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APPENDIX TO “ON AN INTEGRAL MODEL FOR COLEMAN

FAMILIES USING PSEUDO-REPRESENTATIONS AND IWASAWA

INVARIANTS” BY JISHNU RAY

FILIPPO A. E. NUCCIO MORTARINO MAJNO DI CAPRIGLIO AND TADASHI OCHIAI

In his celebrated papers [Col97a] and [Col97b], Coleman constructed p-adic families of
elliptic cuspforms with fixed slope which are often called Coleman families. Coleman’s
theory is a non-ordinary generalization of the theory of p-adic families of ordinary elliptic
cuspforms due to Hida called Hida families. However, some of the properties of Coleman
families are not completely parallel to those of Hida families. For example, Hida families
are usually defined over the whole of the weight space but Coleman families are usually
defined only locally in the weight space. In the original work of Coleman, he constructed
his families over affinoid algebras corresponding to some affinoid spaces contained in the
weight space. A Hida family is defined over an Iwasawa algebra or over an algebra which
is finite over an Iwasawa algebra and these algebras are complete and semi-local. On
the other hand, a Coleman family as constructed in [Col97b] is defined over an affinoid
algebra. One advantage of the fact that the base ring of a Hida family is complete and
semi-local is the possibility to apply to it Wiles’ method of pseudo-representations, which
is a technique allowing us to attach a family of Galois representation to a Hida family.
However, this method does not apply verbatim to attach a family of Galois representations
to a Coleman family formulated as in the original work of Coleman since affinoid algebras
are not complete nor semi-local.

Hence it is sometimes very important that the theory of Coleman family is formulated
over a complete local algebra. Lack of reference for this, we give such an integral formal
model for Coleman families of elliptic cuspforms. As an application, we attach a family of
Galois representation by the method of pseudo-representation (see Theorem 3.3) .

1. Some basics on affinoids and weight spaces

We refer the reader to [BGR84] for our conventions and basic results about rigid analytic
spaces in the sense of Tate. Let K be a complete subfield of Cp. The field K can be
either a finite extension of Qp or an infinite extension of Qp. Let X be an affinoid space
defined over K. We write AX for the ring of analytic functions on X and A 0

X for the
subring of power-bounded elements (see [BGR84, 1.2.5]). They will always be endowed
with their Gauß semi-norm (which is a norm and coincides with the sup-norm if X is
reduced). When K is a discrete valuation field, the ring of power-bounded elements A 0

X
is noetherian because it is a quotient of OK⟨T1, . . . , Tn⟩ and OK⟨T1, . . . , Tn⟩ is the p-adic
completion of a polynomial algebra over OK . The ring AX = A 0

X [1p ] is noetherian whether

K is a discrete valuation field or not. For every maximal ideal m ⊆ AX , AX /m is a finite
extension of K. Whereas, for every non-zero prime ideal p ⊆ A 0

X , the quotient A 0
X /p is

finite over OK (for these facts, see [BGR84, Cor. 3, 6.1.2/3 and Theorem 5.2.7/7]).
We consider the following definition:
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2 F. A. E. NUCCIO AND T. OCHIAI

Definition 1.1. Let K be a complete subfield of Cp and let X be an affinoid space over
K. A subset Z of the set of K-valued points X (K) is a Zariski-dense subset in X if we
have U(K) ∩Z ̸= ∅ for every non-empty Zariski-open subspace U ⊆X .

Given x0 ∈ K and r ∈ pQ, we denote by B[x0, r]K and B(x0, r)K , respectively, the
closed and open ball of radius r and center x0, seen as K-rigid analytic spaces (see [deJ95,
Sect. 7] for a description of the second space). We note that we normalize the p-adic
absolute value | | so that |p| = 1

p . For example, in case r = 1 and x0 ∈ K, A 0
B[x0,1]K

is

isomorphic to the following ring of restricted power series with coefficients in OK :

OK⟨T − x0⟩ =
{ ∞∑

i=0

ci(T − x0)
i ∈ OK [[T − x0]]

∣∣∣ lim
i→∞
|ci| = 0

}
.

