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A FORMAL MODEL OF COLEMAN FAMILIES AND APPLICATIONS
TO IWASAWA INVARIANTS

FILIPPO A. E. NUCCIO MORTARINO MAJNO DI CAPRIGLIO, TADASHI OCHIAI,
AND JISHNU RAY

Abstract. For a given Coleman family of modular forms, we construct a formal model
and prove the existence of a family of Galois representations associated to the Coleman
family. As an application, we study the variations of Iwasawa λ- and µ-invariants of dual
fine (strict) Selmer groups over the cyclotomic Zp-extension of Q in Coleman families of
modular forms. This generalizes an earlier work of Jha and Sujatha for Hida families.

Résumé. Nous construisons un modèle formel pour toute famille de Coleman de formes
modulaires, et nous montrons l’existence d’une famille de représentations galoisiennes qui
lui est attachée. Gràce à cette construction nous étudions la variation des invariants
d’Iwasawa λ et µ attachés aux duaux des groupes de Selmer fins (strictes) le long de la
Zp-extension cyclotomique de Q dans des familles de Coleman de formes modulaires. Nos
résultats généralisent ceux obtenus par Jha et Sujatha dans le cas de familles de Hida de
formes modulaires ordinaires.

1. Introduction

Throughout the article, we denote by p a prime number greater than 3, and we let N be
a positive integer that is prime to p.

In the celebrated papers [Col97a] and [Col97b], Coleman constructed p-adic families of
elliptic cuspforms with fixed slope, often referred to as Coleman families. Coleman’s theory
is a non-ordinary generalization of Hida’s theory, yet some of the properties of Coleman
families are not completely parallel to those of Hida families. For example, Hida families are
usually defined over the whole weight space, but Coleman families are usually defined only
locally in the weight space. Also, a Hida family is defined over an Iwasawa algebra, or over
a complete and semi-local ring which is finite over an Iwasawa algebra, whereas a Coleman
family as constructed in [Col97b] is defined over an affinoid algebra. In particular, Wiles’
method of pseudo-representations does not apply verbatim to attach a family of Galois
representations to a Coleman family because affinoid algebras are not semi-local. Yet,
this is the more natural setting to study Iwasawa-theoretic questions, that are the main
focus of our work. Our aim is to analyse the behaviour of some Iwasawa invariants in
Coleman families, and for this we need a convenient algebraic framework to simultaneously
treat the “big” p-adic Galois representations over the whole Coleman family, as well as the
“specialized” ones attached to each cuspform in the family. Moreover, the study of integrality
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questions, or growth of denominators, is crucial for defining Iwasawa’s µ-invariant and this
analysis makes sense only over integral domains where p is not invertible. Thus we devote
the first half of the paper to detailing a construction of an integral formal model for Coleman
families over a complete local OK-algebra A◦K where OK is the ring of integers of a finite
extension K of Qp. We do not recall a precise definition of A◦K here, rather pointing the
reader to (4.1). The spectrum of A◦K contains a certain countable infinite set Z(k0,i)[r0]
which is identified with a subset of Z≥2 (see (4.3) for the definition of Z(k0,i)[r0]), so that
for every k ∈ Z(k0,i)[r0] we can consider the unique classical cuspform fk that belongs to
the Coleman family—or that passes through it, as one can say from a more geometrical
viewpoint. Denote by ρk the continuous, two-dimensional Qp-representation attached by
Deligne to fk: our first result goes in the direction of p-adically interpolating these Galois
representations. Explicitly, we prove the following theorem that attaches a “big” Galois
representation to the given Coleman family by the method of pseudo-representation: we
refer to Theorem 4.3 for the precise statement and the proof, here it suffices to say that S is
a finite set of rational primes containing p, and Pk is the prime ideal in A◦K, corresponding
to the point of SpecA◦K identified with the integer k, and such that A◦K/Pk is a finite
Zp-module.

Theorem A. There exists a free A◦K-module T of rank two with a continuous action of
unramified-outside-S Galois group GQ,S such that the representation

ρ : GQ,S −→ AutA◦K(T)

satisfies πρ = π (in a suitable basis). In particular, ρ modulo the ideal Pk corresponding to
k is isomorphic to a lattice of ρk for all k ∈ Z(k0,i)[r0].

The construction of a big Galois representation attached to a Coleman family is not
new. Already in the foundational articles [Col97b] and [CM98] the authors described it, and
another approach (based on the theory of modular symbols) was later proposed by Bellaïche
in [Bel12]. In these works, the Galois representation is supported on a rank-2 module over
a Tate algebra, or possibly over the subalgebra of power-bounded elements in such a Tate
algebra. This ring is not semi-local and therefore these constructions were not suited for
our specialization techniques for fine Selmer groups in the setting of Iwasawa theory. The
definition of a formal model for the Galois representation attached to a Coleman family
that we present in this paper was first introduced in the preprint [NO16], that has received
some citations but has finally not been published. We take the opportunity to present
the construction here, together with its Iwasawa-theoretic applications. Independently
from ours, another construction of a formal model is explained in [BL21, Remark 1.4 and
Remark A.1] and relies on Loeffler–Zerbes’ work [LZ16], where the representation arises in
the cohomology of “big” étale sheaves on modular curves as defined in [AIS15]. Our approach
differs from theirs, as it mainly relies on the theory of pseudo-representations as in Wiles’
original work [Wil88] (see also Hida’s monograph [Hid93]). It has the advantage that it
does not use any specific context of elliptic modular forms so that it can be generalised to
the setting of Coleman families associated to more general Shimura varieties.

In the second half of this article, we analyse some Iwasawa-theoretic properties of the
family of Galois representations constructed in the above theorem. This generalizes results
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of Greenberg–Vatsal (see [GV00]) and of Emerton–Pollack–Weston (see [EPW06]), who
studied the variations of Iwasawa λ- and µ-invariants of dual Selmer groups over the cyc-
lotomic Zp-extension of Q for families of p-ordinary modular forms. More precisely, let
r̄ : GQ → GL2(κ) be an absolutely irreducible modular Galois representation of GQ over
a finite field κ of characteristic p. Assume that r̄ is p-ordinary and p-distinguished in the
sense that the restriction of r̄ to a decomposition subgroup at p is reducible and non-scalar
(see [EPW06, p. 523]), and let H(r̄) be the Hida family of r̄. Emerton–Pollack–Weston
showed that if the µ-invariant for the dual Selmer group for some f0 ∈ H(r̄) is trivial,
then it is so for all f ∈ H(r̄). Further, they showed that, under the assumption that the
µ-invariant is zero, the λ-invariant is constant across a branch in the Hida family H(r̄).

Our goal is to study an Emerton–Pollack–Weston type result for the fine Selmer group in
a Coleman family. The fine Selmer group is a much studied object in Iwasawa theory and
occurs in the formulation of the Iwasawa Main Conjecture for elliptic curves and modular
forms. In [CS05], Coates and Sujatha initiated a systematic study of the fine Selmer group
and formulated conjectures about its structure over a p-adic Lie extension. Under certain
hypotheses, they have shown that Iwasawa’s µ-invariant Conjecture for the cyclotomic
extension of a number field is equivalent to Conjecture A on the dual fine Selmer group of
an elliptic curve (see [CS05, Theorem 3.4]). Conjecture A says that the µ-invariant of the
dual fine Selmer group of an elliptic curve over the cyclotomic Zp-extension of a number field
is trivial. Observe that the Pontryagin dual of the fine Selmer group over the cyclotomic
Zp-extension of Q is proved to be torsion by a deep result of Kato [Kat04, Theorem 12.4]
regardless of whether f is ordinary at p or not. An interested reader might also want to
view the Iwasawa Main Conjecture framed in terms of dual fine Selmer group; see [Kur02,
Conjecture 6.1] or [Kob03, Proposition 7.1 (ii)] and [Kat04, Conjecture 12.10]. This is the
version of the Iwasawa Main Conjecture without p-adic L-functions, framed in terms of
fine Selmer groups, and this is what is usually considered when dealing with non-ordinary
families (see [Nak20, Section 5]). This justifies the use of fine Selmer groups in this paper;
the construction of plus and minus Selmer groups over a Coleman family is unattainable
by known techniques.

