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S1 Characterization of the Model Quantum Emitter (QE)

In this section, we explain the approach to model the quantum emitter (QE) considered in

the quantum calculations. The ground-state properties of the isolated QE are determined

using the density functional theory (DFT), and the excitation of the QE by an external

perturbation is described using the time-dependent density functional theory (TDDFT)

framework. The electronic structure of the QE is addressed within the free-electron jellium

model, in a similar way as we model the metallic nanoparticles. We consider a spherical

QE of radius Rqe containing two valence electrons. The spin-restricted case is considered.1

In the ground-state configuration of the QE, the total spin is zero, and the 2 electrons

with opposite spins occupy the same Kohn–Sham (KS) valence orbital. From the charge

neutrality condition, the positive background density n+ representing the atomic cores of

the QE and spreading over its spatial extent satisfies

4
3

πR3
qen+ = 2. (S1)

Throughout this Supporting Information atomic units (au) are used unless otherwise

stated.

S1.1 Ground-state properties of the isolated QE

The occupied and unoccupied one-electron KS orbitals Ψ0
qe,j(r) of the QE, with j =

1, 2, 3, 4, . . . referring to the occupied (j = 1) and onuccupied (j = 2, 3, 4, . . . ) orbitals,

and their energies εqe,j are obtained from the static KS equations of DFT that depend on

the ground-state density n0
qe(r),

Ĥ[n0
qe]Ψ

0
qe,j(r) = εqe,jΨ0

qe,j(r),

Ĥ[n0
qe] = T̂ + Vh[n0

qe](r) + Vxc[n0
qe](r) + Vqe(r),

(S2)
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where T̂, Vh[n0
qe](r) and Vxc[n0

qe](r) are the kinetic energy operator, the Hartree potential

and the exchange–correlation potential, respectively, calculated within the adiabatic local-

density approximation (ALDA) following a self-consistent procedure.2

Vqe(r) in Equation S2 is an attractive potential introduced along the lines of the so-called

stabilized jellium model.3 It is localized in the spatial region of the QE,

Vqe(r) = −V0e−4|r|2/R2
qe , (S3)

and allows us to control the one-electron energy levels εqe,j of the QE states by changing

the parameters V0 and Rqe.

As mentioned above, the spin-restricted ground state of the two-electron spherical

QE is characterized by the doubly-occupied KS orbital, Ψ0
qe,1(r), resulting in an electron

density

n0
qe(r) = 2|Ψ0

qe,1(r)|2. (S4)

In the main text, we refer to Ψ0
qe,1(r) as the highest occupied molecular orbital (HOMO), which

is a 1s(` = 0, m = 0) orbital with zero orbital (`) and magnetic (m) quantum numbers.

Thus, the electronic configuration of the QE is 1s2. The energy level of the HOMO state is

Ehomo = εqe,1.

For the values of V0 and Rqe (Equation S3) considered in this work, we find only

three energy-degenerate excited KS orbitals accessible for optical transitions from the

ground state. These orbitals correspond to the 2p-shell and are characterized by the orbital

momentum ` = 1 and magnetic quantum numbers m = 0,±1. With ψ2p(r) the radial part

of the wave function, we can define

Ψ0
qe,2(r) = Y0

1 (θ, ϕ)ψ2p(r),

Ψ0
qe,3(r) = Y−1

1 (θ, ϕ)ψ2p(r),

Ψ0
qe,4(r) = Y1

1 (θ, ϕ)ψ2p(r),

(S5)
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where Ym
` (θ, ϕ) are the spherical harmonics. Because of the symmetry of the system

considered in the main text, for an incident electromagnetic wave polarized along the

z-axis, the electronic transitions are effective between the ground-state 1s KS orbital and

the 2p(` = 1, m = 0) KS orbital with wave function Ψ0
qe,2(r). For the sake of simplicity, in

the main text we refer to Ψ0
qe,2(r) as the lowest unoccupied molecular orbital (LUMO).

The free parameters V0 and Rqe are used to determine the energy levels of the HOMO

(Ehomo = εqe,1) and the LUMO (Elumo = εqe,2) of the QE. As a consequence, these parame-

ters determine the oscillator strength α0 and resonant frequency ω0 of the QE exciton, as

explained in Subsection S1.2.

The Ehomo and Elumo energy levels obtained for different values of the background

potential V0 = 1 eV, 3 eV, 5 eV, 7 eV and QE radius Rqe = 3.8 a0, 5 a0, 6.3 a0 are shown

in Table S1. The case of V0 = 1 eV and Rqe = 5 a0 corresponds to the QE considered in

Figures 1− 4 of the main text, while V0 = 5 eV and Rqe = 5 a0 are used to obtain the results

in Figure 5. The results shown in the rest of this Supporting Information are obtained for

Rqe = 5 a0 unless otherwise stated.

Table S1: Energy levels of the HOMO (Ehomo) and the LUMO (Elumo) of the isolated QE as obtained from
static DFT calculations for different values of V0 and Rqe, together with the oscillator strength α0 and resonant
frequency ω0 obtained by fitting the classical polarizability to the TDDFT results according to Equation S8.
All the energies are given in electronvolts (eV), while the values of α0 are given in atomic units (au).

Rqe = 3.8 a0 Rqe = 5 a0 Rqe = 6.3 a0
Ehomo Elumo ω0 α0 Ehomo Elumo ω0 α0 Ehomo Elumo ω0 α0

V0 = 1 eV -4.03 -1.10 3.45 1.50 -3.29 -1.23 2.58 1.70 -2.79 -1.25 2.02 1.79
V0 = 3 eV -4.13 -1.04 3.60 1.43 -3.4 -1.16 2.75 1.62 -2.92 -1.17 2.20 1.70
V0 = 5 eV -4.26 -0.97 3.76 1.35 -3.57 -1.08 2.95 1.52 -3.10 -1.11 2.43 1.61
V0 = 7 eV -4.40 -0.90 3.94 1.30 -3.75 -1.02 3.18 1.45 -3.33 -1.06 2.70 1.54

S1.2 Optical response of the isolated QE

In order to obtain the optical response of the isolated QE, we use real-time TDDFT sim-

ulations of its linear response as implemented in refs. 2,4–6, and calculate the dynamics

of the z-component of the induced dipole moment pqe(t) = −
∫

V d3r z [nqe(r, t)− n0
qe(r)]
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in response to an external impulsive perturbation with electric field Eδ(t) = E0∆t δ(t)

polarized along the z-axis.7 Here E0 = 10−5 au and ∆t = 0.05 au are the amplitude of

the perturbation and the time-step used in the propagation, respectively, and δ(t) is the

Dirac delta function. The x and y components of the induced dipole moment are zero

because of the symmetry. The integral extends over the whole volume V and the electron

density nqe(r, t) evolves in time due to the external perturbation, departing from its initial

ground-state value, nqe(r, t = 0) = n0
qe(r).
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Figure S1: Absorption cross-section of the isolated QE with radius Rqe = 5 a0, as obtained from TDDFT
simulations for different values of the parameter V0 in Equations S3 (filled curves). Results are shown as a
function of the frequency ω of the incoming linearly-polarized electromagnetic plane wave. The dashed
lines correspond to the absorption of the QE obtained by fitting the classical polarizability given by Equation
S8 to the TDDFT results. The parameters α0 (oscillator strength) and ω0 (resonant frequency of the QE)
resulting from this fit are given in Table S1. An intrinsic damping γqe = 70 meV is used.

