estimators of the conditional
probabilities (pk)k. Then, the estimation of parameters λ∗ and (πs)s∈S is considered.

More precisely, our data-driven procedure is semi-supervised as it relies on two independent
datasets, one labeled and another unlabeled. The first labeled dataset Dn = (Xi, Si, Yi)i=1,...,n
contains i.i.d. samples from the distribution P. It allows to train estimators (p̂k)k of the conditional
probabilities (pk)k, e.g., Random Forest, SVM, etc. The second unlabeled dataset D′N contains N
i.i.d. copies of (X,S). It is used to calibrate fairness at the right level and estimate in particular
several quantities such as marginal distributions. Therefore, D′N is split in the following way: the
i.i.d. sample (S1, . . . , SN ) of sensitive features is used to compute empirical frequencies (π̂s)s∈S
as estimates of (πs)s∈S (recall that πs = P(S = s)). For s ∈ S, the number of observations
corresponding to S = s is denoted Ns, so that N−1 + N1 = N . The feature vectors in D′N are
denoted Xs

1 , . . . , X
s
Ns

and consist of i.i.d. data from the distribution PXs of X|S = s. All samples
are assumed independent.

Remark 3.1. Classical datasets often only contain labeled samples. Then, our approach requires
to split the data into two independent samples Dn and D′N , by removing labels in the latter. As
illustrated in Appendix D, this splitting step is important to calibrate the right level of fairness.

We now discuss an important aspect of our procedure. Ones the empirical conditional probabilities
p̂k(·, ·) are trained, the theoretical analysis of the risk and the unfairness of the plug-in rule requires
continuity conditions on the random variables p̂k(X,S) (conditional on the learning sample, see
Assumption 2.3). However, such property is automatically satisfied whenever perturbing (p̂k)k
with a ‘small’ random noise. To be more specific, we introduce p̄k(X,S, ζk) := p̂k(X,S) + ζk, for
a given uniform perturbation ζk on [0, u]. This perturbation improves the fairness calibration in
both theory and practice. Without the pertubation, atoms may appear for the random variables
p̂k(X,S)− p̂j(X,S) and then no guarantee on the fairness (nor on the risk) can be established. On
the other hand, its introduction does not deflate our theoretical study. In particular, our analysis, as
in Theorem 3.3, takes the additional perturbation into account.

Let (ζk)k∈[K] and (ζsk,i) be independent copies of a Uniform distribution on [0, u]. Because of
this extra randomness, we call our fair algorithm ĝ randomized exactly fair classifier and define it by
plug-in as

ĝ(x, s) = arg max
k∈[K]

(
π̂sp̄k(x, s, ζk)− sλ̂k

)
, (2)

5



for all (x, s) ∈ X × S, with λ̂ ∈ RK given as

λ̂ ∈ arg min
λ

∑
s∈S

1
Ns

Ns∑
i=1

[
max
k∈[K]

(
π̂sp̄k(Xs

i , s, ζ
s
k,i)− sλk

)]
. (3)

Note that the construction of the plug-in rule ĝ relies on (x, s) but also on the perturbations ζk and
ζsk,i for k ∈ [K], i ∈ Ns and s ∈ S. This additional data points are easy to collect since they are
i.i.d. uniform random variables.

3.2 Statistical guarantees

We are now in position to derive fairness and consistency guarantees of our plug-in procedure.

Universal exact fairness guarantee. We first focus on fairness assessment and prove that the
plug-in estimator ĝ is asymptotically exactly fair. The convergence rate on the unfairness to zero is
parametric with the number of unlabeled data N . Notably, the fairness guarantee is distribution-free
and holds for any estimators of the conditional probabilities.

Theorem 3.2. There exists a constant C > 0 depending only on K and mins∈S πs, such that, for
any estimators p̂k, we have

E [U(ĝ)] ≤ C√
N

.

This result illustrates a key feature of our post-processing approach. It makes (asymptotically)
exactly fair any off-the-shelf (unconstrained) estimators of the conditional probabilities. This post-
processing step is especially appealing when the cost of re-training an existing learning algorithm is
high.

Consistency result. We now provide the consistency of ĝ w.r.t. the misclassification risk. We
define the L1-norm in RK between the estimator p̂ := (p̂1, . . . , p̂K) and the vector of the conditional
probabilities p := (p1, . . . , pK) by ‖p̂− p‖1 =

∑
k∈[K] |p̂k(X,S)− pk(X,S)|.

Theorem 3.3. Let Assumption 2.3 be satisfied, then,

E[Rλ∗(ĝ)]−Rλ∗(g∗fair) ≤ C
(
E [‖p̂− p‖1] +

∑
s∈S

E [|π̂s − πs|] + E [U(ĝ)] + u

)
.

The above result highlights that the excess fair-risk of ĝ depends on 1) the quality of the
estimators of the conditional probabilities through its L1-risk; 2) the quality of the estimators of
(πs)s∈S ; 3) the unfairness of the classifier; and 4) the upper-bound u on the regularizing perturbations.
In view of Theorem 3.2, ĝ is then consistent w.r.t. the misclassification risk as soon as the estimator
p̂ is consistent in L1-norm.

Corollary 3.4. If E [‖p̂− p‖1]→ 0 and u = un → 0 when n→∞, we have

|E[R(ĝ)]−R(g∗fair)| → 0, as n,N →∞ .

We emphasize that Theorem 3.2 and Corollary 3.4 directly imply that ĝ performs asymptotically
as well as g∗fair in terms of both fairness and accuracy: under suitable conditions, we have E[R(ĝ)]→
R(g∗fair) and E[U(ĝ)]→ 0 as n→∞.
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Remark 3.5. The estimation of p is an important aspect of the procedure in order to get the
consistency of ĝ. In Appendix C, we differ the study of an example of consistent learning algorithm
based on ERM for which we derive a rate of convergence for the excess fair-risk in Theorem 3.3.

4 Approximate fair multi-class classification
Approximate fairness, also called ε-fairness, is particularly popular from a practical perspective in the
field of algorithmic fairness. Importantly, the user is allowed to relax the fairness constraint whenever
relevant or needed. Such relaxation is crucial when strict fairness strongly deflates the accuracy of
the method. Of course, such modularity has a cost: the solution can not be as fair as the exact fair
one; Besides, the unfairness level becomes a parameter that has no clear interpretation. Without
clear justification, some empirical rules exist such as the forth-firth that tolerates an unfairness of
0.2 [11, 14, 20].

In this section we extend the results of Sections 2-3 in the approximate fairness setting, without
taking in consideration the issue of selection of the level ε of unfairness.

ε-demographic parity in multi-class setting. First, we extend Definition 2.1 to the context of
ε-fairness.