Variations of Iwasawa invariants for the dual fine Selmer group in Hida families of or-
dinary modular forms have been studied by Jha and Sujatha in [JS11]. In this article, we
go beyond their work and study these variations for the dual fine Selmer group when the
modular forms vary in a Coleman family. We define a universal “big” fine Selmer group for
the Galois representation T produced in Theorem A, and we show that it is cotorsion over a
two-variables Iwasawa algebra. Further, we specialize this big fine Selmer group at classical
points and study its relation with the classical fine Selmer group (see Theorem 6.3). In this
context, our main result is the following, where ρ is as in Theorem A:

Theorem B (see Theorems 7.1 and 7.3). Assume that the residual representation of ρ when
restricted to GQp is irreducible. Given any k ∈ Z(k0,i)[r0], the µ-invariant of the dual fine
Selmer group associated to ρk is zero if and only if the same is true for any other classical
modular form in the Coleman family. Under the assumption that the µ-invariant of one, or
of any, form is zero, the λ-invariants are constant for all but finitely many classical modular
forms in the Coleman family.
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Other authors have studied the question of the variation of Iwasawa invariants in families
of congruent modular forms. In [Kim09], Kim studied Iwasawa λ- and µ-invariants for the
dual signed Selmer groups over the cyclotomic Zp-extension of Q for elliptic curves at
supersingular primes. He proved that they are constant for a family of elliptic curves with
the same residual representation if the µ-invariant of any of them is zero. Kim’s result was
later generalized by the first-named author and Sujatha in [NS21] in a more general, but
still supersingular, setting. Under Conjecture A and a few other additional assumptions
they could give a criterion when the µ-invariant of the dual signed Selmer group vanishes
purely in terms of a signed residual Selmer group (see [NS21, Theorem 4.13]). Variations of
Iwasawa invariants for dual fine Selmer groups were also studied by Kim, Lee and Ponsinet
in [KLP19] but there the authors considered a family of modular forms with fixed weight
and varying tame levels, contrary to our set-up. Hatley and Lei considered the case of the
variations of Iwasawa λ- and µ-invariants for dual signed Selmer groups for non-ordinary
congruent modular forms and proved a result similar to Kim’s (see [HL19, Theorem 4.6]). In
[LS18], Lim and Sujatha studied fine Selmer groups of two congruent Galois representations
over an admissible p-adic Lie extension and showed that, under appropriate congruence
conditions, if the dual fine Selmer group of one form is pseudo-null, the same holds for the
other form (see [LS18, Theorem 3.7]).

The structure of the paper is as follows. In Section 2, we prepare some generalities
on affinoid algebras and on the weight space in relation to Coleman families. Based on
this preparation, we construct a formal model of a given Coleman family in Section 3.
In Section 4, we explain the construction of the Galois representation giving the proof of
Theorem A (in the precise formulation of Theorem 4.3). In Section 5, we review basic
facts on Galois deformations of Coleman families and construct the big fine Selmer group
associated to a Coleman family. The specialization theorem at an arithmetic prime is given
in Section 6. We use this specialization theorem to show that the big fine Selmer group is
cotorsion over a two-variables Iwasawa algebra. Our results about variations of the Iwasawa
invariants, summarized in Theorem B, are obtained in Section 7.
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2. Preliminaries on affinoids and weight spaces

We refer the reader to [BGR84] for our conventions and basic results about rigid analytic
spaces in the sense of Tate. Recall that p is a fixed odd prime and N ≥ 1 satisfies (p,N) = 1.

Let K be a complete subfield of Cp. The field K can be either a finite or an infinite
extension of Qp. Let X be an affinoid space defined over K. We write AX for the
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ring of analytic functions on X and A ◦X for the subring of power-bounded elements (see
[BGR84, Section 1.2.5]). They will always be endowed with their Gauß semi-norm (which is
a norm and coincides with the sup-norm if X is reduced). When K is a discrete valuation
field, the ring of power-bounded elements A ◦X is noetherian because it is a quotient of
OK〈T1, . . . , Tn〉 and OK〈T1, . . . , Tn〉 is the p-adic completion of a polynomial algebra over
OK . The ring AX = A ◦X [1

p ] is noetherian whether K is a discrete valuation field or not.
For every maximal ideal m ⊆ AX , the quotient AX /m is a finite extension ofK by [BGR84,
Section 6.1.2, Corollary 3] and A ◦X /m◦ is a domain which is finite over OK by [BGR84,
Section 6.1.3, Proposition 3].

We consider the following definition:

Definition 2.1. Let K be a complete subfield of Cp and let X be an affinoid space over
K. A subset Z of the set of K-valued points X (K) is said to be Zariski-dense in X if we
have U(K) ∩Z 6= ∅ for every non-empty Zariski-open subspace U ⊆X .

Given x0 ∈ K and r ∈ pQ, we denote by B[x0, r]K and B(x0, r)K , respectively, the
closed and open ball of radius r and centre x0, seen as K-rigid analytic spaces (see [dJ95,
Section 7] for a description of the second space). We note that we normalize the p-adic
absolute value | | so that |p| = 1

p . For example, in the case r = 1 and x0 ∈ K, A ◦B[x0,1]K
is

isomorphic to the following ring of restricted power series with coefficients in OK :

OK〈T − x0〉 =
{ ∞∑
i=0

ci(T − x0)i ∈ OK [[T − x0]]
∣∣∣ lim
i→∞
|ci| = 0

}
.

Finally, given any complete subfield L ⊆ Cp, we also need the notation B[a, r]L and B(a, r)L
for the set of all x ∈ L such that |x − a| ≤ r (respectively, such that |x − a| < r). When
K = Qp, we denote B[x0, r]Qp (resp. B(x0, r)Qp) by B[x0, r] (resp. B(x0, r)) dropping the
subscript.

Lemma 2.2. Let K be a complete subfield of Cp which is a discrete valuation field.

(1 ) When X is a reduced affinoid defined over K and f ∈ AX vanishes on every point
of a Zariski-dense subset Z, we have f = 0.

(2 ) Let x0 ∈ K. Every infinite set inside B[x0, 1]K(K) is Zariski-dense.

Proof. For the first assertion, suppose f 6= 0 and consider the Zariski-open subset Uf =
{x ∈ X such that f(x) 6= 0} of X . Since X is reduced and f 6= 0, we have Uf 6= ∅. By
the assumption that Z ⊂ X is a Zariski-dense subset, we have Z ∩ Uf (K) 6= ∅. For any
point z ∈ Z ∩ Uf (K), we have f(z) = 0, contradicting the definition of Uf .

We pass to the second assertion. By the Weierstraß Preparation Theorem ([BGR84,
Section 5.2.2, Theorem 1]), every function f ∈ AB[0,1]K can be factored as f = P ·U where
P ∈ K[T − x0] is a polynomial and U ∈ A ×B[x0,1]K

is an invertible power series which does
not vanish on B[x0, 1]K . It follows that every such f has only finitely many zeroes and
that AB[x0,1]K is a PID, showing that non-trivial Zariski-closed sets in B[x0, 1]K consist of
finitely many points. �
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One of the main rigid spaces of interest for us is the weight space WN , which is isomorphic
to ϕ(Np) copies of B(1, 1)K indexed by

D = Hom
(
(Z/NpZ)×,C×p

)
.

For generalities about WN , we refer to [Col97b, Section B1] and to [CM98, Section 1.4].
For more detailed accounts, we refer to [Gou88, Chapter I.3, §4 and Appendix] and [Buz07,
p. 103]. By definition, the weight space satisfies

WN (Cp) = Homcont(lim←−
n

(Z/NpnZ)×,C×p ).

Following Coleman and Mazur, we give the following definition:

Definition 2.3. Denote by ω : µp(Zp)→ Z×p the Teichmüller character and denote the the
projection x 7→ x/ω(x) by 〈〈 〉〉 : Z×p → 1 +pZp. For every integer k ∈ Z and every character
χ ∈ D of finite order, the point χ〈〈 〉〉k ∈ WN (Qp) is called an accessible weight-character
with coordinates (χ, k).

As detailed in [CM98, Definition in Section 1.4] the accessible weight-characters are
parametrized by the rigid analytic subspace W ∗

N = D×B∗ ⊆ WN where B∗ is the subdisk

of B(1, 1) which is the isomorphic image of B(0, p
p−2
p−1 ) via the map s 7→ (1 + p)s, so

(2.1) B(0, p
p−2
p−1 ) ∼= B∗ ⊆ B(1, 1).

In the notation introduced in Definition 2.3, the character χ〈〈 〉〉k is represented by the
point (χ, (1 + p)k) ∈ WN (Qp) which gets mapped to (χ, k) by the identification in (2.1);
we see that the word “coordinates” comes from seeing W ∗

N as ϕ(Np)-copies of B(0, p
p−2
p−1 ).