The frequency-resolved absorption cross-section σqe(ω) of the isolated QE,

σqe(ω) =
4πω

c
Im{αqe(ω)}, (S6)

(c is the speed of light) can be obtained from the TDDFT calculations of the QE polarizability

αqe(ω) according to

αqe(ω) = αtddft
qe (ω) = − 1

E0 ∆t

∫ Tf

0
dt pqe(t)ei(ω+iη/2)t, (S7)
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where the propagation time-step ∆t = 0.05 au and final propagation time Tf = 4000 au are

used in our simulations, which we have checked is enough to achieve convergence. The

attenuation parameter η = 70 meV is set equal to that used for the total QE–MNPs system

(see Subsection S2.1). It corresponds to the decay rate of the QE in vacuum. It should be

noted however that, for the QE interacting with the dimer antenna, the decay rate of the

exciton is not only determined by this “intrinsic” broadening, but also by the Ohmic losses

in metal nanoparticles.8,9

Figure S1 shows the absorption cross section σqe(ω) of the isolated QE as obtained

from TDDFT calculations (filled curves) for QE radius Rqe = 5 a0 and several values of the

background potential, V0 = 1 eV, 3 eV and 5 eV (Equation S3).

The frequency dependence of the cross section obtained with the TDDFT calculations

(filled curves in Figure S1) can be fitted with a classical resonance profile (dashed lines in

Figure S1)

αqe(ω) = αclassical
qe (ω) =

α0(
ω2

0 −ω2 − iωγqe
) , (S8)

allowing to determine the oscillator strength α0, the resonant frequency ω0 and the decay

rate γqe of the isolated QE. The ω0 and α0 parameters obtained for the three values of V0

considered in Figure S1 are reported in Table S1, where we also provide the corresponding

results obtained for different radii of the QE, Rqe = 3.8 a0 and Rqe = 6.3 a0. In all cases,

γqe = 70 meV, given by the attenuation parameter η used in Equation S7. The values of α0

and ω0 calculated for the QE with V0 = 1 eV and Rqe = 5 a0 are used to obtain the results

shown in Figures 1d and 2a of the main text.

As shown in Table S1, the resonant energy ω0 of the electronic transition in the QE

does not match exactly the energy difference between the one-electron energy levels

obtained from static DFT calculations, i.e., ω0 6= Elumo − Ehomo. Indeed, according to

the Kohn–Sham scheme of TDDFT adopted in this work, Ehomo and Elumo represent the

energy levels of a fictitious non-interacting electron system, so that the resonant energies

of the interacting system will be renormalized with respect to the non-interacting one via
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Coulomb and exchange–correlation potentials.10,11

S2 Quantum Description of a QE–MNPs System

S2.1 Optoelectronic response of the hybrid QE–MNP system within

TDDFT

The occupied ground-state KS orbitals ψ0
j (r) of the coupled QE–MNPs system are obtained

within the TDDFT procedure starting from the KS orbitals of the individual constituents

and adiabatically reducing the interparticle distance so that the sought geometry is reached,

as described in detail in ref. 2. These ground-state occupied KS orbitals of the total system

are used as initial states in the TDDFT time propagation, ψj(r, t = 0) = ψ0
j (r), to determine

the electron-density evolution n(r, t) = ∑j |ψj(r, t)|2 in response to an external weak

excitation of amplitude E0 applied at the instant of time t = 0.

The dynamics of the electron density n(r, t) of the total QE–MNPs hybrid is obtained

from the time-dependent KS equations,

i
∂

∂ t
ψj(r, t) = {T̂ + Vtot[n](r, t)}ψj(r, t),

Vtot[n](r, t) = Vh[n](r, t) + Vxc[n](r, t) + Vqe(r),
(S9)

where ψj(r, t) are the occupied KS orbitals that evolve in time in response to an external

(weak) perturbation.7 In Equation S9, T̂ is the kinetic-energy operator, Vh[n](r, t) is the

Hartree potential, Vxc[n](r, t) is the exchange–correlation potential calculated within the

adiabatic local-density approximation12,13 (ALDA) using the kernel of Gunnarsson and

Lundqvist,14 and Vqe(r) is the attractive potential localized in the spatial region of the QE

given by Equation S3. See reference 2 for further details on the numerical method used to

solve Equation S9.

The polarizability of the total system, α(ω), is obtained from the Fourier transform of
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the induced dipole moment p(t) according to

α(ω) = − 1
E0 ∆t

∫
dt p(t)eiωt−η/2t, (S10)

where E0 = 10−5 au is the amplitude of the external perturbation, ∆t = 0.05 au is the time

step used in our simulation, and η = 70 meV accounts for dissipation processes that are

not included in the adopted TDDFT scheme. The absorption spectra are calculated from

σabs(ω) = 4πω
c Im{α(ω)}, with c the speed of light.

S2.2 Projected density of electronic states (PDOS)

As explained in the previous subsection S2.1, to obtain the optical response of the QE–

MNPS system we only propagate the occupied KS orbitals ψj(r, t), and thus we have a

priori no information about the unoccupied electronic states relevant for the discussion of

the transfer of an excited electron between the QE and the MNPs. To access the energies

of both the occupied and unoccupied KS one-electron states of the coupled QE–MNPs

system we calculate the projected density of electronic states (PDOS).

The PDOS represents the number of one-electron states of a particular spatial symmetry

that the coupled QE–MNPs system sustains at a given energy level and spatial region. This

PDOS includes the contribution of both the occupied and the unoccupied states, and it

gives information about the degree of localization of a particular electronic state at a certain

spatial region. Notice that since the PDOS shows the one-electron energy states available

in a (fictitious) non-interacting Kohn–Sham electron system, the true resonant energies

of the coupled QE–MNPs system will also be renormalized as discussed in Subsection

S1.2. However, the PDOS still provides insights into the level of electronic hybridization

of the occupied and unoccupied states in the coupled QE–MNPs system, and thus, it is a

valuable tool to analyze the effects of the electronic QE–MNPs coupling discussed in this

work.
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In order to calculate the PDOS Σ(ω) in the coupled QE–MNPs system, we use the

method of Wave-Packet Propagation.15 We choose an initial wave packet ψ(r, t = 0) =

ψ0(r) of a particular symmetry and propagate it according to the time-dependent Schrödinger

equation for an effective Hamiltonian Ĥ. This (time-independent) Hamiltonian Ĥ = T̂ +

Vtot(r) describes an electron evolving in the ground-state potential Vtot(r) = Vtot[n](r, t =

0) of the QE–MNPs structure given by Equation S9. The time evolution of the initial wave

packet is thus obtained from

ψ(r, t) = e−iĤ tψ0(r) (S11)

using the same short-time propagation algorithm as in the TDDFT solution of the time-

dependent KS equations of the total QE–MNPs system.2

From the time-to-energy Laplace transform L̂ω of the time-dependent wave packet

ψ(r, t) we obtain

L̂ωψ(r, t) =
∫ ∞

0
dt ei(ω+iζ)tψ(r, t) =

∫ ∞

0
dt ei(ω−Ĥ+iζ)tψ0(r) =

i
(ω− Ĥ + iζ)

ψ0(r), (S12)

where ζ is a small real number.