Definition 4.1 (ε-Demographic parity (DP)). Let ε ≥ 0, we say that a classifier g ∈ G is ε-fair
(and write g ∈ Gε−fair) w.r.t. the distribution P on X × S × [K] if for each k ∈ [K]

|P (g(X,S) = k|S = 1)− P (g(X,S) = k|S = −1)| ≤ ε .

When ε = 0, Definition 2.1 reduces to exact fairness. Analogously to the exact fairness setting,
we need a formalism of ε fairness. To this end, we use again the measure of the unfairness U(·)
introduced in Definition 2.2.

Definition 4.2 (ε-fairness). A classifier g is ε-fair if and only if U(g) ≤ ε.

Optimal fair classifier. Our goal is to derive an explicit formulation of the optimal ε-fair classifiers
w.r.t. the misclassification risk, denoted by g∗ε−fair, which is solution of

min
g∈Gε−fair

R(g) .

Solving this problem shares similarities with the exact fairness case. However, deriving the optimal
ε-fair classifier is trickier and requires different tools. Nevertheless, the first step remains to write the
Lagrangian of the above problem: for λ(1) = (λ(1)

1 , . . . , λ
(1)
K ) ∈ RK+ and λ(2) = (λ(2)

1 , . . . , λ
(2)
K ) ∈ RK+

we define the ε-fair-risk as

Rλ(1),λ(2)(g) := R(g)

+
K∑
k=1

λ
(1)
k [P (g(X,S) = k|S = 1)

− P (g(X,S) = k|S = −1)− ε]

+
K∑
k=1

λ
(2)
k [P (g(X,S) = k|S = −1)

− P (g(X,S) = k|S = 1)− ε] .

(4)
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An analog of Proposition 2.4 follows as well as a complete characterization of the optimal ε-fair
classifier.

Proposition 4.3. Let H : R2K
+ → R be the function

H(λ(1), λ(2))

=
∑
s∈S

EX|S=s

[
max
k

(
πspk(X, s)− s(λ

(1)
k − λ

(2)
k )
)]

+ ε
K∑
k=1

(λ(1)
k + λ

(2)
k ) .

Let Assumption 2.3 be satisfied and define λ∗(1), λ∗(2) ∈ R2K
+ by

(λ∗(1), λ∗(2)) ∈ arg min
(λ(1),λ(2))∈R2K

+

H(λ(1), λ(2)) .

Then, g∗ε−fair ∈ arg ming∈Gε−fair R(g) if and only if g∗ε−fair ∈ arg ming∈G Rλ∗(1),λ∗(2)(g).
In addition, for all (x, s) ∈ X × S, we can rewrite

g∗ε−fair(x, s) = arg max
k∈[K]

(
πspk(x, s)− s(λ

∗(1)
k − λ∗(2)

k )
)
.

Plug-in ε fair classifier. From now on, we strictly follow the methodology considered in the
exact fairness setting. In particular, we derive an empirical counterpart of the classifier g∗ε−fair in
a semi-supervised manner using the same datasets as in Section 3.1. The rule remains the same:
estimate all unknown quantities and plug them into the expression of g∗ε−fair. This allows to write
the plug-in estimator

ĝε(x, s) = arg max
k∈[K]

(
π̂sp̄k(x, s, ζk)− s(λ̂

(1)
k − λ̂

(2)
k )
)
, (5)

for all (x, s) ∈ X × S, where the couple (λ̂(1), λ̂(2)) is minimizer over R2K
+ of Ĥ(λ(1), λ(2)) which is

defined as

Ĥ(λ(1), λ(2))

=
∑
s∈S

1
Ns

Ns∑
i=1

[
max
k

(
π̂sp̄k(Xs

i , s, ζ
s
k,i)− s(λ

(1)
k − λ

(2)
k )
)]

+ ε
K∑
k=1

(λ(1)
k + λ

(2)
k ) . (6)

Notice that here again, we exploited the randomization trick that is still required to set the correct
level of fairness. We conclude this section by a remark regarding the fairness and the risk of the
ε-fair estimator.

Going through the proofs of Theorems 3.2 and 3.3, we notice that they can be adapted to the ε
fairness setting modulo minor changes. The only part that must be taken with care concerns the
sub-differential of the empirical objective function that brings into play an additional restriction on
the parameter space, since the dual variables in the Lagrangian are positive. This being said, we
can extend Theorems 3.2 and 3.3 to the ε setting case and show that:
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i) Distribution-free ε-fairness. For any estimators p̂k, the estimator ĝε achieves the right
fairness level, that is, |E[U(ĝε)]− ε| ≤ C√

N
for some positive constant C.

ii) Consistency results. If the preliminary estimator of the conditional probabilities is consistent
in L1-norm, that is, if E [‖p̂− p‖1] → 0 and if u = un → 0 when n → ∞, then E [R(ĝε)] →
R(g∗ε−fair) as n,N →∞.

This provides strong theoretical guarantees for ĝε in terms of both fairness and risk. Our approach
can specifically control the fairness of the algorithm and set it at a desired level.

5 Implementation of the algorithm
In the present section, we focus on the implementation of our algorithm that produces an ε-fairness
classifier. While the implementation in the exact fairness setting might be improved using accelerated
gradient descent, we do not develop it here and simply identify the exact fair algorithm as the
approximate fair one whenever ε = 0.

The proposed approximate fair algorithm is defined in Eq. (5) and requires to solve an optimization
problem in Eq. (6). In this section, we elaborate on the implementation–pseudo-code provided in
Algorithm 1.

Algorithm 1 ε-fairness calibration
Input: ε parameter enabling the exact or approximate fairness, new data point (x, s), base
estimators (p̄k)k, unlabeled sample D′N , (ζk)k and (ζsk,i)k,i,s collection of i.i.d uniform perturbations
in [0, 10−5]

Step 0. Split D′N and construct the samples (S1, . . . , SN ) and {Xs
1 , . . . , X

s
Ns
}, for s ∈ S;

Step 1. Compute the empirical frequencies (π̂s)s based on (S1, . . . , SN );
Step 2. Compute λ̂(1) = (λ̂(1)

1 , . . . , λ̂
(1)
K ) and λ̂(2) = (λ̂(2)

1 , . . . , λ̂
(2)
K ) as a solution of Eq. (6);

Sequential quadratic programming of Section 5 can be used for this step.
Step 3. Compute ĝ thanks to Eq. (5);

Output: ε-fair classification ĝ(x, s) at point (x, s).

First of all, base estimators (p̄k)k are needed as input of the algorithm. In our numerical study,
we consider Random Forest (RF), SVM, and logistic regression (reglog). However, we emphasize that
for this step we can fit any off-the-shelf estimators by using the labeled dataset Dn. In particular,
already pre-trained efficient machine learning algorithms, whose retraining might be costly can be
used. This is one of the main advantages of post-processing approaches as compared to in-processing
ones. One might not forget the randomization in the definition of p̄k that offers good theoretical
properties for fairness calibration (see Section 3.1).