From now on we systematically write points in the weight space through their coordinates.
In particular, for every fixed χ ∈ D, the weights of characters with Nebentypus χ will be
regarded as points in B(0, p

p−2
p−1 ) rather than in B(1, 1).

The assumption (N, p) = 1 allows us to consider the group Hom
(
(Z/p)×,C×p

)
as being a

subgroup of D. It thus makes sense, for each 0 ≤ j ≤ p− 2, to interpret ωj as an element
of D. The characters x 7→ xk, which are accessible with coordinates (1, k), are then the
elements of W ∗

N (Qp) which belong to the ωk-th copy of B∗.

3. p-adic families of modular forms

We start with a classical eigencuspform f ∈ Sk0(Γ1(Np), ε) of weight k0, level Np and
Nebentypus ε, which we factor as a product ε = εNω

k0−i for some character εN of conductor
divisible by N and some 0 ≤ i ≤ p − 1. Our main references concerning p-adic modular
forms and p-adic families thereof are [Col97b, Part B] as well as [Gou88], in particular
Section II.3 ibid. for the definition of the Up-operator.

Definition 3.1. Let f be a p-adic modular form of level Np which is an eigenvector with
respect to the Up-operator. We define the slope of f to be the p-adic valuation of the Up-
eigenvalue of f . It is a non-negative rational number.
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We assume that the slope of f is 0 ≤ α ≤ k0 − 1. In [Col97b], [Col97a] and [CM98]
Coleman and Coleman–Mazur have built a theory of families of p-adic modular forms of
slope α interpolating f , a part of which is stated in Theorem 3.2 below. Let us introduce
some notation. Given an element k0 ∈ Qp, an integer i and an element r ∈ pQ with
r < p

p−2
p−1 , we denote by X(k0,i)[r] the affinoid subspace of the weight space defined as

X(k0,i)[r0] := {εNωi} ×B[k0, r] ⊆ W ∗
N .

Let us consider a finite extension K of Qp, which will play the role of the field of coefficients
of motives associated to cuspforms f in the given Coleman family. We note that K has
nothing to do with the field of definition of motives associated to cuspforms f in the given
Coleman family, for which we can choose Qp. From now on, we denote by A ◦X(k0,i)

[r]
/K

(resp. AX(k0,i)
[r]
/K

) the extension of coefficients A ◦X(k0,i)
[r] ⊗Zp OK (resp. AX(k0,i)

[r] ⊗Qp K)
where OK is the ring of integers of K. We have the following result thanks to [Col97b]:

Theorem 3.2 ([Col97b]). Suppose that f is a classical normalized cuspidal eigenform, of
weight k0, level Γ1(Np), slope α < k0 − 1, Nebentypus ε = εNω

i−k0 and which is new away
from p. When i = 0, suppose moreover that a2 6= εN (p)pk0−1, where a is the Up-eigenvalue
of f .

Then, there is a radius r0 < p
p−2
p−1 lying in pQ and analytic functions an ∈ A ◦X(k0,i)

[r0]
/K

,

indexed by n ∈ N, such that the following statements hold:

(1 ) For all integers k ∈X(k0,i)[r0](Qp) satisfying k > α+ 1, the series
∞∑
n=1

an(k)qn ∈ K[[q]]

coincides with the q-expansion of a classical normalized cuspidal eigenform of level
Np, weight k, slope α and character εNωi−k.

(2 ) The series
∞∑
n=1

an(k0)qn ∈ K[[q]] coincides with the q-expansion of f .

(3 ) The space X(k0,i)[r0] is ap-small in the sense of [Kis03, (5.2)].

Remark 3.3. At first glance, it might look better to write a(r0)
n for the analytic functions

appearing in the statement, since the radius r0 is not uniquely associated to f and these
functions might a priori depend on its choice. However, we will prove in Corollary 3.6
below that this is not necessary.

Remark 3.4. In this paper, the property that X(k0,i)[r0] be ap-small will not be used. Nev-
ertheless, point (3) of Theorem 3.2 is essential when dealing with interpolation of crystalline
periods along the Coleman family, adapting techniques from [Kis03].

Proof. In [Col97b, pp. 465–467] (and especially along the proof of Corollary B5.7.1 ibidem),
Coleman attached to the f chosen above the space X(k0,i)[r0] with a radius r0 ∈ pQ small
enough. In [Col97b, pp. 465–467], this space is denoted simply by B and a crucial step is to



8 F. A. E. NUCCIO, T. OCHIAI, AND J. RAY

take a finite étale affinoid algebra R(k0,i)[r0] over AX(k0,i)
[r0] whose associated affinoid space

parametrizes families of p′-new forms of slope α in the sense of [Col97b, p. 467, Definition].
As in [Col97b], we write X(R(k0,i)[r0]) → X(k0,i)[r0] for the affinoid space associated to
R(k0,i)[r0].

Then the statements (1)–(3) are in [Col97b, Corollary B5.7.1] verbatim, except for the
condition that all an be power-bounded and that all forms above be normalized. In Lemma
B5.3 ibidem it is shown that the Hecke eigenvalues of an overconvergent cuspidal eigenform
are bounded by 1 if the form is normalized. We thus deduce the result by observing that
a1 = 1, which follows from a1 = T (1) = 1 by the construction given in Theorem B5.7
ibidem. As discussed in [Kis03, §5.2] it is always possible to shrink a disk around a point
in order to get a smaller one which is ap-small, and we define this smaller radius as the
constant r0 of the statement. �

Definition 3.5. Let f be a form as in Theorem 3.2 and let 0 < r ≤ r0 be smaller than
or equal to the radius constructed ibid. The collection of the rigid functions {an}n∈N on
X(k0,i)[r] is called the Coleman family of slope α and radius r passing through the form f .
The formal power series

∞∑
n=1

anq
n ∈ A ◦X(k0,i)

[r]
/K

[[q]]

is said to be the Fourier expansion of the Coleman family. For each x ∈ X(k0,i)[r], we
denote by fx the overconvergent modular form whose expansion is

∑
an(x)qn. Sometimes,

we also refer to the collection of all these forms as the Coleman family of slope α through
the form f .

Consider the subset Z(k0,i)[r] of accessible weight-characters in X(k0,i)[r] defined as

(3.1) Z(k0,i)[r] =
(
{εNωi} × Z>α+1

)
∩X(k0,i)[r] ⊆ W ∗

N (Qp).

By an abuse of notation, we write k for elements (εNω
i, k) of Z(k0,i)[r] and we denote the

p-adic Deligne representation attached to fk in [Del71] by ρk.

Consider now a form f of weight k0 satisfying the assumption of Theorem 3.2 and a
radius r0 as constructed ibid.

Corollary 3.6. Let 0 < r < r0 be an element of pQ. For n ≥ 1 the functions

res
X(k0,i)

[r0]

X(k0,i)
[r] (an) ∈ A ◦X(k0,i)

[r]
/K

are the Fourier expansion of a Coleman family of slope α and radius r passing through the
form f .

Proof. This follows from the definitions, since for every k ∈ Z(k0,i)[r](Qp) the series
∞∑
n=1

res
X(k0,i)

[r0]

X(k0,i)
[r] (an)(k)qn

is the q-expansion of a form of the required type. �
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Thanks to the above corollary, we can unambiguously speak about the Fourier coefficients
an of a Coleman family without referring to the radius; observe also that shrinking an ap-
small disk to one of smaller radius preserves ap-smallness. We recall the following lemma:

Lemma 3.7. Let r ∈ pQ be a radius satisfying r ≤ r0. If the function G ∈ AX(k0,i)
[r]
/K

vanishes on Z(k0,i)[r0], it is everywhere zero.

Proof. The subset Z(k0,i)[r] ⊆ X(k0,i)[r](Qp) is Zariski-dense in X(k0,i)[r] thanks to the
second assertion of Lemma 2.2. Hence, the assertion is an immediate consequence of the
first assertion of Lemma 2.2. �

4. p-adic family of Galois representations

The main result of this section is Theorem 4.3 which produces an integral Galois rep-
resentation with values in A ◦X /K – for a given Coleman family and a suitable affinoid X

– that specializes to the Deligne representations attached to the classical eigenforms which
belong to the given Coleman family. The most important ingredient is to construct pseudo-
representations associated to a given Coleman family: once we have a pseudo-representation
over our affinoid algebras, a standard argument allows us to recover a Galois representation
from this pseudo-representation. Since we are not aware of a reference on constructing
pseudo-representations over affinoid algebras, we construct them here by using a formal
structure of Coleman families.

