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Abstract

Natural Language Processing (NLP) is a branch of artificial intelli-
gence that gives machines the ability to decode human languages. Part-
of-speech tagging (POS tagging) is a pre-processing task that requires an
annotated corpus. Rule-based and stochastic methods showed remarkable
results for POS tag prediction. On this work, I performed a mathematical
model based on Hidden Markov structures and I obtained a high-level ac-
curacy of ingredients extracted from text recipe with performances greater
than what traditional methods could make without unknown words con-
sideration.

1 Introduction

Artificial intelligence had shown a great progress in the recent years especially
the deep learning branch where learning techniques have been improved very
quickly. The combination of representation learning and deep learning have
allowed the emerging of a new Al class called deep reinforcement learning.

Deep Reinforcement learning tend to estimate value functions from exper-
iments and simulations and using dynamic programming through Deep Re-
inforcement learning is an efficient way to build reactive strategies acting on
instantaneous control. An algorithm which approves its performance by experi-
ence is an algorithm capable of avoiding his own mistakes through a combination
of a strong memory fed by fresh helpful data and the ability to keep winning pre-
dictions after a long-term performance (Barto, Bradtke, & Singhl [1995)) (Mnih
et all, [2015).

Neural Network can be considered as a dynamic Reinforcement Learning
scheme where the layers are putted in a parallel way to have a cascaded trans-
mission of the treated signal (Fukushima & Miyakel [1982)) (LeCun et al.| {1989)
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and where a prior knowledge is important to predict the output state of new
observations.

Sequential modeling is a way to process data in natural language processing
by maximizing awards after manipulating situation and producing resulting
actions (Vithayathil Varghese & Mahmoud, [2020]) (LeCun, Bengio, & Hinton,
. A sequential model representation is influenced by its data representation
and how tensors are trained to produce an optimal control (Bengio, Courville,|
|& Vincent| [2013)

To improve the target learning task, transfer learning is used as a powerful
technique to increase the value of the most probable cases inside a state matrix
(Boutsioukis, Partalas, & Vlahavas, 2011). Transferring the knowledge helps
us to reduce the amount of data consumed and rely on feature engineering to
reduce the noise caused by annotation errors and other tag-set anomalies in a
context of multi-agent system.

Extracting ingredients automatically from a recipe text is an extremely use-
ful activity especially when we want to analyze a massive data of text recipes.
Rule-Based methods were implemented to extract information from unstruc-
tured recipe data (Silva, Ribeiro, & Ferreiral [2019)) Ingredients is not the only
useful information we want to extract; in this work we are going to use Hidden
Markov Models especially Viterbi algorithm with some modification to make
it receiving two unique features: POS-tags and tokens, to predict ingredient
states.

2 Previous works

Many previous works were interested in analyzing cuisine recipes, for exam-
ple Sina Sajadmanesh (Sajadmanesh et al., [2017)) presented an analysis of the
ingredients diversity around the word using an ingredient-based classifier to dif-
ferentiate between recipes around the word based on its geographical identity.
Sina Sajadmanesh (Sajadmanesh et all [2017)) studied the diversity of ingredi-
ents in dishes with introduction of global diversity (the ability to have diversified
ingredients between recipes) and local diversity (the ability to have diversified
ingredients within a recipe).

Other related work for culinary habits is Yong-Yeol Ahn paper
Bagrow, & Barabdsi, 2011)) who introduced the notion of Flavor Network and
tried to verify the Food Paring hypothesis introduced on the 90’s by Heston
Blumenthal and Francois Benzi. Flavor network as described by Ahn is a graph
where the nodes are the ingredients extracted from recipes and weights are
shared flavors between nodes. Food paring hypothesis is an indicator calculated
after forming the Flavor Network to show if in a country or in a geographical
part of the word we have tasty recipes or the ingredients do not have similar
molecules. Tiago Simas (Simas, Ficek, Diaz-Guilera, Obrador, & Rodriguez|
introduced the notion of food bridging formed with semi-metric distances.

