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SPARSE GRID RECONSTRUCTIONS FOR PARTICLE-IN-CELL

METHODS

F. DELUZET†, G. FUBIANI‡, L. GARRIGUES‡, C. GUILLET†‡?, AND J. NARSKI†

Abstract. In this article, we propose and analyse Particle-In-Cell (PIC)

methods embedding sparse grid reconstruction as those introduced in [1, 2].
The sparse grid reconstructions offer a significant improvement on the sta-

tistical error of PIC schemes as well as a reduction in the complexity of the

problem providing the electric field. Main results on the convergence of the
electric field interpolant and conservation properties are provided in this pa-

per. Besides, tailored sparse grid reconstructions, in the frame of the offset
combination technique, are proposed to introduce PIC methods with improved

efficiency. The methods are assessed numerically and compared to existing PIC

schemes thanks to classical benchmarks with remarkable prospects for three
dimensional computations.

Keywords. Plasma physics, Particle-In-Cell (PIC), sparse grids, combination tech-
nique

1. Introduction

Particle-In-Cell (PIC) discretizations have been among the most used numerical
methods in the simulation of kinetic plasmas for years [3, 4, 5, 6] and is still topical
[7, 8, 9, 10]. The method consists in a coupling between a Lagrangian method
for the Vlasov equation, based on the integration of numerical particle trajectories
and, a mesh-based discretization of Poisson’s equation (or Maxwell’s system) for the
computation of the self-consistent field. Despite their simplicity, ease of paralleliza-
tion and robustness, Particle-In-Cell schemes still contain a significant drawback:
the statistical error originating from the sampling of the distribution function by
numerical particles. This numerical noise decreases slowly with the increase of the
average number of particles per cell. Therefore, a large number of particles may be
required, necessitating tremendous computational resources, specifically for three
dimensional simulations for which the desire precision may impose a number of cells
as large as 109, the number of particles exceeding 1012. Noise reduction strategies
aim at maintaining the accuracy of computations with a reduced set of particles,
they have therefore received a lot of attention with, for instance, variance reduction
methods such as the δf method [11] or the quiet start initialization procedure [6]
as well as filtering methods in either Fourier [12] or wavelet domain [13].
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2 SPARSE GRID RECONSTRUCTIONS FOR PARTICLE-IN-CELL METHODS

Sparse grid methods [14, 15], originally developed for the interpolation of high
dimensional functions, then extended to the approximation of partial differential
equations [16, 17, 18, 19], have recently been applied, in the framework of the so-
called combination technique [20, 21], to Particle-In-Cell schemes [1, 2, 22, 23, 24].
The aim here is to improve the properties of PIC methods with respect to the
statistical error resulting from the particle sampling. In the sparse grid reconstruc-
tions, the numerical approximation are recomposed from partial representations
carried out on a hierarchy of sparse grids with coarse resolutions. Compared to a
regular Cartesian grid, the mean number of particles per cell is larger for any of
the sparse grids. This crucial feature offers either a mitigation of the statistical
noise or a decrease of the total number of numerical particles for a precision com-
parable to standard PIC discretizations. Besides, considering the thorough studies
conducted during recent years to apply the combination technique to the resolution
of PDEs, promising improvements in the computational efficiency are expected for
the resolution of Poisson’s equation (see [25, 21, 26]) providing the electric field in
the Particle-In-Cell framework. These gains are specifically substantial for three
dimensional applications.

The objective of the present paper is to provide an overview of the existing
Particle-In-Cell discretizations implementing the sparse grid combination technique,
to conduct a formal analysis to explain their merits and weaknesses and support
the development of new methods with improved efficiency. The results provided
herein are limited to two dimensional geometries. Nonetheless, they are readily
extendibles to an arbitrary number of dimensions, using the same tools, however
with an additional complexity of notation avoided within the present document.

The analyses of standard as well as sparse grid PIC discretizations unravel that,
for both methods, the approximation error may be decomposed into three contri-
butions. The precision of the methods is characterized by the accuracy of the most
probable value of the statistics associated to the particle sampling, this component
being referred to as the bias. This is a grid-based error related to both the mesh

size (h) and the smoothness of the solution with a component, denoted G‖n, depend-
ing on the solution non-cross derivatives and, another contribution, G×n , depending
on cross derivatives. The last error component, Pn,N , is the so-called numerical
noise or particle sampling error, providing the magnitude of the dispersion of the
values attached to a sample of particles. The introduction of sparse grid reconstruc-
tions within PIC discretizations entails an increase of the grid error, specifically G×n
together with a significant mitigation of the statistical noise. This outlines the po-
tential of these approaches: sparse grid reconstructions may be tailored to define
different trades-off between the components of the error and finally mitigate the
most detrimental one for the precision of PIC numerical approximations (the statis-
tical noise). This leads to the derivation of the new sparse-grid methods introduced
herein, with an improved numerical efficiency. The analyses conducted in this pa-
per are also aimed at demonstrating the convergence of the electric field sparse
grid interpolant. This is a major contribution of the paper since no convergence
properties have already been proposed so far for this quantity.

The paper is organized as follows. In section 2, the Particle-In-Cell scheme is
outlined in its conventional framework with the definition of the grid-based and the
particle sampling errors. In section 3.1, sparse grids approximations are introduced
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in the specific framework of the combination technique before being merged with
Particle-In-Cell methods in section 3.2. In section 3.3, a generalization of the
combination technique, referred to as offset combination technique, is proposed
in order to tune the trade-off between the different components of the sparse grid
approximation error of the distribution function moment interpolant. Section 3.4
is devoted to the introduction of two enhanced sparse PIC methods to improve
the efficiency of the electric field computation. In section 4, the merits of the
different methods are investigated thanks to two dimensional computations relating
classical plasma physics test cases: the linear and non linear Landau damping as
well as the diocotron instability. The conclusions are drawn in section 5, with an
emphasize of the remarkable prospects of sparse grid Particle-In-Cell methods for
three dimensional computations.

2. Particle-In-Cell (PIC)

2.1. Notations. Let us introduce some notations and functional spaces. For a
multi-index α = (α1, ..., αd) ∈ Nd, a function u defined on Ω an open set of Rd,
we denote by ∂αt

t u the partial derivative of u with respect to xt and order αt for
t ∈ {1, ..., d}. Let Dαu = ∂α1

1 ... ∂αd

d u and consider also the notations ∂αx u := ∂α1 u,
∂αy u := ∂α2 u, ∂αz u := ∂α3 u. We introduce the following functional spaces:

Xα :=
{
u : Ω→ R | Dβu ∈ C(Ω), ∀β ≤ α

}
,(1)

Xα,0(κ) :=
{
u : Ω→ R | Dβu ∈ C0(Ω), ‖Dβu‖∞ ≤ κ, ∀β ≤ α

}
(2)

where κ ∈ R, κ > 0, C(Ω) denotes the space of continuous functions on Ω, C0(Ω)
denotes the space of continuous functions vanishing on the boundary and the no-
tation β ≤ α stands for βt ≤ αt for all t ∈ {1, ..., d}. We introduce the Lp norm
and supremum norm for a function u ∈ Lp(Ω):

‖u‖p :=

(∫
Ω

|u(x)p|dx
)1/p

, ‖u‖∞ := sup
x∈Ω
|u(x)|,(3)

and the discrete l1 norm, l∞ norm, minimum notation for a vector u ∈ Rd

|u|1 :=

d∑
t=1

ut, |u|∞ := max
t∈{1,...,d}

ut, min(u) := min
t∈{1,...,d}

ut.(4)

2.2. Standard Particle-In-Cell (STD scheme). In this section, the non-relativistic
system of Vlassov-Poisson with fixed magnetic field B is considered:

∂fs
∂t

+ v · ∇xfs +
qs
ms

(E + v×B) · ∇vfs = 0,

∇ ·E =
ρ

ε0
, E = −∇Φ,

(5)

In this problem, fs(x,v, t) is the phase-space distribution attached to the species
s; qs, ms are the corresponding charge and mass, E is the electric field and ρ is the
charge density obtained from the phase-space distribution of each species:

ρ(x, t) =
∑
s

ρs(x, t) =
∑
s

qs

∫
fs(x,v, t)dv.(6)

The standard Particle-In-Cell scheme (STD) consists of four steps repeated at each
iteration in time:
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(STD1) The particle distribution fs is represented by a collection of N numerical
particles. The position and velocity of the particles, denoted (xp,vp), p =
1, ..., N , are evolved following Newton equations:

dxp
dt

= vp,
dvp
dt

=
qs
ms

(E + v×B)|x=xp
.(7)

(STD2) The charge density of each type of particle is projected onto a grid with a
numerical convolution kernel, named shape function and denoted S, and a
sum over the particles (see details in the following).

(STD3) The electric field is obtained by resolving the Poisson equation from the
density on the grid and differenciating the potential:

∆Φ = −

∑
s
ρs

ε0
, E = −∇Φ(8)

(STD4) The electric field is then evaluated at the particles positions by interpola-
tion.

Considering a leap frog scheme and a second order finite difference scheme, the
time discretization error is O(∆2

t ) and the field solver error is O(h2) (see proposition
3.10), where ∆t is the time step, h is the grid discretization corresponding to the
cell size of the grid. The remaining error in the scheme results from the second step
where the density is projected onto the grid.

2.3. Projection of the density onto the grid. The charge density of any species
is approximated on a grid from a collection of numerical particles with a certain
error that we shall explicit here. For ease of presentation in the following, we
consider one type of particle and ommit the subscript s denoting the particle species.
We consider a Monte-carlo approach to estimate the density like in [27]. Starting
from the defintion, the density is recast into:

ρ(x) = q

∫
f(x,v)dv = Q

∫
δ(x̃− x)f̃(x̃,v)dx̃dv,(9)

where f̃ = f/N is the probability density function associated to the phase-space
distribution, N = Q/q is the total number of physical particles and Q is the
total charge of the particles. The rewriting in equation (9) allow us to define
an numerical approximation of the density in the following. We consider a grid
with a discretization h (corresponding to the cell width) and, as an ersatz of the
convolution kernel, a d-dimensional shape function, denoted Sd, constructed by
tensor products of one dimensional shape functions:

Sd(x) :=
1

hd
S(x1) · ... · S(xd), S(xt) =

{
1− |xt| , if |xt| ≤ 1,
0, else,

(10)

S is generally a piecewise polynomial, named B-spline. In this paper, the shape
functions Sd considered are B1-splines (of degree 1). Then, substituting the convo-
lution kernel with the shape function, we define the approximation of the density
with:

ρh(x) := Q
∫∫
Sd
(

x− x̃

h

)
f̃(x̃,v)dvdx̃.(11)
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Let X̃ be a random variable with probability density function

∫
f̃(·,v)dv and

expected value E[X̃] :=

∫
X̃dP , where P is a probability measure. The local

charge density Sd
(

x−X̃
h

)
being a random variable and ξ 7→ Sd

(
x−ξ
h

)
a mesurable

function of Rn, owing to Transfer theorem [27], we have:

ρh(x) = Q
∫∫
Sd
(

x− x̃

h

)
f̃(x̃,v)dvdx̃ = QE

[
Sd

(
x− X̃

h

)]
,(12)

Since the collection of numerical particle positions (xp)p is considered as a sequence

of independent realizations of the random variable X̃, one can introduce a statistical
estimator for the density based on the particle positions:

ρh,N (x) :=
Q
N

N∑
p=1

Sd
(

x− xp
h

)
.(13)

ρh,N (x) is an estimator for the value ρ(x) = QE[δ(x−X̃)] considered as a statistical

quantity that can be computed as a function of the random variable X̃. To estimate
the error introduced by approximating the density on the grid with this estimator,
we will evaluate the root-mean-square-error which is the classical L2 error of the
estimator as a function of X̃.