Once we have computed the (p̄k)k, the fair classifier ĝ relies on the estimators λ̂(1) and λ̂(2)

computed in Step 2. of the algorithm. It requires solving the minimization problem given by
Eq. (6). The corresponding objective function is convex but non-smooth due to the evaluation of the
function max function. One classical way to regularize the objective function is to simply replace the
hard-max by a soft-max Namely, for β a positive real number designating the temperature parameter
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and x ∈ RK , we set

softmax(x) :=
K∑
k=1

σβ(x)k · xk ,

where σβ(x)k := exp (xk/β)∑K
k=1 exp (xk/β)

.

Whenever β → 0 the soft-max reduces to the classical max function. Problem (6) with the soft-max
relaxation is regular enough to be solved by a constrained optimization method, such as sequential
quadratic programming [15, 24]. Empirical study shows that β = 0.005 enables a good accuracy of
our algorithm, without deviating too much from the original solution (with the max function).

Instead of regularizing the objective function, one can alternatively use sampling methods such
as cross-entropy optimization [26] on the original objective function. Despite their precision, the
downside of these algorithms is their computational complexity, whose growth with the problem
dimension is much faster than the one of their smooth counterpart. For this reason, the regularization
approach has been preferred in the following numerical study.

6 Numerical Evaluation
We now evaluate our method numerically1. Section 6.1 illustrates the efficiency of our ε-fairness
algorithm on synthetic data, while experiments on various real datasets are provided in Section 6.2.
Since, up to our knowledge, imposing fairness constraint in multi-class classification in a model-
agnostic manner is not addressed in the literature we compare our method to the state-of-the-art
approach proposed in [2] for binary classification.

6.1 Evaluation on synthetic data

Synthetic data. Let define the synthetic data (X,S, Y ). Conditional on Y = k with k ∈ [K],
features X ∈ Rd follows a Gaussian mixture of m components, while the sensitive feature S ∈
{−1,+1} follows a Bernoulli contamination with parameter p and p− 1 if k ≤ bK/2c and k > bK/2c
respectively:

(X|Y = k) ∼ 1
m

m∑
i=1
Nd(ck + µki , Id), for k ∈ [K],

(S|Y = k) ∼ 2 · B(p)− 1, if k ≤ bK/2c ,
(S|Y = k) ∼ 2 · B(1− p)− 1, if k > bK/2c ,

with ck ∼ Ud(−1, 1), and µk1, . . . , µkm ∼ Nd(0, Id). Notably, this synthetic data structure enables to
challenge different aspects of the algorithm. The parameter p measures the historical bias in the
dataset. Specifically, the model becomes fair when p = 0.5 and completely unfair when p ∈ {0, 1}
(see Figure 1 for an illustration). As default parameters, we set K = 6, p = 0.75, m = 10 and d = 20.

1The source of our method can be found at https://github.com/xxxxxx.
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Figure 1: Example of synthetic data in binary case (K = 2) where d = 2 and m = 1. The level of
unfairness is set as follows: (1) p = 0.5 (e.g. no unfairness); (2) p = 0.75 (e.g. unfair dataset); (3)
p = 1 (e.g. highly unfair dataset).

Simulation scheme. We compare our method to the unfair approach. We set u = 10−5 and the
probabilities pk are estimated by RF with default parameters in scikit-learn. For all experiments,
we generate n = 5000 synthetic examples and split the data into three sets (60% training set,
20% hold-out set and 20% unlabelled set). The performance of a classifier g is evaluated by its
empirical accuracy Acc(g) on the hold-out set. The fairness of g is measured on the hold-out set via
the empirical counterpart of the unfairness measure U(g) given in Definition 2.2. We repeat each
procedure 30 times in order to report the average performance (accuracy and unfairness) alongside
its standard deviation on the hold-out set.

Fairness versus Accuracy. Fig. 2 illustrates the evolution of the performance (unfairness and
accuracy) of the algorithm with respect to ε. Fig. 3-Left displays the fairness and accuracy of our
algorithm for different levels of historical bias (quantified by p) in the dataset. The evolution of
the performance in Fig. 2 behaves as expected: enforcing more fairness is counter-balanced by a
weaker accuracy (see also in Fig. 3), therefore the trade-off between unfairness and accuracy can be
controlled by the parameter ε. In particular, in case of exact fairness ε = 0, the gain in fairness is
particularly salient and effective. By contrast, whenever ε = 0.15, the fair classifier becomes similar
to the unfair method, meaning that the original unfairness of the problem is around ε = 0.15. From
Fig. 3-Left, we additionally notice that: 1) the fairness efficiency of the algorithm is particularly
significant for datasets with large historical bias (p = 0.95 or 0.99); 2) our method succeeds to reach
the demanded unfairness level up to small approximation terms (see how the curves are vertical as
soon as the bound on the unfairness is reached).

Fairness at the level of scores. Fig. 4 confirms our findings in Proposition 2.5: ε-fairness is
enforced by shifting the conditional probabilities (e.g., the exact fairness with ε = 0). When ε moves
away from 0 (approximate fairness), the conditional probabilities translate a situation where the
ε-fair classifier becomes more unfair. Here again we observe, but at the score distributions level, the
matching between the unfair and the ε-fair classifiers whenever ε = 0.15.

11



Figure 2: Performance of ε-fair and unfair classifiers in terms of accuracy and fairness. Left: evolution
of the unfairness w.r.t. ε; Right: evolution of the accuracy w.r.t. ε. We report the means and
standard deviations over 30 repetitions.

Figure 3: (Accuracy, Unfairness) phase diagrams w.r.t. Left the level of bias p; Right the accuracy-
fairness trade-off parameter ε . Top-left corner gives the best trade-off.

Figure 4: Empirical distribution of the score functions for the class Y = 1, conditional to the sensitive
feature S = ±1. (1)-(3) ε-fairness with ε ∈ {0, 0.1, 0.15}, (4) unfair.
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Figure 5: (Accuracy, Unfairness) phase diagrams that shows the performance of the methods.
Top-left corner gives the best trade-off.

6.2 Application to real datasets

Methods. We compare our ε-fair method for both linear and non-linear multi-class classification.
For linear models, we consider the one-versus-all logistic regression (reglog); for non-linear models,
we use SVM model with Gaussian kernel (gaussSVC) and RF. Hyperparemeters are provided in
Appx. D. Note that in multi-class setting, the accuracy of a random guess for a balanced dataset is
around 1/K.

Datasets. The performance of our method is evaluated on three benchmark datasets : CRIME,
LAW and STUDENTS Hereafter, we provide a short description of these datasets.