A group of scientists in a recent publication (Van Erp et all [2021)) devel-
oped a state of the art of the use of artificial intelligence and natural language




processing in analyzing food recipes. In this article we can found collected ref-
erences talking about the challenging part in collecting food and recipe data.
For example, Ahnert (Ahnert, [2013) presented the emergence of computational
gastronomy in food science and its effect on culinary practices. Aiello and al
(Aiello, Schifanella, Quercia, & Del Prete, [2019)) discovered what are the most
important predictors in food responsible of three diseases in a population sit-
uated in London. (Amato & Cozzolinoj [2020) extracted ingredients from food
text to alert readers from allergens presence in a recipe. I agree with (Van Erp et
al., [2021)) concerning how challenging to use IA in food domain and how it will
resolve issues concerning the creation of a data driven analysis of nutrition. In
our paper data extracted can be used in a phone application or a recommended
system for people who want to take care of their health.

All previously cited researches on cuisine recipes need information extrac-
tion from text recipe to use it on graphical visualization and statistical analysis.
Information extraction can be used manually by extracting ingredients indi-
cated on recipes or automatically. The problem in automatic extraction is that
information should be precise to have also precise analysis, for example some
ingredients take only one word and others can take two or three words. Another
problem on automatic information extraction is that some ingredients that take
one word have in common some words with other ingredients that have more
than one word which make automatic information extraction more difficult. I
tried to develop a mathematical model dedicated to extract ingredients from
text recipe written in Arabic language with precision higher than what tradi-
tional methods could make. According to Cutting (Cutting, Kupiec, Pedersen,
& Sibunl [1992)), a Tagger must be robust that should deal with unknown words,
efficient that can deal with large corpora, accurate that can tag with high accu-
racy, tunable that can deal with different corpora and reusable that take small
efforts to re-target a new corpus. There are three types of POS Tagger: Taggers
based on stochastic models, Taggers based on rules and Taggers Based on neural
networks. On this work we will use Taggers based on HMM models. The use
of POS tags as external features to solve NER problems was experimented by
Zhou (Zhou & Suj, 2002)) but it was discarded because it showed bad results but
our methodology and experiments demonstrate that using POS tags as external
features is not a bad idea. This could be explained by the difference between our
tokens and Zhou’s tokens: tokens as defined by Zhou is a pair of word-feature
and in our model, token is only a word from our corpus.

3 Training the dataset

Hidden Markov Models are used in previous works to resolve named entity
recognition (NER) problems. In our case we have a NER problem with one
Named Entity to extract (Ingredients) and with various boundaries (one word,
two words, three words).

Our sentences belong to only one category of phrases on Arabic language:
The noun phrase ” dew¥! Joaxt1”. It is a kind of phrase that don’t begin with



verbs (phrase that don’t describe an action).

Noun phrases are constituted with 2 parts: The beginning of a sentence
"1alead!” contains the object of the information, and the end of a sentence
7 =317 containing the core information.

TabldI] shows how the dataset is trained:

English translation | Tokens in arabic | Label | detected ingredients
a little of ady C 0
salt e D 1
and 9 J 0
black (a gwl) Jals E 1
pepper (Jala) 3 gl F 2
0

Table 1: Example of trained sentence in our trained corpus

When an ingredient is found on a corpus, we attribute 1 to the concerned
token. If the information we want to extract takes more than one word we
attribute 2 to the extra word completing the information. 0,1, 2,3 is the new
list of tags used on the HMM tagger in the second phase of our ingredient
extractor system. Our word dictionary is constituted with 807 words. The
number of trained sentences is 1973. The number of POS tags appearing on the
first layer of our ingredient extractor is 14 different POS tags. The sentences are
describing ingredients constituting a cuisine recipe. Table [1| shows an example
of a trained sentence. The entire trained dataset and the code used for this
paper is available in this jgethub Iink]

4 Methodology

Our Ingredient extractor is constituted with two parts. In the first part we are
going to predict part of speech tags of our sequences. On the second part we
are going to use predicted Part of Speech as a grammatical feature to predict
ingredients state.