Finally, given any complete subfield L ⊆ Cp, we also need the notation B[a, r]L and B(a, r)L
for the set of all x ∈ L such that |x − a| ≤ r (respectively, such that |x − a| < r). When
K = Qp, we denote B[x0, r]Qp (resp. B(x0, r)Qp) by B[x0, r] (resp. B(x0, r)) dropping the
subscript.

Lemma 1.2. Let K be a complete subfield of Cp which is a discrete valuation field.

(1) When X is a reduced affinoid defined over K and f ∈ AX vanishes on every point
of a Zariski-dense subset Z, we have f = 0.

(2) Let x0 ∈ K. Every infinite set inside B[x0, 1]K(K) is Zariski-dense.

Proof. For the first assertion, suppose f ̸= 0 and consider the Zariski-open subset Uf =
{x ∈ X such that f(x) ̸= 0} of X . Since X is reduced and f ̸= 0, we have Uf ̸= ∅. By
the assumption that Z ⊂ X is a Zariski-dense subset, we have Z ∩ Uf (K) ̸= ∅. For any
point z ∈ Z ∩ Uf (K), we have f(z) = 0, contradicting the definition of Uf .

We pass to the second assertion. By Weierstraß preparation Theorem ([BGR84, Theo-
rem 5.2.2/1]), every function f ∈ AB[0,1]K can be factored as f = P ·U where P ∈ K[T−x0]
is a polynomial and U ∈ A ×

B[x0,1]K
is an invertible power series which does not vanish on

B[x0, 1]K . It follows that every such f has only finitely many zeroes and that AB[x0,1]K
is a PID, showing that non-trivial Zariski-closed sets in B[x0, 1]K consist of finitely many
points. □

One of the main rigid spaces of interest for us is the weight space WN , which is isomorphic
to φ(Np) copies of B(1, 1)K indexed by

D = Hom
(
(Z/NpZ)×,C×

p

)
.

For generalities about WN , we refer to [Col97b, Sect. B1], [CM98, Sect. 1.4]. For more
detailed accounts, we refer to [Gou88, Chap. I.3, §4 and Appendix] and [Buz07, page 103].
By definition, the weight space satisfies

WN (Cp) = Homcont(lim←−
n

(Z/NpnZ)×,C×
p ).

Following Coleman and Mazur, we give the following definition:

Definition 1.3. We denote by ω : µp(Zp) → Z×
p the Teichmüller character and by ⟨⟨ ⟩⟩ :

Z×
p → 1 + pZp the projection x 7→ x/ω(x). For every integer k and χ ∈ D of finite order,

the point χ⟨⟨ ⟩⟩k ∈ WN (Qp) is called an accessible weight-character with coordinates (χ, k).
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As detailed in [CM98, Definition, Section 1.4] the accessible weight-characters are parametrized
by the rigid analytic subspace W ∗

N = D×B∗ ⊆ WN where

(1.1) B∗ ∼= B(0, p
p−2
p−1 )

is the subdisk of B(1, 1) which is the image of B(0, p
p−2
p−1 ) via the map s 7→ (1 + p)s. In

the notation introduced in Definition 1.3, the character χ⟨⟨ ⟩⟩k is represented by the point
(χ, (1 + p)k) ∈ WN (Qp) which gets mapped to (χ, k) by the identification in (1.1); we

see that the word “coordinates” comes from seeing W ∗
N as D-copies of B(0, p

p−2
p−1 ). From

now on we systematically write points in the weight space through their coordinates. In
particular, for every fixed χ ∈ D, the weights of characters with Nebentypus χ will be

points in B(0, p
p−2
p−1 ) rather than in B(1, 1).

The assumption (N, p) = 1 allows us to look at the group Hom
(
(Z/p)×,C×

p

)
as a sub-

group of D. It thus makes sense, for each 0 ≤ j ≤ p−2, to interpret ωj as an element of D.
The characters x 7→ xk, which are accessible with coordinates (1, k), are then the elements
of WN (Qp) which belong to the ωk-th copy of B∗ and we call them integral weights (of
trivial Nebentypus).