Proposition 2.1. Assuming enough smoothness on the probability density f̃(·, v) ∈
X4, the root-mean square-error is majorated by:(∫

(ρh,N (x)− ρ(x))2dxp

) 1
2

≤ V[ρh,N (x)]
1
2 + Bias(ρh,N (x)),(14)

where the bias and the square root variance are given by:

Bias(ρh,N )(x) : = E[ρh,N (x)]− ρh,N (x)(15)

=
h2

12

d∑
t=1

∂2
t ρ(x) +

h4

360

d∑
t=1

∂4
t ρ(x)︸ ︷︷ ︸

G‖n

+
h4

144

∑
t1,t2∈{1,...,d}

t1 6=t2

∂2
t1∂

2
t2ρ(x)

︸ ︷︷ ︸
G×n

+O(h6).

(V[ρh,N ](x))
1
2 : = (E[ρ2

h,N (x)]− E[ρh,N (x)]2)
1
2(16)

=

((
2

3

)d Qρ(x)

Nhd

) 1
2

︸ ︷︷ ︸
Pn,N

+O
(
N−

1
2

)
.

Proof of proposition 2.1. See [27].
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Remark 2.2. The root-mean-square-error is composed of two parts. First, the
error stemming from the variance of the sample with a finite number of particles
V[ρh,N ], referred to as the particle sampling error and denoted Pn,N in the following.
Second, the bias of the sampling Bias(ρh,N ), the error between the expected value

of the estimator and that of the the random variable δ(x− X̃). This is a grid-based
error proportional to both the mesh size and the solution smoothness with two

components denoted G‖n and G×n depending respectively on the non-cross and cross
derivatives of the solution.

3. Merging Particle-In-Cell with sparse grids

3.1. Introduction to sparse grids.

3.1.1. Sparse grid notations. In this section, the sparse grid notations will be in-
troduced for the specific framework of the so-called combination technique [20, 21].
The domain is Ω = [0, 1]d, with d ∈ N. We consider a sequence of anisotropic grids
parametrized by an index l = (l1, ..., ld) ∈ Nd corresponding to the level of a grid
that we shall name sub-grid and denote Ωl. The designation ”sub-grid” is chosen
because a sub-grid of level l is a subset of the Cartesian grid of level n (defined in
equation (18)) for |l|∞ ≤ n. The sub-grids are composed of the nodes:

xl,j := (j1 · hl1 , ..., jd · hld),

where hl := (hl1 , ..., hld), hlt = 2−lt for t = 1, ..., d is the grid discretization and
j ∈ Jl, with

(17)
Jl =

{
j ∈ Nd | jt = 0, ..., 2lt , t = 1, ..., d

}
,

Jn =
{
j ∈ Nd | jt = 0, ..., 2n, t = 1, ..., d

}
,

the index set of the nodes of the sub-grid of level l and uniform level n. Let us
introduce a regular cartesian grid, which is typically the underlying grid in PIC
methods or in standard interpolation, corresponding to a grid of uniform level
l = (n, ..., n), denoted Ωn and composed of the nodes:

xn,j := (j1 · hn, ..., jd · hn),(18)

where hn = 2−n is the grid discretization and j ∈ Jn. For any grid (sub-grid or
cartesian grid), we define a basis {φl,j | j ∈ Jl}, composed by tensor products of
unidimensional B-spline functions of degree m and denoted φml,j:

φml,j(x) :=

d∏
t=1

φmlt,jt(xt).(19)

The unidimensional B-spline functions are defined recursively starting from the B0-
spline of degree 0 that we shall denoted φ0

l,j and higher order B-splines of degree
m, for m ∈ N∗ defined by:

φ0
l,j(x) =

{
1
hl

if |x−jhl|
hl

≤ 1
2 ,

0 else ;
φml,j(x) =

1

hl

∫ x+
hl
2

x−hl
2

φm−1
l,j (ξ)dξ.(20)

It yiels the following definition for the B1-spline

φ1
l,j(x) =

 1− |x− jhl|
hl

if
|x− jhl|

hl
≤ 1,

0 else.
(21)
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Proposition 3.1. The B-spline functions verify the following properties:

d∏
t=1

1

hlt

∫
φml,j(x)dx = 1 (Unit mean),

∑
j∈Jl

φml,j(x) = 1(Partition of unit),

φml,j(xl,j − x) = φml,j(xl,j + x)(Parity).

Proof of proposition 3.1. It follows from the definition. �

3.1.2. Combination technique. The so-called combination technique [20, 21] is a
method of interpolation using evaluations of the function on the nodes of sub-grids.
The interpolant is obtained by a linear combination of partial representations of
the function on the sub-grids. Considering the sub-grids Ωl with l ∈ L(n, σ), where

L(n, σ) := {l ∈ Nd | |l|1 = n+ d− 1− σ, l ≥ (1, ..., 1)},(22)

is the level set of the sub-grids considered in the combination for σ = 0, ..., d − 1,
the degree m interpolant of the function on each sub-grid, denoted fml , is defined
as:

fml (x) :=
∑
j∈Jl

αl,jφ
m
l,j(x),(23)

where the coefficients αl,j are determined by the resolution of a linear system with
unknowns (αl,j)j∈Jl

to meet the interpolation conditions on the sub-grid nodes:

∀j ∈ Jl, fml (xl,j) =
∑
j̃∈Jl

αl,̃jφ
m
l,̃j

(xl,j) = f(xl,j)(24)

The sparse grid interpolant, denoted fmn , is then defined on the entire domain as:

fmn (x) :=

d−1∑
σ=0

(−1)σ
(
d− 1

σ

) ∑
l∈L(n,σ)

fml (x),(25)

where

(
d− 1

σ

)
:=

(d− 1)!

σ!(d− 1− σ)!
is the notation for the binomial coefficient.

Proposition 3.2. Let f be a smooth function with a pointwise error expression of
the form:

f(x)− fml (x) =

d∑
m=1

∑
{1,...,m}⊂{1,...,d}

τ1,...,m(x ;hl1 , ..., hlm)h2
l1 ...h

2
lm ,(26)

with bounded ‖τ1,...,m(·;hl1 , ..., hlm)‖∞ ≤ κ, κ ∈ R, κ > 0. The sparse grid inter-
polant of the function converges to the exact solution in Lp norm when the grid
discretization tends towards zero:

‖fmn − f‖p = O(log2(h−1
n )d−1h2

n), 1 ≤ p ≤ ∞,(27)

Proof of proposition 3.2. See [20].

The combination technique is motivated by the reduction of the number of in-
terpolation nodes (from O(h−dn ) to O(log2(h−1

n )d−1h−1
n )) while achieving nearly the

same precision (O(log2(h−1
n )d−1h2

n)) than the standard interpolation (O(h2
n)).

Remark 3.3. Assuming that ∀x ∈ Ω, f(x) ≥ 0, the sparse grid interpolant fmn is
not nonnegative in the general case.
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3.2. Application to Particle-In-Cell discretizations. In this section, two ap-
plications of the combination technique to Particle-In-Cell methods are presented.
In the regular PIC approximation, the main drawback is the statistical error de-
creasing with the number of particles per cell. Indeed, the particle sampling and
the grid based errors scale respectively as O(1/

√
Nhdn) and O(h2

n), hn being the
mesh size of the Cartesian grid defined by equation (18) and N the total num-
ber of particles. These two error estimates together lead to the following onerous
conditions of convergence of the scheme h2

n � 1, Nhdn � 1 which can require an
extremely large number of particles, specifically for three dimensional simulations.
The combination technique achieves a representation of a function using a sequence
of sparse grids coarser than the standard Cartesian mesh. This ends up in a re-
duced number of interpolation nodes and, accordingly an increased mean number
of particle per cell. This feature motivates the application of sparse grid techniques
to PIC methods.

Let us introduce the hierarchical shape function of level l = (l1, ..., ld) constructed
by tensor products of the unidimensional shape functions introduced in equation
(10):

Sd,l(x) :=

d∏
t=1

1

hlt
S
(
xt
hlt

)
,(28)

with support, magnitude depending on the discretization of the sub-grid Ωl (see
figure 1) and whose role is to approximate the convolution kernel δ(x) on this
sub-grid. From this, recalling section 2.3, one is then able to define a hierarchical
estimator for the density at each node of the sub-grid Ωl and denoted ρl,j,N :

∀j ∈ Jl, ρl,j,N =
Q
N

N∑
p=1

Sd,l(xl,j − xp),(29)

This estimator corresponds to the projection of the density onto the sub-grid. The
error between the hierarchical estimator and the density can be estimated by the
bias and the square root variance of the estimator. Recalling proposition 2.1:

Bias(ρl,j,N ) =

d∑
m=1

∑
{1,...,m}⊂{1,...,d}

τ1,...,m(xl,j ;hl1 , ..., hlm)h2
l1 ...h

2
lm ,(30)

(V[ρl,j,N ])
1
2 = ζ1,...,d(xl,j ;hl1 , ..., hld)(Nhl1 ...hld)−

1
2 ,(31)

where

τ1,...,m(·;hl1 , ..., hlm) =

(
1

12

)m
∂2

1 ... ∂
2
mρ+O(h2

l1 , ..., h
2
lm),(32)

ζ1,...,d(·;hl1 , ..., hld) =

((
2

3

)d
Qρ

) 1
2

+O
(
N−

1
2

)
.(33)

The dependances of hl1 , ..., hlm , hl1 , ..., hld for the functions τ1,...,m, ζ1,...,d mean that
the functions are evaluated at the nodes of a grid with discretization hl.
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h−1
2

h−1
1

h−1
3

0 0

h1

h1
h2

h2

•x
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×
×xp

S2,(1,1)

h−1
3

0 0

h1

h1

h−1
2

h−1
1

h2

h2

•x

×

×
×

×
×xp

S2,(3,2)

Figure 1. Examples of hierarchical shape function Sd,l(x − xp) in
the two dimensional case.