4.1 Grammatical Feature Collection

In our Model we have observation sequences which are sentences containing the
information we want to extract (Ingredients). The first part of our Ingredient
Extractor will try to collect grammatical features by resolving the POS tagging
problem. At the end of this part, we want to obtain the grammatical role for
each token on each sequence. We experimented both first order HMM and
second order HMM to predict ingredients state. We obtained strangely better
results with first order HMM. This could be explained by the fact that in Arabic
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Figure 1: Methodology Diagram of our Ingredient Extractor

language a POS tag is organized in bi-gram manner. For example, if we have
an E tag O gaie we are certain to have an F tag < because in Arabic a word
tagged as an E tag & gaie could be tagged as a noun but if the intention of the
writer is to describe that noun with an adjective coming after it the exact tag

to be used is an E tag & gaise.

POS Tag (arabic) POS Tag (english) Label
s Noun A
i) Number B
D y20 @ul Known Noun C
P2y Noun after Known Noun D
O gl Noun before the Adjective E
%) Adjective F
> B Preposition G
290 @) Noun after preposition H
ok B> g unit of measure I
alaall gl g AND J
J gl n Jad Passive Verb K
Gllaslt J gl Superlative L
Calaall gl g pui calac 515 OR M

Table 2: POS Tag-set used to annotate our corpus

The elements needed to define a first order HMM in order to perform a POS

tag task are:

e N=14, the number of POS tags each token can take as shown in Table
2] we have 14 POS tag. We represent the sequence of POS tags by the



sequence T = {t1,ta...,t14}.

e M=807, is the sequence of symbols generated by the stochastic procedure
of the HMM model. In our case it is the list of tokens (words) constituting
our lexicon.

e Matrix A containing the state transition probability distribution. In our
case it is the probability to move from one POS tag to another POS tag.

aix aiz - Qinp

az1 Q22 - A2p
A =

anl an2 R ¢ 7Y

Q5 = P(TT = tj/Tr—l = tl)

e Matrix B containing the observation symbol probability distribution. In
our case it is the probability to emit a word vy given that the system is
emitting one of the state of the sequence T' = {t1,ts...,t14}.

bir b2 bim

bar  boo bam
B = .

bnl bn2 bnm

bjk = P(Vy = v /T, = 1)

e 7 a vector containing the probability distributions that a sentence begins
with one of the elements of T’

71':[7‘(1 T T3 7T'14]

4.2 Predicting Sequences of Ingredients State
4.2.1 Prediction Using First Order HMM

Suppose that we want to use a first order HMM to predict ingredients state on
the second part of our Ingredient Extractor without using grammatical features
estimated on previous section, in this case the elements needed to define this
HMM according to Rabiner(Rabiner], [1989):

e N=4, the number of distinct states each token can take. In our case it is
one element of the set I' =0,1,2,3

e M=807, is the sequence of symbols generated by the stochastic procedure
of the HMM model. In our case it is the list of tokens (words) constituting
our lexicon.



e Matrix A containing the state transition probability distribution. In our
case it is the probability to move from one of the states on the set I' to
another state on the same set.

ailr a2 A1n

a1 Q22 a2n
A= .

ap1  Qp2 -+ Gpp

aij = P(Ty = v /Tr_1 =)

e Matrix B containing the observation symbol probability distribution. In
our case it is the probability to emit a word vy given that the system is
emitting one of the states of the sequence I'.

bll b12 te blm

b21 b22 te b2m
B =

bnl bn2 e bnm

bju, = P(Ve = v /T = ;)

e 7 a vector containing the probability distributions that a sentence begins
with one of the elements of "

7T:[7T1 T T3 7T4}

This model described above is a first-order hidden Markov model, we can call
it also a bi-gram model to predict ingredients state.