Expanding the initial wave-packet ψ0(r) in the eigenfunctions Φj(r) of Ĥ, the Laplace

transform of ψ(r, t) reads

L̂ωψ(r, t) = i
∞

∑
j=1

cjΦj(r)
(ω− εj + iζ)

, (S13)

where εj are the eigenergies of the Hamiltonian Ĥ and the complex coefficients cj are

obtained from

cj = 〈Φj(r)|ψ0(r)〉. (S14)

Finally, projecting Equation S13 on the initial wave-packet one obtains

S10



〈ψ0(r)|L̂ωψ(r, t)〉 = i
∞

∑
j=1

|cj|2

(ω− εj + iζ)
. (S15)

The PDOS Σ(ω) projected onto the initial wave-packet ψ0(r) is given by

Σ(ω) =
∞

∑
j=1
|cj|2δ(ω− εj), (S16)

with δ(ω− εj) the Dirac delta. Then, applying the Sokhotski–Plemelj theorem to Equation

S15, the PDOS Σ(ω) reads

Σ(ω) =
1
π

lim
ζ→0+

Re{〈ψ0(r)|L̂ωψ(r, t)〉},

=
1
π

lim
ζ→0+

Re{L̂ω 〈ψ0(r)|ψ(r, t)〉}︸ ︷︷ ︸
A(t)

,
(S17)

where A(t) = 〈ψ0(r)|ψ(r, t)〉 is the autocorrelation function. Notice that the cj in Equation

S17 are the coefficients of ψ0(r) decomposed into the eigenfunctions of Ĥ (Equation S14),

so that choosing different initial wave-packets ψ0(r) leads to a different PDOS Σ(ω).16 This

can be useful to focus on specific states with a special symmetry or spatial distribution,

since only those states of the coupled QE–MNPs system that are not orthogonal to ψ0(r)

can be accessed by the Wave-Packet Propagation method used to calculate the PDOS.

In practice, to address the PDOS for the m = 0 and m = ±1 symmetries, we choose a

Gaussian-like initial wave-packet centered along the dimer z-axis at r0 = 1
2 Rqe ẑ from the

center of the QE (i.e., localized near the QE),

ψ0(r) = C|r− r0||m| ei|m|ϕ e−|r−r0|2/4, (S18)

where ϕ is the azimuth, m is the magnetic quantum number, and C is a normalization

constant. We then propagate this ψ0(r) up to Tf = 4000 au according to Equation S11 and

calculate the autocorrelation function A(t) = 〈ψ0(r)|ψ(r, t)〉. Finally, using a small value

S11



ζ = 0.1 eV, we obtain the PDOS Σ(ω) corresponding to a subspace m from

Σ(ω) =
1
π

Re{
∫ Tf

0
dt ei(ω+iζ)t A(t)}. (S19)
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Figure S2: Projected density of electronic states localized at the QE in the middle of the gap. Results are
shown as a function of the electron energy for different values of the gap size D ranging from D = 16 a0 to
D = 40 a0 as displayed in the inset of panel (a). The Fermi level EF = −2.86 eV of the MNPs is depicted
by a vertical dashed line. The panels of the figure correspond to the results obtained with different values
of the background potential: (a),(d) V0 = 1 eV, (b),(e) V0 = 3 eV, and (c),(f) V0 = 5 eV, and for different
symmetry subspaces defined by the magnetic quantum number, m. Left-side panels (a)-(c): m = 0, and
right-side panels (d)-(f): |m| = 1. Panel (a) corresponds to Figure 3 of the main text.

Figure S2 shows the evolution of the PDOS localized at the QE obtained for different
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gap separation D ranging from D = 16 a0 to D = 40 a0 (see labels in panel a). Results are

shown for two different magnetic quantum numbers m = 0 (left-side panels) and |m| = 1

(right-side panels), and for three different background QE potentials, V0 = 1 eV, 3 eV and

5 eV. Note that the states with magnetic quantum number m and with −m are degenerate

due to the symmetry of the system. The radius of the QE is set to Rqe = 5 a0, as in the

main text and Figure S1.

Prior to the discussion of the PDOS, we recall that the KS energy structure of the ground-

state QE is given by the 1s(` = 0, m = 0)-orbital (doubly occupied and denoted as HOMO

in the main text), while the triply-degenerate excited state is given by the 2p(` = 1, m = 0)

and 2p(` = 1, m = ±1) orbitals. For z-polarized light, only the 2p(` = 1, m = 0) orbital

is available for optical transitions from 1s and, for the sake of simplicity, it is called LUMO

in the main text (see Subsection S1.1 for further details). As discussed below, the PDOS

resolved by the m-symmetry subspace then reflects this electronic structure of the QE and

shows similar qualitative behavior for the three values of V0 considered.

For the m = 0 subspace, the evolution of the results with decreasing D is discussed

in the main text. In brief, the PDOS obtained at large separation distances shows two

well-defined peaks that corresponds to the Ehumo and Elumo energy levels of the isolated

QE reported in Table S1. With decreasing D, the energies of the 1s (HOMO) and 2p (LUMO)

orbitals slightly shift to lower values because of the attractive potential created by the

MNPs. The peak corresponding to the 2p(` = 1, m = 0) (LUMO) state gradually vanishes

owing to the increasing electronic coupling with the electronic states of the MNPs. The

peak corresponding to the 1s(` = 0, m = 0) (HOMO) state also broadens, but to a lesser

extent because the tighter-bound and thus better spatially-localized 1s orbital of the QE

experiences less interaction with the MNPs.

In the |m| = 1 symmetry subspace, only one peak (near −1 eV) emerges at negative

energies. According to the electronic structure of the QE, it corresponds to the excited

2p(` = 1, m = ±1) orbital. Notice that the ±1 states are degenerate. The QE orbitals

S13



of the |m| = 1 symmetry (one can also term these as 2px and 2py orbitals) are oriented

perpendicular to the dimer z-axis. Their hybridization with |m| = 1 symmetry states of the

MNPs is essentially smaller than that for the 2pz (equivalently 2p(` = 1, m = 0)) orbital

of m = 0 symmetry. As a consequence, in this case, the resonant structure in the PDOS

associated with the QE in Figure S2d,e,f stays well resolved up to the smallest D, in sheer

contrast with the p-orbital of m = 0 symmetry (see higher-energy resonance near −1 eV in

Figure S2a,b,c).

S3 Classical Optical Response of a QE–MNPs System

In this section, we explain the method used to obtain the classical optical response of the

metallic dimer shown in Figure 1d and that of the coupled QE–MNPs system shown in

Figures 2a and 5a of the main text. The numerical implementation used to obtain the

optical response of the metallic dimer is based on the method reported in refs. 17 and 18,

where the electromagnetic interaction is described within the nonretarded limit, justified

because of the small size of the studied system.

S3.1 Optical response of a spherical dimer

We first consider the generic case of a dimer consisting of two spherical MNPs of radius

R1 and R2 separated by a gap of size D. Each nanoparticle is characterized by a dielectric

function ε1(ω) and ε2(ω), and the entire system is surrounded by a dielectric material of

dielectric function εd(ω).

The nonretarded optical response of the system to an arbitrary external potential

φext(r, ω) oscillating at angular frequency ω is determined by the electrostatic potential

φind(r, ω) = φind
1 (r1, ω) + φind

2 (r2, ω) induced by the nanostructure, with φind
1 (r1, ω) and

φind
2 (r2, ω) the potential induced by the nanoparticle 1 and 2, respectively. The vectors r1 ≡

(r1 sin θ1 cos ϕ1, r1 sin θ1 sin ϕ1, r1 cos θ1) and r2 ≡ (r2 sin θ2 cos ϕ2, r2 sin θ2 sin ϕ2, r2 cos θ2)
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are written in spherical coordinates with the origins at the center of the corresponding

nanoparticle. We define the coordinates such that the centers of the MNPs are located at

the z-axis separated by a distance δ = R1 + D + R2, so that r1 and r2 are related by

r2 =
√

r2
1 + δ2 − 2δr1 cos θ1,

cos θ2 = (r1 cos θ1 − δ)/r2,

ϕ2 = ϕ1.