Lemma 3.4. Let f be a smooth function with a pointwise error expression of the
form:

f(x)− fml (x) = ζ1,...,d(x ;hl1 , ..., hld)(Nhl1 ...hld)−
1
2(34)

with bounded ‖ζ1,...,d(·;hl1 , ..., hld)‖∞ ≤ κ. The sparse grid interpolant of the func-
tion converges to the exact solution in Lp norm with:

‖fmn − f‖p = O(log2(h−1
n )d−1(Nhn)−

1
2 ), 1 ≤ p ≤ ∞.(35)

Proof of lemma 3.4. The proof is given in appendix A.

Remark 3.5. The bias of the hierarchical estimator on a sub-grid verifies the
assumption of equation (26) and the square root variance verifies the assumption
of equation (34). Therefore, an ingenious combination of these projections of the
density (see details in the following sections) shall lead to cancellations and an error

scaling with O(log2(h−1
n )d−1(h2

n + (Nhn)−
1
2 )). This feature, resulting from the

tensor product form of the shape function S, is the motivation for the application
of sparse grid combination to PIC.

3.2.1. Discretization on hybrid grids (HG scheme). In this section, a first sparse
grid application to PIC methods [2], is presented. In order to take advantage of
the cancellations exposed in the precedent section, a sparse grid interpolant of
the density is constructed. The density is projected onto each sub-grid, achieving
a reduction of the statistical error thanks to the large cells of the sub-grids, then
evaluated onto the Cartesian grid with the combination technique. Let us introduce
the corresponding scheme, that we shall name the Hybrid Grid Particle-In-Cell
(HG) scheme (owing to the Cartesian grid and sub-grids considered within the
scheme):

(HG1) Similar to (STD1)
(HG2) On each sub-grid, the hierarchical estimator defined in equation (29) pro-

vides a partial representation of the density; and, using the combination
technique we define a sparse grid interpolant of the density on the entire
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domain with basis functions defined in equation (19), denoted ρmn,N :

ρmn,N (x) =

d−1∑
σ=0

(−1)σ
(
d− 1

σ

) ∑
l∈L(n,σ)

∑
j∈Jl

αl,jφ
m
l,j(x)︸ ︷︷ ︸

=ρml (x)

,(36)

where ρml is the sparse grid interpolant of the density on the sub-grid,
L(n, σ), Jl are defined in equation (22), (17) and the coefficients αl,j are
determined by the interpolation conditions in equations (24).

(HG3) On the Cartesian grid, an approximation of the electric field, denoted En,j,
is obtained by resolving the Poisson equation from the sparse grid inter-
polant of the density and differenciating the potential with a finite difference
scheme:

∀j ∈ Jn, En,j = −∇hnΦn,j, ∆hnΦn,j = −
ρmn,N (xn,j)

ε0
,(37)

where ∇hn
and ∆hn

are the second order discrete finite difference operators
defined on the Cartesian grid by:

∆hnΦl,j :=

d∑
t=1

(δ+
t,hn

δ−t,hn
)Φn,j, ∇hnΦn,j :=

(
δ0
t,hn

Φn,j
)
t=1,...,d

,(38)

δ−t,hlt
, δ+

t,hlt
are left-sided, right-sided differences and δ0

t,hlt
is centered dif-

ference:

δ+
t,hlt

Φl,j : =
Φl,j+it − Φl,j

hlt
, δ−t,hlt

Φl,j :=
Φl,j − Φl,j−it

hlt
,(39)

δ0
t,hlt

Φl,j : =
Φl,j+it − Φl,j−it

2hlt
,(40)

and it ∈ Nd is the index whose value is 1 along the tth coordinate and 0
elsewhere.

(HG4) The electric field is evaluated at particle positions with standard interpo-
lation on the Cartesian grid:

Em
n (xp) :=

∑
j∈Jn

αn,jφ
m
n,j(xp),(41)

where coefficients αn,j are determined by the following interpolation condi-
tions:

∀j ∈ Jn, Em
n (xn,j) =

∑
j̃∈Jn

αn,̃jφ
m
n,̃j

(xn,j) = En,j.(42)

and En,j is defined by equation (37).

Proposition 3.6. The sparse grid interpolant conserves the total charge:∫
ρmn,N (x)dx =

∫
ρ(x)dx = Q.(43)

Remark 3.7. The positivity of the charge density is not preserved by the sparse
grid interpolation (see remark 3.3).
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Proposition 3.8. Assuming ρ ∈ X2(κ), the sparse grid interpolant of the density
converges to the exact solution in Lp norm, 1 ≤ p ≤ ∞ when the grid discretization
tends towards zero and the mean number of particles per cell tends towards +∞:

‖ρmn,N − ρ‖p = O

 h2
n︸︷︷︸
G‖n

+ log2(h−1
n )d−1h2

n︸ ︷︷ ︸
G×n

+ log2(h−1
n )d−1(Nhn)−

1
2︸ ︷︷ ︸

Pn,N

 .(44)

For two dimensional computations carried out with B1-splines, the following esti-
mation holds true for the sparse grid interpolants of the density:

‖ρmn,N − ρ‖p ≤
(

5

24
(‖∂2

xρ‖∞ + ‖∂2
yρ‖∞) +

13

576

(
5

4
n− 1

)
‖∂2
x∂

2
yρ‖∞

)
h2
n(45)

+
2

3
((
√

2 + 1)n− 1)

(
Q‖ρ‖∞
Nhn

) 1
2

.

Remark 3.9. The benefit of the combination technique as a noise reduction strat-
egy is pointed out by the equation (44). Owing to the projection of the den-
sity onto the sub-grids, the particle sampling error is reduced from O((Nhdn)−1/2)
to O(log2(h−1

n )d−1(Nhn)−1/2). The profit is significant for refined grids as well
as three dimensional problems. Conversely, an increase of the grid-based error
results from the combination; the grid-based error is increased from O(h2

n) to
O(log2(h−1

n )d−1h2
n). Though h2

n ≈ log2(h−1
n )d−1h2

n, the loss may appears negligi-
ble, however the dominant component of the error becomes G×n (with dependences
on 2dth order derivatives). As a comparison, the grid-based error of regular PIC

methods is dominated by the G‖n component (with dependences on 2nd order deriva-
tives). This feature indicates a drawback of the combination technique and may
limit the efficiency of the method when the solution develops strong gradients not
aligned with the Cartesian grid.

Proposition 3.10. Assuming enough smoothness on ρ so that Φ ∈ X5,0(γ), ρ ∈
X3(κ), the sparse grid interpolant of the electric field converges to the exact solution
in Lp norm, 1 ≤ p ≤ ∞ when the grid discretization tends towards zero and the
number of particles tends towards +∞:

‖Em
n −E‖p = O

 h2
n︸︷︷︸
G‖n

+ log2(h−1
n )d−1h2

n︸ ︷︷ ︸
G×n

+ log2(h−1
n )d−1(Nhn)−

1
2︸ ︷︷ ︸

Pn,N

 ,(46)

where E = −∇Φ, ∆Φ = −ρ/ε0. For two dimensional computations carried out
with B1-splines, the following estimations hold true for the sparse grid interpolants
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of the electric field:

‖Emn −E‖p ≤
(

5

24
‖∆−1

hn
‖∞(‖∇∂2

xρ‖∞ + ‖∇∂2
yρ‖∞ + ‖∇∂4

xΦ‖∞(47)

+‖∇∂4
yΦ‖∞) +

1

3

(
‖∂3
xΦ‖∞

‖∂3
yΦ‖∞

)
+

1

8

(
‖∇∂2

xΦ‖∞ + ‖∇∂2
yΦ‖∞

)
+

13

576

(
5

4
n− 1

)
‖∆−1

hn
‖∞
(
‖∇∂2

x∂
2
yρ‖∞

))
h2
n

+
2

3
((
√

2 + 1)n− 1)‖∆−1
hn
‖∞
(
Q
Nhn

) 1
2

‖∇ρ‖
1
2∞,

where ∆−1
hn

is the inverse matrix of the Laplacian problem.

Proof of proposition 3.6.∫
ρmn,N (x)dx =

∫ 1∑
σ=0

(−1)σ
∑

l∈L(n,σ)

∑
j∈Jl

Q
N

N∑
p=1

Sd,l(xl,j − xp)φ
m
l,j(x)dx

=

1∑
σ=0

(−1)σ
∑

l∈L(n,σ)

Q
N

N∑
p=1

∑
j∈Jl

Sd,l(xl,j − xp)︸ ︷︷ ︸
=

d∏
t=1

h−1
lt

∫
φml,j(x)dx︸ ︷︷ ︸
=

d∏
t=1

hlt

=
∑

l∈L(n,0)

Q

︸ ︷︷ ︸
n terms

−
∑

l∈L(n,1)

Q

︸ ︷︷ ︸
n-1 terms

= Q. �

Proof of proposition 3.8. The proof is given with B1-splines (i.e m = 1 in the
following). Let l = (l1, l2) be a level such that l ∈ L(n, σ) for σ = 0, 1. Owing to
the partition of unit property of the basis functions, the local error between the
density and its partial representation on the sub-grid Ωl is recast into:

ρml (x)− ρ(x) =
∑
j∈Jl

(ρl,j,N − ρ(xl,j) + ρ(xl,j)− ρ(x))φml,j(x).(48)

Let xl,j−x = (δ1, δ2)T . Assuming ρ ∈ X4, a Taylor expansion of the density at the
sub-grid nodes in x-direction and y-direction gives us:

ρ(xl,j)− ρ(x) = ∂xρ(x)δ1 + ∂yρ(x)δ2 +
1

2
(∂2
xρ(x)δ2

1 + ∂2
yρ(x)δ2

2(49)

+ 2∂x∂yρ(x)δ1δ2) +
1

6
(∂3
xρ(x)δ3

1 + 3∂2
x∂yρ(x)δ2

1δ2

+ 3∂x∂
2
yρ(x)δ1δ

2
2 + ∂3

yρ(x)δ3
2) +

1

24
(∂4
xρ(x)δ4

1

+ 4∂3
x∂yρ(x)δ3

1δ2 + 6∂2
x∂

2
yρ(x)δ2

1δ
2
2 + ∂4

yρ(x)δ4
2).