Let us fix a Coleman family as in Theorem 3.2 and let r0 ∈ pQ be the radius constructed
ibid. Let K be a complete subfield of Cp and take an element e0 ∈ K such that r0 = |e0|.
Define A◦K to be the complete local ring

(4.1) A◦K = OK
[[T − k0

e0

]]
=
{ ∞∑
i=0

ci

(
T − k0

e0

)i ∣∣∣ ci ∈ OK}.
For any r ∈ pQ with r < r0, a power series F in A◦K converges on B[k0, r]K ( B(k0, r0)K
and its evaluations at each point x ∈ B[k0, r]K satisfies |F (x)| ≤ 1. We consider elements
of A◦K as functions on X(k0,i)[r], and this induces, by restriction, a ring homomorphism
A◦K

res−−→ A ◦X(k0,i)
[r]K

. For each radius r < r0, we choose er ∈ Cp such that |er| = r. By
[BGR84, §6.1.5], there is an isomorphism

A ◦X(k0,i)
[r]Cp
∼=
{ ∞∑
i=0

ci

(
T − k0

er

)i
∈ OCp

[[T − k0

er

]] ∣∣∣ lim
i→∞
|ci| = 0

}
.

Similarly as above, the inclusion {εNωi}×B(k0, r0)K ⊂X(k0,i)[r0]K induces a homomorph-
ism A ◦X(k0,i)

[r0]K
→ A◦K where we have a presentation

A ◦X(k0,i)
[r0]K

∼=
{ ∞∑
i=0

ci

(
T − k0

e0

)i
∈ OK

[[T − k0

e0

]] ∣∣∣ lim
i→∞
|ci| = 0

}
.
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Figure 1.

The composition

(4.2) A ◦X(k0,i)
[r0]K

−→ A◦K
res
↪→ A ◦X(k0,i)

[r]K

corresponds to the inclusions

B[k0, r]Cp ⊂ B(k0, r0)K ⊂ B[k0, r0]K .

In Figure 1, there is a sketch of the radii that have occurred so far in our construction.

When the radius r ∈ pQ tends to r0 from below, we have

A◦K ⊂ A◦Cp = lim←−
r→r0
r<r0

A ◦X(k0,i)
[r]Cp

=
⋂
r<r0

A ◦X(k0,i)
[r]Cp

.

From now on, we denoteA◦Qp byA
◦ whenK = Qp dropping the subscriptK. We summarize

the above observations in the following proposition:

Proposition 4.1. Maintain the same assumptions and notations of Theorem 3.2. There
exists a finite extension K of Qp such that, for every n ∈ N, there is a unique function
An ∈ A◦K such that the image of An via the restriction A◦K ↪→ A ◦X(k0,i)

[r]
/K

coincides with

the function an obtained in Theorem 3.2 on a smaller radius r.

Proof. In Theorem 3.2, we obtained a Coleman family over X(k0,i)[r0]. By shrinking such
a Coleman family to X(k0,i)[r] for any r ∈ pQ with r < r0 and by taking the limit r −→ r0,
we showed in Corollary 3.6 that there exists An ∈ A◦K such that the image of An via the
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inclusion A◦K ↪→ A ◦X(k0,i)
[r]
/K

coincides with an obtained in Theorem 3.2. This completes

the proof of the proposition. �

Based on the existence of the formal structure A◦K, we introduce the notion of 2-
dimensional pseudo-representation based on [Wil88]. We remark that other types of pseudo-
representations were later introduced by Taylor in [Tay91] and, much more recently, by
Chenevier in [Che11] but for our purposes Wiles’ approach seems to be the best suited.

Given a topological group G, a topological ring R in which 2 is invertible, and three
functions A,D : G −→ R and Ξ: G × G −→ R, we consider the following four properties
given in [Wil88, Lemma 2.2.3]:

(I) A, D and Ξ are continuous functions.
(II) The relations

A(στ) = A(σ)A(τ) + Ξ(σ, τ),

D(στ) = D(σ)D(τ) + Ξ(τ, σ),

Ξ(στ, ργ) = A(σ)A(γ)Ξ(τ, ρ) +A(γ)D(τ)Ξ(σ, ρ) +A(σ)D(ρ)Ξ(τ, γ) +D(τ)D(ρ)Ξ(σ, γ)

hold for all elements σ, τ, γ, ρ ∈ G.
(III) The relations A(1) = D(1) = 1 and Ξ(σ,1) = Ξ(1, τ) = 0 hold for all elements

σ, τ ∈ G where 1 is the unit element of G.
(IV) The relation Ξ(σ, τ)Ξ(ρ, η) = Ξ(σ, η)Ξ(ρ, τ) holds for all elements σ, τ, ρ, η ∈ G.

We call a triple (A,D,Ξ) satisfying the above conditions (I)–(IV) a pseudo-representation.

Given a continuous representation ρ : G→ GL2(R), by fixing a basis of R2 we can write

ρ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
for σ ∈ G

and the triple πρ =
(
A(σ) = a(σ), D(σ) = d(σ),Ξ(σ, τ) = b(σ)c(τ)

)
is easily checked to be a

pseudo-representation; observe that attaching a pseudo-representation to a representation
depends on the choice of a basis. Extending the notation introduced in Definition 3.5,
and in the set-up introduced ibid, we simply denote by πk the pseudo-representation πρk
attached to ρk in some chosen basis.

Let Z(k0,i)[r0] be the set of points inside W ∗
N (Qp) defined as the intersection

(4.3) Z(k0,i)[r0] = B(k0, r0)(Qp) ∩Z(k0,i)[r0]

where Z(k0,i)[r0] is the set defined in (3.1). According to the convention established at the
end of Section 2, weights in Z(k0,i)[r0] will be identified with integers and denoted by a
single coordinate.

Proposition 4.2. Let S be the finite set of primes of Q consisting of the primes {` : ` | N},
p and ∞, and denote by GQ,S the Galois group of the maximal extension of Q unramified
outside S. Then, there exists a continuous pseudo-representation

π = (A,D,Ξ): GQ,S −→ A◦K
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interpolating the pseudo-representations πk attached to members of the Coleman family
of slope α through f . In other words, for each k ∈ Z(k0,i)[r0], the evaluation evk ◦ π =
(evk ◦A, evk ◦D, evk ◦ Ξ) coincides with the pseudo-representation πk.

Proof. The argument relying on pseudo-representations of rank two à la Wiles is more or less
standard and the proof goes in a parallel manner as the proof given in the monograph [Hid93,
§7.5], so we only give an outline.

Let us choose a complex conjugation c ∈ GQ,S . For each k ∈ Z(k0,i)[r0], we fix a basis for

the representation ρk so that c is represented by the matrix
(
−1 0
0 1

)
. Following [Wil88,

Lemma 2.3.3], we define functions

A(k), D(k) : GQ,S −→ K

by the matrix representation

ρk(g) =

(
A(k)(g) B(k)(g)
C(k)(g) D(k)(g)

)
.

We also set Ξ(k) : GQ,S ×GQ,S −→ K by Ξ(k)(γ1, γ2) = A(k)(γ1γ2)−A(k)(γ1)A(k)(γ2). The
functions A(k), D(k),Ξk are continuous for every k ∈ Z(k0,i)[r0] thanks to continuity of the
Deligne representation ρk.

For any k ∈ Z(k0,i)[r0], we denote by Pk ⊂ A◦K the kernel of the evaluation mapA◦K −→ K
at k. Let us denote the function A(k) + D(k) by TrPk . Since Z(k0,i)[r0] is a countable set,
we choose a numbering

Z(k0,i)[r0] = {k1, k2, . . . , ks, . . .}.
For k1, k2 ∈ Z(k0,i)[r0], consider the map

(4.4) A◦K/Pk1 ⊕A◦K/Pk2 −→ A◦K/(Pk1 + Pk2), (x, y) 7→ (x mod Pk2)− (y mod Pk1)

whose kernel is isomorphic to A◦K/(Pk1 ∩ Pk2). Let ` be a prime number outside S. We
have TrPk(Frob`) = a`(k) for every k ∈ Z(k0,i)[r0] and the Fourier coefficients a`(ki) glue
together when ki varies. Hence the values TrPk(Frob`) glue together when k varies, which
is true for any prime number ` outside S. By the sequence (4.4), we have a continuous
function TrPk1∩Pk2 : GQ,S −→ A◦K/(Pk1 ∩ Pk2) whose value TrPk1∩Pk2 (Frob`) is congruent
to TrPk1 (Frob`) (resp. TrPk2 (Frob`)) mod Pk1 (resp. mod Pk2) for every prime number `
outside S. Since the set of Frobenius elements {Frob`}`/∈S is dense in GQ,S , it follows that
the value TrPk1∩Pk2 (σ) is congruent to TrPk1 (σ) (resp. TrPk2 (σ)) mod Pk1 (resp. mod Pk2)
for every σ ∈ GQ,S .