(S20)

The induced electric potential φind(r, ω) satisfies Laplace’s equation

∇2φind(r, ω) = ∇2
(

φind
1 (r1, ω) + φind

2 (r2, ω)
)

︸ ︷︷ ︸
∑2

i=1 φind
i (ri,ω)

= 0. (S21)

(in Equation S21 and in the rest of this section we use subindexes i to refer to nanoparticle

i, with i = 1, 2).

Due to the spherical symmetry of the nanoparticles, it is convenient to expand φind
i (ri, ω)

inside (ri < Ri) and outside (ri > Ri) the metals in a spherical harmonics Ym
` (θi, ϕi) basis

set,

φind
1 (r1, ω) =

`max

∑
`=1

`

∑
m=−`

b`m
1 (ω) Ym

` (θ1, ϕ1)

 r`1/R`
1 r1 < R1

R`+1
1 /r`+1

1 r1 > R1,
,

φind
2 (r2, ω) =

`max

∑
`=1

`

∑
m=−`

b`m
2 (ω) Ym

` (θ2, ϕ2)

 r`2/R`
2 r2 < R2

R`+1
2 /r`+1

2 r2 > R2,
,

(S22)

where `max is an integer number large enough to achieve convergence.

The coefficients b`m
i (ω) are obtained by applying the standard boundary conditions at

the interfaces ri = Ri,

n̂i × (E> − E<) = 0,

n̂i · (D> −D<) = 0,
(S23)
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where n̂i is the normal vector pointing from inside the metal (<) to outside (>), E(r, ω) is

the total electric field,

E(r, ω) = −∇φ(r, ω) = −∇
(

φext(r, ω) + φind(r, ω)
)

, (S24)

and D(r, ω) is the electric displacement field in a medium with dielectric function ε(r, ω),

D(r, ω) = ε(r, ω)E(r, ω). (S25)

Applying the boundary conditions given by Equation S23 results in the following

expressions for the coefficients b`m
i (ω)

b`m
1 (ω) =

−R1(ε1 − εd)

εd(`+ 1) + ε1`

∫
Ω1

dΩ1 [Ym
` (θ1, ϕ1)]

∗ ∂

∂r1

(
φext(r1, ω) + φind

2 (r2, ω)
)
|r1=R1 ,

b`m
2 (ω) =

−R2(ε2 − εd)

εd(`+ 1) + ε2`

∫
Ω2

dΩ2 [Ym
` (θ2, ϕ2)]

∗ ∂

∂r2

(
φext(r2, ω) + φind

1 (r1, ω)
)
|r2=R2 ,

(S26)

with the integrals extending over the solid angles Ωi = {θi, φi}.

From Equation S22, the coefficients b`m
1 (ω) and b`m

2 (ω) in Equation S26 can be written

in matrix form,

b`m
1 (ω) =

(
I−T2→1T1→2

)−1 (
b`m,ext

1 (ω) + T2→1b`m,ext
2 (ω)

)
,

b`m
2 (ω) =

(
I−T1→2T2→1

)−1 (
b`m,ext

2 (ω) + T1→2b`m,ext
1 (ω)

)
,

(S27)

where I is the identity matrix,

b`m,ext
1 (ω) =

−R1(ε1 − εd)

εd(`+ 1) + ε1`

∫
Ω1

dΩ1 [Ym
` (θ1, ϕ1)]

∗ ∂

∂r1
φext(r1, ω)|r1=R1 ,

b`m,ext
2 (ω) =

−R2(ε2 − εd)

εd(`+ 1) + ε2`

∫
Ω2

dΩ2 [Ym
` (θ2, ϕ2)]

∗ ∂

∂r2
φext(r2, ω)|r2=R2 ,

(S28)
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and the elements (`m, `′m′) of matrices T2→1 and T1→2 are given by

T2→1
`m,`′m′ =

−R1(ε1 − εd)

εd(`+ 1) + ε1`

∫
Ω1

dΩ1[Ym
` (θ1, ϕ1)]

∗ ∂

∂r1

(
Y`′m′(θ2, ϕ2)

R`′+1
2

r`
′+1

2

)
|r1=R1 ,

T1→2
`m,`′m′ =

−R2(ε2 − εd)

εd(`+ 1) + ε2`

∫
Ω2

dΩ2[Ym
` (θ2, ϕ2)]

∗ ∂

∂r2

(
Y`′m′(θ1, ϕ1)

R`′+1
1

r`
′+1

1

)
|r2=R2 .

(S29)

Once the coefficients b`m
1 (ω) and b`m

2 (ω) are obtained by solving Equation S27, the

electric potential induced by each metallic nanoparticle is completely determined according

to Equation S22.

Moreover, we can calculate other physical quantities of interest using the same coeffi-

cients b`m
i (ω). For example, the electric field induced by the metallic dimer at position r is

directly related to the induced potential (Equation S24) and is given by the sum of the field

induced by each metallic nanoparticle i,

Eind(r, ω) = −
2

∑
i=1
∇φind

i (ri, ω) = −
2

∑
i=1

`max

∑
`=1

`

∑
m=−`

b`m
i (ω) ∇

(
Ym
` (θi, ϕi)R`+1

i /r`+1
i

)
.

(S30)

In a similar way, the total induced dipole moment is also given by the sum of two contri-

butions,

pdimer(ω) =
2

∑
i=1

m=1

∑
m=−1

b1m
i (ω)Ym

1 (θi, ϕi) R2
i r̂i, (S31)

where r̂i = ri/ri is the unit vector with its origin at the center of the nanoparticle i.

In all the classical results shown in the main text and in this Supporting Information for

the Na dimer, we consider two identical nanoparticles of radius R1 = R2 = RMNP = 34.4 a0

surrounded by vacuum (εd = 1). The dielectric function of the MNPs is described within

the Drude model,

ε1(ω) = ε2(ω) = ε(ω) = 1−
ω2

p

ω2 + iγpω
, (S32)

where the values of the plasma frequency ωp = 5.43 eV and the intrinsic damping γp =

0.15 eV are obtained by adjusting the classical optical response of an individual MNP to
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that calculated with TDDFT. Details are given in Subsection S3.3.

In all the classical calculations we also introduce a gap scaling19–21 of ∆ = 3.4 a0 to

(partially) account for the spill-out of the induced density with respect to the geometrical

surface of the nanoparticles (correctly captured by the TDDFT simulations). Thus, in

Figures 1d, 2a-b, and 5a-b of the main text, the TDDFT results obtained for a gap separation

DTDDFT are compared to the corresponding classical results with an effective gap separation

Dclassical = DTDDFT − ∆. DTDDFT is defined as the minimum distance between the jellium

edges of the two spherical nanoparticles. For simplicity, we use the symbol D to refer

to both Dclassical and DTDDFT. This distance scaling ∆ is also included in all the classical

results shown in the this Supporting Information.