2. p-adic families of modular forms

We start with a classical eigencuspform f ∈ Sk0(Γ1(Np), ε) of weight k0, level Np and
Nebentypus ε, which we factor as product ε = εNωk0−i for some character εN of conductor
divisible by N and some 0 ≤ i ≤ p−1. Our main reference concerning p-adic modular forms
and p-adic families thereof is [Col97b, Part B] as well as [Gou88], in particular Section II.3
for the definition of the Up-operator.

Definition 2.1. Let f be a p-adic modular form of level Np which is an eigenvector with
respect to the Up-operator. We define the slope of f to be the p-adic valuation of the
Up-eigenvalue of f . It is a non-negative rational number.

We assume that the slope of f is 0 ≤ α ≤ k0 − 1. In [Col97b], [Col97a] and [CM98]
Coleman and Coleman–Mazur have built a theory of families of p-adic modular forms of
slope α interpolating f , a part of which is stated in Theorem 2.2 below and will be crucial
for us in this paper. Let us introduce some notation to state Theorem 2.2. Given an

element k0 ∈ Qp, an integer i and r < p
p−2
p−1 ∈ pQ, we denote by X(k0,i)[r] the affinoid

subspace of the weight space

X(k0,i)[r0] := {εNωi} ×B[k0, r] ⊆ W ∗
N .

Let us consider a finite extension K of Qp, which plays a role of the field of coefficients
of motives associated to cuspforms f in the given Coleman family. We note that K has
nothing to do with the field of definition K, for which we can choose K to be Qp which
corresponds to of the field of definition of motives associated to cuspforms f in the given
Coleman family. From now on, we denote by A 0

X(k0,i)
[r]

/K
(resp. AX(k0,i)

[r]
/K

) the extension

of coefficients A 0
X(k0,i)

[r] ⊗Zp OK (resp. AX(k0,i)
[r] ⊗Qp K) where OK is the ring of integers

of K. We have the following result thanks to [Col97b]:

Theorem 2.2 ([Col97b]). Suppose that f is a classical normalized cuspidal eigenform, of
weight k0, level Γ1(Np), slope α < k0 − 1, Nebentypus ε = εNωi−k0 and which is new
away from p. In the case i = 0, suppose moreover that a2 ̸= εN (p)pk0−1, where a is the
Up-eigenvalue of f .
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Then, there is a radius r0 < p
p−2
p−1 lying in pQ and rigid analytic functions an on

A 0
X(k0,i)

[r0]/K
with some field of coefficient K for every natural number n such that the

following statements hold:

(1) For every integer k ∈ X(k0,i)[r0](Qp) satisfying k > α + 1 the series

∞∑
n=1

an(k)q
n ∈

K[[q]] coincides with the q-expansion of a classical normalized cuspidal eigenform of
level Np, weight k, slope α and character εNωi−k.

(2) The series
∞∑
n=1

an(k0)q
n ∈ K[[q]] coincides with the q-expansion of f at k = k0.

(3) The space X(k0,i)[r0] is ap-small in the sense of [Kis03, (5.2)].

Remark 2.3. At first glance, it might look better to write a
(r0)
n for the analytic functions

appearing in the statement, since the radius r0 is not uniquely associated to f and these
functions might a priori depend on its choice. However, we will prove in Corollary 2.5
below that this is not necessary.

Proof. In [Col97b, pp. 465–467] (and especially along the proof of Corollary B5.7.1 ibidem),
Coleman attaches to the above f the space X(k0,i)[r0] with a radius r0 ∈ pQ small enough.
In [Col97b, pp. 465–467], this space is denoted simply by B and a crucial step is to take
a finite étale affinoid algebra R(k0,i)[r0] over AX(k0,i)

[r0] whose associated affinoid space

parametrizes families of p′-new forms of slope α. As in the paper [Col97b], we write
X(R(k0,i)[r0])→X(k0,i)[r0] for the affinoid space associated to R(k0,i)[r0].