• Communities&Crime (CRIME) dataset contains socio-economic, law enforcement, and crime
data about communities in the US with 1994 examples. The task is to predict the number
of violent crimes per 105 population which, we divide into K = 5 balanced classes based on
equidistant quantiles. Following [6] the binary sensitive feature is the percentage of black
population.

• Law School Admissions (LAW) dataset [28] presents national longitudinal bar passage data
and has 20649 examples. The task is to predict a students GPA divided into K = 3 classes
based on equidistant quantiles. The sensitive attribute is the race (white versus non-white).

• Student Performance (STUDENTS) dataset [12] is about student achievement in two Por-
tuguese high schools. The task is to predict the number of grades passed (out of 3 grades i.e.,
K = 4) based on student social and school related features. In binary case we predict whether
the student passed the final grade. The sensitive attribute is the student age (≥ 18 vs. < 18).

Performance in binary case (K = 2). Before considering the multi-class setting, we analyze
the relevancy of our proposal for binary classification.

In this context, the state-of-the-art is established by the in-processing approach in [2] that
penalizes unfairness and will serve as baseline2. We focus the comparison between our approach and

2The method in [2] was developed for Equality of Odds but their code is also implemented for Demographic Parity
see https://github.com/fairlearn/fairlearn
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the state-of-the-art benchmark one to ε = 0 (the exact fairness problem) and illustrate in Fig 5 the
performance of the methods on the LAW, CRIME and STUDENTS. While common belief suggests
that in-processing methods outperform post-processing methods, it appears that our post-processing
exact fairness approach is very efficient both in terms of accuracy and fairness. Indeed, the numerical
experiments reveal that our method is competitive in several aspects: 1) Competitive unfairness.
Overall, our exactly-fair algorithm achieves similar performance as the state-of-the-art benchmark
one, when we consider reglog or RF. 2) Competitive accuracy. While on LAW and STUDENTS
we achieve approximately the same accuracy, we achieve a better accuracy on CRIME when we
consider RF (0.70 vs 0.65). 3) Time complexity. Since the method proposed in [2] is an in-processing
algorithm, using the dedicated package, the running time of the baseline is much more higher than
with our method.

Figure 6: (Accuracy, Unfairness) phase diagrams that shows the evolution, w.r.t. the accuracy
fairness trade-off parameter ε. Top-left corner gives the best trade-off.

Performance in multi-class case (K ≥ 3). Numerical experiments in the multi-class setting
are presented in Fig. 6. They confirm our observations on synthetic data. The performance of
the ε-fairness algorithm gets closer to the unfair method as we relax the constraint on fairness. In
addition, the results highlight the effectiveness of our method in enforcing fairness as ε decreases. In
particular, the fairness calibration is close to the pre-specified level, regardless of the base algorithm
(reglog, gaussSVC, or RF).

7 Conclusion
In the multi-class classification framework, we provide an optimal fair classification rule under DP
constraint and derive misclassification and fairness guarantees of the associated plug-in fair classifier
(see Alg. 1). We handle both exact and approximate fairness settings and show that our approach
achieves distribution-free fairness and can be applied on top of any probabilistic base estimator. We
illustrate the proficiency of our procedure on various synthetic and real datasets. In particular, our
algorithm is efficient for enforcing a pre-specified level of fairness.

Calibrating the level of unfairness ε ≥ 0 might be desired in some situations. A future direction
of research is to describe a methodology that statistically justifies a data-driven calibration of this
parameter in order to optimally compromise risk and unfairness.

14



References
[1] A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford, and H. Wallach. A reductions approach to

fair classification. In Proceedings of the 35th International Conference on Machine Learning,
2018.

[2] A. Agarwal, M. Dudik, and Z. S. Wu. Fair regression: Quantitative definitions and reduction-
based algorithms. In International Conference on Machine Learning, 2019.

[3] S. Barocas and A. Selbst. Big Data’s Disparate Impact. SSRN eLibrary, 2014.

[4] S. Barocas, M. Hardt, and A. Narayanan. Fairness and Machine Learning. fairmlbook.org,
2018.

[5] T. Calders, F. Kamiran, and M. Pechenizkiy. Building classifiers with independency constraints.
In IEEE international conference on Data mining, 2009.

[6] T. Calders, A. Karim, F. Kamiran, W. Ali, and X. Zhang. Controlling attribute effect in linear
regression. In IEEE International Conference on Data Mining, 2013.

[7] S. Chiappa, R. Jiang, T. Stepleton, A. Pacchiano, H. Jiang, and J. Aslanides. A general
approach to fairness with optimal transport. In AAAI, 2020.

[8] E. Chzhen, C. Denis, M. Hebiri, L. Oneto, and M. Pontil. Leveraging labeled and unlabeled
data for consistent fair binary classification. In Advances in Neural Information Processing
Systems, 2019.

[9] E. Chzhen, C. Denis, M. Hebiri, L. Oneto, and M. Pontil. Fair regression via plug-in estimator
and recalibrationwith statistical guarantees. In Advances in Neural Information Processing
Systems, 2020.

[10] E. Chzhen, C. Denis, M. Hebiri, L. Oneto, and M. Pontil. Fair regression with wasserstein
barycenters. In Advances in Neural Information Processing Systems, 2020.

[11] B. Collins. Tackling unconscious bias in hiring practices: The plight of the rooney rule. 2007.

[12] Paulo Cortez and Alice Silva. Using data mining to predict secondary school student performance.
EUROSIS, 01 2008.

[13] M. Donini, L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil. Empirical risk
minimization under fairness constraints. In Neural Information Processing Systems, 2018.

[14] M. Feldman, S. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian. Certifying and
removing disparate impact. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 259–268. ACM, 2015.

[15] Zhengqing Fu, Goulin Liu, and Lanlan Guo. Sequential quadratic programming method for
nonlinear least squares estimation and its application. Mathematical Problems in Engineering,
2019.

[16] P. Gordaliza, E. Del Barrio, G. Fabrice, and J. M. Loubes. Obtaining fairness using optimal
transport theory. In International Conference on Machine Learning, 2019.

15



[17] Thibaut Le Gouic, Jean-Michel Loubes, and Philippe Rigollet. Projection to fairness in statistical
learning. arXiv preprint arXiv:2005.11720, 2020.

[18] S. Hajian, J. Domingo-Ferrer, and A. Martínez-Ballesté. Discrimination prevention in data min-
ing for intrusion and crime detection. In 2011 IEEE Symposium on Computational Intelligence
in Cyber Security (CICS), pages 47–54, 2011.

[19] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In Neural
Information Processing Systems, 2016.

[20] Harry Holzer and David Holzer. Assessing affirmative action. Journal of Economic Literature,
38(3):483–568, 2000.

[21] R. Jiang, A. Pacchiano, T. Stepleton, H. Jiang, and S. Chiappa. Wasserstein fair classification.
arXiv preprint arXiv:1907.12059, 2019.