By an inductive argument, for each natural number s, we have a continuous function

TrPk1∩Pk2∩...∩Pks : GQ,S −→ A◦K/(Pk1 ∩ Pk2 ∩ . . . ∩ Pks)

and reducing it (mod Pki) we recover the function TrPki . Note that A
◦
K = lim←−sA

◦
K/(Pk1 ∩

Pk2 ∩ . . .∩Pks) since A◦K is complete and local. We can thus define the continuous function
Tr: GQ,S −→ A◦K to be lim←−s TrPk1∩Pk2∩...∩Pks .
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We define the desired functions A and D as

A(σ) =
Tr
(
σ
)
− Tr

(
c · σ

)
2

and D(σ) =
Tr
(
σ
)

+ Tr
(
c · σ

)
2

.

Since A◦K is complete and local, a similar argument yields the construction of Ξ, by first
evaluating the value b(g1)c(g2) at pairs (g1, g2) = (Frob`1 ,Frob`2) and then observing that
the set of these pairs is dense in GQ,S ×GQ,S . We thus obtain a continuous function

Ξ: GQ,S ×GQ,S −→ A◦K

that recovers the function Ξ(k) by taking the reduction modulo Pk of the function Ξ for
every k ∈ Z(k0,i)[r0].

Setting π := (A,D,Ξ), we need to check that the triple satisfies properties (II)–(IV)
above, using the fact that Z(k0,i)[r0] is dense in the reduced X . First, let us verify prop-
erty (IV), namely that for each g1, g2, h1, h2 ∈ GQ,S , the following holds:

(4.5) Ξ(g1, g2)Ξ(h1, h2)− Ξ(g1, h2)Ξ(h1, g2) = 0 .

We need to check that the function Ξ(g1, g2)Ξ(h1, h2)−Ξ(g1, h2)Ξ(h1, g2) vanishes identic-
ally on X . Since the aforementioned property (IV) for the pseudo-representation πk =
(A(k), D(k),Ξk), we have(

Ξ(g1, g2)Ξ(h1, h2)− Ξ(g1, h2)Ξ(h1, g2)
)
(k)

= Ξk(g1, g2)Ξk(h1, h2)− Ξk(g1, h2)Ξk(h1, g2)

at each point k in the dense subset Z(k0,i)[r0]. This proves the desired vanishing of (4.5) and
the same argument shows the other properties (II) and (III). This completes the proof. �

Theorem 4.3 below, which is the main result of this section, shows that the pseudo-
representation that we have just constructed comes from a true representation.

Theorem 4.3. Under the same assumptions and notations as in Theorem 3.2 and in Pro-
position 4.2, there exists a free A◦K-module T of rank two with a continuous GQ,S-action
such that the representation

ρ : GQ,S −→ AutA◦K(T)

satisfies πρ = π (in a suitable basis). In particular, ρ modulo Pk is isomorphic to a lattice
in the space Vk of ρk for all k ∈ Z(k0,i)[r0].

The following proof mainly relies on [Wil88, Lemma 2.2.3], see also [Hid93, Proposition 1,
§7.5].

Proof. Start with a radius r0 as in Theorem 3.2 and set r = r0|$|, where $ is a uniformizer
of K. Let π = (A,D,Ξ) be the A◦K-valued pseudo-representation constructed in Proposition
4.2. There exists a pair of elements σ, τ ∈ GQ,S such that Ξ(σ, τ)(k0) 6= 0. If not, the
diagonal Galois representation g 7→ A(g)(k0) ⊕ D(g)(k0) would have the same trace and
determinant as the representation ρk, contradicting Ribet’s result [Rib77, Theorem 2.3]
stating that ρk be irreducible (see [Wil88, Lemma 2.2.3] or [Hid89, Proposition 1.1]). From
now on, let us fix a pair σ, τ such that Ξ(σ, τ)(k0) ∈ K is of minimal valuation, say µ ∈ Q.
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The element Ξ(σ, τ) can be decomposed as Ξ(σ, τ) = pµV −1 with V ∈ (A◦K)×. As in [Hid93,
Proposition 1], we check that the map

ρ : g 7→

 A(g) Ξ(g, τ)V p−µ

Ξ(σ, g) D(g)


is multiplicative, sends 1 ∈ GQ,S to Id2 ∈ M2(A◦K) and takes values in M2(A◦K ⊗ Qp).
Hence we have a continuous group homomorphism ρ : GQ,S → GL2(A◦K ⊗Qp). In order to
produce a finitely generated A◦K-submodule of A◦K ⊗ Qp which is ρ-stable, we follow the
proof of continuity of [Hid89, Proposition 1.1]. Namely, define J ⊆ A◦K to be the ideal
generated by all lower-left entries Ξ(σ, g) for g ∈ GQ,S and let T′ be the A◦K-submodule
of (A◦K)⊕2 ⊂ (A◦K ⊗ Qp)

⊕2 generated by all vectors (x, y) with x ∈ A◦K, y ∈ J. The A◦K-
module T′ is finitely generated since A◦K is noetherian. Also, T′ is p-torsion free since T′ is
contained in the module (A◦K ⊗Qp)

⊕2 which has no non-zero p-torsion element. Moreover,
given t(x, y) ∈ T′ and g ∈ GQ,S , we have

ρ(g) ·
(
x
y

)
=

(
A(g)x+ Ξ(g, τ)V p−µy

Ξ(σ, g)x+D(g)y

)
∈ T′.

Indeed, the definition of J ensures Ξ(σ, g)x ∈ J, and the definition of µ guarantees that the
element Ξ(g, τ)V p−µ belongs to A◦K. It follows that T

′ is Galois stable. Finally, we have the
equality T′⊗Qp = (A◦⊗Qp)

⊕2 because J contains the element Ξ(σ, τ) = p−µV which be-
comes a unit after inverting p. DefineT to be the double dual HomA◦K

(HomA◦K
(T′,A◦K),A◦K).

We have a GQ,S-equivariant A◦K-linear injection T′ ↪→ T with finite cokernel. Since T is
a finitely generated reflexive module over a regular local ring A◦K of Krull dimension two,
T is a free A◦K-module of finite rank. Since T⊗Qp is free of rank two over A◦K ⊗Qp, the
rank of T over A◦K is two.

As for the interpolation property, recall that an irreducible representation of GQ,S with
values in a finite extension of Qp is uniquely determined by its trace and determinant. Thus
T/PkT is isomorphic to a lattice inside Vk. �

Note that ι : A◦K ↪→ A ◦X(k0,i)
[r]
/K

is continuous. In fact, A◦K is a local ring with max-

imal ideal (T−k0e0
, $) and A ◦X(k0,i)

[r]
/K

is endowed with the $-adic topology, where $ de-

notes as before a uniformizer of K. To show that ι is continuous, we need to show that
ι−1
(
$A ◦X(k0,i)

[r]
/K

)
contains the maximal ideal (T−k0e0

, $) of A◦K. In fact, this implies that

ι−1($nA ◦X(k0,i)
[r]
/K

) contains (T−k0e0
, $)n for every n. The uniformizer $ is clearly con-

tained in ι−1($A ◦X(k0,i)
[r]
/K

) and T−k0
e0

is also contained in ι−1($A ◦X(k0,i)
[r]
/K

) since we

have T−k0
e0

= $ T−k0
e0$

∈ $A ◦X(k0,i)
[r]
/K

. By extending the coefficients of the result obtained

over A◦K in the Theorem 4.3 to A ◦X(k0,i)
[r]
/K

, we obtain the following corollary:

Corollary 4.4. Under the same assumptions and notations as in Theorem 4.3 , there
exists a free A ◦X(k0,i)

[r]
/K

-module T of rank two with a continuous GQ,S-action such that
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the representation
ρ : GQ,S −→ AutA ◦

X(k0,i)
[r]
/K

(T )

satisfies πρ = π (in a suitable basis). In particular, ρ modulo mk is isomorphic to ρk for all
k ∈ Z(k0,i)[r0] where mk is the unique maximal ideal of A ◦X(k0,i)

[r]
/K

such that mk∩A◦K = Pk.