The classical absorption cross-section spectra of the isolated metallic dimer, σdimer(ω) =

4πω
c Im{αdimer(ω)}, shown in Figure 1d of the main text, are obtained by using in Equa-

tion S26 the following external potential

φext(r, ω) = φext(r1, ω) = −E0r1 cos θ1, (S33)

associated with a spatially-constant electric field of amplitude E0 oriented along the

z-axis (corresponding to a z-polarized plane wave within the nonretarded limit). For

this illumination, the induced dipole moment is polarized along the z-axis, pdimer(ω) =

ẑ pdimer(ω), and the polarizability αdimer(ω) of the isolated dimer reads

αdimer(ω) = pdimer(ω)/E0. (S34)

In Figure S3a, we show the classical nonretarded absorption spectra of the isolated

Na dimer obtained for different values of the gap separation D. The separation distance

ranges from D = 16 a0 to D = 40 a0, as in Figures 2a-b and 5a-b of the main text. In Figure

S3b we display the corresponding TDDFT results, and overall good agreement between

the two calculations is observed in the strength and the spectral position of the dominant
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bonding dipolar plasmon resonance (BDP, green dots). However, for small interparticle

distance D, the BDP resonance becomes broader and weaker within the TDDFT framework

as compared to the classical results. For the range of interparticle distance considered in

this work, electron tunneling in vacuum junctions is negligible, and thus we ascribe the

differences in the BDP resonance between the two models to nonlocal dynamical screening

and finite-size effects22 present in small metallic nanoparticles (only accounted for by the

TDDFT calculations). As discussed in the main text, the bonding quadrupolar plasmon

(BQP, red dots) resonance is not developed in the TDDFT results because of the small size

of the MNPs considered here.

D

x

z

0

20

40

60

80

100
Classical TDDFT

ω [eV]
2 2.5 3 3.5 4

(a) (b)BDP

BQP

ω [eV]
2 2.5 3 3.5 4

BDP

σ
d
im

e
r(
ω

) 
[n

m
2
]

34 a0

38 a0

30 a0

26 a0

22 a0

18 a0

34 a0

38 a0

30 a0

26 a0

22 a0

18 a0

Figure S3: Waterfall plots of the absorption cross-section of the isolated Na metallic dimer of radius
RMNP = 34.4 a0. The incident electromagnetic plane wave is polarized along the dimer axis (z-axis). Results
of the (a) classical and (b) TDDFT calculations are shown as function of the gap size D ranging from
D = 16 a0 (lower spectra) to D = 40 a0 (upper spectra). The D value is indicated at each second spectrum
marked by the black lines. The bonding dipolar (BDP) and quadrupolar (BQP) plasmon resonances are
marked with green and red dots, respectively.

S3.2 Electromagnetic QE–MNPs interaction

In this subsection, we explain how to obtain the classical optical response of the coupled

QE–MNPs system shown in Figures 2a and 5a of the main text. Adopting the Green’s

function formalism,8,23 we decompose the induced dipole of the total QE–MNPs structure,

p(ω) = pdimer(ω) + pqe(ω), as a sum of the MNPs dipole, pdimer(ω), and that of the QE,

pqe(ω). The QE, located at position r = rQE, is described as a point dipole.
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The electromagnetic QE–MNPs interaction can be understood as follows: the MNPs

induce an electric near field Eind(r, ω) in response to an external (spatially-constant) illu-

mination E0. Then, Eind(r, ω) and E0 induce a dipole moment at the QE, pqe(ω), which

acts back on itself due to the presence of the MNPs via the self-interaction Green’s tensor,

Ĝ(rQE, rQE, ω). Finally, the dipole moment created at the QE, pqe(ω), induces a dipole

moment at the MNPs due to the electromagnetic interaction. This physical picture can be

described with the following equations for pqe(ω) and pdimer(ω),24

pqe(ω) = αqe(ω)
(
I− αqe(ω)Ĝ(rQE, rQE, ω)

)−1
(

E0 + Eind(r = rQE, ω)
)

,

pdimer(ω) = α̂dimer(ω)E0 + α̂QE
dimer(ω)pqe(ω),

(S35)

where

• I is the identity matrix.

• αqe(ω) is the classical polarizability of the point-dipole QE obtained from Equation

S8. See Table S1 for the parameters used to describe the QE.

• Eind(r = rQE, ω) is the electric field induced by the metallic nanoparticle at the

position of the QE, rQE, in response to the external illumination E0. In this work,

rQE corresponds to the center of the gap at the dimer z-axis, and since the external

illumination is polarized along the z-axis, E0 = ẑ E0, Eind(r = rQE, ω) is also z-

polarized. Eind(r = rQE, ω) is obtained from Equation S30 using the external potential

of Equation S33.

• α̂dimer(ω) is the polarizability tensor of the metallic dimer. Due to the geometry

considered here, this polarizability can be treated as a scalar, αdimer(ω), and it can be

obtained from Equation S34 using the external potential of Equation S33.

• Ĝ(rQE, rQE, ω) is the self-interaction Green’s tensor that gives the electric field in-

duced by the metallic nanoparticles at rQE in response to a unitary point-dipole
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QE located at the same position rQE. Due to the geometry considered in this work,

Ĝ(rQE, rQE, ω) also becomes scalar, G(rQE, rQE, ω). We obtain G(rQE, rQE, ω) using

the methodology explained in the previous subsection but considering the external

potential created by a z-polarized classical dipole of amplitude P0,

φext(r, ω) = φext(r1, ω) = P0 ẑ1 ·
r1 − rQE

|r1 − rQE|3
, (S36)

so that, according to Equations S22 and S30,

G(rQE, rQE, ω) = − 1
P0
∇
(

φind
1 (r1 = rQE, ω) + φind

2 (r2 = rQE, ω)
)

. (S37)

The real (panel a) and imaginary (panel b) parts of the self-interaction Green’s

function G(rQE, rQE, ω) obtained for the Na dimer with different gap separations

D are shown in Figure S4. With decreasing D, G(rQE, rQE, ω) is generally larger

in magnitude, and the relative contribution of the high-order plasmonic modes at

ω ∼ 3.3− 3.8 eV becomes more important.

• α̂QE
dimer(ω) is a tensor that provides the dipole moment induced at the metallic dimer

in response to the electromagnetic field created by a classical point dipole located at

rQE. Due to the geometry of our system, it can be treated as a scalar, αQE
dimer(ω). We

obtain αQE
dimer(ω) from the induced dipole moment (normalized to P0) according to

Equation S31, using the external potential of Equation S36.

In summary, the optical response of the studied QE–MNPs system is obtained in three

steps: first, we calculate Eind(r = rQE, ω) and αdimer(ω) by solving Equations S27 for the

external potential of Equation S33. Second, G(rQE, rQE, ω) and αQE
dimer(ω) are obtained

by solving the same equations but considering the external potential given by Equation

S36. Finally, we use Equation S35 to calculate the total dipole moment induced at the

coupled system, p(ω) = pdimer(ω)+pqe(ω), which, due to the geometry of the considered
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configuration, is oriented along the z direction, p(ω) = ẑ p(ω). We can then obtain

the classical absorption cross-section using the relation σ(ω) = 4πω
c Im{α(ω)}, where

α(ω) = p(ω)/E0 is the polarizability of the coupled QE–MNPs system.
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Figure S4: (a) Real and (b) imaginary part of the self-interaction Green’s function, G(rQE, rQE, ω), calculated
for a point dipole aligned along the dimer z-axis and placed at rQE in the center of the gap between two
identical Na nanoparticles of radius RMNP = 34.4 a0. Results are obtained from classical nonretarded
calculations for different gap sizes D = 16 a0, 28 a0, and 40 a0, as indicated in the insets. The local dielectric
function of Na used in the calculations is given by the Drude model discussed in Section S3.3.