Owing to the support of the degree B1-splines, for the orders p1, p2 ∈ N:

δp11 δp22 φml,j(x) =


δp11 δp22

hl1hl2
(hl1 − |δ1|)(hl2 − |δ2|) if |δ1| < hl1 , |δ2| < hl2 ,

0 else.
(50)



SPARSE GRID RECONSTRUCTIONS FOR PARTICLE-IN-CELL METHODS 13

Introducing the notation for t = 1, 2:

δ?t :=

{
δt if δt > 0,
hlt + δt if δt < 0,

(51)

where 0 ≤ δ?t ≤ hlt , we deduce from equation (50):

∑
j∈Jl

δp11 δp22 φml,j(x) =


δ?1(hl1 − δ?1) if (p1, p2) = (2, 0),
δ?2(hl2 − δ?2) if (p1, p2) = (0, 2),
δ?1δ

?
2(hl1 − δ?1)(hl2 − δ?2) if (p1, p2) = (2, 2),

0 if p1 = 1 or p2 = 1.

(52)

Note that the quantity δ?t (hlt − δ?t ) implicitly depends on the grid discretization h2
lt

and is actually upper bounded by h2
lt
/4). Let us introduce the interpolation error

functions ξ1, ξ2, ξ1,2 such that:

h2
l1ξ1(x;hl1) =

1

2
δ?1(hl1 − δ?1)∂2

xρ(x), h2
l2ξ2(x;hl2) =

1

2
δ?2(hl2 − δ?2)∂2

yρ(x),(53)

h2
l1h

2
l2ξ1,2(x;hl1 , hl2) =

1

4
δ?1δ

?
2(hl1 − δ?1)(hl2 − δ?2)∂2

x∂
2
yρ(x) .

From this, with the bias, variance expressions, stated in equations (30),(31), and
owing to the partition of unit property of basis functions:

ρml (x)− ρ(x) = (τ̃1(x;hl1) + ξ1(x;hl1))h2
l1 + (τ̃2(x;hl2) + ξ2(x;hl2))h2

l2(54)

+ (τ̃1,2(x;hl1 , hl2) + ξ1,2(x;hl1 , hl2))h2
l1h

2
2

+ ζ̃1,2(x;h1, h2)(Nhl1hl2)−
1
2 ,

where for a function ω1,...,m the notation ω̃1,...,m stands for:

ω̃1,...,m(x;hl1 , ..., hlm) :=
∑
j∈Jl

ω1,...,m(xl,j;hl1 , ..., hlm)φml,j(x),(55)

and the functions τ1, τ2, τ1,2, ζ1,2 are explicited in equations (32-33). Assuming
ρ ∈ X2(κ), the coefficients are bounded by ‖ξt(·;hlt)‖∞ ≤ κ/8,
‖τ̃t(·;hlt)‖∞ ≤ κ/12, for t = 1, 2, ‖ξ1,2(·;hl1 , hl2)‖∞ ≤ κ/64, ‖τ̃1,2(·;hl1 , hl2)‖∞ ≤
κ/144, ‖ζ̃1,2(·;hl1 , hl2)‖∞ ≤ (4Qκ/9)

1
2 and using proposition 3.2, lemma 3.4:

‖ρmn,N − ρ‖p ≤ κ
(

5

12
+

13

576

(
5

4
n− 1

))
h2
n +

2

3
((
√

2 + 1)n− 1)

(
κQ
Nhn

) 1
2

.�(56)

Idea of the proof of proposition 3.10. Only the guidelines of the proof are provided,
the details being specified for that of proposition 3.11. Let the Poisson problem
with the truncation error (h2

nσ
(∆)) of the discrete laplacian in matrix notation:

∆hn
Φ = −ρ+ h2

nσ
(∆) +O(h3

n),(57)

Introducing the sparse grid interpolant of the density and using invertibility of the
matrix ∆hn

, one gets:

Φ− (−∆−1
hn
ρmn,N )︸ ︷︷ ︸

=Φn,j

= ∆−1
hn

(
ρmn,N − ρ+ h2

nσ
(∆) +O(h3

n)
)
.(58)
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Applying ∇hn
to equation (58), owing to linearity and because the operators ∇hn

and ∆−1
hn

commutate (since ∇hn
and ∆hn

do), and introducing the following trun-
cation error of the discrete gradient:

∇Φ−∇hnΦ = h2
nσ

(∇) +O(h4
n).(59)

one gets, summing equation (59) to (58):

∇Φ−∇hn
Φn,j︸ ︷︷ ︸

=En,j−E(xn,j)

= ∆−1
hn︸︷︷︸

(?)

∇hn
(ρmn,N − ρ)︸ ︷︷ ︸

(??)

+h2
n∇hn

σ(∆)︸ ︷︷ ︸
(???)

+∇hn
O(h3

n)︸ ︷︷ ︸
(???)

(60)

+ h2
nσ

(∇) +O(h4
n).

(?) ∆−1
hn

is uniformely bounded by a constant independent of the grid driscretiza-

tion hn (the maximum eigenvalue is bounded).
(??) Using a Taylor expansion, this term scales with ∇(ρmn,N − ρ). Retaking

arguments of proof 3.8, the latter scales as equation (44).
(? ? ?) Using a Taylor expansion, the terms scales with ∇σ(∆) and O(h3

n).

Eventually, an interpolation is added for the term E(xn,j) − E(x) (see proof of
proposition 3.11). �

3.2.2. Discretization on sub-grids (SG scheme). In this section, a second applica-
tion of the combination technique to PIC methods [1] is presented. This imple-
mentation does not use a projection of the density onto the Cartesian grid. The
idea is to deposit the charge density, solve the Poisson equation, differentiate the
electric potential on each sub-grid and eventually interpolate the electric field from
the sub-grids at particle positions by means of the combination technique. Solving
the Poisson problem on each sub-grid rather than on the Cartesian grid, is likely
to speed-up the computations. Indeed, the gain may be coarsely estimated by the
reduced number of cells in all the sub-grids O(log2(h−1

n )d−1h−1
n ) compared to the

Cartesian mesh (O(h−dn )). Let us introduce the scheme, that we shall name the
Sub-Grid Particle-In-Cell (SG) scheme in the following:

(SG1) Similar to (STD1).
(SG2) The density is projected onto each sub-grid with the hierarchical estimator,

defined in equation (29), in order to get a partial representation of the
density on the sub-grid nodes.

(SG3) An approximation of the electric field on each sub-grid, denoted El,j, is ob-
tained by resolving the Poisson equation from the partial representation of
the density on the corresponding sub-grid and differentiating the potential
with a finite difference scheme:

El,j = −∇hl
Φl,j, ∆hl

Φl,j = −ρl,j,N

ε0
,(61)

where ∇hl
and ∆hl

are the discrete second order finite difference operators
defined on the sub-grid Ωl by:

∆hl
Φl,j :=

d∑
t=1

(δ+
t,hlt

δ−t,hlt
)Φl,j, ∇hl

Φl,j :=
(
δ0
t,hlt

Φl,j

)
t=1,...,d

,(62)

δ−t,hlt
, δ+

t,hlt
are left-sided, right-sided differences and δ0

t,hlt
is centered dif-

ference defined in equation (39).
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(SG4) The electric field is evaluated at particle positions using the combination
technique; each partial representation of the field is interpolated using the
sparse interpolation functions and combined according to the following for-
mula:

Em
n (xp) :=

d−1∑
σ=0

(−1)σ
(
d− 1

σ

) ∑
l∈L(n,σ)

∑
j∈Jl

αl,jφ
m
l,j(xp)︸ ︷︷ ︸

Em
l (xp)

,(63)

where Em
l (xp) is the electric field interpolant on the sub-grid of level l,

L(n, σ), Jl are defined in equations (22), (17) and the coefficients αl,j are
determined by the interpolation conditions:

∀j ∈ Jl, Em
l (xl,j) =

∑
j̃∈Jl

αl,̃jφ
m
l,̃j

(xl,j) = El,j.(64)

Proposition 3.11. Assuming enough smoothness on ρ so that Φ ∈ X5,0(γ), ρ ∈
X5(κ), the sparse grid interpolant of the electric field converges to the exact solution
in Lp norm, 1 ≤ p ≤ ∞, according to the following estimation:

‖Em
n −E‖p = O

 h2
n︸︷︷︸
G‖n

+ log2(h−1
n )d−1h2

n︸ ︷︷ ︸
G×n

+ log2(h−1
n )d−1(Nhn)−

1
2︸ ︷︷ ︸

Pn,N

 ,(65)

where E = −∇Φ, ∆Φ = −ρ/ε0. In the two dimensional case with B1-splines, we
have the following estimation on the sparse grid interpolant of the electric field:

‖Emn −E‖p ≤
(

1

96
(‖∇∂2

xρ‖∞ + ‖∇∂2
yρ‖∞ + ‖∇∂4

xΦ‖∞ + ‖∇∂4
yΦ‖∞)(66)

+
1

3

(
‖∂3
xΦ‖∞

‖∂3
yΦ‖∞

)
+

1

8

(
‖∇∂2

xΦ‖∞ + ‖∇∂2
yΦ‖∞

)
+

 1∑
σ=0

(−1)σh
2(1−σ)
1

∑
l∈L(n,σ)

‖∆−1
hl
‖∞


·
(

1

1152
(2‖∇∂4

x∂
4
yΦ‖∞‖∇∂2

x∂
4
yρ‖∞ + ‖∇∂4

x∂
2
yρ‖∞)

+
1

144
(‖∇∂2

x∂
2
yρ‖∞) +

1

64
(‖∇∂2

x∂
2
yΦ‖∞)

))
h2
n

+
2

3

 1∑
σ=0

(−1)σh
−(1−σ)/2
1

∑
l∈L(n,σ)

‖∆−1
hl
‖∞

( Q
Nhn

) 1
2

‖∇ρ‖
1
2∞,

where ∆−1
hl

is the inverse matrix of the Laplacian problem defined in equation (69).

Remark 3.12. The estimation of the error requires stronger assumptions on the
smoothness of the density (ρ ∈ X5(κ)) than for the HG scheme (ρ ∈ X3(κ)). The
significative differences with the HG scheme are the additional G×n terms depending
on ‖∇∂2

x∂
4
yρ‖∞, ‖∇∂4

x∂
2
yρ‖∞, ‖∇∂4

x∂
4
yΦ‖∞ which are seventh order derviatives of

the density and ninth order derivatives of the potential. In comparison, the dom-
inant terms in the HG scheme estimation in equation (47) are third order for the
density and fifth order for the potential.
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Proposition 3.13. Assuming Poisson equation is supplemented with periodic bound-
ary conditions and the electric field is interpolated at particle positions using B1-
splines, the scheme does preserve the total momentum of the system, i.e

dP
dt

= 0,(67)

where P = mN
∫∫

vf̃N (x, v, t)dxdv, f̃N (x, v, t) =

N∑
p=1

1

N
δ(x−xp(t))δ(v− vp(t)).

