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Implementation of Lattice Trapdoors
on Modules and Applications

Pauline Bert, Gautier Eberhart, Lucas Prabel,
Adeline Roux-Langlois, and Mohamed Sabt

Univ Rennes, CNRS, IRISA

Abstract. We develop and implement efficient Gaussian preimage sam-
pling techniques on module lattices, which rely on the works of Miccian-
cio and Peikert in 2012, and Micciancio and Genise in 2018. The main
advantage of our implementation is its modularity, which makes it prac-
tical to use for signature schemes, but also for more advanced construc-
tions using trapdoors such as identity-based encryption. In particular, it
is easy to use in the ring or module setting, and to modify the arithmetic
on Rq (as different schemes have different conditions on q).
Relying on these tools, we also present two instantiations and implemen-
tations of proven trapdoor-based signature schemes in the module set-
ting: GPV in the random oracle model and a variant of it in the standard
model presented in Bert et al. in 2018. For that last scheme, we address
a security issue and correct obsolescence problems in their implementa-
tion by building ours from scratch. To the best of our knowledge, this
is the first efficient implementation of a lattice-based signature scheme
in the standard model. Relying on that last signature, we also present
the implementation of a standard model IBE in the module setting. We
show that while the resulting schemes may not be competitive with the
most efficient NIST candidates, they are practical and run on a standard
laptop in acceptable time, which paves the way for practical advanced
trapdoor-based constructions.

Keywords: Lattice-based cryptography · trapdoors · Gaussian preim-
age sampling · module lattices · signature scheme · identity-based en-
cryption

1 Introduction

Lattice-based cryptography is a viable candidate for possibly replacing num-
ber theoretic cryptography in the future. Hardness assumptions on lattices are
conjecturally quantum resistant, whereas the discrete logarithm and factoriza-
tion problems are known to be solvable in polynomial time in a quantum set-
ting [Sho94]. Worst-case to average-case reductions from fundamental lattice
problems (relaxations of NP-hard problems) also provide strong theoretical se-
curity guarantees for lattice-based primitives.

Although such constructions were quite inefficient in the early years of the
field, the introduction of ideal lattices (or the ring setting) [PR06; SST+09;
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LPR10], module lattices [LS15] and NTRU lattices [HPS98; SS13] led to con-
structions relying on lattices that possess a polynomial structure, effectively
speeding up computations and reducing storage costs. On the practical side,
much work has been put into improving the efficiency of polynomial multiplica-
tion [Sei18; AHH+19], Gaussian sampling over the integers [Kar16; MW17], and
Gaussian preimage sampling [MP12; GM18]. Some schemes now have an effi-
ciency comparable to their classical counterparts, but quasilinear in the security
parameter, providing much better scalability and long-term security.

The NIST’s post-quantum cryptography standardization process, which aims
to select public-key encryption (PKE) schemes, key encapsulation mechanisms
(KEM), and signatures, is now in its third round. In the PKE/KEM category,
3 out of 4 candidates are lattice-based, and 2 out of 3 for signatures, proving
that cryptography based on lattices can be competitive in practice. Additionally,
there are many advanced cryptographic constructions built on lattices, such as
identity-based encryption [GPV08; ABB10b; BFRS18], attribute-based encryp-
tion [GVW13], group signature [LLL+13] or Fully Homomorphic Encryption.

Lattice-based signatures. The first direct constructions for proven lattice-based
signatures were given in 2008. Gentry, Peikert, and Vaikuntanathan [GPV08]
proposed a hash-and-sign signature scheme and proved its security in the Ran-
dom Oracle Model (ROM). Lyubashevsky and Micciancio [LM08] constructed a
one-time signature scheme in the standard model, and combined it with a tree
structure to obtain an unrestricted signature scheme.

The GPV signature scheme [GPV08] was the first of a family of proven
trapdoor-based signature schemes. The idea behind it is the following: the
public key is a matrix A ∈ Zn×mq that defines the q-ary lattice Λ⊥q (A) =
{ x ∈ Zm | Ax = 0 mod q }, and the secret key is a trapdoor for A which is a
short basis T ∈ Zm×m of this lattice. To sign a message M ∈ {0, 1}∗, the signer
first hashes it to a vector u = H(M) ∈ Znq , and then computes a small preimage
of u under the function fA : x 7−→ Ax. This operation, known as Gaussian
preimage sampling, is made possible by knowledge of the trapdoor: using T , one
can sample a vector ν ∈ Zm following a narrow discrete Gaussian distribution
and is such that Aν = u mod q. Verification simply consists in checking that
Aν = H(M) mod q and that ν is sufficiently short. This scheme admits strong
EU-CMA security in the ROM, under the hardness of the SIS problem.

This construction as such was never instantiated in practice because of its
inefficiency, but several later improvements led to instantiations and implemen-
tations. First, Micciancio and Peikert [MP12] proposed a new notion of trapdoor,
which was an improvement on short bases, and efficient associated algorithms
in the case where the modulus q is a power of two. In [BB13], the authors
implemented these techniques in both the unstructured and the ring settings.
Then, Genise and Micciancio [GM18], using the same trapdoors, gave more ef-
ficient presampling algorithms in the ring setting and for an arbitrary modulus,
which were later implemented in [GPR+18; GPR+19]. Finally, a notion of ap-
proximate trapdoors was introduced in [CGM19], enabling the inversion of the
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one-way function fA approximately rather than exactly, and leading to smaller
parameters in concrete instantiations of signature schemes.

Even with these tools, lattice-based hash-and-sign signatures remain costly
in practice, the primary bottlenecks being the generation of the trapdoor and
Gaussian preimage sampling. Falcon [FHK+17], a lattice-based NIST candidate,
is based on the same paradigm but still efficient in practice. It instantiates the
GPV framework over NTRU lattices [SS13], using a Gaussian preimage sampler
called fast Fourier sampling, itself derived from the Fast Fourier Orthogonal-
ization algorithm [DP16]. Apart from being used to build signature schemes,
lattice trapdoors have shown their utility by enabling many advanced construc-
tions such as identity or attribute-based encryption [GPV08; ABB10b; GVW13]
and group signature [LLL+13].

There are several direct constructions of lattice-based signatures in the stan-
dard model [CHK+10; Boy10; MP12], which are often similar to identity-based
encryption schemes [CHK+10; ABB10b]. In these schemes, a message M is en-
coded into a lattice Λ⊥q (AM ), where AM is a matrix that depends on the pub-
lic key and M . Signing M then consists in sampling Gaussian preimages on
Λ⊥q (AM ), similarly to [GPV08]. In [Boy10], AM = [A | A0 +

∑
iMiAi], where

the Mi are the bits of M , and the Ai are part of the public key. This results
in very large public keys. In [BFRS18], AM = A + [0 | H(M)G], where H is
a function with a strong injectivity property and G the very structured gadget
matrix of [MP12]. This yields much lighter public keys, and combines particu-
larly well with the trapdoors from [MP12]. As far as we know, [BFRS18] provides
the previously only implementation of a lattice-based standard model signature.

The concept of Identity Based Encryption (IBE) was defined by Shamir in
[Sha84]. The first IBE constructions were based respectively on bilinear maps
and on quadratic residue assumptions. The first supposedly post-quantum IBE
scheme was introduced in [GPV08] and was based on hard lattice problems. It
was then followed by many improvements [CHK+10; ABB10a; DLP14; Yam16].
Note that both [DLP14] and more recently [ZMS+21] provide an implementation
of an IBE scheme based on NTRU lattices. We notice that a disadvantage of these
schemes is that they additionally need the NTRU assumption.

Gaussian preimage sampling. Gaussian preimage sampling is a crucial operation
and often the main bottleneck in trapdoor-based schemes, whether it be signa-
ture or more advanced constructions. It consists in sampling a vector from a
discrete Gaussian distribution on the set Λuq (A) = { x ∈ Zm | Ax = u mod q },
given A ∈ Zn×mq , u ∈ Zn, and a trapdoor T for the matrix A. The result is then
a preimage of u under the function fA : x 7−→ Ax, hence the name.

In early constructions, the trapdoor T ∈ Zm×m was a short basis of Λ⊥q (A),
and one would accomplish this task by using Klein’s sampler [Kle00; GPV08],
with the cost of having to compute the Gram-Schmidt orthogonalization of T .
Since the introduction of the trapdoors from [MP12], a more efficient method has
been combining two complementary operations: G-sampling and perturbation
sampling. The problem of efficient G-sampling, which consists in sampling from
a spherical Gaussian on a very structured fixed lattice, was solved for a power-
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of-two modulus in [MP12] and for an arbitrary modulus in [GM18]. Perturbation
sampling, whose goal is to produce vectors following a discrete Gaussian on Zm
with a covariance that depends on T , was made efficient in the ring setting
in [GM18], but resorts to the generic Klein sampler in the unstructured setting.