Then the statement is Corollary B5.7.1 in [Col97b] verbatim, except for the condition
that all an be power-bounded and that all forms above be normalized. In Lemma B5.3
ibidem it is shown that the Hecke eigenvalues of an overconvergent cuspidal eigenform
are bounded by 1 if it is normalized. We thus get the result by observing that a1 = 1,
which follows from a1 = T (1) = 1 by the construction given in Theorem B5.7 ibidem. As
discussed in [Kis03, §5.2] it is always possible to shrink a disk around a point in order to
get a smaller one which is ap-small, and this radius we call r0. □
Definition 2.4. Let f be a form as in Theorem 2.2 and let 0 < r ≤ r0 be smaller than or
equal to the radius constructed there. We refer to the rigid functions {an}n∈N on X(k0,i)[r0]
as a Coleman family of slope α and radius r passing through the form f . We refer to the
formal power series

∞∑
n=1

anq
n ∈ A 0

X(k0,i)
[r]

/K
[[q]]

as the Fourier expansion of the Coleman family. For each x ∈ X(k0,i)[r], we denote by
fx the overconvergent modular form whose expansion is

∑
an(x)q

n. We also refer to the
collection of all these forms as the Coleman family of slope α through the form f .

We consider the subset of accessible weight-characters in X(k0,i)[r] as follows:

(2.1) Z(k0,i)[r] =
(
{εNωi} × Z>α+1

)
∩X(k0,i)[r] ⊆ W ∗

N (Qp).

By abuse of notation, we write k for elements (εNωi, k) of Z(k0,i)[r] and we denote the
p-adic Deligne representation attached to fk in [Del68] by ρk.

Consider a form f satisfying the assumption of Theorem 2.2 and a radius r0 as con-
structed there.
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Corollary 2.5. Recall that k0 ∈ Z is the weight of the classical form f0 which is the base
of our given Coleman family. Let r0 be a radius as constructed in Theorem 2.2 and let
r < r0 be a smaller radius lying in pQ. Then the functions

res
X(k0,i)

[r0]

X(k0,i)
[r] (an) ∈ A 0

X(k0,i)
[r]

/K
for n ≥ 1

are the Fourier expansion of a Coleman family of slope α and radius r passing through the
form f .

Proof. Follows from the definitions, since for every k ∈ Z(k0,i)[r](Qp) the series

∞∑
n=1

res
X(k0,i)

[r0]

X(k0,i)
[r] (an)(k)q

n

is the q-expansion of a form of the required type. □

Thanks to the above corollary, we can unambiguously speak about its Fourier coefficients
an without referring to the radius; observe also that if shrink an ap-small disk to another
one of smaller radius gives maintains ap-smallness. We recall the following lemma:

Lemma 2.6. Recall that k0 ∈ Z is the weight of the classical form f0 which is the base of
our given Coleman family. Let r ∈ pQ be a radius satisfying r ≤ r0 and K a finite extension
of Qp. If the function G ∈ AX(k0,i)

[r]
/K

vanishes on Z(k0,i)[r0], it is everywhere zero.

Proof. The subset Z(k0,i)[r] ⊆ X(k0,i)[r](Qp) is Zariski-dense in X(k0,i)[r] thanks to the
second assertion of Lemma 1.2. Hence, the assertion is an immediate consequence of the
first assertion of Lemma 1.2. □

3. p-adic family of Galois representations

The main result of this section is Theorem 3.3 which produces an integral Galois repre-
sentation with values in A 0

X /K – for a given Coleman family and a suitable affinoid X –

that specializes to the Deligne representations attached to the classical eigenforms which
belong to the given Coleman family. The most important ingredient is to construct pseudo-
representations associated to a given Coleman family: once we have a pseudo-representation
over our affinoid algebras, it is a standard argument to recover Galois representations from
this pseudo-representation. Since we do not find a standard reference to construct pseudo-
representations over affinoid algebras, we construct them by using a formal structure of
Coleman families.

Let us fix a Coleman family as in Theorem 2.2 and let r0 ∈ pQ be the radius of this
Coleman family which appeared there. Let K be a complete subfield of Cp and take an
element e0 ∈ K such that r0 = |e0|. Let us define a complete local ring A0

K to be

(3.1) A0
K = OK

[[T − k0
e0

]]
=

{ ∞∑
i=0

ci

(
T − k0

e0

)i ∣∣∣ ci ∈ OK

}
.

For any r ∈ pQ with r < r0, power series in A0
K converge on B[k0, r]K which is strictly

contained in B(k0, r0)K and are there bounded by 1. We consider them as functions on
X(k0,i)[r].