Proof of proposition 3.11. The proof is given with B1-splines. In order to apply
the proposition 3.2 and lemma 3.4 that will give us the result, we need to verify
the assumptions of equations (26) and (34). Let l = (l1, l2), the partition of unit
property of basis functions provides:

Em
l (x)−E(x) =

∑
j∈Jl

(El,j −E(xl,j) + E(xl,j)−E(x))φml,j(x).(68)

The first term El,j − E(xl,j) is the field solver error resulting from the two dis-
crete finite difference operators ∇hl

and ∆hl
. Unlike the problem discretized on the

Cartesian grid (see proof of proposition 3.10), the resolution of the Poisson equation
on the sub-grids requires more work because of the anisotropy of the grids, the ma-
trix of the problem ∆hl

depending on hl1 and hl2 . Thus, invertibility of the matrix
cannot provide directly an error expansion of the form of equations (26),(34). This
problem has been thoroughly studied in [25, 21]. We therefore use the framework
introduced in [25] for this proof. In the following, we consider a matrix notation
introduced in the proof of proposition 3.10 and omit the dependence of the grid
discretization in the notations since the functions are implicitly evaluated at the
grid nodes. The discrete Poisson problem in matrix notation is:

∆hl
Φ = −ρ, ∆hl

=


−Al1,l2 Il1 0 · · · 0
Il1 −Al1,l2 Il1
...

. . .
. . .

. . .
...

Il1 −Al1,l2 Il1
0 · · · 0 Il1 −Al1,l2

 ,(69)

where Al1,l2 is a tridiagonal matrix such that (Al1,l2)i,i = 2h−1
l1

+ 2h−1
l2

, Ai+1,i =

Ai,i+1 = −h−1
l2

and Il1 is the diagonal matrix such that (Il1)i,j = δi,jh
−1
l1

. Assuming

enough smoothness on the potential Φ ∈ X5,0(γ), with a Taylor expansion the
truncation error of the problem is:

∆hl
Φ + ρ = σ

(∆)
1 h2

l1 + σ
(∆)
2 h2

l2(70)

⇔∆hl
Φ + ρl,j,N = ρl,j,N − ρ+ σ

(∆)
1 h2

l1 + σ
(∆)
2 h2

l2

⇔∆hl
Φ + ρl,j,N = (τ1 + σ

(∆)
1 )h2

l1 + (τ2 + σ
(∆)
2 )h2

l2 + τ1,2h
2
l1h

2
l2

+ ζ1,2(Nhl1hl2)−
1
2 .

where σ
(∆)
1 =

1

12
∂4
xΦ, σ

(∆)
2 =

1

12
∂4
yΦ, are the truncation expansions in each dimen-

sion and τ1, τ2, τ1,2, ζ1,2 are the bias and variance coefficients defined in equations
(32),(33). Following [25], the auxiliary semi-discrete problems are introduced:

∆
(l1)
hl
ω1 = (τ1 + σ

(∆)
1 ), ∆

(l2)
hl
ω2 = (τ2 + σ

(∆)
2 ),(71)



SPARSE GRID RECONSTRUCTIONS FOR PARTICLE-IN-CELL METHODS 17

where ω1(·;hl1), ω2(·;hl2) are defined on the following hyper-planes:

Ω
(l1,...,lm)
l :=

{
x ∈ Ω | xt ∈ {jhlt | 0 ≤ j ≤ h−1

lt
}, 1 ≤ t ≤ m

}
,(72)

and ∆
(l1)
hl

, ∆
(l2)
hl

are the semi-discrete operators:

∆
(l1)
hl

:= δ+
1,hl1

δ−1,hl1
+ ∂2

y , ∆
(l2)
hl

:= ∂2
x + δ+

2,hl2
δ−2,hl2

.(73)

From [25, Lemma 3.1, 2.], a semi-discrete maximum principle holds, giving:∥∥∂4
yωt(·;hlt)

∥∥
∞ ≤

1

8

∥∥∥∂4
y(τt + σ

(1)
t )(·;hlt)

∥∥∥
∞
, t = 1, 2.(74)

The truncation error can be rescast into:

∆hl
(Φ− ω1h

2
l1 − ω2h

2
l2) + ρl,j,N = (∆

(l1)
hl
−∆hl

)ω1h
2
l1 + (∆

(l2)
hl
−∆hl

)ω2h
2
l2

+ τ1,2h
2
l1h

2
l2 + ζ1,2(Nhl1hl2)−

1
2 .

From [25, Lemma 3.2, 2.], we have the result:

(∆
(l1)
hl
−∆hl

)ωl1 = ω?1,2h
2
l2 , (∆

(l2)
hl
−∆hl

)ω2 = ω?2,1h
2
l1 ,(75)

with bounded ‖ω?1,2(·;hl1 , hl2)‖∞ ≤
1

12

∥∥∂4
yω1(·;hl1)

∥∥
∞,

‖ω?2,1(·;hl2 , hl1)‖∞ ≤
1

12

∥∥∂4
xω2(·;hl2)

∥∥
∞. Owing to invertibility of ∆hl

, we get:

Φ− (−∆−1
hl
ρl,j,N )︸ ︷︷ ︸

Φl,j

= ω1h
2
l1 + ω2h

2
l2 + ∆−1

hl

(
(ω?1,2 + ω?2,1 + τ1,2)h2

l1h
2
l2(76)

+ ζ1,2(Nhl1hl2)−
1
2

)
.

Using Taylor expansions and substracting them, the error of the discrete gradient
operator is:

∇Φ−∇hl
Φ =

(
σ

(∇)
1 h2

l1

σ
(∇)
2 h2

l2

)
+O(h4

l1 , h
4
l2).(77)

where σ
(∇)
1 =

1

3
∂3
xΦ, σ

(∇)
2 =

1

3
∂3
yΦ. Since Φ ∈ X5,0(γ), ρ ∈ X5(κ), we have

ω1, ω2, ω
?
1,2, ω

?
2,1, τ1,2, ζ1,2 ∈ X1. A Taylor expansion at grid nodes provides:

∇hl
ω = ∇ω +O(h2

l1 , h
2
l2),(78)

where ω denotes any of the functions ω1, ω2, ω
?
1,2, ω

?
2,1, τ1,2, ζ1,2. Owing to the com-

mutativity of ∆−1
hl

and ∇hl
, applying −∇hl

to equation (76) and summing to

equation (77):

El,j −E =

(
(∇ω1 + σ

(∇)
1 )h2

l1
+∇ω2h

2
l2

+ Θhl1
,hl2

∇ω1h
2
l1

+ (∇ω2 + σ
(∇)
2 )h2

l2
+ Θhl1

,hl2

)
,(79)

where Θhl1
,hl2

= ∆−1
hl

(
(∇ω?1,2 +∇ω?2,1 +∇τ1,2)h2

l1
h2
l2

+∇ζ1,2(Nhl1hl2)−
1
2

)
. Then,

using the notation introduced in equation (55) for each function ∇ω1, ∇ω2, σ
(∇)
1 ,

σ
(∇)
2 , ∇ω?1,2, ∇ω?2,1, ∇τ1,2,∇ζ1,2, the sum over the two first terms in equation (68)
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verifies the assumptions of equations (26),(34). Taylor expanding the field E simi-
larly to equation (49):∑

j∈Jl

(E(xl,j)−E(x))φml,j(x) = ξ1(x;hl1)h2
l1 + ξ2(x;hl2)h2

l2 + ξ1,2(x;hl1 , hl2)h2
l1h

2
l2

+O(h4
l1 , h

4
l2),

where ξ1, ξ2, ξ1,2 are the interpolation error functions, verifying ‖ξ1(·;hl1)‖∞ ≤
κ/8, ‖ξ2(·;hl2)‖∞ ≤ κ/8, ‖ξ1,2(·;hl1 , hl2)‖∞ ≤ κ/64 and notations introduced in
equations (51), (52):

(80)
h2
l1ξ1(x;hl1) =

1

2
δ?1(hl1 − δ?1)∂2

xE(x), h2
l2ξ2(x;hl2) =

1

2
δ?2(hl2 − δ?2)∂2

yE(x),

h2
l1h

2
l2ξ1,2(x;hl1 , hl2) =

1

4
δ?1δ

?
2(hl1 − δ?1)(hl2 − δ?2)∂2

x∂
2
yE(x).

We conclude using proposition 3.2, lemma 3.4 and, thanks to the boundedness of

matrix ∆−1
hl

, as well as functions ∇ω̃1,∇ω̃2, σ̃
(∇)
1 , σ̃

(∇)
2 ,∇ω̃?1,2,∇ω̃?2,1,

∇τ̃1,2,∇ζ̃1,2, ξ1, ξ2, ξ1,2:

‖Em
n −E‖p ≤

(
κ+ 29γ

48
+

(
1∑

σ=0

(−1)σh
2(1−σ)
1 Γn

)(
5κ+ 10γ

576

))
h2
n(81)

+

(
1∑

σ=0

(−1)σh
−(1−σ)/2
1 Γn

)
2Q
3

(Nhn)−
1
2 ,

where Γn :=
∑

l∈L(n,σ)

‖∆−1
hl
‖∞ = O(n).

Proof of proposition 3.13. The total momentum of the system is defined as

P = m

∫∫
v

N∑
p=1

N
N
δ(x− xp(t))δ(v− vp(t))dxdv =

N∑
p=1

m
N
N

vp(t),(82)

so

dP
dt

=

N∑
p=1

m
N
N

dvp(t)

dt
=

N∑
p=1

q
N
N

En(xp(t)),(83)

where En is the electric field interpolated at particle positions, given by:

En(xp(t)) =

1∑
σ=0

(−1)σ
∑

l∈L(n,σ)

∑
j∈Jl

El,j S2,l(xp(t)− xl,j)hl1hl2︸ ︷︷ ︸
=φ1

l,j(xp(t))

,(84)

Exchanging the sums, we get:

dP
dt

=

1∑
σ=0

(−1)σ
∑

l∈L(n,σ)

hl1hl2
∑
j∈Jl

El,j
Q
N

N∑
p=1

S2,l(xp(t)− xl,j)︸ ︷︷ ︸
=ρl,j,N

,(85)

Let us consider a sub-grid of level l and the notations Φj = Φl,j, Ej = El,j, ρ
j =

ρl,j,N where j = (j1, j1) ∈ Jl. Owing to periodic conditions on the field and the
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density:∑
j∈Jl

Ejρj =
∑
j∈Jl

∇hl
Φj∆hl

Φj

=

2l1∑
j1=0

2l2∑
j2=0

(
2Φj1,j2Φj1+1,j2 − (Φj1+1,j2)2 + (Φj1−1,j2)2 − 2Φj1,j2Φj1−1,j2

2h3
l1

)

+

(
2Φj1,j2Φj1,j2+1 − (Φj1,j2+1)2 + (Φj1,j2−1)2 − 2Φj1,j2Φj1,j2−1

2h3
l2

)
.