Alternatively, fast Fourier sampling [DP16; FHK+17] follows the same ideas
as the generic Klein sampler, but uses the so-called Fast Fourier Orthogonaliza-
tion, linear algebra that preserves the underlying structure of the matrices in
the ring setting, making it much faster in this case.

The module setting. The ring setting and ideal lattices [PR06; SST+09; LPR10],
usually based on rings of the form Rq = Zq[X]/〈Xn + 1〉, are often the first
choice for efficient lattice-based constructions. Module lattices [LS15], based on
modules of the form Rdq , lie somewhere between ideal lattices and unstructured
ones. Constructions in the module setting are (almost) as efficient as ring-based
ones, and have other advantages for practical schemes.

Typically, module schemes fix a modulus q and a degree n for all parameter
sets, and the security parameter is the rank d of the module. This leads to a more
flexible choice of parameters, and potentially easier optimisation (since one only
has to optimize arithmetic in the base ringRq to obtain a faster arithmetic for all
parameter sets). Additionally, fundamental problems on module lattices might
not suffer from the same structural weaknesses as on ideal lattices (see [PHS19]).
As an example of the interest of module lattices, we note that several NIST
candidates at the post-quantum cryptography standardization process rely on
them [DKL+18; DKR+18], and that a recent result [CPS+19] proposes a module
variant of the Falcon signature scheme [FHK+17].

Our contribution. Our main contribution is the development and the imple-
mentation of efficient Gaussian preimage sampling techniques on module lattices.
The main advantages of our implementation are its constant-timeness and its
modularity, making it practical for both signature schemes and more advanced
constructions using trapdoors. For instance, it can be used on rings or modules,
with a different arithmetic over Rq depending on the choice of the parameter q.
Relying on this, we also present two instantiations and constant-time implemen-
tations of proven signature schemes in the module setting (GPV in the ROM and
one of its variant in the standard model) and the instantiation and implementa-
tion of a standard model IBE in the module setting. To the best of our knowl-
edge, this is the first implementation of a secure lattice-based signature scheme in
the standard model. Our resulting C implementation is public and open-source,
available at https://github.com/lucasprabel/module_gaussian_lattice.

Preimage sampling. As mentioned above, Gaussian preimage sampling is a very
important operation in trapdoor-based schemes, and to the best of our knowl-
edge no methods adapted to module lattices existed previously. We develop
efficient algorithms for trapdoor generation and Gaussian preimage sampling in
the module setting, by generalizing existing tools in the unstructured and ring
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settings [MP12; GM18]. Even if most of this adaptation is quite direct, it has to
be done carefully to correctly work over modules. In particular, the perturbation
sampling step does not directly adapt, and we resort to our own algorithm, using
some subroutines from [GM18]. We also provide a detailed description of those
algorithms and of the conditions needed to choose their parameters. This can
be used as a building block for advanced trapdoor-based constructions, such as
identity-based encryption, attribute-based encryption, or group signature.

Our implementation requires no external dependencies, and is easy to modify
if needed. In particular, it is very modular and relies on several basic blocks that
can be swapped out, as represented in Figure 1: the arithmetic over Zq and Rq,
a pseudorandom number generator, and a (constant-time) sampler of discrete
Gaussian distributions over Z. For instance, we do not use the same arithmetic
overRq in our two signature schemes, as they need the ringRq to have a different
structure.

Zq
arithmetic

Rq
arithmetic

arithmetic.c

PRNG
DZ

sampler

random.c

TrapGen

SamplePre

sampling.c

Fig. 1. Basic structure of our implementation and relationships between the blocks.

Table 1. Overview of the performances of our trapdoor tools and cost of sampling
scalar Gaussians for n = 256 and d = 4.

Phase TrapGen
SamplePre

Perturb. sampling G-sampling Global
Running time 36.56 ms 5.48 ms 8.28 ms 14.87 ms
Sampling DZ 74% 60% 84% 70%

In Table 1 we give an overview of the running times of our trapdoor algo-
rithms on an Intel i7-8650U CPU running at 1.90 GHz. In particular, we highlight
the proportion of time spent sampling Gaussians over Z, and notice that having
an efficient sampler is very important, since it makes up the largest part of the
running times.
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Applications. As an application, we propose an implementation of two trapdoor-
based signature schemes and of an identity-based encryption scheme. The GPV
signature is the simplest trapdoor-based scheme one can think of, since key
generation is exactly the trapdoor generation algorithm, and signing essentially
consists in Gaussian preimage sampling. As such, it makes for a natural way of
evaluating trapdoor tools and techniques. Our second signature scheme, proven
secure in the standard model, is a variation on GPV, and has been constructed
by adapting the scheme from [BFRS18] to the module setting. The original con-
struction was using an encoding function which should satisfy a strong injectivity
property but does not in practice. We propose a construction for this encoding
using a result of [LS18], which allows us to find invertible elements in Rq, and
which needs a specific q as a consequence. Relying on this signature scheme,
we also implement the standard model IBE scheme from [BFRS18], which was
inspired by the IBE [ABB10a], in the module setting.

Our GPV implementation relies on our trapdoor tools, as well as a Number
Theoretic Transform for fast multiplication in Rq, adapted from CRYSTALS-
Kyber [DKL+18]. In our standard model schemes, the particular structure of the
ring, due to the particular choice of q, is incompatible with the NTT. As such,
the main difference with GPV in terms of implementation is the use of a partial
NTT inspired by [LS18], instead of a full one. An example of performances of
our signatures is given in Table 2. For this set of parameters, the public key has
size 508kB, the private key 5.06MB and the signature 131kB.

Table 2. Performances of our signatures and comparison with previous GPV imple-
mentation (96-bit security parameter sets, lattice dimension 1024, modulus q ≈ 230).

Scheme KeyGen Sign Verify

GPV ([GPR+19]) 5.86 ms 32.42 ms 0.28 ms
GPV (this work) 8.94 ms 13.08 ms 0.29 ms
BFRS (this work) 9.46 ms 15.66 ms 1.19 ms

Comparison with previous works. From a theoretical point of view, the adapta-
tion of the algorithms from [MP12; GM18] to the module setting is quite direct
but has to be done carefully, in particular concerning the perturbation sampling
algorithm which is an important step in those algorithms. This algorithm over
rings is iteratively sampling vectors with a covariance matrix of dimension 2× 2
over R, whereas in our case, the matrix has size 2d× 2d, where d is the module
rank. As a consequence, we have to decompose the covariance matrix into blocks
of different sizes at each iteration instead of simply updating ring elements.

We chose to only compare our GPV implementation with the recent work
of Gür et al. [GPR+19], as it already outperforms previous implementations of
Gaussian preimage sampling [BB13; GPR+18] Again, we stress that one of the
main advantages of our implementation compared to [GPR+19] is its modularity
rather than its performance.
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We provide a new encoding function for the signature and the IBE
schemes which allows to correct a security issue in the corresponding schemes
in [BFRS18]. Our implementation does not rely on the BFRS one and then does
not use the NFLlib library. We do not compare the original implementation of
the BFRS scheme [BFRS18] with our corrected version, as the former’s limited
security would make the comparison irrelevant.

We also present a public and open-source implementation of a standard model
IBE scheme in the module setting, relying on our standard model signature
scheme, which represents also a contribution, given the low number of existing
IBE implementations. In particular, our construction does not rely on the NTRU
assumption as both implementations in [DLP14; ZMS+21].

Organization of the paper. This article focuses mainly on our implementa-
tion contribution, which we believe is the major contribution of the paper, but
we also describe the Gaussian preimage sampling techniques on module lattices
in Section 3. In Section 4, we explain our applications with two proven trapdoor-
based signature schemes and a standard model IBE in the module setting. The
theoretical part which led us to these implementations is presented and detailed
in a rigorous way in the appendices.

Conclusion and open problems. Our results show that while the resulting
schemes are not competitive with the most efficient NIST candidates (in partic-
ular the keys are quite large and probably not fit for embedded platforms), they
are practical and run on a standard laptop in acceptable time (see Table 2),
paving the way for practical advanced trapdoor-based constructions. Besides,
the standard model security of our second scheme comes at a low additional cost
compared to the ROM GPV signature.

We believe that our schemes performances can still be improved. In partic-
ular, the modularity of our implementation makes it easy to modify if needed.
For instance, the use of another Gaussian sampler over integers could reduce
our timings. Our results seem to confirm that using NTRU lattices provides
much better results even if it requires an additionally NTRU assumption. Fi-
nally, an interesting open problem would be to study the impact of approximate
trapdoors [CGM19] on IBE schemes, and possibly on more advanced schemes.

2 Preliminaries

Notations. We denote by Z and Zq the rings of integers and integers modulo
q, by R and C the fields of real and complex numbers. Elements of these sets
are denoted by standard lowercase letters, (column) vectors by bold lowercase
letters, and matrices by bold uppercase letters. The norm ‖·‖ denotes the eu-
clidean norm, and the norm of a vector over Zq is the norm of the corresponding
vector over Z with entries in {−bq/2c, . . . , bq/2c}, the norm of a polynomial
a =

∑n−1
i=0 aiX

i is the norm of the vector (a0, . . . , an−1), and the norm of a
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matrix is the maximum norm of its column vectors. If x is sampled from a dis-
tribution D, we write x←D. The uniform distribution over a finite set S is
denoted U(S).