By restriction, this induces a ring homomorphism A0
K

res−−→ A 0
X(k0,i)

[r]K
for any r ∈ pQ

with r < r0. For each such radius r, we choose er ∈ Cp such that |er| = r. By [BGR84,
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§6.1.5], there is an isomorphism

A 0
X(k0,i)

[r]Cp
∼=

{ ∞∑
i=0

ci

(
T − k0

er

)i

∈ OCp

[[T − k0
er

]] ∣∣∣ lim
i→∞
|ci| = 0

}
.

Similarly as above, the inclusion {εNωi} ×B(k0, r0)K ⊂ X(k0,i)[r0]K induces a homomor-

phism A 0
X(k0,i)

[r0]K
→ A0

K where we have a presentation

A 0
X(k0,i)

[r0]K
∼=

{ ∞∑
i=0

ci

(
T − k0

e0

)i

∈ OK

[[T − k0
e0

]] ∣∣∣ lim
i→∞
|ci| = 0

}
.

We have:

(3.2) A 0
X(k0,i)

[r0]K
→ A0

K
res−−→ A 0

X(k0,i)
[r]Cp

which correspond to the inclusions

B[k0, r]Cp ⊂ B(k0, r0)K ⊂ B[k0, r0]K .

In Figure 1, there is a sketch of the radii that occurred so far in our construction: When
the radius r ∈ pQ with r < r0 tends to r0, we have

A0
K ⊂ A0

Cp
= lim←−

r→r0

A 0
X(k0,i)

[r]Cp
= ∩

r<r0
A 0

X(k0,i)
[r]Cp

.

Here A0
K is characterized to be elements in A0

Cp
which takes values in K at a dense subset

in B[k0, r0]K . From now on, when there is no fear of confusion, we denote A0
Qp

by A0 when

K = Qp dropping the subscript K. For a finite extension K of Qp, we denote A
0⊗ZpOK by

A0
/K. As stated previously, K plays a role of the field of coefficients and K has nothing to do

with the field of definition K. By the above observation, we have the following proposition:

Proposition 3.1. Let us take the same assumptions and notations of Theorem 2.2. Then,
there exists a finite extension K of Qp such that, for every natural number n, there is a
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unique function An ∈ A0
/K such that the image of An via the natural inclusion A0

/K ↪→
A 0

X(k0,i)
[r]

/K
coincides with an obtained in Theorem 2.2 on a smaller radius r.

We remark that A0
/K in Proposition 3.1 is isomorphic to the following ring:

A0
/K ∼= OK

[[T − k0
e0

]]
=

{ ∞∑
i=0

ci

(
T − k0

e0

)i ∣∣∣ ci ∈ OK

}
,

where e0 ∈ Qp is an element with |e0| = r0.

Proof. In Theorem 2.2, we obtained a Coleman family over X(k0,i)[r0]. By shrinking such

a Coleman family to X(k0,i)[r] for any r ∈ pQ with r < r0 and by taking the limit r −→ r0,

we showed that there exists An ∈ A0
/K such that the image of An via the natural inclusion

A0
/K ↪→ A 0

X(k0,i)
[r]

/K
coincides with an obtained in Theorem 2.2. This completes the proof

of the proposition. □

Based on the existence of the formal structure A0
/K, we introduce the notion of 2-

dimensional pseudo-representation based on [Wil88]. We remark that other types of
pseudo-representations were later introduced by Taylor in [Tay91] and, much more re-
cently, by Chenevier in [Che11] but for our purposes Wiles’ approach seems to be the best
suited. Given a topological group G and a topological ring R in which 2 is invertible we
say that a triple π = (A,D,Ξ) of continuous functions

A,D : G −→ R Ξ : G×G −→ R

satisfying properties (I)–(IV) in [Wil88, Lemma 2.2.3], is a pseudo-representation.
Given a continuous representation ρ : G→ GL2(R), by fixing a basis of R2 we can write

ρ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
for σ ∈ G

and the triple πρ = (A(σ) = a(σ), D(σ) = d(σ),Ξ(σ, τ) = b(σ)c(τ)) is easily checked to be a
pseudo-representation; observe that attaching a pseudo-representation to a representation
depends on the choice of a basis. Extending the notation introduced in Definition 2.4, we
simply denote by πk the pseudo-representation πρk attached to ρk in some chosen basis.