A change of index together with the periodicity of the problem yields:

2l1∑
j1=0

2Φj1,j2Φj1+1,j2 =

2l1∑
j1=0

2Φj1,j2Φj1−1,j2 ,

2l1∑
j1=0

(Φj1−1,j2)2 =

2l1∑
j1=0

(Φj1+1,j2)2

Thus, owing to equivalent relations in j2,

dP
dt

= 0. �

Remark 3.14. The proof on the conservation of the total momentum is not ap-
plicable to the HG scheme. Indeed, the source term of the Poisson equation does
not appear in the field expression in equation (85).

3.3. Offset combination technique. From the analysis conducted in the prece-
dent sections, the following conclusions may be stated. Sparse grid reconstructions
define a different trade off between the three components of the errors (grid-based
and particle sampling errors) as compared to standard PIC approximations. The
particle sampling error is significantly mitigated thanks to sparse grid approxima-
tions. This is an important feature since this component of the error is generally
the most detrimental for the computations and ultimately limits the precision of the
approximation. Contrariwise, the grid-based error is less favorable for the sparse
grid approximations: the component G×n is increased and dominates the grid based
error (see tables 1a, 1b for a comparison of the methods). In this section, a general

Table 1. Grid-based error: dependances of the error components

G‖n and G×n with respect to the grid size (hn) and the solution
regularity (derivatives, t = 1, ..., d).

(a) Density grid based error (‖ρmn,N − ρ‖p).

Scheme G‖n (grid) G‖n (solution) G×n (grid) G×n (solution)

STD O(h2
n) ‖∇∂2

t ρ‖∞ O(h4
n) ‖∇∂2

1 ...∂
2
dρ‖∞

HG/SG O(h2
n) ‖∇∂2

t ρ‖∞ O(log2(h−1
n )d−1h2

n) ‖∇∂2
1 ...∂

2
dρ‖∞

(b) Electric field grid based error (‖Emn −E‖p).

Scheme G‖n (grid) G‖n (solution) G×n (grid) G×n (solution)

STD O(h2
n) ‖∇∂4

t Φ‖∞, ‖∇∂2
t ρ‖∞ O(h4

n) ‖∇∂4
1 ...∂

4
dΦ‖∞, ‖∇∂2

1 ...∂
2
dρ‖∞

HG O(h2
n) ‖∇∂4

t Φ‖∞, ‖∇∂2
t ρ‖∞ O(log2(h−1

n )d−1h2
n) ‖∇∂2

1 ...∂
2
dρ‖∞

SG O(h2
n) ‖∇∂4

t Φ‖∞, ‖∇∂2
t ρ‖∞ O(log2(h−1

n )d−1h2
n) ‖∇∂4

1 ...∂
4
dΦ‖∞, ‖∇∂2

1∂
4
2 ...∂

4
dρ‖∞,

..., ‖∇∂4
1∂

4
2 ...∂

2
dρ‖∞

framework, that we shall referred to as offset combination technique, is introduced
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in order to reduce the grid based error of sparse grid reconstructions. The offset
combination technique is motivated by the property of the error G×n to be an in-
creasing function of the number of sub-grids involved in the combination (O(nd−1))
as well as the combined sum of the errors of the partial estimators. The offset com-
bination consists therefore in both reducing the number of sub-grids considered
within the combination and using sub-grids with increased minimum levels. In this
respect, the offset combination borrows some ideas to the so-called truncated com-
bination [28, 2]. However, a more subtle strategy is implemented within the offset
combination in order to select efficiently the subset of sub-grids.

The main drawback of the truncated method is the additional statistical error
introduced in the simulation, because of the smaller cells of the grids considered
in the combination, the mean number of particles per cell is reduced. The offset
combination is aimed at mitigating the increase of the statistical noise as well as the
dominant component of the grid based error G×n in return of a deterioration of the

component G‖n. The method is presented in this section for an equidistant grid Ωn,
but can be extended to any non-equidistant grid Ωn, n = (n1, ..., nd). The tuning of
the balance between the different components of the error is implemented thanks to
the two parameters l0, l1 ∈ N. The index l0 is used to parametrized the minimum
discretization level for the sub-grids, with the aim to discard the most anisotropic
sub-grids from the combination. The parameter l1 sets the loss of discretization

in the directions aligned with the axis (contributing to the G‖n grid-based error).
Let l1 = 0 the offset method boils down to the truncated combination technique
introduced in [2, 28]. Let us introduce notations for the method: the discretization
in the directions aligned with the axis is denoted n‖, the discretization in the
cross directions is denoted n× and nsg refers to the number of sub-grids in the
combination1

(87) n‖ := n− l1, n× := n+ (d− 1)l0 − l1, nsg := n− l0 − l1.

The sub-grids of the offset combination are defined by the subset of indices2, denoted
L(n, l0, l1, σ) and defined as:

l = (l1, ..., ld) ∈ L(n, l0, l1, σ) :=
{
l ∈ Nd | l > l0,(88)

|l|1 = n× + d− 1− σ} ,
where σ ∈ {0, ..., d− 1}.

1The number of sub-grids considered in the offset combination technique, denoted Nsg , is:

Nsg =

{
2nsg − 1 if d = 2,

2n2
sg − 2nsg + 1 if d = 3.

(86)

2As an example, for {
n = 7, l0 = 2, l1 = 1 (offset),

n = 7, l0 = 2, l1 = 0 (truncated);

the combination consists of the sub-grids with the following level set:

⋃
0≤σ≤d−1

L(n, l0, l1, σ) = {(6, 3), (5, 4), (4, 5), (3, 6), (5, 3), (4, 4), (3, 5)},⋃
0≤σ≤d−1

L(n, l0, l1, σ) = {(7, 3), (6, 4), (5, 5), (4, 6), (3, 7), (6, 3), (5, 4),

(4, 5), (3, 6)}.



SPARSE GRID RECONSTRUCTIONS FOR PARTICLE-IN-CELL METHODS 21

Proposition 3.15. The density interpolant issued from the offset combination ap-
plied to the HG-scheme converges in Lp-norms, 1 ≤ p ≤ ∞ with

‖ρmn,N − ρ‖p = O

h2
n‖︸︷︷︸
G‖n

+ log2(h−1
nsg

)d−1h2
n×︸ ︷︷ ︸

G×n

+ log2(h−1
nsg

)d−1Nh
− 1

2
n×︸ ︷︷ ︸

Pn,N

 .(89)

where n‖, n× and nsg are defined in equations (87).

Compared to the estimation of the HG scheme (equation (44)) both the grid-
based component G×n and the particle sampling component Pn,N of the error are
mitigated in the offset method. This is obtained thanks to the reduced number of
sub-grids in the combination which scales with O(nd−1

sg ) instead of O(nd−1), nsg ≤
n. Besides, the use of sub-grids with higher levels, i.e. parametrized by indices l
with larger |l|1, entails an offset for both Pn,N and G×n , if n× > n. Conversely, the

component G‖n is increased by the elimination of the more anisotropic grids because
n‖ < n if l1 > 0, however this is of no consequence on the accuracy of the numerical

method since the grid based error is dominated by the component G×n .

Remark 3.16. The offset combination technique can be applied to either the HG
scheme or the SG scheme without the loss of their conservativity properties (total
charge, total momentum, etc.) but with the same improvements with respect to
the precision.

3.4. Enhancements of the hybrid grid and sub-grid schemes.

3.4.1. Objectives. The analyses conducted within section 3.2 highlight a deteriora-
tion of the electric field approximations carried out by sparse grid PIC methods (see
table 1b) compared to standard PIC methods. Similarly to the density interpolant,
this altered precision, more important for the SG-Scheme, is due to an increase of
the grid based error component G×n depending on high order cross derivatives of
the solution. The corrections proposed herein address this specific issue.

3.4.2. Oversampled hybrid grid (OHG scheme). The HG scheme does not take ad-
vantage of sparse-grid techniques for the resolution of the electric field, the potential
being carrying out on a Cartesian mesh, unlike the SG scheme. This computation
may be expansive for refined discretizations and particularly for three dimensional
problems. The benefit of this approach is a reduced dependency of the electric
field approximation to the solution cross derivatives (compared to the SG-Scheme,
see table 1b). The strategy introduced to alleviate the numerical cost of the elec-
tric field computation, consists in using grids with different resolutions for the
density the density deposition and the electric field computation. Precisely, the
electric field is carried out on a Cartesian mesh Ωn while the density is projected
onto a sequence of sub-grids associated to a more refined (oversampled) Carte-
sian mesh Ωñ, where ñ = n + δn, δn ∈ N. Let us outline the corrected scheme,
that we shall name the Oversampled Hybrid grid Particle-In-Cell (OHG) scheme.
The steps (OHG1),(OHG2),(OHG4),(OHG5) are similar to respectively the steps
(STD1),(HG2),(HG3),(HG4), but the refined Cartesian grid Ωñ is considered at
step (OHG2).
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(OHG3) The density is deposited onto Ωn from the values of the sparse grid inter-
polant on Ωñ:

∀j ∈ Jn, ρmn,N (xn,j) :=
ωñ
ωn

∑
j̃∈Jñ

ρmñ,N (xñ,̃j)φn,j(xñ,̃j),(90)

where ωn, ωñ correspond to the volume of a cell of the grids Ωn and Ωñ
3:

ωn =

∑
j∈Jn

1

−1

, ωñ =

∑
j̃∈Jñ

1

−1

.(91)

Proposition 3.17. The total charge of the density is conserved by the projection
onto Ωñ and by reconstruction on Ωn, i.e∑

j̃∈Jñ

ρmñ,N (xñ,̃j)ωñ = Q.(92)

Proof of proposition 3.17. The proposition follows from the definitions of the con-
stants ωn, ωñ following the proof of proposition 3.6. �

3.4.3. Enhanced sub-grids (ESG scheme). This correction consists in enhancing the
sub-grids for the resolution of the electric field by introducing sub-grids more refined
than those used for the projection of the density. The sub-grids carrying the electric
field are related to the levels l̃t = lt+δn, (for t = 1, ..., d), δn ∈ N being a parameter
denoting the additional depth of these enhanced sub-grids. Let us outline the
corrected scheme, that we shall name Enhanced Sub-Grid Particle-In-Cell (ESG)
scheme. The steps (ESG1),(ESG2),(ESG4), (ESG6) are similar to respectively the
steps (STD1),(SG2), (SG3) where the enhanced sub-grids are considered, (SG4) .