A symmetric matrixM ∈ Rn×n is said to be positive definite (resp. positive
semidefinite) if for all nonzero x ∈ Rn we have xTMx > 0 (resp. xTMx ≥ 0),
in which case we writeM � 0 (resp.M � 0). Positive semidefiniteness induces a
partial order on Rn×n, as we say thatM �N whenM −N � 0. For simplicity
of notation, we write M � η instead of M � ηI, for a real η ≥ 0.

We use the standard Landau notations. A function f is negligible when
f(n) = o(n−c) for all c > 0 as n → ∞. An event happens with overwhelming
probability if its probability of not happening is negligible. Two distributions D0

and D1 over the same countable domain Ω are said to be statistically indistin-
guishable if their statistical distance ∆(D0, D1) = 1

2

∑
ω∈Ω |D0(ω) − D1(ω)| is

negligible. They are computationally indistinguishable if no probabilistic poly-
nomial time algorithm can distinguish them with non-negligible advantage.

Lattices and discrete Gaussian distributions. Given a set of linearly in-
dependent vectors B = { b1, . . . , bk } ⊂ Rm, the lattice with basis B is the
set {

∑k
i=1 λibi, λi ∈ Z }, and its rank is k. For A ∈ Zn×mq and u ∈ Znq ,

we define the following m-dimensional q-ary lattice and its coset Λ⊥q (A) =
{ x ∈ Zm | Ax = 0 mod q } and Λuq (A) = { x ∈ Zm | Ax = u mod q } .

Module lattices are particular lattices that have a polynomial structure.
We consider the ones that are based on the rings R = Z[X]/〈Xn + 1〉 and
Rq = Zq[X]/〈Xn + 1〉, where n is a power of two and q is prime. They are
sublattices of the full lattice Rm, itself isomorphic to the integer lattice Znm.

The discrete Gaussian distribution of center c ∈ Rn and parameter σ > 0
over a full-rank lattice Λ ⊂ Zn is denotedDΛ,σ,c. It is the probability distribution
over Λ such that each x ∈ Λ is assigned a probability proportional to ρσ,c(x) =
exp(−π‖x−c‖

2

σ2 ). For a positive definite matrix Σ ∈ Rn×n, we also define the
(skewed) density ρc,√Σ(x) = exp(−π(x−c)TΣ−1(x−c)), and the corresponding
discrete Gaussian distribution of center c and covariance Σ denoted DΛ,

√
Σ,c.

Smoothing parameter. The smoothing parameter ηε(Λ) of a lattice Λ was in-
troduced in [MR07]. We use the following lemma to find a lower bound for it.

Lemma 1 ([GPV08, Lemma 3.1]). Let Λ ⊂ Rn be a lattice with basis B,
and B̃ the Gram-Schmidt orthogonalization of B. Then, for any ε > 0, we have
ηε(Λ) ≤ ‖B̃‖ ·

√
ln(2n(1 + 1/ε))/π.

Gaussian tailcut. We denote by t the tailcut of the discrete Gaussian of pa-
rameter σ. It is a positive number such that samples from DZ,σ land outside
of [−tσ, tσ] only with negligible probability. We choose it using the fact that
Prx←DZ,σ [|x| > tσ] ≤ erfc

(
t/
√
2
)
, where erfc(x) = 1 − 2

π

∫ x
0
exp−u

2

du. This
generalizes to higher dimensions using the following lemma.
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Lemma 2 ([MR07, Lemma 4.4]). For any n-dimensional lattice Λ, vector
c ∈ Rn, reals 0 < ε < 1 and σ ≥ ηε(Λ), if x is distributed according to DΛ,σ,c,
then we have Pr [‖x− c‖ > σ

√
n] ≤ 1+ε

1−ε · 2
−n.

Module hardness assumptions. As in most practical lattice-based construc-
tions [ABB+19; ADP+16; BFRS18; DKL+18; FHK+17], we consider rings of the
form R = Z[X]/〈Xn + 1〉 and Rq = Zq[X]/〈Xn + 1〉, where n is a power of two
and q a prime modulus. The polynomial Xn+1 is the cyclotomic polynomial of
order 2n, and R is the corresponding cyclotomic ring.

The module variants generalizing Ring-SIS and Ring-LWE were introduced
in [LS15]. The parameter d corresponds to the rank of the module, and nd is the
dimension of the corresponding module lattice (d = 1 gives the ring problem).
Their difficulty is proven by worst-case to average-case reductions from hard
problems on module lattices [LS15].

Definition 1 (Module-SISn,d,m,q,β). Given a uniformly random A ∈ Rd×mq ,
find a vector x ∈ Rm such that Ax = 0 mod q, and 0 < ‖x‖ ≤ β.

Definition 2 (Decision Module-LWEn,d,q,σ). Given a uniform A ∈ Rm×dq

and the vector b = As+e mod q, where s← U(Rdq) and e← DRm,σ, distinguish
the distribution of (A, b) from the uniform distribution over Rm×dq ×Rmq .

3 Gaussian preimage sampling on module lattices

Efficient trapdoor-based schemes, including the two signatures and the IBE we
implement, are based on the notion of trapdoor from [MP12]. These trapdoors
are an improvement on the short bases of [GPV08], as they are more compact
and enjoy faster algorithms, both asymptotically and in practice. They were
generalized to ideal lattices in [LCC14], and an efficient instantiation of the
associated algorithms was given in [GM18]. To the best of our knowledge, neither
the trapdoors nor their algorithms had been adapted yet to the module setting.

In Section A, we generalize in detail these constructions to module lattices,
following the ideas from [MP12], by accomplishing two goals:

– We derive an algorithm TrapGen from [MP12, Section 5.2], which is de-
scribed in Section A.1. It generates a uniform matrix A ∈ Rd×mq along
with its trapdoor T ∈ R2d×dk, where k = dlogb qe and m = d(k+2). The
trapdoor T is sampled from a Gaussian distribution of parameter σ. The
matrix A defines hard module SIS and ISIS problems.

– We give an algorithm SamplePre, described in Section A.4, that uses T ∈
R2d×dk to perform efficient Gaussian preimage sampling with parameter
ζ, effectively solving the module SIS and ISIS problems.

Gaussian preimage sampling consists in sampling from a spherical discrete
Gaussian distribution on cosets of the lattice Λ⊥q (A) (that is, the sets Λuq (A) for
u ∈ Rd) using T . The standard deviation ζ of this distribution should be small
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(so that it is hard to sample from it without knowing T ), and the produced
vectors should not leak any information about T . To this end, we follow the
method introduced in [MP12] where sampling from DΛu

q (A),ζ is divided into two
complementary phases:

– G-sampling of parameter α (described in Section A.2), which ensures that
our samples actually lie in the good coset.

– Perturbation sampling with parameters ζ and α (described in Section 3.1),
which conceals the information about T in the output distribution.

Most of these steps are direct adaptations of the original results, except the last
one that we now explain more in detail.

3.1 Perturbation sampling

Perturbation sampling aims at sampling vectors following the Gaussian distribu-
tion over Rm of covariance Σp = ζ2I − α2

[
T
I

]
[ TT I ]. In a way, this covariance

matrix is complementary to the one of
[
T
I

]
z, where z is the output of the G-

sampling. This is so that when we sum the perturbation p and
[
T
I

]
z, the final

covariance matrix Σp+α
2
[
T
I

]
[ TT I ] = ζ2I does not leak any information about

the trapdoor T .
Internally, perturbation sampling takes place in the ring P = R[X]/〈Xn + 1〉

rather than the usual ring R. As in most discrete Gaussian sampling algorithms,
computations are done with real numbers even if the end result is composed of
integers only. Since R can naturally be embedded in P, we can consider T and
covariance matrices to have entries in P.

Genise and Micciancio made this operation efficient in the ring setting
[GM18]. In particular, they describe an algorithm SampleFz which takes as in-
put a covariance polynomial f and a center c, and returns a sample from the
corresponding Gaussian distribution over R. Their method cannot be applied di-
rectly to the module setting because of the additional rank module parameter d.
Instead of having to sample vectors with a covariance matrix of dimension 2× 2
over R and with a center (c0, c1) ∈ R2 as in [GM18], we have to work with a
covariance matrix Σ ∈ P2d×2d and a center c ∈ P2d. However, by using [GM18,
Lemma 4.3] and the SampleFz algorithm, we wisely decompose the covariance
matrices into blocks of different sizes at each iteration and update our center,
allowing us to iteratively sample the perturbations pi ∈ R.