4.2.2 Prediction Using Full Second Order HMM

Scott M.Thede(Thede & Harper, [1999)) used a full second-order Hidden Markov
Model for his POS tagger. To constitute this trigram tagger from the previous
bigram tagger, Scott M.Thede(Thede & Harper} |1999) replaced bi-gram tran-
sition probability a;; with a trigram transition probability a;;r and replaced
bi-gram lexical probability b;,, with a trigram lexical probability b;j,,. If we
want to use a full second-order hidden Markov model as described by Scott
M.Thede(Thede & Harper}, [1999) the element needed to define this HMM are:

e N=4, the number of distinct states each token can take.
e M=807, number of tokens.

e Matrix A shown on figure [2| containing the state transition probability
distribution. For a trigram model this matrix is of dimensions N x N x N.



e Matrix B shown on figure [3| containing the observation symbol probability
distribution. For trigram model this matrix is of dimensions N x N x M

e 7 a vector containing the probability distributions that a sentence begins
with one of the elements of "

7T:[7T1 T T3 7T4}

- a1,1,4 01,24 01,34 01474
- az1,4 Q224 023470244

-7 _7B,3,4 4344
7 a1,1,3 @123 A1,33 Q1,43
- n34 A4.4.4

e a2,1,3 02,2,3 12,337 (2,43

_-B,3,3 A3,4,3 -
- airi,2 G122 0132 1472 -

L7 n,3,3 443 -
2 (21,2 G222 (232 0242 -

B,3,2 3,42 s
ar1,1 ai121 a1,3,1 @1,4,1 e
u3,2 A4,42 7
a21,1 A2271 G231 G241 7

a3,1,1 @321 a3,31 34,1 -7
ag1,1 4,21 A4,31 G441 -

aijx = P(Cr = w/Tro1 =75, Tr2 = 1)

Figure 2: Transition matrix used in full second order HMM




=T biim biom-bizm biam

=== L. b bize biaz | b22m b23m baam
b1 bio1 bizi bian

" ' = S 1 baso baa2 b b32m b33m D34m
bai1 bao1 b2z baan

- ' = S5 1 bzso b3ag b baom bazm biam

b311 bs21 baza bzan | b —

1,32 baa2 I
by1,1 bao1 baz1 baan ——

bij(vr) = P(Ve = vi/Tr = 5,1 = i)

Figure 3: Lexical matrix used in full second order HMM

4.2.3 Prediction with the introduction of collected Grammatical Fea-
tures

At this point of the research, grammatical features are still not introduced
on the model. When we observed the elements constituting the full second-
order Hidden Markov Model contextual probabilities and lexical probabilities
are formed to include second order information. What we tried to do on this
stage is to keep the trigram property of the model but modifying the parameters
of the contextual and lexical probabilities to introduce collected grammatical
features. The changes made are: the trigram transition probability a;;r =
P, =v/I'v—1 =, ['r_2 = ;) is replaced by the probability a;;r = P(I', =
Yi/Tr—1 = 7;,Tr—1 = 7;) and the trigram lexical probability b;;(vy) = P(V, =
vk /Ty =7;,Tr—1 = 7;) is replaced by the probability b;;(vi) = P(V, = v/T', =
v, T = 7;). The elements of the HMM becomes:

e N=4, the number of distinct elements of the set I'.
e M=809, number of tokens.
e K=14, the number of distinct POS tags.

e Matrix A containing the state transition probability distribution. This
matrix is of dimensions N x N x K as shown on figure [4]

e Matrix B containing the observation symbol probability distribution. This
matrix is of dimensions M x N x K as shown on figure

e 7 a vector containing the probability distributions that a sentence begins
with one of the elements of T"

™ = [’/Tl T T3 7'('4}



=20 114 QG124 0134-"0144
- @113 G123 0133 -0143 1,34 0244
- a112 G122 a132--0142 },3,3 0243
ai,1,1 G121 A3l A14,1 [,3,2 0A242
34 Q1444
a21,1 Aa221 G231 G241
: - 13,3 Q14,43 ="
: 3,2 014,42 e
a14,1,1 014,21 41431 014,4,1 I

aijk = P(Ty = Y&/Tr—1 = v, Tr—1 = T)

Figure 4: Transition Matrix used in our Ingredient Extractor

_-- bl,

Lm bi2m -br3m bram

bii2 bioos -brsz” biapz

bi,1,1

ba11

b121

b2.21

bi,3,1

b2,3,1

b1,41

b4

2 bazo baap

2 biazo biaap

i baom  b2zm baam

< bra2m blagm biaam

bia1,1 bra2,1 biaz1 biaan

bij(ve) = P(V = vi/Tr = 5, T = 73)

Figure 5: Lexical Matrix used in our Ingredient Extractor

5 Calculating Probabilities for Unknown Words

One common problem in part of speech tagging processing is to predict the

hidden state of an unknown word.