(ESG3) On each sub-grid, the partial representation of the density is interpolated
to the enhanced sub-grid Ωl̃ with standard interpolation:

∀j̃ ∈ Jl̃, ρl̃,̃j,N :=
∑
j∈Jl

αl,jφ
m
l,j(xl̃,̃j),(93)

where the coefficients αl,j are determined by interpolation conditions.
(ESG5) The electric field is reconstructed on the non-enhanced sub-grids in a way

similar to equation (90).

4. Numerical simulations

4.1. General settings. In the following, we consider the electrons immersed in
a uniform, immobile, background of ions: ρi(x) = Qe/

∫
dx. The domain is a

square Ω := [0, L]d, whose dimensions depend on the Debye length L ∝ λD, λD =√
ε0Te/qen0, with the following charge, mass and temperature for the electrons

qe = 1.602 × 10−19 C, me = 9.109 × 10−31 kg, Te = 1 eV. Periodic boundary
conditions are considered for the particles, the electric potential and the electric
field. The time discretization depends on the plasma frequency: t,∆t ∝ ω−1

p ,

ωp =
√
qeρe/meε0. The particles are pushed with a leap-frog temporal scheme

following the equations of motion.

3The ration ωñ
ωn

can also be defined as follows ωñ
ωn

=

( ∑
j̃∈Jñ

φn,j(xñ,̃j)

)−1

.
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A series of numerical tests is carried out in two dimensional geometries: a Landau
damping in both the linear and the non-linear regimes as well as a diocotron insta-
bility. These tests are performed with the standard Particle-In-Cell scheme (STD),
the sub-grid Particle-In-cell scheme (SG), the hybrid grid Particle-In-cell scheme
(HG), the enhanced sub-grid Particle-In-Cell (ESG) scheme and the oversampled
hybrid grid Particle-In-Cell scheme (OHG), respectively presented in section 2.2,
3.2.1, 3.2.2, 3.4.3, 3.4.2. The schemes are implemented either with the classical
of the offset combination technique. Throughout this section we will refer to the
mean number of particle per cell, denoted Pc, relating the amount of statistical
noise in the simulation. This quantity depends on the underlying Cartesian grid or
the sub-grids used in the combination.

Pc =
N

h−2
n L2

= N2−2n, Pc =
N

nh−1
n+1L+ (n− 1)h−1

n L
=
N2−n

3n− 1
,(94)

Pc =
N

nsgh
−1
n×+1L+ (nsg − 1)h−1

n×L
=

N2−n×

3nsg − 1
,(95)

where the grid discretization now depends on the domain size (hn = 2−nL) and
n×, nsg are defined in equations (87). The mean number of particles per cell is
therefore provided by equations (94)-(95) for the STD scheme, the SG, HG, ESG,
OHG schemes with the classical combination technique and the offset combination
technique.

In any of the following test cases, the total charge of the density is exactly
conserved (to machine precision ≈ 10−16) for the STD, HG scheme and OHG
schemes with any combination technique which confirms the propositions 3.6, 3.17.
Recalling that within the SG or the ESG scheme, because the density is never fully
projected onto a grid since we only proceed a partial projection onto each sub-
grid and combine the resulting partial electric fields, the conservation of density is
therefore not assessed numerically for these schemes.

4.2. Landau damping. As a first test case, we consider the evolution in time
of a perturbation known as the Landau damping, in the linear and non-linear
regimes. When a plasma is slightly perturbed from an equilibrum state, it returns
to its equilibrium with an exponential damping. A perturbation in the electron
distribution of an equilibrium state is considered:

f̃e(x,v) =
1

2π

(
1 + α1cos

(
β12πx

L

))(
1 + α2cos

(
β22πy

L

))
e
−‖v‖22

2 ,(96)

where ‖v‖2 = (v2
x + v2

y)1/2, α1,2 is the magnitude and β1,2 is the period of the
perturbation in each dimension.

4.2.1. Linear regime. The perturbation considered in the distribution of electrons
has to be small enough so that a linear approximation is valid. Under this assump-
tion, the electric field decreases exponentially fast in time according to a damping
rate [29]. The motivation here is to recover this damping rate with the different
schemes. Let us parametrize the perturbation with α1 = α2 = 0.05, β1 = β2 = 1
in equation (96), L = 22λD, ∆t = 1

20ω
−1
p and the final time T = 25ω−1

p . The
grid discretization is chosen so that hn ' 0.34λD, the configuration of the grid and
particles is indicated in table 2. Interpolations in the combination technique are
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done with B1-splines for all the methods. The numerical results are represented in
figure 2 (a). Both the HG, SG, STD schemes agrees well with the damping rate.
Besides, there are four times less total particles in the simulation for the sparse grid
schemes.

Table 2. Linear Landau damping: Configuration of the methods.
Scheme Grid size hn Pc N NStd/N

STD 2−6 (642 cells) 500 2.048× 106 1
SG, HG (classical) 2−6 (642 cells) 500 5.440× 105 4

4.2.2. Non-linear regime. When the perturbation of the equilibrium state is con-
sidered large enough to invalidate the linear approximation, the precedent analytic
damping rate is not available anymore. In order to assess the efficiency of the meth-
ods, the results will be compared to the STD scheme in the same configuration of
grid discretization. A larger perturbation than for the linear case is considered
with α1 = 0.2, α2 = 0.15, β1 = 4, β2 = 3 in equation (96) and let L = 60λD,
∆t = 1

20ω
−1
p . The grid discretization is chosen so that hn ' 0.47λD, the configura-

tion of the grid, particles and schemes is indicated in table 3. Interpolations in the
combination technique are done with B1-splines functions for each of the methods.

Table 3. Non-linear Landau damping: Configuration of the methods.
Scheme Parameters Grid size hn Pc N NRef/N

Ref (STD) 2−7 (1282 cells) 4000 6.553× 107 1
STD 2−7 (1282 cells) 1000 1.638× 107 4

SG, HG (classical) 2−7 (1282 cells) 1000 2.560× 106 25.6
ESG, OHG (offset) (l0, l1, δn) = (2, 1, 1) 2−7 (1282 cells) 1000 2.816× 106 23.2

A first series of simulations is performed with different grid resolutions (8, 16, 32,
64, 128 cells in each dimension) and numbers of particles per cell (Pc = 500, 1000)
in order to get a comparison of the projection error between the methods at initial
time. It is therefore possible to assess precisely the precision of the density projected
onto the grid for the different methods by comparison with the analytic expression
of the initial electron density (ρex). The error of the density in Lp norm is defined
as:

εp(ρ) :=
‖ρ− ρex‖p
‖ρex‖p

, 1 ≤ p ≤ ∞(97)

where ρex is the analytic density at initial time. The integrals in the Lp norm
expressions are approximated with a Riemann sum on the Cartesian grid. The
numerical results of the error in L2 norm (ε2) are represented in figure 3 as functions
of the number of cells in the Cartesian grid. The results for the SG scheme are not
represented because at initial time the scheme is equivalent to the HG scheme. For
any of the methods, the precision is limited by the particle sampling error for quite
coarse grid resolutions, as soon as the number of cells is larger than 32×32. Though
the total number of particles is increased with the mesh refinement, the mean
number of particles per cell remains unchanged, which explains the non decreasing
error observed on the plots of figure 3. This highlights that, though the number of
particles per cell is consequent (1000), it should be increased further to obtain an
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optimal precision and reduce the particle sampling error to a value comparable to
the grid based error. This outlines an important characteristic of PIC methods: the
grid based error is marginal compared to the particle error. This proves that gains
may be expected from numerical methods with a better control of the statistical
noise, hence the interest for sparse grid reconstructions.

Note that for sparse grid methods, the particle sampling error decreases with the
mesh refinement but an estimated mean number of particles as stated by equations
(94)-(95) remaining constant. For a refined grid with 128 × 128 cells, the amount
of statistical noise of the HG scheme with Pc = 500 is lower to that of the STD
scheme run with Pc = 1000. This amounts to a total of number of particles equal
to 1.28×106 for the sparse method (see table 3 for the value related to Pc = 1000),
which is 12 times less compared to the 1.64 × 107 particles used for the standard
method.

The second series of simulation for the non-linear Landau damping is dedicated
to the time evolution of the perturbation. First, the conservation of the total
momentum is investigated for the different methods. To this end, let us introduce
the following error for the momentum:

εP(t) :=
1

N

N∑
p=1

mevp(t0)−mevp(t)

mevth
,(98)

where vp(t) is the velocity of the pth particle at time t and vth :=
√

2qeTe/me

is the thermal velocity of the electrons. The default of momentum conservation is
represented as a function of time in figure 4 (a), (b) with Pc = 500. As predicted by
the propositions 3.13 and the remark 3.16 the total momentum is exactly conserved
(to machine precision ≈ 10−16) for the SG with any of the classical combination
technique or the offset combination technique, as well as the STD scheme. The con-
servation default for the HG, OHG and ESG schemes (see remark 3.14) is observed
to remain marginal (≈ 10−6) and bounded independently of time.

The projection onto the Cartesian grid and a section in the x-direction of the
electron density are proposed in figures 5, 6 after two periods of oscillation of
the electric field (at time T2 = 6.3ω−1

p ) for the different configurations of table 3.
Since the density is never projected onto the Cartesian grid within the SG and
ESG schemes, we perform an interpolation on the Cartesian grid according to the
combination technique for the diagnostics.