5. The fine Selmer group and Galois deformations

We stick to the notation introduced in Theorem 3.2 and in Definition 3.5. Let F be a
finite extension of Q and fix k ∈ Z(k0,i)[r0] (see (4.3)). The fine Selmer group of fk over F
is defined by

R(F, Vfk/Tfk) = Ker
(
H1(QS/F, Vfk/Tfk)→ ⊕v∈SH1(Fv, Vfk/Tfk)

)
,

where Tfk is the lattice of the representation Vfk of ρk from Theorem 4.3 . The fine Selmer
over the extension Q(µp∞) is defined by

(5.1) R(Q(µp∞), Vfk/Tfk) = lim−→R(F, Vfk/Tfk),

where the limit is over all finite extensions of Q contained in Q(µp∞). Set (Tfk)?(1) =
Homcont(Tfk ,OK) ⊗Zp Zp(1) and let Y(Q(µp∞), (Tfk)?(1)) be the Pontryagin dual of the
group R(Q(µp∞), Vfk/Tfk). Since p is odd,

Gal(Q(µp∞)/Q) ∼= ∆× (1 + pZp)

where ∆ is a finite group of order p − 1. For a character η of ∆, by a result of Kato
[Kat04, Theorem 12.4(1)], we know that the η-isotypic component

(
Y(Q(µp∞), (Tfk)?(1)

)η
is torsion over the Iwasawa algebra Zp[[1 + pZp]]. For simplicity we will restrict ourselves
to the case Q(µp∞); one could have also worked with the dual fine Selmer group over the
cyclotomic extension of any abelian number field where Kato’s result is true.

Remark 5.1. For supersingular elliptic curves, the dual fine Selmer group is very close to the
torsion subgroup of the whole classical dual Selmer group as suggested by the result [Win89,
Corollary 2.5] of Wingberg, saying that given a supersingular elliptic curve E/F and as-
suming the finiteness of X(E/Fn)p∞ for all n, the torsion part of the dual Selmer group of
E over Fcyc is pseudo-isomorphic to the dual fine Selmer group of E over Fcyc. Therefore,
philosophically, under appropriate hypotheses, the dual fine Selmer group is not far from
the torsion part of the dual classical Selmer group. Under certain hypotheses, another
evidence in this direction was also provided by Billot over the Z2

p-extension F∞ = E[p∞] of
F , when E/F is an elliptic curve with complex multiplication by an imaginary quadratic
field K in F that has good supersingular reduction for primes above p (see [Bil86, The-
orem 3.23]). In [Mat20, Theorem 1.1], Matar gave a Galois-theoretic proof of Wingberg’s
result with a slightly different hypothesis. Wingberg’s result has been generalized by Lei
and Lim to modular forms which are non-ordinary at p under appropriate hypotheses (see
[LL22, Theorem 3.4]).
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Let Λcyc := Zp[[Gal(Q(µp∞)/Q)]] be the Iwasawa algebra of the group Gal(Q(µp∞)/Q).
Let Λcyc(χ̃) be a free Λcyc-module of rank one on which the absolute Galois group GQ of
Q acts via the cyclotomic character

χ̃ : GQ � Gal(Q(µp∞)/Q) ↪→ Λ×cyc.

The following definition is adapted from Greenberg (see [Gre06] and [Gre94]).

Definition 5.2. Write Ã◦K := A◦K⊗̂ZpΛcyc, and let T be as in Theorem 4.3. The cyclotomic
deformation of T is defined as

T̃ := T⊗̂ZpΛcyc(χ̃)

regarded as a module over Ã◦K. Set D̃ := T̃ ⊗
Ã◦K

̂̃
A◦K where ̂̃A◦K = HomOK(Ã◦K,K/OK) is

the Pontryagin dual of Ã◦K. We endow D̃ with the discrete topology.

Finally, set (T̃)? = Hom
Ã◦K

(T̃, Ã◦K) to be the Ã◦K-linear dual of T̃, and let T? =

HomA◦K
(T,A◦K) be the A◦K-linear dual of T.

Note that

HomOK(D̃,K/OK(1)) ∼= HomOK(T̃⊗
Ã◦K

̂̃
A◦K,K/OK(1))

∼= Hom
Ã◦K

(T̃,HomOK(
̂̃
A◦K,K/OK))⊗Zp Zp(1)

∼= Hom
Ã◦K

(T̃,
̂̃̂
A◦K)(1)

∼= Hom
Ã◦K

(T̃, Ã◦K)(1) = (T̃)?(1).

Similarly, one can define
D = T⊗A◦K

Â◦K

where Â◦K is the Pontryagin dual of A◦K.

Suppose φ : A◦K � OK is any continuous surjection, set Pφ = Ker(φ) and Tφ = T/PφT.
Define

Dφ := Tφ ⊗OK ÔK.
By Greenberg [Gre06, p. 336], we have D[Pφ] ∼= Dφ, where D[Pφ] denotes the submodule
of D annihilated by Pφ.

Similarly, by loc. cit, if φ̃ : Ã◦K � OK is a continuous surjection and Pφ̃ denotes Ker(φ̃),
let Tφ̃ := T̃/Pφ̃T̃, which is a free OK-module of rank two. Then,

D̃[Pφ̃] ∼= D̃φ̃ := Tφ̃ ⊗OK ÔK.

Following [Gre06, p. 336], we define the fine Selmer group of D̃ as

R(Q, D̃) = Ker
(
H1(QS/Q, D̃)→ ⊕v∈SH1(Qv, D̃)

)
.

Finally, write Y
(
Q, (T̃)?(1)

)
for the Pontryagin dual HomOK(R(Q, D̃),K/OK) of R(Q, D̃).
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6. Specialization at arithmetic primes

We continue to work in the setting introduced in §§3–4, and we fix a weight k ∈ Z(k0,i)[r0].
Recall from §4 that Pk is a height-one prime ideal of A◦K. Let Jk = PkÃ

◦
K be the corres-

ponding height-one prime ideal of Ã◦K. We have a map

(6.1)
Y
(
Q, (T̃)?(1)

)
JkY

(
Q, (T̃)?(1)

) sk−→ Y
(
Q,

(T̃)?(1)

Jk(T̃)?(1)

)
which arises from taking Pontryagin dual of the map

(6.2) R(Q, D̃[Jk])
ŝk−→ R(Q, D̃)[Jk].

Given any v ∈ S, let G∞,v be the Galois group Gal(Qv/Q∞,v) where Q∞,v = Q(µp∞)v.

Lemma 6.1. For all v ∈ S, we have

H0

(
GQv , (T̃)?

) ∼= H0(G∞,v,T
?)ι

as A◦K-modules, where the exponent ι denotes that the Galois group acts by the involution
g 7→ g−1.

Proof. The Pontryagin duals of (T̃)? and T? are D̃ and D, respectively. So the Pontryagin
duals of (T̃?)GQv and (T?)ιG∞,v are D̃GQv and (DG∞,v)ι. Therefore, we have to show that

D̃GQv ∼= (DG∞,v)ι.(6.3)

For this we will follow the line of arguments presented in [Gre94, p. 214-215] (see also
[Gre06, Remark 5.9.2]). Note that

HomOK(Ã◦K,K/OK) = HomOK(A◦K⊗̂ZpΛcyc,K/OK).

Since we are considering continuous maps and the topology on K/OK is discrete, we have

HomOK(A◦K⊗̂ZpΛcyc,K/OK) = HomOK(A◦K⊗ZpΛcyc,K/OK).

Since the Hom functor and the tensor product form an adjoint pair, we deduce

HomOK(A◦K⊗ZpΛcyc,K/OK) = HomZp(Λcyc, Â◦K).

Therefore

D̃ =
(
T⊗Zp Λcyc(χ̃)

)
⊗

Ã◦K
HomZp(Λcyc, Â◦K).

Now T̃ = T⊗Zp Λcyc(χ̃) is a free, module of rank 2 over Ã◦K and hence

D̃ ∼= HomZp
(
Λcyc,T⊗A◦K

Â◦K
)
(χ̃)

∼= HomZp
(
Λcyc(χ̃

−1),D
)
.

We deduce that

D̃G∞,v ∼= HomG∞,v

(
Λcyc(χ̃

−1),D
) ∼= HomZp

(
Λcyc(χ̃

−1),DG∞,v
)
.
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Writing Γv for the local cyclotomic Galois group Gal(Q∞,v/Qv) = GQv/G∞,v, this implies
that

D̃GQv ∼= HomΓv

(
Λcyc(χ̃

−1),DG∞,v
)
,

∼= HomΓv

(
Λcyc(χ̃), (DG∞,v)ι

)
.