Andrei Mikheev(Mikheev, [1996) constructed an automatic technique for

learning English part-of-speech guessing rules.

Scott M.Thede(Thede & Harper} [1999) used a Second-Order Hidden Markov

10




Model for POS tagging by estimating the probability P(word has suffix sy /tag
is tj)

when he tried to predict the hidden state of an unknown word.

Scott M.Thede(Thede & Harper, [1999) used a trigram tagger respecting the
elements that constitute an HMM explained in details by Lawrence R. Rabiner
(Rabiner} [1989)

On this work we tried to create a first-order Hidden Markov Model POS
Arabic Tagger and we choose the prefix of the word as a word feature rather
than word suffix as described by Thede.

After training the corpus we can estimate the probability P(v;/t;) by count-
ing the number of times the hidden state ¢; was attributed to the word v;.

For example, we had a corpus constituted of 4 words as represented on the
Table [3l We trained the corpus with 3 hidden states and we obtain the discrete
state-dependent word probabilities table:

2| &S, | AN | g0
B |1 0 0 0
clo 0.5 0.5 0
M |0 0 0 1

Table 3: The discrete state-dependent word probabilities table for a mini-corpus

For example, the probability P(w; =JLa3 ,J1/t; = C) is estimated by count-
ing the number of times the word JLai »Jd1 appears with the tag C divided by
the number of times C appears on the corpus.

In Arabic as in English, words are constituted morphologically based on its
grammatical role on a sentence. This is why suffix and prefix of a word can help
us to predict its tag.

Andrei Mikheev (Mikheev, [1996) presented a list of morphological rules for
English to predict unknown words. For example, the word we obtain by adding
the prefix "un” to a word that was tagged with the tags (VBD) and (VBN) can
play the role of an adjective on a sentence.

Such morphological rule can be also applied to Arabic Language. For exam-
ple, adding " J1” to a word that played the role of a noun ”@w|” or a noun that
comes before the adjective ”& gats” can be estimated as a Known Noun ” @w)
@ e’

Scott M.Thede (Thede,1998) was inspired by morphological rules described
by Mikheev to construct his unknown word predictor. He first created a lexicon
to estimate P(w;/t;) , then he used prefix and suffix of words on this lexicon to
predict possible tags. This method can be used to our corpus as in Arabic word
feature extraction can be done by the prefix of the words.

For example, the discrete state-dependent word probabilities table for the
previous mini-corpus can be represented depending on word prefixes:

11



<
<
o

2

1
C10]05]05

0

= oo

Table 4: The discrete state-dependent word probabilities table for a mini-corpus
(prefix-based approach)

We considered the two first characters of a word on this work if a word
counts more than two characters and the first character of a word if the word
is constituted with only one character. After that a probability distribution
for each affix is created by adding the probabilities P(v;/t;) for words with
the same tag. For example, P(prefiz ="J1"/t; = C) = P(v; =J\a3 y31/t; =
C) + P(v; =Jut==¥1/t; = C) the Table [i] becomes:

20 J1| o
B|1]| 0 0
cCl|0]1 0
M|O0O| O 1

Table 5: The discrete state-dependent word probabilities table for a mini-corpus
after adding the probabilities P(v;/t;) for words with the same tag (prefix-based
approach)

Table[f] constitute the matrix C used on the Hidden Markov Model algorithm
to replace the matrix B when a word is unknown.