[22] F. Kamiran, I. Zliobaite, and T. Calders. Quantifying explainable discrimination and removing
illegal discrimination in automated decision making. Knowl. Inf. Syst., 35(3):613–644, 2013.

[23] K. Lum and J. Johndrow. A statistical framework for fair predictive algorithms. arXiv preprint
arXiv:1610.08077, 2016.

[24] Pu-yan Nie. Sequential penalty quadratic programming filter methods for nonlinear programming.
Nonlinear Analysis: Real World Applications, 8(1):118–129, 2007.

[25] L. Oneto, M. Donini, and M. Pontil. General fair empirical risk minimization. arXiv preprint
arXiv:1901.10080, 2019.

[26] Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology and computing in applied probability, 1(2):127–190, 1999.

[27] Shiv Kumar Tavker, Harish Guruprasad Ramaswamy, and Harikrishna Narasimhan. Consistent
plug-in classifiers for complex objectives and constraints. In Advances in Neural Information
Processing Systems, volume 33, pages 20366–20377, 2020.

[28] L. F. Wightman and H. Ramsey. LSAC national longitudinal bar passage study. Law School
Admission Council, 1998.

[29] Q. Ye and W. Xie. Unbiased subdata selection for fair classification: A unified framework and
scalable algorithms. arXiv preprint arXiv:2012.12356, 2020.

[30] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi. Fairness beyond disparate
treatment & disparate impact: Learning classification without disparate mistreatment. In
International Conference on World Wide Web, 2017.

[31] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints: A
flexible approach for fair classification. Journal of Machine Learning Research, 20(75):1–42,
2019.

[32] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair representations. In
International Conference on Machine Learning, 2013.

16



[33] T. Zhang. Statistical behavior and consistency of classification methods based on convex risk
minimization. The Annals of Statistics, 32, 2004.

17



In this section, we gather the proof of our results. In all the sequel, C denotes a generic constant,
whose value may vary from line to line.

A Proof for exact fairness
This section is devoted to the proof of the results given in Section 2 and 3.

A.1 Proof for fair optimal rule

We begin with an auxiliary lemma, which provides an alternative useful representation of Rλ(g).
Lemma A.1. The fair-risk of a classifier g with balancing parameter λ = (λ1, . . . , λK) ∈ RK
rewrites:

Rλ(g) =
∑
s∈S

EX|S=s

[
K∑
k=1

(πspk(X,S)− sλk)1{g(X,S)6=k}

]
. (7)

Proof of Lemma A.1. Let λ ∈ RK and recall the following definition of the fair-risk

Rλ(g) =P (g(X,S) 6= Y )

−
∑
s∈S

K∑
k=1

sλkPX|S=s (g(X,S) 6= k) .

We have the following decomposition

P (g(X,S) 6= Y ) =
K∑
k=1

E
[
1{g(X,S)6=k}1{Y=k}

]

=
K∑
k=1

∑
s∈S

E
[
1{g(X,S)6=k}1{S=s}pk(X,S)

]

=
K∑
k=1

∑
s∈S

EX|S=s
[
1{g(X,s)6=k}πspk(X, s)

]
,

which directly implies (7).

Proof of Proposition 2.4. Recall that g∗λ minimizes Rλ on G. Besides, we deduce from Lemma A.1
that

Rλ(g∗λ) = 1−
∑
s∈S

EX|S=s

[
max
k∈[K]

(πspk(X, s)− sλk)
]
. (8)

Hence, a maximizer λ∗ in RK of λ 7→ Rλ(g∗λ) takes the form

λ∗ ∈ arg min
λ∈RK

∑
s∈S

EX|S=s

[
max
k∈[K]

(πspk(X, s)− sλk)
]
.

The above criterion is convex in λ. Therefore, first order optimality conditions for the minimization
over λ of the above criterion imply that, for each k ∈ [K],

0 =
∑
s∈S

sPX|S=s
(
∀j 6= k (πspk(X, s)− sλ∗k) > (πspj(X, s)− sλ∗j )

)
+ suskPX|S=s

(
∀j 6= k (πspk(X, s)− sλ∗k) ≥ (πspj(X, s)− sλ∗j ), ∃j 6= k (πspk(X, s)− sλ∗k) = (πspj(X, s)− sλ∗j )

)
,
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with usk ∈ [0, 1] for all k ∈ [K] and s ∈ S. Thanks to Assumption 2.3, pk(X, s) − pj(X, s) has no
atoms for all s ∈ S and then the second part of the r.h.s. vanishes. Therefore for all k ∈ [K]

PX|S=1 (g∗λ∗(X,S) 6= k) = PX|S=−1 (g∗λ∗(X,S) 6= k) ,

meaning that the classifier g∗λ∗ is fair. Furthermore, for any fair classifier g ∈ Gfair, we observe that

R(g∗λ∗) = Rλ∗(g∗λ∗) ≤ Rλ∗(g) = R(g),

so that g∗λ∗ is also an optimal fair classifier.
Conversely, consider any optimal fair classifier g∗fair ∈ Gfair. Combining the fairness of g∗fair with

the optimality of λ∗ over the family (Rλ(g∗λ))λ∈RK , we deduce

Rλ∗(g∗fair) = R(g∗fair) ≤ Rλ∗(g∗λ∗) ≤ Rλ∗(g), for any g ∈ G .

Hence any optimal fair classifier is a minimizer of Rλ∗ over G.

Proof of Corollary 2.5. The proof follows directly from Lemma A.1 and Proposition 2.4. In particular,
Eq. (8) implies that

g∗λ ∈ arg min
g
Rλ∗(g),

is characterized by
g∗λ∗(x, s) ∈ arg max

k∈[K]
(πspk(x, s)− sλ∗k) .

A.2 Proof of Consistency results

We start this section with two results, Lemmas A.2-A.3 that directly follow from similar arguments
as in the proofs of Proposition A.2. and Lemma B.8 in [9] respectively. Their proofs are hence
omitted.

Lemma A.2. The parameter λ∗, and λ̂ are bounded.

Lemma A.3. We have that, for each s ∈ S and k ∈ [K],

E
[

1
Ns

Ns∑
i=1

1{∃j 6= k, ĥsk(Xi, λ̂k) = ĥsj(Xi, λ̂j)}
]
≤ C

Ns
,

where ĥsk : (x, λ) 7→ π̂sp̄k(x, s)− sλ.

Let us now consider the proofs of Theorem 3.2 and Theorem 3.3.

Proof of Theorem 3.2. As in Lemma A.3, we first introduce, for s ∈ S and k ∈ [K],

ĥsk : (x, λ) 7→ π̂sp̄k(x, s)− sλ .