Let Z(k0,i)[r0] be the set of points of the formal rigid space which is defined to be

(3.3) Z(k0,i)[r0] = B(k0, r0) ∩Z(k0,i)[r0]

where Z(k0,i)[r0] is the set defined at (2.1). We apply this discussion to the ring R = A0
/K

defined in (3.1) to find:

Proposition 3.2. Let S be the finite set of primes of Q consisting of the primes {ℓ : ℓ | N},
p and ∞, GQ,S the Galois group of the maximal extension unramified outside S over Q.
Then, there exists a continuous pseudo-representation

π = (A,D,Ξ): GQ,S −→ A0
/K

interpolating the pseudo-representations πk attached to members of the Coleman family
of slope α through f . In other words, for each k ∈ Z(k0,i)[r0], the evaluation evk ◦ π =
(evk ◦A, evk ◦D, evk ◦ Ξ) coincides with the pseudo representation πk.
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Proof. The argument of the pseudo representation of rank two à la Wiles is more or less
standard and the proof goes in a quite parallel manner as the proof given in the text book
[Hid93, §7.5]. So we only give an outline.

Let us choose a complex conjugation c ∈ GQ,S . For each k ∈ Z(k0,i)[r0], we fix a a

basis for the representation ρk so that c is represented by the matrix

(
−1 0
0 1

)
. Following

[Wil88, Lemma 2.3.3], we define functions

A(k), D(k) : GQ,S −→ K
by the matrix representation

ρk(g) =

(
A(k)(g) B(k)(g)
C(k)(g) D(k)(g)

)
.

We also set Ξ(k) : GQ,S ×GQ,S −→ K by Ξ(k)(γ1, γ2) = A(k)(γ1γ2)−A(k)(γ1)A(k)(γ2). The
functions A(k), D(k),Ξk are continuous for every k ∈ Z(k0,i)[r0] thanks to continuity of the
Deligne representation ρk.

For any k ∈ Z(k0,i)[r0], we denote by Pk ⊂ A0
/K the kernel of the evaluation map

A0
/K −→ K at k. Let us denote the function A(k) + D(k) by TrPk

. Since Z(k0,i)[r0] is a

countable set, we give a numbering

Z(k0,i)[r0] = {k1, k2, . . . , ks, . . .}.

For k1, k2 ∈ Z(k0,i)[r0], we consider the map

(3.4) A0
/K/Pk1 ⊕A0

/K/Pk2 −→ A0
/K/(Pk1 + Pk2), (x, y) 7→ (x mod Pk2)− (y mod Pk1)

whose kernel is isomorphic to A0
/K/(Pk1 ∩ Pk2). Let ℓ be a prime number outside S. We

have TrPk
(Frobℓ) = aℓ(k) for every k ∈ Z(k0,i)[r0] and the Fourier coefficients aℓ(ki) glue

together when ki varies. Hence the values TrPk
(Frobℓ) glue together when k varies, which

is true for any prime number ℓ outside S. By the sequence (3.4), we have a continuous
function TrPk1

∩Pk2
: GQ,S −→ A0

/K/(Pk1 ∩ Pk2) whose value TrPk1
∩Pk2

(Frobℓ) is congruent

to TrPk1
(Frobℓ) (resp. TrPk2

(Frobℓ)) mod Pk1 (resp. mod Pk2) for every prime number ℓ

outside S. Since the set of Frobenius elements is dense in GQ,S , value TrPk1
∩Pk2

(σ) is

congruent to TrPk1
(σ) (resp. TrPk2

(σ)) mod Pk1 (resp. mod Pk2) for every σ ∈ GQ,S .
By inductive argument, for each natural number s, we have a continuous function

TrPk1
∩Pk2

∩...∩Pks
: GQ,S −→ A0

/K/(Pk1 ∩ Pk2 ∩ . . . ∩ Pks)

such that we recover the function TrPki
(σ) mod Pki for i = 1, 2, . . . , s. Note that we have

A0
/K = lim←−s

A0
/K/(Pk1 ∩ Pk2 ∩ . . . ∩ Pks) since A0

/K is complete and local. We define the

continuous function Tr : GQ,S −→ A0
/K to be lim←−s

TrPk1
∩Pk2

∩...∩Pks
.