An efficient algorithm for sampling perturbations. We now give a description
of the algorithm SamplePerturb which, given the trapdoor T and the Gaussian
parameters ζ and α, returns a vector p sampled from the centered discrete
Gaussian over Rm of covariance Σp = ζ2I − α2

[
T
I

]
[ TT I ]. This algorithm does

not explicitly use Σp ∈ Pm×m, but only a much smaller matrix Σ ∈ P2d×2d,
which can be computed in advance. It uses the algorithm SampleFz [GM18,
Section 4] to sample from discrete Gaussians over R.
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Algorithm 1 SamplePerturb(T , ζ, α) for sampling a perturbation vector
1: function SamplePerturb(T ∈ P2d×dk, ζ > 0, α > 0)
2: ps ← DRdk,ζ2−α2 . ps ∈ Rdk

3: c← − α2

ζ2−α2Tps . c ∈ P2d

4: Σ ← ζ2I − (α−2 − ζ−2)−1TT T . Σ ∈ P2d×2d

5: for i = 2d− 1 . . . 0 do

6: Σ =

[
A B

BT f

]
. A ∈ Pi×i,B ∈ Pi×1, f ∈ P

7: c = (c′, ci) . c′ ∈ Pi, ci ∈ P
8: pi ← DR,

√
f,ci

. pi ∈ R
9: c← c′ + f−1B(pi − ci) . c ∈ Pi
10: Σ ← A− f−1BBT . Σ ∈ Pi×i

11: p← (p0, . . . , p2d−1,ps) . p ∈ Rm
12: return p

Note that in lines 6 and 7 of Algorithm 1, no computation is actually per-
formed: different parts of the variables Σ and c are just given names, for a
clearer understanding.

Algorithm 1 has a complexity of Θ(d2n log n) scalar operations, if we ignore
the updates to Σ (which only depend on T and can actually be precomputed
in Θ(d3n log n) in the trapdoor generation). This stems from the fact that mul-
tiplication in P and SampleFz both take Θ(n log n) time.

The correctness of this algorithm is proven by the following Theorem.

Theorem 1. Let T ∈ P2d×dk, ζ, α > 0, and Σp = ζ2I−α2
[
T
I

]
[ TT I ] ∈ Pm×m

be the derived perturbation covariance matrix.
If Σp � η2ε(Znm), then SamplePerturb(T , ζ, α) returns a vector p ∈ Rm

whose distribution is statistically indistinguishable from DRm,
√
Σp

.

We provide more details about this algorithm (in particular how transposition
over P is defined) and a proof of correctness in Section A.3.

3.2 Implementation

To generate our specific discrete Gaussian distributions, we make use of the
following building blocks: the AES-based pseudorandom number generator from
[MN17] (implemented using AES-NI instructions for x86 architectures), and a
sampler of discrete Gaussians over Z similar to Karney’s sampler [Kar16]. We
chose this sampler as it can generate samples in constant time, independently of
the center, Gaussian parameter, and output value. All of the computations that
deal with non-integers are carried out with floating-point operations that do not
involve subnormal numbers.

Our implementation of trapdoor generation and G-sampling are quite direct
from the description of the algorithms, and do not have any peculiarities. As such,
we will focus our explanations on the techniques used to optimize SamplePerturb.
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To obtain an efficient arithmetic in P = R[X]/〈Xn + 1〉 we used the Chinese
Remainder Transform (CRT, as defined in [LPR13]), as in several other works
[DP16; GM18; GPR+18]. It is a kind of fast Fourier transform that evaluates a
polynomial f ∈ P at the complex primitive 2nth roots of unity, the n points of
the form ωi = e

kiπ
n for i ∈ {1, 3, . . . , 2n − 1}, in time Θ(n log n). As explained

in [GM18, Section 4.1], this CRT transform combines especially well with the
algorithm SampleFz whose recursive structure is similar to that of an FFT.

Also, the matrix Σ is not actually updated during a run of SamplePerturb.
Instead, we precompute (during the trapdoor generation) all of the 2d values
that it would take during the execution of the algorithm, and store them in a
single 2d× 2d triangular matrix by "stacking" them. This is possible because at
each iteration of the loop, Σ is an i× i matrix of which we only use the last line
and column. This comes with an additional storage cost of d(2d + 1) elements
from P in the secret key, and Table 3 quantifies the time gains in practice.

Our implementation is constant-time, assuming the compiler produces
constant-time code for reduction modulo q and basic operations such as inte-
ger division and multiplication. Indeed, our algorithms do not require branching
nor memory access that depend on secret values. In particular, our sampler of
discrete Gaussians over Z’s running time is independent of both the input pa-
rameters and the output value.

3.3 Performances

We now present running times for our trapdoor generation and preimage sam-
pling algorithms, and the cost of their different components. Our experimenta-
tions were carried out with n = 256, k = dlogb qe = 30 (the values used in our
signature schemes in Sections 4), and values of d up to 10. We ran them on an
Intel i7-8650U CPU running at 1.90 GHz.

In Table 3, we see how the trapdoor generation is divided into three main
operations: sampling from DZ,σ for the construction of T , the precomputations
concerning the covariance matrices (see Section 3.2), and arithmetic, which is
mainly computing the matrix product.

Table 4 concerns the algorithm SamplePre. We also measured that sampling
from discrete Gaussians over Z constitutes 57-64% of the perturbation sampling
(decreasing with d) and about 85% of the G-sampling, for a total of 67-72% of
the whole presampling. Gaussian sampling over Z makes up most of the running
times of both TrapGen and SamplePre. As such, it is important for efficiency to
use a fast sampler of discrete Gaussians over Z as a building block. We remind
the reader that in our implementation, this sampler can easily be swapped out
for another if needed.

4 Applications

4.1 The GPV signature scheme on modules

A direct application of our Gaussian preimage sampling techniques on module
lattices is the GPV signature [GPV08] in the module setting. It was originally
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Table 3. Running time of the TrapGen algorithm.

d 4 6 8 10

DZ,σ sampling 27.17 ms (74%) 56.37 ms (72%) 100.22 ms (67%) 159.10 ms (64%)
Σ computations 7.03 ms (19%) 17.11 ms (22%) 39.40 ms (26%) 71.92 ms (29%)

Arithmetic 2.34 ms (6%) 1.11 ms (1%) 2.60 ms (2%) 5.25 ms (2%)
Total 36.56 ms 78.52 ms 149.57 ms 248.09 ms

Table 4. Running time of the SamplePre algorithm.

d 4 6 8 10

Perturb. sampling 4.73 ms (36%) 6.63 ms (38%) 9.43 ms (38%) 12.03 ms (39%)
G-sampling 7.48 ms (57%) 9.83 ms (56%) 13.29 ms (54%) 16.43 ms (53%)
Arithmetic 0.82 ms (6%) 1.20 ms (7%) 1.98 ms (8%) 2.64 ms (8%)

Total 13.28 ms 17.66 ms 24.70 ms 31.10 ms

formulated on unstructured lattices, and has previously been implemented using
improved trapdoors and algorithms [MP12; GM18] in the ring setting [BB13;
GPR+18; GPR+19].

You can refer to the Section B in appendices to see a description of how we
instantiate it in the module setting, using the Gaussian preimage sampling tools
from [MP12; GM18] that we extended to module lattices. Our goal here is not
to obtain a competitive signature scheme, but rather to show the relevance of
the tools we developed.

Estimating security and choosing parameters. In Table 5, we propose four
parameter sets and corresponding security estimates, taking the prime modulus
q = 1073738753 of bitsize k = 30. The sets I and IV corresponds to the ring
setting, where n is a power of two and d = 1. The sets II and III are intermediate
using the module setting. We describe how we chose those parameters, estimating
the difficulty of the underlying lattice problems in Section B.

Performance and comparison with previous work. We now present in
Table 6 the running times for our implementation of the GPV signature scheme.
While it is practical and runs on a standard laptop in acceptable time, the
comparison with lattice-based NIST candidates given in Table 12, Section E
shows that it is not competitive.

Comparison between rings and modules. As already explained, one goal of us-
ing a module variant instead of a ring variant is to be more flexible in the
parameters. The comparison between the different levels of security shows that
the running time for signing and verifying is increasing with nd, and then that
having intermediate levels allow to be faster to sign and verify.

On the other hand, the KeyGen algorithm does not depend only on nd but is
slower for larger d. We give a more concrete example of this in Table 7. When nd
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Table 5. Suggested parameter sets for our instantiation of the GPV signature.

Parameter set I II III IV
nd 1024 1280 1536 2048
n 1024 256 512 2048
k 30 30 30 30
d 1 5 3 1
σ 7.00 5.55 6.15 6.85
α 48.34 54.35 60.50 67.40
ζ 83832 83290 112522 160778

BKZ blocksize b to break LWE 367 478 614 896
Classical security 107 139 179 262
Quantum security 97 126 163 237

BKZ blocksize b to break SIS 364 482 583 792
Classical security 106 140 170 231
Quantum security 96 127 154 210

Table 6. Performances of our GPV signature.