S3.3 Extracting parameters for the Drude dielectric function

In order to choose the values of the parameters ωp and γp determining the local Drude

dielectric function of the Na nanoparticle dimer, we fit the TDDFT absorption spectrum of

an individual spherical nanoparticle of radius RMNP = 34.4 a0,

σmnp(ω) =
4πω

c
Im{αmnp(ω)}, (S38)

to the corresponding classical result obtained with the following polarizability

αmnp(ω) = αclassical
mnp (ω) = R3

MNP
ε(ω)− 1
ε(ω) + 2

, (S39)

where the Drude dielectric function ε(ω) is given by Equation S32.

The TDDFT results are obtained for an individual Na nanoparticle characterized by
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the same Wigner–Seitz radius (rs = 4 a0) and the same number of conduction electrons

(N=638) as the nanoparticles considered in the main text.

As shown in Figure S5, ωp = 5.43 eV and γp = 0.15 eV provide reasonably good

agreement between the classical and the TDDFT results. The "effective" plasma frequency

ωp is slightly smaller than the nominal bulk plasma frequency of the free-electron gas

corresponding to the density parameter rs = 4 a0 used in the TDDFT simulations (ωp =√
3
r3

s
= 5.89 eV). This small modification of the bulk plasma frequency allows us to account

for the redshift of the dipolar plasmon frequency of the small metal nanoparticle because

of the electron spill-out and dynamical screening.25 On the other hand, γp accounts for

all the decay channels of the plasmon excitation including the contribution of Landau

damping.26,27
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Figure S5: Absorption cross-section of an individual metallic nanoparticle of radius RMNP = 34.4 a0 as
obtained from TDDFT (solid blue line) and classical (dashed red line) calculations. For the TDDFT results,
we use a Wigner–Seitz radius of rs = 4 a0. For the classical results, we use a Drude dielectric function with
plasma frequency ωp = 5.43 eV and intrinsic damping γp = 0.15 eV.
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S4 Role of the Electronic QE–MNPs Coupling in a Reso-

nant Exciton–Plasmon Hybrid System

In the main text, we provide a detailed discussion of the impact of the electronic QE–MNPs

coupling on the optical response in a situation where the exciton energy of the isolated

QE is out of resonance with the BDP mode of the metallic dimer, as shown in Figure 2 of

the main text. However, the general underlying physics owing to quantum effects holds

irrespective of the detuning between the QE exciton and the BDP of the metallic dimer as

we demonstrate in Figure 5 of the main text. Figure 5 corresponds to the situation where

the QE exciton energy is resonant with the BDP mode of the dimer antenna. This choice is

convenient to analyze the regime of strong electromagnetic coupling (or, in short, strong

coupling) between the exciton and the plasmon, where the coupling overcomes the losses

and hybrid polaritonic states are formed. We thus discuss the resonant situation in more

detail in this section showing that indeed we reach the strong-coupling regime.

In Figure 5 of the main text, we compare the absorption spectra of the resonant QE–

MNPs system as obtained from classical (panel a) and TDDFT (panel b) simulations.

Results are shown as waterfall plots by varying the gap separation from D = 40 a0 (top)

to D = 16 a0 (down). We calculate the TDDFT spectra in the same manner as for Figure

2b of the main text, with the only difference that in this section we use a background QE

potential of V0 = 5 eV (see Section S1). The classical results are obtained for a point-like QE

characterized by an oscillator strength α0 = 1.52 au, a resonant energy ω0 = 2.95 eV, and

a decay rate γqe = 70 meV (see Table S1), following the procedure explained in Section S3.

The classical model predicts a splitting between the lower (LR, blue dots) and the upper

(UR, green dots) resonances with respect to the resonant energy ω0 of the isolated QE

already for large interparticle distance D = 40 a0. This LR–UR splitting is a signature of

the strong coupling between the QE exciton and the BDP resonance of the metallic dimer,

as we further confirm in Subsection S4.1. With decreasing D, the LR–UR energy differ-
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ence strongly increases within the classical model owing to the stronger electromagnetic

hybridization between the exciton and the plasmon. Moreover, within the classical frame-

work the higher-order plasmonic modes of the MNPs contribute to the electromagnetic

interactions between the dimer and the QE for small gap separations. The effect of these

higher-order modes, well documented for isolated dimer antennas,28 results here in an

additional redshift of both the LR and UR branches, which explains why the UR branch

appears at lower energies than the exciton energy ω0 = 2.95 eV of the isolated QE. These

aspects are discussed in more detail in Subsection S4.1.

The TDDFT results in Figure 5b of the main text also show a splitting between the LR

and the UR with respect to ω0 for large interparticle distance D = 40 a0, although the

strength of the LR is weaker than the one predicted by the classical model. This difference

is a consequence of the nonlocality and finite-size effects that affect the optical response of

the isolated metallic dimer, as confirmed by the results obtained with a semiclassical model

that we show in Section S5 below. Indeed, there is no QE exciton quenching produced

by electronic hybridization for large separation, since at those distances the electronic

QE–MNPs coupling does not play a role. However, upon reducing the gap size D, the

electronic orbitals of the QE hybridize with these of the MNPs. The LUMO evolves into a

broad structure (see PDOS in Figure S2) reflecting the fast transfer of the excited electron

between the LUMO of the QE and the conduction band states of the MNPs quantized

by the finite-size effect. This electronic interaction has an immediate consequence on the

optical response of the system. The LR–UR splitting is drastically reduced as compared to

the classical predictions, and the LR and UR branches progressively merge into a broad

spectral feature at small D.

These differences in the absorption spectra between the classical and TDDFT results

are similar to the findings discussed in the main text for the off-resonant case (Figure 2),

where we analyzed a blueshift and subsequent disappearance of the LR produced by the

electronic QE–MNPs coupling for decreasing gap separation D below D ∼ 26 a0. With the
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analysis of the resonant system, which is classically in the strong-coupling regime (see

subsection S4.1 ), we show that the reduction of the lifetime of the QE exciton because

of the electronic hybridization between the QE and the MNPs orbitals attenuates the

LR–UR splitting of the absorption resonances. At small separations, the electronic QE–

MNPs coupling finally results in the disappearance of the distinct feature of the LR from

the absorption spectra. Therefore, this electronic effect linked with the excited-electron

transport between the QE and the MNPs should be taken into account to correctly describe

the optical response of the interacting QE–MNPs system both in resonant and off-resonant

conditions. The key role of the electronic coupling is further confirmed by a semiclassical

model presented in Section S5.

S4.1 Analysis of the coupling strength g to identify the strong-coupling

regime

In this subsection, we analyze the coupling strength g as derived from the classical electro-

magnetic simulations for the resonant exciton–plasmon system shown in this section and

in Figure 5 of the main text. Knowing the value of g (and of the other parameters of the

system) allows for identifying whether the system is in the strong-coupling regime.

In order to obtain the coupling strength g between the exciton and the BDP mode of

the dimer of MNPs, we fit the frequency-dependent absorption cross section σabs(ω) of the

coupled QE–MNPs structure to the analytical expression derived from a classical coupled-

oscillators model driven by the excitation of the BDP of the metallic nanoantenna,29

σabs(ω) = A ω ×

Im

{
(ω0 − ∆ω0)

2 − (ω + iγQE/2)2(
ω2

BDP − (ω + iγp/2)2
)(
(ω0 − ∆ω0)2 − (ω + iγQE/2)2

)
− 4g2ω2

}
, (S40)

where Im { } stands for the imaginary part. In Equation S40, γQE = 70 meV and
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γp = 150 meV are the damping rates of the isolated quantum emitter and bonding dimer

plasmon respectively, ω0 = 2.95 eV is the QE exciton energy, and ωBDP is the energy of the

BDP resonance. As shown in Figure S3, ωBDP depends on the gap size D, so that for each

gap separation the corresponding value of ωBDP obtained from classical calculations (see

Section S3) is used. The free (fitting) parameters are

• the amplitude A,

• the coupling strength g between the QE exciton and the BDP resonance of the dimer

antenna,

• the redshift ∆ω0 of the QE exciton energy induced by the interaction with high-order

plasmon modes.