12



Accuracy | F1 score

First order Hidden
Markov Model applied to tokens 96.64 % 70.07 %
to predict ingredients
Second order Hidden
Markov Model applied to tokens 95.85 % 68.22 %

to predict ingredients
First Order Hidden Markov Model
applied to tags 79.35 % | 54.36 %

to predict ingredients

Second Order Hidden Markov Model
applied to tags 87.74 % | 58.53 %
to predict ingredients

Our ingredient extractor
with 100 % accuracy on the first layer 98.44 % | 81.44 %
with A =4
Our ingredient extractor
with 90.33 % accuracy on the first layer
with 82.03 % F1 score on the first layer
with A =4

97.08 % | 74.36 %

Table 6: Comparison of performances between our ingredient extractor and
other HMM taggers using the trained corpus as a testing dataset to avoid un-
known words

6 Results and Interpretation

First, we tested the Modified Viterbi algorithm used in our Ingredient Extractor
on the same trained corpus to avoid using matrix C described in Table (5 .
Our Ingredient Extractor shows the highest accuracy and F1 score even when
accuracy on the first layer don’t overcome 91% Table @ These first results
before dividing the dataset into two separate training and testing sides are
encouraging and shows that including POS tags inside the calculation of a state
matrix isn’t a bad idea because the state of an ingredient depend also from the
state of the POS tag.

Second, we tested the Modified Viterbi algorithm used in our Ingredient
Extractor on a testing dataset different from the trained dataset and we compare
the results obtained with the results for a 15 order HMM and a 2"?¢ order HMM
using 10-fold cross-validation. We obtain in Table an f1 score of 67.31 %
for our IE when the first layer has a 100 % accuracy against 78.92 % F1 score
for a 1%* order HMM and 76.58 % F1 score for a 2*¢ order HMM, our F1 score
decreased with a percentage of 14.13 % when we split the dataset into a training
and a testing dataset for our IE. This decrease on F1 score could be explained by

13



accuracy for | accuracy for | number of | unknown
tag | accuracy | fl score unknown known unknown words
words words words percentage
0 94.77 % | 67.67 % | 67.78 % 96.33 % 78 9.67 %
1 93.02% | 65.56 % | 63.93 % 95.2 % 107 13.26 %
2 94.15 % | 67.44 % | 69.9 % 95.81 % 88 10.9 %
3 94.01 % | 87.89 % | 62.65 % 95.7 % 75 9.29 %
4 93.14 % | 87.59 % | 67.96 % 94.73 % 92 11.4 %
5 95.78 % | 69.61 % | 76.4 % 96.83 % 83 10.29 %
6 94.38 % | 67.53 % | 54.65 % 96.49 % 80 9.91 %
7 95.08 % | 91.17 % | 61.22 % 97.17 % 90 11.15 %
8 96.83 % | 94.04 % | 79.76 % 97.7 % 7 9.54 %
9 9492 % | 90.7 % | 64.95% 96.72 % 88 10.9 %
] Avg \ 94.61 % \ 78.92 % \ 66.92 % 96.27 % 86 10.63 %

Table 7: Average performances of first order HMM used to predict ingredients
state using 10 fold cross-validation and a 80% training dataset and 20 % testing

dataset separated

accuracy for | accuracy for | number of | unknown
tag | accuracy | fl score unknown known unknown words
words words words percentage
0 93.72 % | 64.13 % | 70.0 % 94.81 % 78 9.67 %
1 9253 % | 63 % 64.75 % 94.19 % 107 13.26 %
2 94.14 % | 65.6 % | 70.87 % 95.39 % 88 10.9 %
3 93.94 % | 86.92 % | 68.67 % 95.02% 75 9.29 %
4 93.42 % | 86.61 % | 66.02 % 94.81 % 92 11.4 %
5 93.83 % | 65.85 % | 62.92 % 95.18 % 83 10.29 %
6 93.76 % | 65.63 % | 60.47 % 95.19 % 80 9.91 %
7 94.04 % | 88.56 % | 55.1 % 95.96 % 90 11.15 %
8 95.34 % | 90.99 % | 60.71 % 96.77 % 7 9.54 %
9 94.34 % | 88.56 % | 61.86 % 95.91 % 88 10.9 %
’ Avg \ 93.91 % \ 76.58 % \ 64.14 % 95.32 % 86 10.63 %