Parameter set KeyGen Sign Verify

I 7.48 ms 11.47 ms 0.73 ms
II 51.34 ms 15.25 ms 1 ms
III 36.49 ms 17.45 ms 1.12 ms
IV 15.55 ms 22.64 ms 1.48 ms

is constant, so is the estimated security provided. With a higher n and a lower d
(d = 1 being the ring setting), the underlying lattices have a stronger structure
and the signature is more efficient. With a lower n and a higher d (the extreme
being n = 1 in the unstructured setting), the lattices have less structure, leading
to increased flexibility at the cost of efficiency.

Table 7. Cost of KeyGen, Sign and Verify depending of the parameter d for nd = 1024.

(n, d) KeyGen Sign Verify

(1024, 1) 7.62 + 1.32 = 8.94 ms 13.08 ms 0.79 ms
(512, 2) 15.32 + 2.81 = 18.13 ms 13.20 ms 0.79 ms
(256, 4) 29.53 + 7.03 = 36.56 ms 13.36 ms 0.74 ms

Comparison with [GPR+19]. In Table 8, we compare our timings with the work
of [GPR+19]. Their parameter set where (n, k) = (1024, 27) is compared with
ours where (nd, k) = (1024, 30), which provide approximately the same security.
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Table 8. Comparison of GPV implementations.

Implementation KeyGen Sign Verify

[GPR+19] n = 1024 5.86 ms 32.42 ms 0.28 ms
This work (n, d) = (1024, 1) 7.62 + 1.32 = 8.94 ms 13.08 ms 0.79 ms

4.2 A standard model signature scheme on modules

The second application of our tools that we present is an implementation of a
signature scheme that is proven secure in the standard model, as opposed to the
GPV signature and the NIST schemes.

This scheme is the signature from [BFRS18], which is a variant of GPV,
adapted to the module setting. For the security proof to hold, the encoding
must fulfil a strong injectivity property. However, the original encoding described
in [BFRS18] did not meet these requirements, leading to a limited security. We
propose a modified version of this scheme: we translated it to the module setting,
and instantiated it with a correct encoding.

We give a complete description of our scheme and state its correctness and
security in Section C.

Encoding messages with full-rank differences. We first describe the notion
of an encoding with full-rank differences (FRD) needed in our scheme. Note that
this definition of FRD differs from the one used in [ABB10b], which does not
use the MP12 trapdoors, and therefore does not need the H(m) to be invertible.

Definition 3 (Adapted from [ABB10b]). An encoding with full-rank dif-
ferences from the setM to a ring R is a map H :M−→ R such that:

– for any m ∈M, H(m) is invertible,
– for any m1,m2 ∈M such that m1 6= m2, H(m1)−H(m2) is invertible,
– H is computable in polynomial time.

Before constructing an FRD encoding in the module setting (that is, taking
values in Rd×dq ), we first construct one in the ring setting (taking values in Rq).
Our construction is based on the following result of [LS18], which allows us to
find invertible elements in Rq.

Theorem 2 ([LS18, Corollary 1.2]). Let n ≥ r > 1 be powers of 2, and q a
prime such that q ≡ 2r + 1 (mod 4r). Then the cyclotomic polynomial Xn + 1
factors in Zq[X] as Xn + 1 =

∏r
i=1

(
Xn/r − si

)
, for some distinct si ∈ Z∗q such

that the
(
Xn/r − si

)
are irreducible in Zq[X]. Moreover, any f ∈ Rq such that

0 < ‖f‖∞ < q1/r/
√
r or 0 < ‖f‖ < q1/r is invertible.

This result can be used to build two different types of FRD encodings. One could
encode messages as polynomials of l∞-norm smaller than q1/r

2
√
r
with an injective

map and obtain an FRD this way. But we decided to use the "low-degree" FRD
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described in Proposition 1 as opposed to a "small-norm" one, as it results in a
slightly more efficient implementation.
Proposition 1. Let n ≥ r > 1 be powers of 2, q a prime such that q ≡ 2r + 1

(mod 4r), and M = Zn/rq \ {0} the set of messages. Then the following map
H :M−→ Rq is an FRD encoding.

(m0, . . . ,mn/r−1) 7−→
n/r∑
i=0

miX
i

The proof of this proposition is given in Section C.

FRD on modules. We build an FRD encoding in the module setting using an
existing FRD encoding in the ring setting HR :M−→ Rq by constructing:

HM :M−→ Rd×dq

m 7−→ HR(m) · Id =

HR(m)
. . .

HR(m)

 ,

where Id ∈ Rd×dq is the identity matrix.
Lemma 3. If HR is an FRD (in the ring setting) fromM to Rq, then HM as
constructed above is an FRD (in the module setting) fromM to Rd×dq .

Implementation and performance. The main point that differs from our
ROM scheme in the implementation is the arithmetic over Rq. While without
having q ≡ 1 (mod 2n) one cannot use the NTT, we can still make use of the
structure of our ring to speed up the multiplication of polynomials. Described
at a high level, what we perform is a "partial NTT". To multiply polynomials,
we first reduce them modulo all the Xn/r − si in Θ(n log r) operations (see
Section C.1). Then, we multiply them in the smaller rings Zq[X]/

〈
Xn/r − si

〉
by

using the Karatsuba multiplication algorithm, and reducing them both modulo
q and modulo the Xn/r − si. The result can then be mapped back to the ring
Rq in time Θ(n log r) using an inverse transform. These ideas were formulated
in [LS18].

In Table 9, we present the performance of our implementation of this standard
model scheme, and in particular highlight the additional cost compared to our
ROM scheme of Section 4.1.

We do not give a comparison with the implementation of [BFRS18] as it
would not be relevant, given the limited security provided by their instantiation
of the FRD encoding.

4.3 An identity-based encryption scheme on modules

Finally, we built a more advanced construction based on our tools: a standard
model identity-based encryption scheme.

We give a complete description of our IBE in Section D.
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Table 9. Performances of our standard model signature.

Parameter set KeyGen Sign Verify

I 9.46 ms (+27%) 15.66 ms (+37%) 1.19 ms (+63%)
II 73.41 ms (+43%) 21.92 ms (+44%) 2.23 ms (+123%)
III 51.79 ms (+42%) 29.11 ms (+66%) 2.37 ms (+112%)

Implementation and performance. As in our standard model signature
scheme, we make use of our ring to speed up the multiplication of polynomi-
als by performing a partial NTT. We make use of the same encoding as in the
previous section, which imposes the condition q ≡ 2r+1 (mod 4r) on the mod-
ulus, to map identities in M = Zn/rq \ {0} to invertible elements in Rd×dq . In
Table 10, we present the performance of our implementation of this standard
model IBE scheme.

Table 10. Timings of the different operations of our scheme: Setup, Extract, Encrpt,
and Decrypt

Parameter Set Setup Extract Encrypt Decrypt

I 9.82 ms 16.54 ms 4.87 ms 0.99 ms
II 44.91 ms 18.09 ms 5.48 ms 1.04 ms

In Table 11, we give timings for the different operations of some IBE schemes.
Our timings could seem worse than the ones in [BFRS18] but the two imple-
mentations cannot be compared as the latter’s limited security would make the
comparison irrelevant. A part of the difference comes from the arithmetic we
need to use in order to build a proper FRD encoding. Moreover, in contrast to
[DLP14], we did not use NTRU lattices, which explains the differences in the
timings.

Table 11. Timings of the different operations for some IBE schemes.

Scheme (λ, n) Setup Extract Encrypt Decrypt

BF-128 [Fou13] (128, –) – 0.55 ms 7.51 ms 5.05 ms
DLP-14 [MSO17] (80, 512) 4.034 ms 3.8 ms 0.91 ms 0.62 ms
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A Building trapdoors for module lattices

We construct trapdoors and present their usefulness in Section A.1. Sections A.2,
A.3, and A.4 concern G-sampling, perturbation sampling, and the Gaussian
preimage sampling procedure. Amongst those, our main contributions are the
adaptation to modules of the perturbation sampling algorithm, and an analysis
of the involved parameters that is more rigorous than in the previous works. The
other notions and algorithms are direct generalizations of their counterparts in
the unstructured and ring settings, and are stated for the sake of completeness.
We detail our implementation and its performances in Sections 3.2 and 3.3.

A.1 Building trapdoors for module lattices

We first define a specific lattice named the module G-lattice, where the Module-
SIS problem is easy. Then, we describe how we can generate simultaneously a
random-looking lattice and its trapdoor, which is a way of mapping the module
G-lattice to it. Finally, we show how to use this trapdoor to solve Module-SIS
on the random lattice.