The argument that follows is identical to that in [Gre94, pp. 214–215]. One can identify
HomΓv

(
Λcyc(χ̃), (DG∞,v)ι

)
with HomΛcyc

(
Λcyc, (D

G∞,v)ι
)
considering Λcyc(χ̃) and (DG∞,v)ι

as Λcyc-modules. But any element f ∈ HomΛcyc

(
Λcyc, (D

G∞,v)ι
)
is determined completely

by f(1) and hence there is an isomorphism HomΛcyc

(
Λcyc, (D

G∞,v)ι
) ∼= (DG∞,v)ι as Λcyc-

modules. This completes the proof of (6.3). �

Let M be the maximal ideal of A◦K, and set κ = A◦K/M . For the rest of the article, we
will need the following hypothesis.

Hypothesis 6.2. The residual κ-representation ρ/M is irreducible when restricted to GQp ,
where ρ is the Galois representation constructed in Theorem 4.3.

Theorem 6.3. Under Hypothesis 6.2, the map sk in (6.1) is surjective and Ker(sk) is a
finitely generated OK-module for all k ∈ Z(k0,i)[r0]. Furthermore, Ker(sk) is finite for all
but finitely many k.

Proof. We have the following commutative diagram with exact rows.

(6.4)

0 R(Q, D̃[Jk]) H1(QS/Q, D̃[Jk])
⊕
v∈S

H1(Qv, D̃[Jk])

0 R(Q, D̃)[Jk] H1(QS/Q, D̃)[Jk]
⊕
v∈S

H1(Qv, D̃)[Jk]

ŝk gk
hk

Observe that D[M ] (the submodule of D annihilated by M) is a finite dimensional κ-
representation and, by Hypothesis 6.2,

H0(QS/Q,D[M ]) = H0(QS/Q,D)[M ] = 0.

Note that Λcyc(χ̃) is isomorphic to p − 1 copies of the Iwasawa algebra in one variable
over Zp. Hence, the residual κ-representation T̃/MT̃ associated to T̃ is isomorphic to a
direct sum of p − 1 copies of the irreducible residual representation of T/MT. Therefore,
any κ-irreducible subquotient of the residual representation of T̃/MT̃ is isomorphic to the
irreducible residual representation T/MT. Applying [Gre06, Proposition 3.4], we deduce
that the map gk is an isomorphism and hence ŝk is injective (that is, sk is surjective).
In the following, we will analyse K̂er(hk) and show that K̂er(hk) is a finitely generated
OK-module for all k, and is finite for all but finitely many k. By the snake lemma, the
same conclusion will hold for ̂Coker(ŝk) ∼= Ker(sk). We remark that the Pontryagin dual
of Ker(hk) is isomorphic to ⊕v∈S(T̃?)GQv [Jk].
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By Lemma 6.1, we obtain⊕
v∈S

(T̃?)GQv [Jk] =
⊕
v∈S

(T?)ιG∞,v[Pk].

If Pk does not divide the characteristic ideal of the torsion subgroup of ⊕v∈S(T?)ιG∞,v as an
A◦K-module, then we obtain that ⊕v∈S(T?)ιG∞,v[Pk] is finite (see [Och05, Lemma 4.1] for
a generalization of this to modules over Iwasawa algebras of several variables). Note also
that, for all k, ⊕v∈S(T?)ιG∞,v[Pk] is a finitely generated A◦K/Pk-module, and thus finitely

generated over OK because A◦K/Pk is finite over OK. This shows that ̂Coker(ŝk) is a finitely
generated OK-module for all k, and it is finite for all but finitely many k.

Let us denote
T̃Pk := (T/PkT)⊗ZpΛcyc(χ̃)

which is the cyclotomic deformation of T/PkT ∼= Tfk . By [Gre06, p. 357],

D̃[Jk] ∼= T̃Pk ⊗Λcyc Λ̂cyc.

It follows from classical results of Greenberg (see, for example, [Gre06, (2), p. 342]) that

(6.5) R(Q, T̃Pk ⊗Λcyc Λ̂cyc) ∼= R(Q(µp∞), Vfk/Tfk)ι,

where R(Q(µp∞), Vfk/Tfk) is the fine Selmer group defined in (5.1). Note that Greenberg’s
result is over the cyclotomic extension. But our Λcyc is isomorphic to Zp[[Z×p ]] and hence
we recover the fine Selmer group over Q(µp∞). See also [JS11, Proposition 3] where Jha
and Sujatha prove (6.5) in the ordinary case. The proof remains essentially the same in
our case. Therefore,

R(Q(µp∞), Vfk/Tfk)ι
ŝk−→ R(Q, D̃)[Jk]

is injective, ̂Coker(ŝk) is a finitely generated OK-module for all k, and is finite for all but
finitely many k. Dually, the map

(6.6)
Y
(
Q, (T̃)?(1)

)
JkY

(
Q, (T̃)?(1)

) sk−→ Y(Q(µp∞), T ?fk(1))ι

is surjective and Ker(sk) is a finitely generated OK-module for all k. Furthermore, Ker(sk)
is finite for all but finitely many k. This completes the proof of Theorem 6.3. �

Recall Z×p ∼= ∆ × (1 + pZp) where ∆ is a finite group of order p − 1. For a Dirichlet
character η : ∆→ Z×p , let eη be the idempotent attached to η. Given a Zp[[Z×p ]]-module M
define its η-isotypic component to be

Mη = eη ·M,

considered as a Zp[[1 + pZp]]-module. As in [LP20, p. 3], we say that M has rank r as a
Zp[[Z×p ]]-module if Mη has rank r as a Zp[[1 + pZp]]-module for all the characters η of ∆.
Hence, M is torsion as a Zp[[Z×p ]]-module if Mη is torsion as a Zp[[1 + pZp]]-module for
every character η.

Proposition 6.4. For every character η of ∆, the component Y
(
Q, (T̃)?(1)

)η of the dual
fine Selmer group is Ã◦K

η
-torsion.
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Proof. Fix an η as in the statement. By (6.6), choose k such that the map

Y
(
Q, (T̃)?(1)

)
JkY

(
Q, (T̃)?(1)

) sk−→ Y(Q(µp∞), T ?fk(1))ι

is surjective and the kernel of sk is finite. Using the Poitou–Tate exact sequence (see
for example [PR95, §A.3.1]) and a deep result of Kato [Kat04, Theorem 12.4], we know
that Y(Q(µp∞), T ?fk(1)) is torsion as a Λcyc-module. Now suppose Y

(
Q, (T̃)?(1)

)η is not
Ã◦K

η
-torsion. Then by the structure theorem Y

(
Q, (T̃)?(1)

)η can be decomposed into an
Ã◦K

η
-free part of rank at least 1 and an Ã◦K

η
-torsion part. Recall that Jk = PkÃ

◦
K is a height

one prime ideal of Ã◦K, where Pk is a height one prime ideal of A◦K. Hence the Ã◦K
η
-free

part of Y
(
Q, (T̃)?(1)

)η modulo Jk will contain a free Ληcyc module of rank at least 1. But
this is impossible as the kernel of sk is finite and Y(Q(µp∞), T ?fk(1))η is Ληcyc-torsion. �

7. Variations of Iwasawa µ and λ-invariants

As before, in this section, we work under Hypothesis 6.2, and in the setting of §§3–4.
From Proposition 6.4 and from the discussion before Theorem B, we know that for every
character η of ∆, the component Y

(
Q, (T̃)?(1)

)η of the fine Selmer group is Ã◦K
η
-torsion

and the specialization Y(Q(µp∞), T ?fk(1))η is also Ληcyc-torsion for all points k ∈ Z(k0,i)[r0].

Theorem 7.1. For every character η of ∆, the following are equivalent:

(1 ) The fine Selmer group Y
(
Q, (T̃)?(1)

)η is a finitely generated A◦K-module.
(2 ) The classical dual fine Selmer group Y(Q(µp∞), T ?fk(1))η is a finitely generated OK-

module for all points k ∈ Z(k0,i)[r0]. That is, the µ-invariants of Y(Q(µp∞), T ?fk(1))η

is zero for all points k ∈ Z(k0,i)[r0].
(3 ) Part (2 ) above holds for some k. That is, there exists k such that the dual fine Selmer

group Y(Q(µp∞), T ?fk(1))η is a finitely generated OK-module for that k (equivalently,
its µ-invariant is zero).