Table 8: Average performances of second order HMM used to predict ingredients
state using 10 fold cross-validation and a 80% training dataset and 20 % testing

dataset separated
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accuracy for | accuracy for | number of | unknown
tag | accuracy | fl score unknown known unknown words
words words words percentage
0 95.78 % | 67.91 % | 61.11 % 97.38 % 78 9.67 %
1 94.38 % | 66.54 % | 68.85 % 95.92 % 107 13.26 %
2 95.08 % | 67.39 % | 67.96 % 96.54 % 88 10.9 %
3 9583 % | 67.71 % | 62.65 % 97.25 % 75 9.29 %
4 94.83 % | 67.72% | 71.84 % 96 % 92 11.4 %
5 95.9 % 69.57 % | 70.79 % 97.0 % 83 10.29 %
6 94.43 % | 65.92 % | 55.81 % 96.08 % 80 9.91 %
7 94.13 % | 65.61 % | 52.04 % 96.22 % 90 11.15 %
8 95.63 % | 68.82 % | 60.71 % 97.06 % 7 9.54 %
9 94.39 % | 65.95 % | 56.7 % 96.21 % 88 10.9%
[Avg [ 95.04 % [67.31 % [ 62.85 % [ 96.57 % 86 | 10.63% |

Table 9: Average performances in predicting ingredients states with A = 4 when
accuracy is 100 % on first layer using 10 fold cross-validation and a 80% training
dataset and 20% testing dataset separated

First Layer Second Layer
first order second order
HMM HMM
accuracy | accuracy accuracy | accuracy
Fold | accuracy | fl score | unknown | known | accuracy | fl score | unknown | known
words words words words
0 90.33 % | 70.61 % | 50.55 % | 92.14 % | 95.43 % | 66.98 % | 61.54 % | 96.97 %
1 87.7 % 73.71 % | 52.03 % | 89.81 % | 93.96 % | 65.96 % | 70.73 % | 95.32 %
2 89.07 % | 75.34 % | 66.99 % | 90.26 % | 94.54 % | 66.97 % | 66.02 % | 96.07 %
3 87.87 % | 72.36 % | 6747 % | 88.75% | 94.93 % | 66.93 % | 63.86 % | 96.27 %
4 8731 % | 7321 % | 63.11% | 88.54 % | 93.65% | 66.46 % | 72.82% | 94.71 %
5 91.23 % | 76.51 % | 62.92 % | 9247 % | 94.82% | 68.17 % | 69.66 % | 95.92 %
6 90.53 % | 73.87 % | 59.3 % 91.86 % | 93.86 % | 65.16 % | 54.65 % | 95.92 %
7 88.13% | 785 % | 61.22% | 90.51 % | 93.8 % 65.12 % | 55.1 % 95.71 %
8 89.28 % | 77.76 % | 67.86 % | 90.16 % | 95.01 % | 67.84 % | 64.29 % | 96.28 %
9 89.4 % 7729 % | 65.98 % | 90.53 % | 93.96 % | 64.98 % | 60.82 % | 95.57 %
[Avg [89.19% [7492% [61.74% [905% [944% [66.46% | 63.95% | 95.83 %

Table 10: Average performances in predicting ingredients states with various
accuracies in the first layer with A = 4 when accuracy is 100 % on first layer
using 10 fold cross-validation and a 80% training dataset and 20% testing dataset

separated t

15




‘ ‘ ‘ —— 100 % accuracy

0.98 -+ |——90.3 % accuracy

——67.8 % accuracy
0.96 - —
0.94 |- i
0.92 |- i
09+ |

| | |

2 4 6 8

Figure 6: Variations of accuracy of our Ingredient Extractor depending on A
and accuracy score on the first layer
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Figure 7: Variations of F1 score of our Ingredient Extractor depending on A
and accuracy score on the first layer
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with 74.92 % average F1 score on the first layer
with A =4

known | unknown | overall | F1 score
First order Hidden
Markov Model applied to tokens 96.27% | 66.92% | 94.61% | 78.92%
Second order Hidden

Markov Model applied to tokens 95.32% | 6414 % | 93.91% | 76.58 %

Our ingredient extractor
with 100 % accuracy on the first layer 96.57 % | 62.85% | 95.02% | 67.31 %

with A =4

Our ingredient extractor

with 89.19 % average accuracy on the first layer 95.83 % | 63.95 % 94.4 % 66.46 %

Table 11: Comparison of performances between the 3 methods

the change made in the lexical probability when it is confronted with unknown
words making its contribution in the state matrix not as efficient as when the
entire word is considered in the lexical probability. The hyper parameter \ is
eliminated from our IE when the word to be estimated is unknown for a better
accuracy and F1 score.