In the case of ideal lattices, the construction starts with the ring gadget vector

gT =
[
1 b b2 · · · bk−1

]
∈ R1×k

q , where k = dlogb qe,

whose entries are constant power-of-b polynomials, and the ring G-lattice
Λ⊥q (g

T ) ⊂ Rk. Typically, we take b = 2 (which allows us to use efficient bitwise
operations in our implementation) but choosing larger values for b is possible
in our implementation and could bring some interesting trade-offs in terms of
efficiency. In the module setting, we use these to create the matrix

G = Id ⊗ gT =


gT

gT

. . .
gT

 ∈ Rd×dk,
and the associated module G-lattice Λ⊥q (G) ⊂ Rdk, which is isomorphic to d
copies of Λ⊥q (gT ). Having introduced the G-lattice, we can now define trapdoors.

Definition 4. A trapdoor for a matrix A ∈ Rd×mq is a matrix T ∈ R(m−dk)×dk

such that

A

 T

Idk

 =HG

for some invertible H ∈ Rd×dq , called the tag of A.

We now describe the algorithm TrapGen, which outputs a matrix A along
with its associated trapdoor T , given a tag H. So that A’s uniformity is guar-
anteed by a Module-LWE instance, we instantiate TrapGen with m = d(k + 2).
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Algorithm 2 TrapGen(H, σ) for the generation of a matrix A and its trap-
door T
1: function TrapGen(H ∈ Rd×dq , σ > 0)
2: Â←U(Rd×dq ) . Â ∈ Rd×dq

3: A′ ← [ Id Â ] . A′ ∈ Rd×2d
q

4: T ←DR2d×dk,σ . T ∈ R2d×dk

5: A← [A′ HG−A′T ] . A ∈ Rd×m
6: return (A,T )

We state the correctness of the trapdoor generation algorithm but do not
give a proof for it, and instead direct the reader towards [MP12, Section 5.2]
for a better understanding. Indeed, the principles of the algorithm are the same,
and the translation to the module setting is quite direct.

Lemma 4. Let q, d be positive integers, k = dlogb qe, m = d(k+2), H ∈ Rd×dq ,
σ > 0, and (A,T )← TrapGen(H, σ). Then, the following points hold:

– T is a trapdoor for A with tag H;
– A is computationally indistinguishable from uniform (excluding the iden-

tity submatrix in the first d columns) based on the hardness of the decision
version of Module-LWEn,d,q,σ.

These trapdoors are useful as they allow one to compute small vectors on
any coset of a random lattice if they can do so on the G-lattice. As we explain
in Section A.2, a small vector on the G-lattice can be mapped to a small vector
on the random lattice using its trapdoor.

A.2 G-sampling

We now describe one of the two main steps of the Gaussian preimage sampling.
Given a target vector v ∈ Rd, the goal of G-sampling is to compute a vector z
following a discrete Gaussian of parameter α over the coset Λvq (G) of the module
G-lattice defined by G ∈ Rd×dk.

How to perform G-sampling. We make use of an efficient algorithm [GM18,
Section 3] designed for G-sampling in the unstructured setting, running in O(k)
time. It samples on cosets of the scalar G-lattice Λ⊥q (gTs ) ⊂ Zk, defined by the
scalar gadget vector gTs =

[
1 b b2 · · · bk−1

]
∈ Z1×k

q used in the construction
of trapdoors on unstructured lattices. While we do not go into detail about
the algorithm, and treat it as a black box, we need to take into account the
following constraint for its instantiation. According to [GM18, Corollary 3.1 and
Proposition 3.1], we need to take α ≥

√
2b · (2b+ 1) ·

√
log(2k(1 + 1/ε))/π and

α ≥ (b+ 1)ηε(Z) for the algorithm to be correct.
To sample a vector zr ∈ Rk from a coset of the ring G-lattice, one can do

the following: independently sample n column vectors from the scalar G-lattice,
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arrange them into an k × n matrix, and form each of the k entries of zr by
reading the rows in order. In turn, module G-sampling consists in d independent
operations of ring G-sampling. In summary, we make nd calls to the scalar G-
sampling algorithm, leading to a procedure for module G-sampling running in
optimal O(ndk) time.

What to do with G-samples. Now that we are able to sample such vectors, let us
explain how to use them, along with the trapdoor T , to compute a Gaussian vec-
tor x ∈ Λuq (A) for a given u ∈ Rd. Letting v =H−1u, we sample z←DΛv

q (G),α,
and output x =

[
T
I

]
z. One can check that such an x then lies in the desired

coset. Nevertheless, its distribution is degenerate (the support is not full-rank)
and skewed (the covariance matrix is α2

[
T
I

]
[ TT I ]), which leaks information

about the trapdoor. To solve this problem, we make use of perturbation vectors,
as first described in [Pei10].

A.3 Perturbation sampling

The rest of this section contains more details on Section 3.1 (in particular how
transposition over P is defined), proof of this algorithm, and constraints con-
cerning the involved parameters.

Matrices of polynomials and Schur complements. We denote by φ the ring
homomorphism from P = R[X]/〈Xn + 1〉 to Rn×n that takes a polynomial
a =

∑n−1
i=0 aiX

i to the matrix

φ(a) =


a0 −an−1 · · · −a1

a1 a0
...

...
. . . −an−1

an−1 · · · a1 a0

 ,

which represents multiplication by a in P when polynomials are represented
as vectors over R. This definition is naturally extended to matrices over P by
component-wise application.

Sampling a vector of m polynomials with covariance Σ ∈ Pm×m is then
equivalent to sampling a vector of nm scalars with covariance φ(Σ) ∈ Rnm×nm.
While our algorithm is described in terms of matrices over P, it is easier to
understand it when viewing the covariance matrix as a real matrix.

We remind the reader that for a symmetric matrix M =
[
A B
BT D

]
over R

where the lower-right block D is invertible, the Schur complement of D is
M/D = A − BD−1BT . Then, M is positive definite if and only if both D
andM/D are positive definite themselves. If we write out the blocks of a struc-
tured scalar covariance matrix

φ(Σ) =

[
φ(A) φ(B)
φ(B)T φ(D)

]
∈ Rnm×nm,
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then we can consider φ(Σ)/φ(D) = φ(A) − φ(B)φ(D−1)φ(B)T . For a similar
definition to make sense in terms of matrices over P (that is, we want to define
the Schur complement Σ/D = A − BD−1BT ) we first need to construct a
matrix BT such that φ(BT ) = φ(B)T .

For any polynomial a =
∑n−1
i=0 aiX

i ∈ P, we define its transpose to be
aT = a0−

∑n−1
i=1 an−iX

i ∈ P. It is the polynomial such that φ(aT ) = φ(a)T . The
transpose of a matrix B over P is the matrix BT such that BT [i, j] = B[j, i]T .
We then have that φ(BT ) = φ(B)T , which is what we needed to be able to
define Schur complements of matrices over P. For a real η ≥ 0, we will write
Σ � η instead of φ(Σ) � η for ease of notation.

Proof of Algorithm 1. The correctness of SamplePerturb relies on the two fol-
lowing lemmas. The first one is a convolution lemma, which justifies that the
output distribution is correct.

Lemma 5 ([GM18, Lemma 4.3]). For any real 0 < ε ≤ 1/2, positive in-
tegers r and s, vector c = (c0, c1) ∈ Rr+s, positive definite Σ =

[
A B
BT D

]
∈

R(r+s)×(r+s) composed of blocks A ∈ Rr×r, B ∈ Rr×s, D ∈ Rs×s, we define the
following random process:

– x1←DZs,
√
D,c1

;
– x0←DZr,

√
Σ/D,c0+BD−1(x1−c1)

.

If Σ � η2ε(Zr+s), then this process outputs a vector x = (x0,x1) ∈ Zr+s
whose distribution is statistically indistinguishable from DZr+s,

√
Σ,c.

The second one ensures that all covariance matrices manipulated during
our algorithm are "positive definite enough" so that we can rigorously apply
Lemma 5 at each step of the algorithm.

Lemma 6 ([GM18, Lemma 4.2]). Let ε > 0, r and s be positive integers,
and Σ =

[
A B
BT D

]
∈ R(r+s)×(r+s) be a positive definite matrix made out of blocks

A ∈ Rr×r, B ∈ Rr×s, D ∈ Rs×s.
If Σ � η2ε(Zr+s), then D � η2ε(Zs) and Σ/D � η2ε(Zr).

We now prove Theorem 1, which shows the correctness of our perturbation
sampling algorithm.

Theorem 3. Let T ∈ P2d×dk, ζ, α > 0, and Σp = ζ2I−α2
[
T
I

]
[ TT I ] ∈ Pm×m

be the derived perturbation covariance matrix.
If Σp � η2ε(Znm), then SamplePerturb(T , ζ, α) returns a vector p ∈ Rm

whose distribution is statistically indistinguishable from DRm,
√
Σp

.