∆ω0 corresponds to the redshift (analog of the Lamb shift) of the QE exciton induced

by high-order plasmon modes and needs to be introduced because in the derivation of

Equation S40, the system was projected onto the subspace of only 2 interacting excitations:

the QE exciton and the BDP of the dimer.

This interaction of the QE exciton with high-order plasmonic resonances increases

with decreasing D, and therefore the redshift ∆ω0 is larger for smaller D. We obtain

∆ω0 = 0.02 eV for D = 40 a0, and ∆ω0 = 0.67 eV for D = 16 a0. The hybrid QE–MNPs

system is then equivalent to a BDP of the dimer interacting with a QE exciton of an

effective frequency ω0 − ∆ω0. We note that the resonant frequency ωBDP of the BDP also

depends on the gap size D (Figure S3). As a consequence, it is not possible to choose the

parameters of the QE such that the effective frequency ω0 − ∆ω0 and the frequency of the

BDP perfectly match irrespective of D. However, for the system considered in our study,

the coupling strength g is systematically larger than the frequency detuning between the

BDP and the effective exciton frequency ω0 − ∆ω0 (see below). It is only for the small gap

sizes D = 16− 20 a0 that the situation is reversed. Thus, the canonical criteria of the strong

coupling can be applied.
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Figure S6: (a) Coupling strength g obtained for the resonant QE–MNPs system for different
values of the gap size D. The values (γQE + γp)/4 and (γQE + γp)/2 are depicted by
orange and green lines, respectively. (b) Solid lines: absorption cross section σabs(ω)
calculated using the classical electrodynamics framework. Dots: Fit of the classical results
by the coupled oscillator model given by Equation S40. Results are shown as a function of
the frequency ω of the incident electromagnetic plane wave polarized along the dimer axis.
The coupled QE–MNPs system is characterized by a gap size D = 16 a0 (blue line, blue
dots) and D = 40 a0 (red line, red dots). (c)-(d) Color maps of the absorption cross section
σabs(ω) obtained from classical electrodynamics simulations for the coupled QE–MNPs
system for D = 16 a0 (panel c) and D = 40 a0 (panel d). The incident electromagnetic plane
wave is polarized along the dimer axis. Results are shown as a function of the frequency
ω of the incident electromagnetic plane wave, and of the energy of the QE exciton ω0.
Dashed white lines represent the upper (ω+) and the lower (ω−) polaritons obtained from
Equation S41, using ∆ω = 0.67 eV (D = 16 a0) and ∆ω = 0.02 eV (D = 40 a0) for all the
values of ω0.

Figure S6a shows the coupling strength g obtained by fitting the classical absorption

cross section σabs(ω) of the resonant QE–MNPs system to Equation S40 for different values

of the gap size D. The coupling strength g for the present system monotonically increases
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with reducing D, ranging from g = 0.083 eV for the largest gap (D = 40 a0) to g = 0.27 eV

for the smallest one (D = 16 a0). Two examples of the fittings performed for gap sizes

D = 16 a0 (blue line, A = 6.77 eV · nm2, ∆ω0 = 0.67 eV) and D = 40 a0 (red line,

A = 7.43 eV · nm2, ∆ω0 = 0.02 eV) are illustrated in Figure S6b.

In the literature, several criteria have been adopted for the strong-coupling regime to

be identified.30 In brief, the less demanding criterion states that g > (γQE − γp)/4 has

to be fulfilled. Other criteria often used are g > (γQE + γp)/4, or the more restrictive

g > (γQE + γp)/2. In our system, already for the largest separation between the MNPs,

D = 40 a0, the condition g > (γQE + γp)/4 is satisfied, and the more restrictive g >

(γQE + γp)/2 is nearly satisfied. For all the gaps smaller than D ≤ 32 a0, the condition

g > (γQE + γp)/2 is fulfilled.

To show more clearly that the resonant QE–MNPs system is in the strong-coupling

regime, once the values of the coupling strength g are determined, we can calculate the

energies of the upper (ω+) and the lower (ω−) polaritons for different values of the QE

exciton energy ω0 according to31

ω± =
1
2
(ωBDP + ω0 − ∆ω)± 1

2
Re


√

4g2 +

[
ωBDP − (ω0 − ∆ω) + i

γQE − γp

2

]2
 ,

(S41)

where Re{ } stands for the real part.

In Figures S6c-d, we show the values of ω+ and ω− as a function of the QE exciton

energy ω0 by white dashed lines, overlayed on the color maps of the absorption cross

section, σabs(ω), calculated for the smallest (D = 16 a0, panel c) and largest (D = 40 a0,

panel d) values of the gap size considered in this work. For both gap separations, ω+ and

ω− follow quite closely the maxima of the absorption, with the exception of the results

obtained for high frequencies of the incident plane wave ω > 3.25 eV, where high-order

plasmonic modes (not accounted in the present coupled-oscillator model) influence the
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results. The good agreement between the polaritonic energies ω± and the resonances of

σabs(ω) indicates that the absorption resonances calculated with classical electrodynamics

simulations can be indeed identified as the polaritonic modes. Crucially, we obtain a

well-resolved avoided crossing between the absorption resonances as well as between

the upper (ω+) and lower (ω−) polaritons. Thus, at the avoided crossing between the

calculated absorption resonances (at ω ≈ ωBDP ≈ ω0 − ∆ω), the energy difference can

be related to a good approximation with 2g, which increases as the gap size is reduced.

These results thus clearly indicate that the resonant QE–MNPs system described within

the framework of classical electromagnetism is in the strong-coupling regime.

S5 Confirming the role of the electronic QE–MNPs coupling:

a semiclassical approach

In this section, we apply a semiclassical approach to the QE–MNPs system in order to gain a

better understanding of the role played by the electronic QE–MNPs coupling in the optical

response. We consider here the same system as in the main text, consisting of a QE with a

transition energy ω0 located at the center of the nanogap formed by two Na nanoparticles

of radius RMNP = 34.4 a0. We analyze the off-resonant (ω0 = 2.58 eV and ω0 = 2.75 eV )

and the resonant (ω0 = 2.95 eV) cases.

Our semiclassical approach is based on the Green’s function formalism (see Subsection

S3.2), where the QE is introduced as a classical point dipole. The dipole moments induced

at the MNPs and at the QE are then obtained from Equations S35. In contrast with a fully

classical approach, however, the quantities Ĝ(rQE, rQE, ω), Eind(r = rQE, ω), α̂dimer(ω) and

α̂QE
dimer(ω) are obtained from the TDDFT simulations of the metallic dimer. To that end, we

use the (real-time) linear-response TDDFT scheme following the procedure reported in refs.