Proof. Fix a character η as in the statement.

We first show that (2) and (3) are equivalent. Fix a weight k ∈ Z(k0,i)[r0] and let
Afk = Vfk/Tfk . As before, let $ be a uniformizer of OK. We have the following Kummer
sequence associated to multiplication by $:

0→ Afk [$]→ Afk
$−→ Afk → 0.

This gives us the following commutative diagram with exact rows.

0
(H0(QS/Q(µp∞ ),Afk

)

$

)η H1
(
QS/Q(µp∞ ), Afk [$]

)η (
H1

(
QS/Q(µp∞ ), Afk

)
[$]

)η
0

0
(⊕v∈SH0(Q(µp∞ )v,Afk

)

$

)η ⊕v∈SH1
(
Q(µp∞ )v, Afk [$]

)η (
⊕v∈S H1

(
Q(µp∞ )v, Afk

)
[$]

)η
0

α
β γ
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Each of the first terms in the two horizontal exact sequences is finite. By definition, the
kernel of β is R

(
Q(µp∞), Afk [$]

)η which is the η-component of the fine Selmer group
corresponding to the module Afk [$] over the extension Q(µp∞). Clearly, the kernel of γ
is
(
R
(
Q(µp∞), Afk

)
[$]
)η

. Therefore, by the snake lemma
(
R
(
Q(µp∞), Afk

)
[$]
)η

is finite

if and only if R
(
Q(µp∞), Afk [$]

)η is finite; but the latter only depends on the residual
representation and all forms in the Coleman family have the same residual representation.

Now we show that (1) implies (3). By Theorem 6.3 and (6.6), there exists a point k such
that

Y
(
Q, (T̃)?(1)

)
JkY

(
Q, (T̃)?(1)

) sk−→ Y(Q(µp∞), T ?fk(1))ι

has finite kernel and is surjective. Taking η-isotypic components, (1) implies that the quo-

tient
Y
(
Q,(T̃)?(1)

)η
JkY
(
Q,(T̃)?(1)

)η is finitely generated over A◦K/Pk ∼= OK, and hence so is the component

Y(Q(µp∞), T ?fk(1))η. Next we show that (3) implies (1) By Nakayama’s lemma, it suffices

to show that
Y
(
Q,(T̃)?(1)

)η
JkY
(
Q,(T̃)?(1)

)η is a finitely generated OK-module. But Ker(sk) is a quotient

of K̂er(hk) (where hk is as in diagram (6.4)) which is a finitely generated OK-module by
the proof of Theorem 6.3. �

Remark 7.2. Recall that Conjecture A of Coates and Sujatha deals with the case of el-
liptic curves defined over a number field F . It says that the µ-invariant of the dual fine
Selmer group over the cyclotomic Zp-extension of F is trivial (see [CS05, p. 822]). This
is equivalent to saying that this dual fine Selmer group is a finitely generated Zp-module.
Hence the fact that Y(Q(µp∞), T ?fk(1))η is a finitely generated OK-module (namely, part
(3) of Theorem 7.1) is essentially Conjecture A generalized for modular forms. Explicit
examples of elliptic curves and modular forms with good ordinary reduction at the prime p
satisfying Conjecture A are given in [Ari14]. For another approach to Coates and Sujatha’s
Conjecture A and variations of Iwasawa invariants beyond the ordinary case, see [NS21];
see [KNS22] for its relations with Greenberg’s Generalized Conjecture.

Theorem 7.3. Assume any of the equivalent conditions in Theorem 7.1. Then the λ-
invariants of Y(Q(µp∞), T ?fk(1))η are equal for all but finitely many points k ∈ Z(k0,i)[r0].

Proof. By Proposition 6.4, Y
(
Q, (T̃)?(1)

)
is torsion as an Ã◦K-module but it may not be

torsion over A◦K. Write H for the characteristic ideal of the A◦K-torsion submodule of
Y
(
Q, (T̃)?(1)

)η, and factor it as H =
∏

1≤i≤d I
mi
i where the Ii are height one prime ideal

of Y
(
Q, (T̃)?(1)

)η, and mi ≥ 1. Let

Σ = {I1, · · · , Id} ∪ {Pk such that Ker(sk) is infinite}.
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Let k be such that Pk is not in Σ. The λ-invariant of Y(Q(µp∞), T ?fk(1))η is the Zp-rank of
Y(Q(µp∞), T ?fk(1))η. By (6.6) and by the choice of k, we have a surjective map

Y
(
Q, (T̃)?(1)

)η
JkY

(
Q, (T̃)?(1)

)η sk−→ Y(Q(µp∞), T ?fk(1))ι,η

whose kernel is finite. Therefore, the λ-invariant of Y(Q(µp∞), T ?fk(1))η is the Zp-rank of
Y
(
Q,(T̃)?(1)

)η
JkY
(
Q,(T̃)?(1)

)η . We will show that the Zp-rank of
Y
(
Q,(T̃)?(1)

)η
JkY
(
Q,(T̃)?(1)

)η is equal to the A◦K-rank

of the (Ã◦K)η-module Y
(
Q, (T̃)?(1)

)η and that the latter is independent of k. The theorem
will then follow.

Consider Y
(
Q, (T̃)?(1)

)η as a module over A◦K. By the structure theorem of modules
over Iwasawa algebras, we can decompose Y

(
Q, (T̃)?(1)

)η into an A◦K-free part of a certain
rank r and an A◦K-torsion part of the form ⊕mi=1A

◦
K/I

mi
i . Recall that Pk is a height one

prime ideal of A◦K; it is the kernel of the evaluation map A◦K → OK at k. Also, note that
we have chosen k such that Pk is not in Σ. Therefore, Pk is relatively prime to Imii and
hence A◦K/(I

mi
i , Pk) is finite and hence has OK-rank equal to 0. Therefore, the OK-rank of

Y
(
Q,(T̃)?(1)

)η
JkY
(
Q,(T̃)?(1)

)η is r, which is the A◦K-rank of Y
(
Q, (T̃)?(1)

)η. �

8. Examples

In this section, we sketch how to find examples satisfying the conditions of Theorems 7.1
and 7.3.

If there is any weight k ∈ Z(k0,i)[r0] such that the residual representation of ρfk restricted
to GQp of the specialization fk of the Coleman family at the weight k is irreducible, then
the residual representation attached to the whole family ρ restricted to GQp is irreducible
and hence Hypothesis 6.2 is satisfied. Now, [Edi92, Theorem 2.6] says that the residual
representation of ρfk restricted to GQp is irreducible if fk is a cuspidal eigenform whose
p-th Fourier coefficient ap is 0 in Fp and 2 ≤ k < p+ 1. Hence there are plenty of examples
satisfying Hypothesis 6.2. An explicit example is the elliptic curve 17A (labelled as in [Pol];
there are actually 4 curves in this isogeny class 17A, take any one of them). This curve has
supersingular reduction at the prime p = 11, and the associated modular form is a weight
2 cuspidal modular form (see [LMF13]).

The next important hypothesis that we have made in Theorem 7.3 is a generalization
of Conjecture A (see Remark 7.2). In the following, we will explain how to find examples
when Conjecture A is true for elliptic modular forms at supersingular primes. Suppose p is
a prime of good supersingular reduction for an elliptic curve E over Q. Recall from [Kob03,
Theorem 7.3 (i)] that the dual fine Selmer group of E over the cyclotomic extension of Q is
a quotient of the dual plus/minus signed Selmer groups which are torsion modules over the
cyclotomic Iwasawa algebra. Recall also that the µ-invariant is additive along a short exact
sequence of finitely generated and torsion Iwasawa modules. Hence if the dual signed Selmer
groups over the cyclotomic extension of Q have µ-invariant zero, then it is so for the dual
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fine Selmer group as well; hence Conjecture A is valid in those examples. Pollack in [Pol]
has already computed Iwasawa invariants of analytic plus/minus signed p-adic L-functions,
and via the signed Iwasawa main conjectures, they are equal to the Iwasawa invariants of
the dual signed Selmer groups. Recall that for CM elliptic curves over Q and for primes
p > 3 of supersingular reduction, the signed Iwasawa main conjectures have been proved
by Pollack and Rubin in [PR04]. The signed Iwasawa main conjectures for supersingular
elliptic curves over Q have been completely settled now for odd primes (see [Wan21] for the
case ap = 0 and [Spr16] for the general case). So one can see from Pollack’s table [Pol] that
the dual signed Selmer groups for the curve 17A and prime p = 11 has trivial µ-invariants.
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