Proof. First, let us observe that Σp has a particular structure. Indeed,

Σp = ζ2I − α2

[
T
I

] [
T T I

]
=

 A −α2T

−α2T T (ζ2 − α2)I

 ,
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where A = ζ2I − α2TT T ∈ P2d×2d. This allows us to use Lemma 5 to first
sample a centered vector ps ∈ Rdk with covariance (ζ2 − α2)I (which is easy
since the distribution is spherical), and then sample a vector with covariance
Σp/(ζ

2 − α2)I and center c = − α2

ζ2−α2Tps.
However, ζ2I − (α−2 − ζ−2)−1TT T is precisely the Schur complement of

(ζ2−α2)I in Σp. The goal of what comes after sampling ps is sampling a vector
(p0, . . . , p2d−1) ∈ R2d with this covariance and an updated center c.

To this end, we make use of Lemma 5 iteratively during the loop. More
precisely, at each iteration of the loop, we sample the rightmost remaining entry
of p using SampleFz. This entry’s covariance is the lower-right entry of Σ, and
its center is the last entry of c. We then update both Σ and c according to
Lemma 5, and proceed with the sampling of the other entries in the same way,
until we have sampled all of p.

The only missing argument is that we can actually apply Lemma 5 at each
step of the algorithm. Lemma 6 takes care of that, assuring that at each iteration
of the loop we have Σ � η2ε(Zi+1). ut

Gaussian parameters for perturbation sampling. As seen in Theorem 1, we need
to have Σp � η2ε(Znm) for SamplePerturb to be correct. Let us show how this
leads to a lower bound on ζ.

Lemma 7. Let T ∈ P2d×dk, ζ, α > 0, and Σp = ζ2I − α2
[
T
I

]
[ TT I ]. For any

positive real 0 < ε ≤ 1/2, if ζ is such that ζ >
√
(α2 + 1)s21(T ) + η2ε(Znm) and

ζ >
√
α2 + η2ε(Znm), then we have Σp � η2ε(Znm).

Proof. For the sake of simplicity, we will write η = ηε(Znm). We want the matrix
Σp − η2I to be positive definite. Since

Σp − η2I =

 M −α2T

−α2T T (ζ2 − α2 − η2)I

 ,

whereM = (ζ2−η2)I−α2TT T ∈ R2d×2d, this condition is equivalent to having
both the block (ζ2 − α2 − η2)I and its Schur complement be positive definite.
The former trivially is if ζ2−α2− η2 > 0; for the latter we need to take a closer
look at the Schur complement in question.

This Schur complement is equal to (ζ2−η2)I−α2 ζ2−η2
ζ2−α2−η2TT

T . It is positive

definite if and only if I− α2

ζ2−α2−η2TT
T is. A sufficient condition for that is having

α2

ζ2−α2−η2 s
2
1(T ) < 1, which in turn yields ζ2 > (α2 + 1)s21(T ) + η2. ut

To instantiate concretely SamplePerturb, we then need to determine an upper
bound on s1(T ), knowing that T follows a Gaussian distribution over P2d×dk of
parameter σ. If T was a 2nd×ndk unstructured matrix over R, one could apply
Lemma 2.9 of [MP12], it would state that s1(T ) < Cσ(

√
2nd+

√
ndk + c) for a

certain universal constant C > 0, except with probability at most 2 exp(−πc2).
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While in the case where T is structured, there is no similar result that we know
of, we can hypothesize that such a property still holds in our case, which we
confirmed empirically.

We choose c = 4.7 to ensure that the probability 2 exp(−πc2) is less than
2−100. During our experiments, we found the constant C to be less than 1.1. We
generated matrices T with the same structure and size as the ones used in our
signature schemes (see Table 5 for concrete values for n, k, d and σ), computed
their exact spectral norm and their expected spectral norm, and deduced the
constant C.

A.4 Sampling Gaussian preimages

Once we are able to perform both G-sampling and perturbation sampling, we
combine these two operations to sample from the spherical Gaussian of param-
eter ζ on a coset Λuq (A). The method we use is the same as in [MP12], but
described in the module setting, yielding the algorithm SamplePre.

We remind the reader of the following conditions on α and ζ for the correct-
ness of the algorithm :

– α ≥
√
2b · (2b+ 1) ·

√
log(2k(1 + 1/ε))/π (see Section A.2),

– ζ >
√
(α2 + 1)s21(T ) + η2ε(Znm) (see Section A.3),

knowing that s1(T ) < 1.1σ(
√
2nd+

√
ndk + 4.7) with high probability.

Concrete values for these parameters can be found in Table 5, Section 4.1.

Algorithm 3 SamplePre(A,T ,H,u, ζ, α) for sampling from a discrete Gaus-
sian of parameter ζ over Λuq (A)

1: function SamplePre(A ∈ Rd×mq ,T ∈ R2d×dk,H ∈ Rd×dq ,u ∈ Rdq , ζ > 0, α > 0)
2: p← SamplePerturb(T ) . p ∈ Rm
3: v ←H−1(u−Ap) . v ∈ Rdq
4: z ← DΛv

q (G),α . z ∈ Rdk

5: x← p+
[
T
I

]
z . x ∈ Rm

6: return x

Theorem 4. Let T ∈ R2d×dk be a trapdoor for the matrix A ∈ Rd×mq with tag
H ∈ Rd×dq , u ∈ Rdq be a target vector, and ζ and α be Gaussian parameters
with the above constraints. Then, SamplePre(A,T ,H,u, ζ, α) outputs a vector
whose distribution is statistically close to DΛu

q (A),ζ .

B The GPV signature scheme on modules

In this hash-and-sign scheme, key generation is simply trapdoor generation, and
signing consists in hashing a message to a point in space and then sampling a
Gaussian preimage of that point.
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B.1 Construction

We base ourselves on the probabilistic GPV signature [GPV08, Section 6.2],
where a random salt is appended to a message before hashing it. Then, if the
same message M is signed several times, one does not obtain multiple samples
from the same coset Λuq (A), which would compromise the security of the scheme.

Parameters. The parameters are: n a power of two, q a prime modulus such
that q ≡ 1 (mod 2n), k = dlogb qe its size in the base-b expansion, d a positive
integer, m = d(k + 2), σ, ζ, and α Gaussian parameters, t the Gaussian tailcut,
and s the length of the salt.

Description. The scheme is as follows, where H : {0, 1}∗ −→ Rdq is a collision-
resistant hash function.

– KeyGen(1n) −→ (vk, sk)

(A,T )← TrapGen(I, σ)

vk ← A ∈ Rd×mq

sk ← T ∈ R2d×dk

– Sign(1n, sk,M) −→ ν

S ← U({0, 1}s)
u← H(M ‖ S)
x← SamplePre(A,T , I,u, ζ, α)

ν ← (x, S) ∈ Rm × {0, 1}s

– Verify(1n, vk,M, ν) −→ {accept, reject}
u← H(M ‖ S)
Accept if Ax = u mod q and 0 < ‖x‖ ≤ tζ

√
mn

Theorem 5. Let n, q, k, d,m, σ, ζ, α, t, s be the parameters of the scheme as
above. Then, the scheme is correct, and admits EU-CMA security in the random
oracle model under the hardness of Module-LWEn,d,q,σ and Module-SISn,d,m,q,β,
with β = 2ζ

√
mn.

B.2 Estimating security and choosing parameters

We describe how we chose the parameters for ou GPV signature scheme, estimat-
ing the difficulty of the underlying lattice problems. Our Gaussian sampling algo-
rithms also impose constraints on our parameters (summarized in Section A.4).

Length of the salt. To make sure the probability of collision (two messages land-
ing in the same coset) is negligible, we follow [FHK+17] and take the length of
the random salt to be s ≥ λ + log qs, where λ is the security parameter and qs
the number of allowed signing queries.
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Key recovery. The computational instantiation of the trapdoors we use is based
on the hardness of Module-LWEn,d,q,σ, where we choose the Gaussian parameter
σ to be at least the smoothing parameter ηε(Znd) where ε is taken as 2−λ where
λ is the target security parameter of the scheme. To get an idea of the security
provided by such a Module-LWE instance, we use the estimator of [APS15]1 and
approximate this instance by an instance of an unstructured LWE problem in
dimension nd.

Signature forgery. Forging a signature consists in finding a short vector x ∈ Rm
of norm less than β = tζ

√
mn satisfying the relation Ax = u mod q for some

u ∈ Rnq that depends on the message. This is exactly an instance of Module-
ISISn,d,m,q,β , which we approximate by an instance of unstructured ISISnd,nm,q,β .
This ISIS problem can be solved by finding a short vector in Λu

q (A
′) for some

sub-matrix A′ of A. To estimate the cost of computing such a solution, we look
at the cost of running the BKZ algorithm to reduce a basis of Λu

q (A
′) in order

to get a sufficiently short vector.

BKZ reduction cost model. The BKZ algorithm reduces a basis by calling an
exact SVP oracle in a smaller dimension b, called the BKZ blocksize. We follow
the (very pessimistic) core-SVP hardness introduced in [ADP+16], where the
cost of a BKZ algorithm with blocksize b is taken to be the cost of only one
call to an SVP oracle in dimension b, rather than a polynomial number of calls.
We consider the sieving algorithm as our exact SVP oracle, its complexity in
dimension b is estimated to 2cb, where c = log

√
3/2 ≈ 0.292 in the classical

setting, and c = log
√
13/9 ≈ 0.265 in the quantum setting.