2 and 24. Thus, this semiclassical approach, based on TDDFT calculations of the isolated

dimer, naturally includes not only the nonlocality of the metals, but also other quantum
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phenomena such as electron spill-out and finite-size effects inherent to the quantum nature

of electrons. However, since the QE is introduced as a classical point dipole, the electronic

coupling between the MNPs and the QE, as well as the actual electronic structure of the QE

and the finite-size extension of its transition density are not accounted for. The comparison

between the results obtained from fully TDDFT, semiclassical, and classical calculations

thus provides deeper insight into the effect of the electronic QE–MNPs coupling on the

optical absorption and allows us to discard nonlocal and finite-size effects as the source of

QE exciton quenching. Therefore, this analysis further confirms the conclusions discussed

in the main text.
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Figure S7: Waterfall plots of the optical absorption spectra of the coupled QE–MNPs system for a gap sizes
ranging from D = 16 a0 to D = 40 a0 in steps of 2 a0 (larger D on top). Results are shown as a function of
frequency, ω, of an incident electromagnetic plane wave polarized along the dimer axis (z-axis). The value of
D is indicated at each second spectra marked by the black lines. The results are obtained from (a)-(c) classical
calculations, (d)-(f) TDDFT simulations, and the (g)-(h) semiclassical approach as described in this section.
The resonant energies ω0 of the isolated QE are marked with vertical magenta arrows, with ω0 = 2.58 eV for
(a),(d),(g), ω0 = 2.75 eV for (b),(e),(h), and ω0 = 2.95 eV for (c),(f),(i). The blue (lower resonance, LR), green
(upper resonance, UR), and red (bonding quadrupolar plasmon, BQP) dots indicate the main modes of the
system.
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In Figure S7 we compare the optical absorption spectra of the coupled QE–MNPs

system as obtained from the classical (left-side panels), the TDDFT (middle panels) and

the semiclassical (right-side panels) approaches. Results are shown as waterfall plots for

different values of the gap separation D and for three different resonant energies of the

isolated QE, ω0 = 2.58 eV, 2.75 eV and 2.95 eV, as indicated in each panel (see Section S1).

Using different values of ω0 allows us to analyze the effect of the electronic QE–MNPs

coupling in different scenarios where the QE is either in resonance (ω0 = 2.95 eV) or out of

resonance (ω0 = 2.58 eV and ω0 = 2.75 eV) with the dominant BDP mode of the metallic

dimer. The lower (LR) and upper (UR) resonances are marked with blue and green dots,

respectively.

The differences observed between the classical (panels a–c) and the TDDFT (panels d–f)

results are discussed in detail in Section S4 for the resonant case, ω0 = 2.95 eV, and in the

main text for the off-resonant case, ω0 = 2.58 eV. This latter discussion also applies for the

situation where ω0 = 2.75 eV, which shows qualitatively similar trends. Thus, we focus

below on analyzing the differences between the semiclassical and the TDDFT absorption

spectra for the three exciton energies.

For large distance between the MNPs, D ∼ 30− 40 a0, the semiclassical (panels g, h and

i) and TDDFT (panels d, e and f) results show very good agreement for the three QE exciton

energies considered here. In particular, as discussed in Section S4 for the resonant case

ω0 = 2.95 eV, the LR calculated with TDDFT (panel f) and the semiclassical model (panel i)

is considerably weaker than that predicted by the classical approach (panel c). Thus, the

semiclassical calculation indicates that the origin of the difference between the TDDFT and

the classical absorption spectra resides on quantum phenomena such as nonlocality and

finite-size effects that are important for such small metallic nanoparticles. Indeed, at large

D there is no hybridization between the electronic states localized at the QE and at the

MNPs.

For D below D ∼ 26 a0, the electronic QE–MNPs coupling affects the absorption
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spectra of the system as follows from the comparison between the semiclassical and TDDFT

results in Figure S7. First, the TDDFT shows substantial broadening and reduction of the

amplitude for the UR evolving from the BDP of the nanoparticle dimer. These effects,

not captured by the semiclassical model, are attributed to the charge-transfer processes

between the MNPs. In our system, electron transport can occur at larger gap separations

as compared to typical vacuum junctions because it is assisted by photoexcited electron

transfer through the LUMO of the QE.32

However, the most spectacular effect of the electronic coupling is revealed by the LR

mode, as already emphasized in the main text of the paper. In a similar manner as the

classical approach, the semiclassical model also predicts a continuous redshift of the LR

for the off-resonant cases (panels a–b and g–h), and increasing LR–UR splitting for the

resonant case (panels c and i) with decreasing gap size D. As compared to classical results,

the main difference is that the semiclassical model shows a weakening and a broadening

of the LR upon decreasing D, which points toward nonlocal optical effects that can also

affect the electromagnetic response for such a small system.33 In sheer contrast, the TDDT

calculations reveal smaller LR–UR splitting (panel f) for decreasing D and a blueshift of

the LR (panels d and e) for D ≤ 26 a0, with a progressive merging of the LR and UR

modes into a broad resonance structure. These effects are thus only observed when the

hybridization between the MNPs and the QE electronic orbitals is possible (as it is naturally

the case for the TDDFT), i.e., when the (excited) electron can tunnel across the system.
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S6 Charge-Transfer Resonances at Low Energies

In Figure S8, we show the study of the charge-transfer resonances of the coupled QE–

MNPs system for an incident field corresponding to z-polarized light oscillating in the

low-frequency range ω = 0 − 1 eV. The results in Figure S8a are the same as those

shown in Figure 4 of the main text, where the QE is characterized by Rqe = 5 a0 and

a background QE potential V0 = 1 eV (ω0 = 2.58 eV, α0 = 1.7 au). In Figure S8b,c we

show the results obtained for V0 = 3 eV (ω0 = 2.75 eV, α0 = 1.62 au) and V0 = 5 eV

(ω0 = 2.95 eV, α0 = 1.52 au), respectively. Thus, our analysis is extended to cases where

(a) (b) (c)

ω [eV]
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3
12 a0
14 a0
16 a0

18 a0
isolated dimer 

12 a0
14 a0
16 a0

18 a0
isolated dimer 

12 a0
14 a0
16 a0

18 a0
isolated dimer 

ω [eV]
0 0.2 0.4 0.6 0.8 1

ω [eV]
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0

0.1

0.2

0.3

Induced electron density

Electron current density

Induced electron density Induced electron density

Electron current density Electron current density

σ
a
b
s(
ω

) 
[n

m
2
]

σ
a
b
s(
ω

) 
[n

m
2
]

σ
a
b
s(
ω

) 
[n

m
2
]

+

_

0

x

z

x

z

x

z1 nm 1 nm 1 nm

V0=1 eV V0=3 eV V0=5 eV

+

_

0

+

_

0

+

_

0

+

_

0

+

_

0

Figure S8: Study of the charge-transfer resonances of the coupled QE–MNPs system for low illumination
frequencies ω = 0− 1 eV. Results are shown for three different background QE potentials, (a) V0 = 1 eV, (b)
V0 = 3 eV, and (c) V0 = 5 eV. The incident electromagnetic plane wave is polarized along the dimer axis
(z-axis). Upper panels: absorption spectra for a gap separation D ranging from D = 12 a0 to D = 18 a0, as
indicated in the insets. The reference absorption spectrum of the isolated metallic dimer for D = 12 a0 is
shown by the dashed black line. Lower panels: induced electron density and electron-current density along
the z-direction at the charge-transfer frequency ωCT. The gap separation is D = 16 a0. The snapshots are
taken at the instants of time when the total dipole moment (induced density maps) and the electron-current
density (current density maps) at the middle of the junction are maximum. The color code is explained in
the insets.
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the isolated QE is characterized by different values of the oscillator strength and transition

frequency (see Table S1). As observed in Figure S8, the present QE–MNPs system exhibits

qualitatively similar charge-transfer resonances regardless of the specific characteristics

of the QE (within the range of their variation encompassed here). This points at similar

electron-transport properties of the QE–MNPs coupled junction.
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