By construction, the estimator p̄k(X,S) satisfies Assumption 2.3, therefore for all s ∈ S and k ∈ [K]

PX|S=s (ĝ(X,S) = k) = PX|S=s
(
∀j 6= k, ĥsk(X, λ̂k) > ĥsj(X, λ̂j)

)
.
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Now, let us make use of the optimality of λ̂. We denote by P̂X|S=s the empirical measure on the
data {Xs

1 , . . . , X
s
Ns
}. Considering the first order optimality conditions for λ̂, we can show that, for

all k ∈ [K] and s ∈ S, there exists αsk ∈ [−1, 1] such that

sP̂X|S=s
(
∀j 6= k, ĥsk(X, λ̂k) > ĥsj(X, λ̂j)

)
+

αskP̂X|S=s
(
∀j 6= k, ĥsk(X, λ̂k) ≥ ĥsj(X, λ̂j), ∃j 6= k, ĥsk(X, λ̂k) = ĥsj(X, λ̂j)

)
= 0 .

From the above equation, we deduce that

U(ĝ) =
K∑
k=1

∣∣∣PX|S=1 (ĝ(X,S) = k)− PX|S=−1 (ĝ(X,S) = k)
∣∣∣

≤
K∑
k=1

∑
s∈S

∣∣∣(PX|S=s − P̂X|S=s
) (
∀j 6= k, ĥsk(X, λ̂k) > ĥsj(X, λ̂j)

)∣∣∣
+

K∑
k=1

∑
s∈S

P̂X|S=s
(
∃j 6= k, ĥsk(X, λ̂k) = ĥsj(X, λ̂j)

)
.

Observe that for all k ∈ [K]∣∣∣(PX|S=s − P̂X|S=s
) (
∀j 6= k, ĥsk(X, λ̂k) > ĥsj(X, λ̂j)

)∣∣∣ =∣∣∣∣∣(PX|S=s − P̂X|S=s
)(
∀j 6= k, p̄k(X, s)− p̄j(X, s) ≥

s(λ̂k − λ̂j)
π̂s

)∣∣∣∣∣
≤

K∑
j=1

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s
)

(p̄k(X, s)− p̄j(X, s) ≥ t)
∣∣∣ .

Therefore, from the Dvoretzky-Kiefer-Wolfowitz Inequality conditional on Dn and on (S1, . . . , SN ),
we deduce that, for each s ∈ S and k ∈ [K]

E
[∣∣∣(PX|S=s − P̂X|S=s

) (
∀j 6= k, ĥsk(X, λ̂k) > ĥsj(X, λ̂j)

)∣∣∣] ≤ C√ 1
Ns

.

Applying Lemma A.3, we then get that, Conditional on Dn and on (S1, . . . , SN ), we have that

E [U(ĝ)] ≤ C
∑
s∈S

√
1
Ns

.

Since Ns is a binomial random variable with parameter (πs, N), we get

E [U(ĝ)] ≤ C
√

1
N
,

where C depends on K and min(π−1, π1).

20



Proof of Theorem 3.3. The proof goes conditional on the training data. First, let us decompose
excess fair-risk of the classifier ĝ in a convenient way for our analysis

Rλ∗(ĝ)−Rλ∗(g∗fair) =
(
Rλ∗ (ĝ)−Rλ̂(ĝ)

)
+
(
Rλ̂(ĝ)−Rλ∗ (g∗λ∗)

)
, (9)

where we recall that g∗fair = g∗λ∗ . We propose to deal with the two terms in r.h.s. of Equation (9)
separately. According the the first term, we have

(
Rλ∗ (ĝ)−Rλ̂(ĝ)

)
=

∑
s∈S

K∑
k=1

sλ∗kPX|S=s (ĝ(X,S) 6= k)−
∑
s∈S

K∑
k=1

sλ̂kPX|S=s (ĝ(X,S) 6= k)

=
∑
s∈S

K∑
k=1

s
(
λ∗k − λ̂k

)
PX|S=s (ĝ(X,S) 6= k) .

Since, for each k ∈ [K], the parameters λ∗k and λ̂k are bounded (see Lemma A.2), we deduce that

Rλ∗ (ĝ)−Rλ̂(ĝ) ≤ CU (ĝ) . (10)

Then we have shown that the first term in the r.h.s. of Eq. (9) relies on the unfairness of the classifier
ĝ. Now, let us consider the second term in r.h.s. of Equation (9). Our goal will be to show that this
term mainly depends on the quality of the base estimators p̂k. Since λ∗ is a maximizer of Rλ(g∗λ)
over λ, it is clear that, conditional on the data, Rλ∗(g∗λ∗) ≥ Rλ̂(g∗

λ̂
). (The parameter λ̂ is seen as

fixed conditional on the data.) Therefore, we have

Rλ̂(ĝ)−Rλ∗ (g∗λ∗) ≤ Rλ̂(ĝ)−Rλ̂(g∗
λ̂
) .

By introducing ĝ∗
λ̂
, we remove the estimation of λ∗ from the study of Rλ̂(ĝ) −Rλ∗ (g∗λ∗). At this

point, it becomes clear that bounding this term does not relies on the unlabeled sample sizes Ns.
Let us recall the definition of g∗

λ̂
: conditional on the data

g∗
λ̂
∈ arg min

g∈G
Rλ̂(g) .

Then using similar arguments as those leading to Eq. (8) implies that (see also Corollary 2.5)

g∗
λ̂
∈ arg max

k∈[K]

(
πspk(x, s)− sλ̂k

)
.

As a consequence, using the writing of the fair-risk provided by Lemma A.1

Rλ̂(ĝ)−Rλ̂(g∗
λ̂
) =

∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X,S)− sλ̂k

)
−

K∑
k=1

(
πspk(X,S)− sλ̂k

)
1{ĝ(X,S)=k}

]
.

Because of the indicator function, there is only one non-zero element in the inner sum. Then we
observe that for each s ∈ S∣∣∣∣∣max

k∈[K]

(
πspk(X,S)− sλ̂k

)
−

K∑
k=1

(
πspk(X,S)− sλ̂k

)
1{ĝ(X,S)=k}

∣∣∣∣∣
≤ 2 max

k∈[K]

∣∣∣(πspk(X,S)− sλ̂k)− (π̂sp̄k(X,S)− sλ̂k)
∣∣∣

≤ 2
(

max
k∈[K]

|pk(X,S)− p̄k(X,S)|+ |πs − π̄s|
)

,
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where the last inequality is due to the fact that πs, π̂s, pk, and p̄k are all in [0, 1]. Therefore, recalling
that p̄k is a randomized version of p̂k we can write

Rλ̂(ĝ)−Rλ̂(g∗
λ̂
) ≤ C

(
‖p̂− p‖1 +

∑
s∈S
|π̂s − πs|+ u

)
,

and obtain the bound

Rλ̂(ĝ)−Rλ∗ (g∗λ∗) ≤ C
(
‖p̂− p‖1 +

∑
s∈S
|π̂s − πs|+ u

)
.