First, it appears that the reduction of the numerical noise is manifest for all the
methods using sparse grid reconstructions. It is an essential property since, this er-
ror, due to the undersampling of the distribution function, is the most detrimental
in the precision of numerical methods. This better control of the numerical noise is
obvious on the x-section plots displayed on figure 5. Though the estimated mean
number of particles per cell is equal to 1000 for the HG (classical combination),
SG (classical combination), OHG (offset combination) and ESG (offset), the mag-
nitude of the dispersion is observed to be comparable to that of the STD scheme
with 4000 particles per cell which amounts to total number of particles 25 times
greater (see table 3). It is also noticeable that sparse grid approximations do not
introduce too much numerical diffusion, the extrema of the numerical approxima-
tions being comparable whatever the scheme. Second, the grid-based error can be
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Figure 6. Non linear Landau damping: Electron density at t =
6.3ω−1

p for the STD (a), HG (classical) (b), SG (classical) (c),
ESG (offset) (d), OHG (offset) (e), STD (f) schemes; grid with
128× 128 cells, Pc = 1000 (a), (b), (c), (d), (e), Pc = 4000 (f).

observed, particularly on the plots of the SG and HG methods. This error repro-
duces the patterns of the coarsest grid levels. This error is specific to sparse grid
approximations of the density and analysed to be dominated by the G×n grid-based
component scaling with O(log2(h−1

n )h2
n). This latter term results from the accumu-

lation of error on the different levels of sub-grids and is reduced thanks to the offset
combination technique (see remark 3.15). The smearing of the grid structure on
the error plots related to the computations performed with the offset combination
technique can be observed on figure 6. Indeed, in these computations the number
of sub-grids considered for the reconstruction is reduced by taking nsg < n (from
2n− 1 = 13 sub-grids to 2nsg − 1 = 7 sub-grids). The sub-grids considered in the
combination are detailed in the example 2. The control of the numerical noise (with
approximately the same number of total particles), though expected deteriorated,
due to the use of more refined grids compared to the original methods, remains
very effective improving significantly the quality of the numerical results. For these
methods, still a good control of the numerical diffusion shall be pointed out. Simi-

larly, the increase of the grid-based component G‖n being set by the trade-off reveals
to remain marginal on the precision of the numerical approximation.

4.3. Diocotron instability. In this test case, we consider a hollow profile in the
electron distribution, confined by a uniform magnetic field B [30], with the following
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Maxwellian distribution of electrons :

f̃e(x,v) =
γ

0.03L(2π)2
e
−

(‖x−L
2 ‖2−L

4 )
2

2(0.03L)2 e
−‖v‖22

2 ,(99)

where
∥∥x− L

2

∥∥2

2
= (x − L

2 )2 + (y − L
2 )2 and γ a normalization constant so that∫ ∫

f̃e(x,v)dxdv = 1. The external magnetic field is considered uniform along

the z-axis B = (0, 0, Bz) (Bz = 2.5 × 10−5 T) and strong enough so that the
electron dynamics is dominated by advection in the self-consistent field E×B. The
instability caused by the magnetic field deforms the initially axisymmetric electron
density distribution, leading, in the nonlinear phase, to the formation of a discrete
number of vortices. As we expect fine scale structure to form in the process, a high
discretization in space is required to reproduce these structures. Again, this test
case defines a demanding benchmark for sparse grid approximations very likely to
outline the grid error introduced with these reconstructions.

Let the parameters be L = 22λD, ∆t = 0.1ω−1
p , the system is observed at time

T1 = 54ω−1
p . The numericals results will be compared to the STD scheme with a

grid composed of 256 × 256 cells and Pc = 200 particles per cells as indicated in
table 4. The interpolations are implemented using B1-spline while B2-splines are
used for the density visualization. Following steps of proof of proposition 3.8, one
can see that the use of B2-spline, even restricted to the visualization of the density
on the grid, provides a better representation of the density.

Table 4. Diocotron instability: Configuration of the numerical methods.
Scheme Parameters Grid size hn Pc N NRef/N

Ref (STD) 2−8 (2562 cells) 200 2.621× 107 1
STD 2−8 (2562 cells) 40 2.621× 106 5

OHG (classical) δn = 2 2−8 (2562 cells) 40 1.187× 106 11
SG (classical) 2−10 (10242 cells) 40 1.187× 106 11

ESG, OHG (offset) (l0, l1, δn) = (4, 0, 1) 2−8 (2562 cells) 40 1.802× 106 7.25

The projection of the electron density onto the Cartesian grid and a section in
the x-direction (at x = 2L

3 ) at time T1 for the different configurations of table 4 are
represented in figure 7, 8. The numerical results are presented only for the OHG
scheme and not for the HG scheme because the resolution of the Poisson problem for
the latter is exceedingly costly in comparison to the others methods. Besides, the
same accuracy is achieved with either the OHG scheme or the HG scheme, hilighting
the benefit of the oversampled correction of the scheme. The discretizations of the
sparse grid schemes with the classical combination technique (hn = 2−10, hñ =
2−10) are chosen higher than the standard ones (hn = 2−8) because the sparse grid
schemes fail to reproduce the fine-scale structures depending on cross derivative
terms. Indeed, we have shown in section 3 that the grid-based error component G×n
scales with O(log2(h−1

n )h2
n) for the sparse grid schemes (compared to O(h4

n) for the
standard scheme).

Despite the use of a more refined grid discretization, we observe on the plots of
the section in the x-direction (figure 8 (a)) that the OHG and SG schemes with
the classical combination technique still fail to reproduce correctly the fine-scale
structure of the density. Indeed, where the solution has steep gradients (y ≈ 6,
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Figure 7. Diocotron instability: Electron density for the STD
(a,b), OHG (classical) (c), SG (classical) (d), ESG(offset) (e), OHG
(offset) (f) schemes at t = 54ω−1

p . Zoom on the top left corner.
Pc = 200 (a), Pc = 40 (b), (c), (d), (e), (f).
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Figure 8. Diocotrom instability: Density profile of the electron
density at t = 54ω−1

p and x = 2L
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y ≈ 9 in figure 8 (a)) the sparse grid schemes show a bit of numerical diffusion.
The correction of the schemes with the offset combination technique achieves a fair
representation of the density and even reproduce some fine-scale structures that are
faded by the statistical noise of the STD scheme with Pc = 40 (see zoom on figure
7). The improvement is manifest on the plot of the section in the x-direction (figure
8 (b)) where the numerical diffusion introduced by the sparse grid schemes has been
mitigated. Here again the sparse grid techniques achieve an improvement on the
statistical noise with the same mean number of particles per cell (and thus less total
particles in the simulation) than the regular PIC approximation (see the plot of the
section in the x-direction for the density in figure 8 (a), (b)). Though this test case
is a very demanding benchmark for sparse grid approximations a reduction of the
total number of particles is achieved (see table 4) and all the fine-scale structures
appearing in the reference solution are well reproduced by the corrected schemes.

5. Conclusions

In this paper, we have presented, analysed and proposed Particle-In-Cell nu-
merical methods embedding sparse-grid reconstructions by means of the combina-
tion technique. These methods have been numerically experienced and compared
against regular PIC methods. Sparse-grid PIC approaches promise a speed-up of
the method thanks to a better control of the statistical noise which entails the
reduction of the particle number. A reduction of cost for the computation of the
electric field is also accessible, owing to the reduced number of cells composing
sparse-grids (O(log2(h−1

n )d−1h−1
n ) instead of O(h−dn ) for a Cartesian mesh). The

analyses conducted within this document show that the approximation error may
be decomposed into a particle error and a grid based error. Two components define

the grid based error, namely G‖n, G×n with a balance between these two contributions
depending on the numerical methods. The particle error, denoted Pn,N , is related
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to the sampling of the distribution function by particles and characterizes the dis-
persion of the sampling. One can conclude that the Sub-Grid (SG) and Hybrid-Grid
(HG) schemes achieve both a fair representation of the density with an improved
control of the statistical noise (Pn,N ) compared to regular PIC schemes. Nonethe-
less, the grid based error is deteriorated, due to the increase of the component G×n ,
depending on the solution high order cross derivatives. This increase is more sub-
stantial for three dimensional computations. Similar conclusions may be drone from
the formal analysis stating the first convergence (and rate of convergence) results
for the electric field sparse grid approximation established within this document
(see propositions 3.11, 3.10 for the SG and HG schemes). Furthermore, the SG
scheme is proved to be compliant with the conservation properties of standard PIC
methods (total charge and momentum), except positivity. The offset technique is
introduced to decrease the dominant component of the grid based error (G×n ) in
sparse grid PIC methods. This framework permits to tune the balance between
the different components of the error and improve the quality of PIC sparse grid
approximations. Besides, enhancements of the SG and HG schemes are proposed in
order to improve the efficiency of sparse grid methods regarding the computation
of the electric field.

The numerical experiments performed on various classical test cases, consolidate
the results of the formal analyses and illustrate conclusively the gain brought by
sparse grid reconstructions in particular when combined with the offset method, to
improve the sampling error without introducing a significant numerical diffusion.
Despite the simplicity of the implementation and the restriction to two dimensional
geometries, the proposed numerical investigations provide a glimpse of PIC method
implementing sparse-grid reconstructions. However the full potential of the method
can only be achieved by three dimensional computations. This is strikingly illus-
trated by the plots of figure 9 relating the number of particles (N) required in
either a 2D or a 3D computation to guarantee a similar statistical noise in both
the regular and the sparse-grid PIC methods. It is manifest that the reduction of

	1x106
	1x107
	1x108
	1x109
	1x1010
	1x1011
	1x1012
	1x1013

	100 	1000

Standard	2DStandard	3DSparse	2DSparse	3D

Figure 9. Number of particles required by 2D and 3D computations
as a function of the number of cells (in each dimension) to recover
a comparable statistical noise (Pc = 1000) in standard and sparse-
grid PIC methods.

particles with the sparse grid schemes is significantly larger for three dimensional
computations: for grid with more than 500 cells (in each dimension), the number
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of particles run in the standard method for two dimensional computations is larger
than that of sparse grid methods for three dimensional computations. Though these
projections may be mitigated by implementation issues, the perspectives offered by
the offset method together with the enhancement of the schemes introduced in this
paper promise a leap forward in the efficiency of PIC numerical methods for three
dimensional computations.
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Appendix A. Appendix

Proof of lemma 3.4. Let l = (l1, l2), because hl1hl2 = h|l|1 , one gets:

fmn (x)− f(x) =
∑

l∈L(n,0)

(fml (x)− f(x))

︸ ︷︷ ︸
n terms

−
∑

l∈L(n,1)

(fml (x)− f(x))

︸ ︷︷ ︸
n−1 terms

= (Nhn)−
1
2

(h1)−
1
2

∑
l∈L(n,0)

ζ1,2(x;hl1 , hl2)−
∑

l∈L(n,1)

ζ1,2(x;hl1 , hl2)

 .

Eventually, using the boundedness of the functions ‖ζ1,2(·;hl1 , hl2)‖∞ ≤ κ:

|fmn (x)− f(x)| ≤ κ
((√

2 + 1
)
n− 1

)
(Nhn)−

1
2 . �(100)
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