7 Conclusion

Our Ingredient Extractor algorithm showed great results. It is based on HMM
methods. We realized it by training two layers: first we trained tokens by
tagging POS tags and second, we trained tokens by extracting the ingredients.
Our HMM model needed modifications in iteration step because we didn’t get a
square transition probability matrix or a square lexical probability matrix after
the training step. A detailed iterations of our method is illustrated in appendix
[A] We can ameliorate our model by calculating the probabilities in it differently
not as simple as we deed. We can make our model more interesting by adding
two layers, one for extracting quantities and the other for extracting unities.
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A Detailed Iterations of Modified Second Order
Viterbi Algorithm Used in our Ingredient Ex-
tractor

1. Predicting Tags for the first Layer:
We use for predicting tags a first order hidden Markov model as this
method have a better accuracy than second order hidden Markov model.
2. Predicting Ingredients state for the second Layer:

The variables:

e 0,(1,7) =maxs, . 5, P(mi..71 = [ti, ;] /v1...0,t1..),l = 1...L

o Yy(i,j) = argmazx., ., P(ri..7 = [ti,y]/vi..vo, ), =1...L
The procedure:

(1) Initialization step:

mibij(v1) wv1 is known i=1..14 j=1.4
51(17]) =
mjcij(v1) vp is unknown i=1..14 j=1..4

W1(4,§) = 0i=1..14 j=1..4
(2) Iteration step:

max;[0;—1(4, 7)aijk)bij(v1) v is known , 1=2..L
length j=1...4, i=1..14
k=1..4

(i, j) =

max;[0;—1(%, )aijk]cij(vi) v is unknown , 1=2..L
i=1..4, i=1.14
k=1..4

(1, 7) = argmax;[6;-1(%, j)aijx)j=1..4,i=1..14 k=1..4
(3) Termination:

Tf = Qrgmat;—y(r),j=1..40L (i, J)

where y(L) is the tag calculated at previous layer in position L
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(4) Backtracking:

= vi(y(l), 7)) 1=1-1..2,1
where y(1) is the tag calculated at previous layer in position 1

3. Predicting Ingredients state for the second Layer in Log-space and intro-
duction of the hyper-parameter A
The variables:
o 0,(1,7) =maxs, . 5, P(ri..71 = [ti, ;] /v1..0,t1..4),l = 1...L
o Yy(i,j) = argmazx., ., P(ri..m = [t;,y]/vi..0,t..8), 1l =1...L
The procedure:

(1) Initialization step:

log(7;) + log(b;j(v1)) wv1 is known i=1..14 j=1..4
5 (i, 5) =
log(m;) + log(cij(v1)) v1 is unknown i=1..14 j=1.4

P1(i,§) = 0i=1..14 j=1..4
(2) Iteration step:

max;[0;-1(2, ) +10g(aijr)] + Amaz log(bij(vi)) vy is known 1=2..L
i=1..4, i=1..14
k=1..4

ai(i,j) =

max;[6;-1(%, ) +log(aiji)] + Amaz log(cij(vi)) v is unknown
1=2..L j=1..4
i=1..14 k=1..4

(1, 7) = argmax;[6;-1(%, ) + log(ai;k)] j=1..4,i=1..14k=1..4
(3) Termination:

Ti = Qrgmam;—y(r),j=1..40L (i, J)

where y(L) is the tag calculated at previous layer in position L
(4) Backtracking:

" =vi(y), 7)) 1=0-1.2,1
where y(1) is the tag calculated at previous layer in position 1
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