In view of Equation (9), the above inequality together with Equation (10) yield the desired result.

B Proof for approximate fairness
We begin with an auxiliary lemma, which provides an alternative useful representation of Rλ(1),λ(2)(g).

Lemma B.1. The ε-fair-risk of a classifier g with balancing parameters λ(1) = (λ(1)
1 , . . . , λ

(1)
K ) ∈

RK+ , λ(2) = (λ(2)
1 , . . . , λ

(2)
K ) ∈ RK+ reads as:

Rλ(1),λ(2)(g) =
∑
s∈S

EX|S=s

[
K∑
k=1

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)
1{g(X,S)6=k}

]
− ε

K∑
k=1

(λ(1)
k + λ

(2)
k ). (11)

Proof of Lemma B.1. Let (λ(1), λ(2)) ∈ R2K
+ and recall the following definition of the ε-fair-risk

Rλ(1),λ(2)(g) = P (g(X,S) 6= Y )−
K∑
k=1

∑
s∈S

s(λ(1)
k − λ

(2)
k )EX|S=s

[
1{g(X,s) 6=k}

]
− ε

K∑
k=1

(λ(1)
k + λ

(2)
k )

The result in (11) directly follows from the following decomposition

P (g(X,S) 6= Y ) =
K∑
k=1

E
[
1{g(X,S)6=k}1{Y=k}

]

=
K∑
k=1

∑
s∈S

E
[
1{g(X,S)6=k}1{S=s}pk(X,S)

]

=
K∑
k=1

∑
s∈S

EX|S=s
[
1{g(X,s)6=k}πspk(X, s)

]
.

Proof of Proposition 4.3. From Lemma B.1, we deduce that g∗
λ(1),λ(2) should be defined for all

(x, s) ∈ X × S as

g∗λ(1),λ(1)(x, s) = arg max
k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(1)
k )
)
,
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since it minimizes the risk Rλ(1),λ(2) . Now we should maximize Rλ(1),λ(2)(g∗λ(1),λ(2)) in the dual
variables. Notice that the ε-fair risk can be wirten as

Rλ(1),λ(2)(g∗λ(1),λ(2)) = 1−
∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)]
− ε

K∑
k=1

(λ(1)
k + λ

(2)
k ) .

Hence, a maximizer (λ∗(1), λ∗(2)) in R2K
+ of (λ(1), λ(2)) 7→ R

λ(1),λ(2) (g∗
λ(1),λ(2)) takes the form

(λ∗(1), λ∗(2)) ∈ arg min
(λ(1),λ(2))∈R2K

+

∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X, s)− s(λ

(1)
k − λ

(2)
k )
)]

+ ε
K∑
k=1

(λ(1)
k + λ

(2)
k )︸ ︷︷ ︸

H(λ(1),λ(2))

.

The rest of the proof consists in showing that such a calibration of the tuning parameters λ(1), λ(2)

implies that g∗
λ(1),λ(2) is indeed ε-fair. Observe that

H(λ(1), λ(2)) ≥ ε
K∑
k=1

(λ(1)
k + λ

(2)
k ) ,

and then lim‖(λ(1),λ(2))‖2
2→∞

H(λ(1), λ(2)) = +∞. Moreover, this criterion is convex in (λ(1), λ(2)).
Therefore the minimum (λ∗(1), λ∗(2)) exists. In particular, we can derive the first order optimality
conditions of the above problem w.r.t. λ(1) which implies that for each k ∈ [K],

0 = −
∑
s∈S

sPX|S=s
(
∀j 6= k (πspk(X, s)− s(λ

∗(1)
k − λ∗(2)

k )) > (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j ))
)

+ s usk PX|S=s
(
∀j 6= k (πspk(X, s)− s(λ

∗(1)
k − λ∗(2)

k )) ≥ (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j )),

∃j 6= k (πspk(X, s)− s(λ
∗(1)
k − λ∗(2)

k )) = (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j ))
)

+ ε ,

with usk ∈ [0, 1] for all k ∈ [K] and all s ∈ S. Similarly the first order conditions w.r.t. λ(1) implies
that for each k ∈ [K],

0 =
∑
s∈S

sPX|S=s
(
∀j 6= k (πspk(X, s)− s(λ

∗(1)
k − λ∗(2)

k )) > (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j ))
)

+ s vsk PX|S=s
(
∀j 6= k (πspk(X, s)− s(λ

∗(1)
k − λ∗(2)

k )) ≥ (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j )),

∃j 6= k (πspk(X, s)− s(λ
∗(1)
k − λ∗(2)

k )) = (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j ))
)

+ ε ,

with vsk ∈ [0, 1] for all k ∈ [K] and s ∈ S. Thanks to Assumption 2.3, pk(X, s)− pj(X, s) has no
atom for all s ∈ S and then the second part of the r.h.s. of both above equations vanish. Hence, the
first order optimality conditions w.r.t. λ∗(1)

k becomes

PX|S=1
(
g∗λ∗(1),λ∗(2)(X,S) 6= k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) 6= k

)
= ε ,

and the first order optimality conditions w.r.t. λ∗(2)
k writes as

PX|S=1
(
g∗λ∗(1),λ∗(2)(X,S) 6= k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) 6= k

)
= −ε .
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Therefore, we deduce the following constraint on λ∗(1)
k , λ

∗(2)
k

λ
∗(1)
k λ

∗(2)
k = 0 and λ

∗(1)
k + λ

∗(2)
k ≥ 0 .

Hence, if λ∗(1)
k + λ

∗(2)
k > 0,∣∣∣PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) 6= k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) 6= k

)∣∣∣ = ε.

In the case where λ∗(1)
k = λ

∗(2)
k = 0, we use Euler Inequality and deduce∣∣∣PX|S=1

(
g∗λ∗(1),λ∗(2)(X,S) 6= k

)
− PX|S=−1

(
g∗λ∗(1),λ∗(2)(X,S) 6= k

)∣∣∣ ≤ ε .

C Rates of convergence for ERM estimator
We have established in Section 3.2 theoretical guarantees on risk and fairness for our plug-in
procedure, when using any off-the-shelf consistent estimator of the conditional probability. In this
section, we study more close detail the classical setting where the conditional probabilities estimation
step is provided by ERM and derive an explicit bound on the fair-risk of the resulting fair classifier,

For a given (measurable) score function f(·) = (f1(·), . . . , fK(·)) mapping X × {−1, 1} onto RK ,
we define the induced classification rule 3

gf (·) ∈ arg max
k∈[K]

fk(·) .