C A standard model signature scheme on modules

C.1 Encoding messages with full-rank differences

Proposition 2. Let n ≥ r > 1 be powers of 2, q a prime such that q ≡ 2r + 1

(mod 4r), andM = Zn/rq \ {0} the set of messages. Then the map

H :M−→ Rq

(m0, . . . ,mn/r−1) 7−→
n/r∑
i=0

miX
i

is an FRD encoding.

Proof. According to Theorem 2 on the factorisation of Xn + 1 and the Chinese
remainder theorem, we have that Rq =

Zq [X]
〈Xn+1〉 '

∏r
i=1

Zq [X]

〈Xn/r−si〉 , with the

Xn/r−si being irreducible, meaning that the r rings of the product are actually
fields (isomorphic to Fqn/r ).
1 https://bitbucket.org/malb/lwe-estimator (commit a2296b8)
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Under the canonical CRT map, a nonzero polynomial f of degree less than
n/r is sent to (f mod Xn/r − s1, . . . , f mod Xn/r − sr) = (f, . . . , f). Each co-
ordinate of the image vector is then invertible (since nonzero) in Fn/rq , which
makes f itself invertible in Rq. This proves that all the H(m) are invertible.

For distinct m1,m2 ∈M, H(m1)−H(m2) is a nonzero polynomial of degree
less than n/r, so it is invertible in Rq by the previous reasoning. Finally, H is
clearly computable in polynomial time. ut

C.2 The signature scheme

The proposed signature scheme is a module adaptation of the scheme from
[BFRS18] with a different instantiation of the FRD encoding.

Parameters. We have: n ≥ r > 1 two powers of 2, q a prime modulus such that
q ≡ 2r + 1 (mod 4r), k = dlogb qe, d a positive integer, m = d(k + 2), σ, ζ, and
α Gaussian parameters, and t the tailcut for the Gaussian DZ,σ.

Description. The scheme is as follows, where H :M−→ Rd×dq is an FRD encod-
ing instantiated as explained above. Note that during the trapdoor generation,
we use the tag H = 0, meaning that T is not technically a trapdoor for A since
H is singular. Still, the scheme is correct because for any message M ∈ M, T
is a trapdoor for AM = A+ [0d,2d | H(M)G] with tag H(M).

– KeyGen(1n) −→ (vk, sk)

(A,T )← TrapGen(0, σ)

vk ← A ∈ Rd×mq

sk ← T ∈ R2d×dk
q

– Sign(1n, sk,M) −→ ν

HM ← H(M)

AM ← A+
[
0d,2d HMG

]
ν ← SamplePre(AM ,T ,HM ,0, ζ, α)

– Verify(1n, vk,M,ν) −→ {accept, reject}
HM ← H(M)

AM ← A+
[
0d,2d HMG

]
Accept if AMν = 0 mod q and 0 < ‖ν‖ ≤ tζ

√
mn

We now state the correctness and the security of our scheme, but do not give
a proof for them, as they are essentially the same as in [BFRS18].

Theorem 6. Let n, r, q, k, d,m, σ, ζ, α, t be the parameters of the scheme as
above. Then, the scheme is correct, and is SU-CMA secure under the hardness
of Module-LWEn,d,q,σ and Module-SISn,d,2d,q,β, where β = (1 + s1(T ))tζ

√
mn.
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Concrete parameters. Concerning the choice of parameters, we take into account
the best known attacks rather than the proof of security, as is the case in most
schemes [ABB+19; DKL+18]. As such, the analysis of security is exactly the
same as the one we did for GPV in Section B.2.

The only factor influencing the choice of r is the number of bits of security
we aim at. For a given level of security of λ bits, we want to be able to encode
at least 2λ messages to prevent brute-force attacks. Since the message spaceM
is of size qn/r, this yields the relation r < n log q

λ . As we explain in Section 4.2,
we want to take the biggest r possible to have an efficient arithmetic in Rq.

This scheme’s suggested parameter sets are then the same as those of our
ROM scheme (described in Table 5), except for r and q. For the parameter
sets I and II we take (r, q) = (64, 1073741441), and for set III we take (r, q) =
(32, 1073740609).

D An identity-based encryption scheme on modules

The IBE scheme we present now is the identity-based encryption from [ABB10a;
BFRS18] but adapted to the module setting, with a different instantiation of the
FRD encoding (see Section 4.2). Basically, it is the signature scheme presented
in the Section C.2 combined with the Dual-Regev encryption scheme.

Our IBE scheme is composed of 4 algorithms :

Setup(1n) −→ (mpk,msk) : takes as input the security parameter and
outputs the master public key mpk and the master secret key msk.
Extract(1n,mpk,msk, id) −→ skid : takes as input the security parame-
ter, the master keys mpk and msk and an identity id ∈ ID and outputs
a private key skid associated to the identity id.
Encrypt(1n,mpk, id,M) −→ C : takes as input the security parameter,
the master public key mpk, an identity id and a message M and outputs
a cyphertext C.
Decrypt(1n, skid, C) −→ {M,Error} : takes as input the security pa-
rameter, the master public key mpk, a private key skid associated to the
identity id and a cyphertext C and outputs either a message M or the
word "Error" if the cyphertext is invalid.

Description. The scheme is as follows, where H : M −→ Rd×dq is an FRD
encoding instantiated as explained in Section 4.2.

– Setup(1n) −→ (mpk,msk)
(A,T )← TrapGen(0, σ)
u←U(Rdq)
mpk ← (A,u) ∈ Rd×(m+1)

q

msk ← T ∈ R2d×dk
q

– Extract(1n,mpk = (A,u),msk = T, id ∈ ID) −→ skid
Hid ← H(id)
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Aid ← A+
[
0d,2d HidG

]
skid ← SamplePre(Aid,T ,Hid,u, ζ, α)

– Encrypt(1n,mpk = (A,u), id,M) −→ C
Hid ← H(id)

Aid ← A+
[
0d,2d HidG

]
s←U(Rdq), e0←DRm−k,τ , e1←DRk,γ , e′ ←− DR,τ .
b← (stAid)

t + (et0 | et1)t et c← stu+ e′ + bq/2cM
C ← (b, c) ∈ Rm+1

q

– Decrypt(1n, skid = x, C = (b, c)) −→M
res← c− btx.
For each resi, if it is closer to bq/2c than to 0,Mi = 1, otherwiseMi = 0.

Correctness. Let us note x = (xt0 | xt1)t with x0 ∈ Rm−kq and x1 ∈ Rkq .
Decrypting a ciphertext then needs the error term e′ − (et0 | et1)(x0 | xt1)t =
e′ − et0x0 − et1x1 to be bounded by bq/4c. This imposes the following condition
on the parameters γ and τ (see [BFRS18], Section 4.4) : tτ

√
n+2t2τζn+t2γζkn <

bq/4c. Moreover, we take γ = 2tστ
√
n so that the security proof of the scheme

holds.

Theorem 7. Our IBE construction with parameters n,m, q, k, σ, α, γ, τ and ζ
is IND-sID-CPA secure in the standard model under the hardness of Module−
LWEn,q,DR,τ .

E Comparison with competitive signature schemes

Here we compare our signature schemes with the three lattice-based signatures
of the second round of the NIST standardization process: Dilithium [DKL+18],
qTESLA [ABB+19], and Falcon [FHK+17]. The timings are shown in Table 12.
They were obtained using an Intel i7-8650U CPU running at 1.90 GHz. We also
explain why GPV is much less efficient than those, which is not only because
our implementation is not as optimized.

Table 12. Performances of our signatures and comparison with other schemes (128-bit
security parameter sets).

Scheme KeyGen Sign Verify

Dilithium (ROM) 0.04 ms 21 530 op/sec 30 709 op/sec
qTESLA (ROM) 0.33 ms 7 213 op/sec 46 570 op/sec
Falcon (ROM) 6.24 ms 7 789 op/sec 38 647 op/sec

This work (ROM) 7.48 ms 87 op/sec 1 370 op/sec
This work 9.46 ms 64 op/sec 840 op/sec

On the one hand, Fiat-Shamir schemes such as Dilithium and qTESLA do not
come with the high cost of trapdoors associated to hash-and-sign lattice-based
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schemes. On the other hand, Falcon does use lattice trapdoors, but still remains
efficient because it uses a Klein-like sampler and relies on NTRU lattices. This
leads to smaller parameters for the scheme, which in turn yields better perfor-
mances. However, this gain in efficiency comes at the expense of an additional
assumption due to the class of lattices used, which is not the case of this arti-
cle. The two schemes that use discrete Gaussian sampling, qTESLA and Falcon,
then require many fewer calls to the discrete Gaussian sampler over Z, which is
the main practical cost of our scheme (see Table 1).
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