For the sake of simplicity, we focus on the L2-risk4

R2(f) := E
[
K∑
k=1

(Zk − fk(X,S))2
]
,

where Zk := 21{Y=k} − 1.
The optimal score function f∗ w.r.t. R2 is denoted f∗ := arg minf R2(f), where the infimum

is taken over all measurable functions that map X × {−1, 1} onto RK . The optimum f∗ sat-
isfies the relation f∗k (X,S) = 2pk(X,S) − 1. In particular, Zhang’s Lemma [33] implies that
E [R(gf )−R(g∗)] ≤ (E [R2(f)−R2(f∗)])1/2, for any score function f . This inequality highlights the
connection between the usual misclassification risk of gf and the L2-risk of the score function f .

Let us now consider the empirical counterpart of the L2-risk R2, given for any function f by

R̂2(f) := 1
n

n∑
i=1

K∑
k=1

(
Zik − fk(Xi, Si)

)2
,

with Zik := 21{Yi=k} − 1. The empirical risk minimizer f̂ over a given convex set F of functions is
given by

f̂ ∈ arg min
f∈F

R̂2(f) .

3Whenever the maximum is reached at multiple indices, we set by convention gf as the smallest index in [K].
4Since the 0 − 1 loss lacks convexity, we consider the square loss as a convex surrogate to avoid computational issues.
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In view of the expression for the optimal score function f∗, we naturally set p̂k := f̂k+1
2 as an

estimator of the conditional probability pk. Given p̂(·) = (p̂1(·), . . . , p̂K(·)), our plug-in procedure
given in Eq. (2) provides an exactly fair classifier that we denote by gf̂ . According to the theoretical
study conducted in Section 3.2, Theorem 3.2 ensures that the classifier gf̂ is asymptotically exactly
fair.

According to the analysis of the fair-risk of the classifier gf̂ , we invoke Theorem 3.3 complemented
with the consistency of the empirical risk minimizer f̂ w.r.t. to the L2-risk (due to Zhang’s Lemma).
In order to specify the precise rate of convergence of the fair-risk, we introduce additional assumptions
on the class of functions F .

Assumption C.1. The set F satisfies the following:

1. There exists B > 0 s.t. ‖f‖∞ := maxk∈[K] supx∈X |fk(x)| ≤ B, for each f ∈ F ;

2. For ε > 0, there exists an ε-net Fε ⊂ F w.r.t. ‖.‖∞ and a positive constant CF s.t. log (|Fε|) ≤
CF log(ε−1).

Note that Assumption C.1 covers bounded parametric classes among others (for instance, linear
or polynomial with bounded degree and bounded coefficients score functions). This structural
assumption on the set of models F enables to control the rate of convergence of the excess fair-risk
of gf̂ the constructed fair classifier.

Proposition C.2. Assume that f∗ ∈ F and u = un = 1
n . If Assumptions 2.3 and C.1 hold, then

E
[
Rλ∗(gf̂ )−Rλ∗(g∗fair)

]
≤ C

(( log(n)
n

)1/2
+N−1/2

)
.

Under classical assumptions on the complexity of F , Proposition C.2 induces in particular a
parametric rate of convergence for the excess fair-risk of gf̂ .

Proof. From Theorems 3.2 and 3.3, we have that

E
[
Rλ∗(gf̂ )−Rλ∗(g∗fair)

]
≤ E ‖p̂− p‖1 + 1

n
+ C√

N
.

Since

E ‖p̂− p‖1 ≤
1
2E
∥∥∥f̂ − f∗

∥∥∥
1
≤ 1

2

√√√√ K∑
k=1

E
[(
fk(X,S)− f∗k (X,S)

)2]
,

it remains to provide a control on the term
∑K
k=1 E

[
(fk(X,S)− f∗k (X,S))2

]
. For this purpose, let

us first prove that for each score function f ∈ F , the following holds

K∑
k=1

E
[
(fk(X,S)− f∗k (X,S))2

]
≤ 2 (R2(f)−R2(f∗)) . (12)

Indeed, we observe that

(Zk − fk)2 + (Zk − f∗k )2

2 −
(
Zk −

(
fk + f∗k

2

))2
= (fk − f∗k )2

4 .
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From this equality, we then deduce that

1
4

K∑
k=1

E
[
(fk(X,S)− f∗k (X,S))2

]
= 1

2 (R2(f) +R2(f∗))−R2

( f + f∗

2

)
.

Since R2 is positive, we get Equation (12).
The next step of the proof is to bound R2(f̂)−R2(f∗). We have by definition of f̂

R2(f̂)−R2(f∗) ≤ R2(f̂)−R2(f∗)− 2
(
R̂2(f̂)− R̂2(f∗)

)
.

Furthermore from Assumption C.1 with ε = 1/n, we have

R2(f̂)−R2(f∗)− 2
(
R̂2(f̂)− R̂2(f∗)

)
≤ C

n
+ sup
f∈F1/n

{R2(f)−R2(f∗)} − 2
(
R̂2(f̂)− R̂2(f∗)

)
. (13)

If we denote Err(f) = R2(f)− R2(f∗) and Êrr(f) = R̂2(f̂)− R̂2(f∗), from Bernstein’s Inequality
together with Assumption C.1, we have, for all t > 0 and f ∈ Fε,

P
(
Err(f)− 2 · Êrr(f) ≥ t

)
≤ P

(
2
(
Err(f)− Êrr(f)

)
≥ t+ Err(f)

)
≤ exp

(
−

n
8 · (t+ E[h(Z, f(X,S))])2

E[|h(Z, f(X,S))|2] + C
3 · (t+ E[h(Z, f(X,S))])

)

where h(Z, f(X,S)) :=
∑K
k=1(|Z − fk(X,S)|2 − |Z − f∗k (X,S)|2). Furthermore, observe that

E[|h(Z, f(X,S))|2] ≤ C · E[h(Z, f(X,S))] ,

which, plugged in the previous inequality, directly provides

P
(
Err(f)− 2 · Êrr(f) ≥ t

)
≤ exp (−Cnt) .

Hence, combining a union bound argument together with Assumption C.1 and (13), we compute

E[R2(f̂)−R2(f∗)] ≤ C

n
+ CCF

log(n)
n

. (14)

Plugging this inequality in (12) concludes the proof.

D Numerical experiments
Hyperparameters. The hyperparamerers are set with default parameters in scikit-learn except
the number of trees for RF which is set at 500.

Splitting the sample. Our theoretical study relies on the independence of the datasets Dn and
D′n. Figure 7 illustrates the importance of such condition for the fairness but also the accuracy of
our proposed argmax-fair method. Indeed, whenever splitting is not performed (left parts of plots),
the fairness performance of the fair algorithm can even be worse than the unfair method. This
emphasize that splitting is crucial and enables to avoid over-fitting on the training set.
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Figure 7: Empirical impact of data splitting on unfairness (Left – the lower the better) and accuracy
(Right: accuracy – the higher the better). Boxplots generated over 30 repetitions with p = 0.75.
Left: unfairness – the lower the better; Right: accuracy – the higher the better.
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