By using the function Tr, we define the desired function A and D as follows:

A(σ) =
Tr

(
σ
)
− Tr

(
c · σ

)
2

, D(σ) =
Tr

(
σ
)
+Tr

(
c · σ

)
2

.

Since A0
/K is complete and local, a similar argument is done by first evaluating at pairs

(g1, g2) = (Frobℓ1 ,Frobℓ2) the value b(g1)c(g2) and then observing that the set of these
pairs is dense in GQ,S ×GQ,S .

We thus obtain a continuous function

Ξ: GQ,S ×GQ,S −→ A0
/K
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which recovers the function Ξ(k) taking the reduction modulo Pk of the function Ξ for every
k ∈ Z(k0,i)[r0].

Setting π := (A,D,Ξ), we need to check that they verify properties (II)-(IV) of [Wil88]
by using the fact that Z(k0,i)[r0] is dense in the reduced X . First, let us verify the property
(IV), namely we verify that for each g1, g2, h1, h2 ∈ GQ,S it holds

(3.5) Ξ(g1, g2)Ξ(h1, h2)− Ξ(g1, h2)Ξ(h1, g2) = 0 .

We need to check that the function Ξ(g1, g2)Ξ(h1, h2)− Ξ(g1, h2)Ξ(h1, g2) vanishes identi-
cally on X . Since the above-mentioned property (IV) holds for the pseudorepresentation
πk = (A(k), D(k),Ξk), we have(

Ξ(g1, g2)Ξ(h1, h2)− Ξ(g1, h2)Ξ(h1, g2)
)
(k)

= Ξk(g1, g2)Ξk(h1, h2)− Ξk(g1, h2)Ξk(h1, g2)

at each point k in the dense subset Z(k0,i)[r0]. This proves the desired vanishing of (3.5) and
the same argument holds for other properties (II) and (III). This completes the proof. □

Theorem 3.3 below, which is the main result of this section, shows that the pseudo-
representation just constructed comes from a true representation.

Theorem 3.3. Let us take the same assumptions and notations as Proposition 3.2. There
exists a free A0

/K-module T of rank two with a continuous GQ,S-action such that the rep-

resentation

ρ : GQ,S −→ AutA0
/K
(T)

satisfies πρ = π (in a suitable basis). In particular, ρ modulo Pk is isomorphic to a lattice
of ρk for all k ∈ Z(k0,i)[r0].

The following proof mainly relies on [Wil88, Lemma 2.2.3], see also [Hid93, Proposition 1,
§7.5].

Proof. Start with a radius r0 as in Theorem 2.2 and set r = r0|ϖ|. Let π = (A,D,Ξ) be the
A0

/K-valued pseudo-representation constructed in Proposition 3.2. There exists a pair of

elements σ, τ ∈ GQ,S such that Ξ(σ, τ)(k0) ̸= 0. If not, the diagonal Galois representation
g 7→ A(g)(k0)⊕D(g)(k0) would have the same trace and determinant as the representation
ρk, which contradicts to Ribet’s Theorem 2.3 of [Rib77] saying that ρk be irreducible (see
in [Wil88, Lemma 2.2.3] or [Hid89, Proposition 1.1]). From now on, let us fix a pair σ, τ
such that Ξ(σ, τ)(k0) ∈ K is of minimal valuation, say µ ∈ Q. The element Ξ(σ, τ) can be
decomposed as Ξ(σ, τ) = pµV −1 with V ∈ (A0

/K)
×. As in [Hid93, Proposition 1], we check

that the map

ρ : g 7→

 A(g) Ξ(g, τ)V p−µ

Ξ(σ, g) D(g)


is multiplicative, sends 1 ∈ GQ,S to Id2 ∈ M2(A

0
/K) and takes values in M2(A

0
/K ⊗ Qp).

Hence we have a continuous group homomorphism ρ : GQ,S → GL2(A
0
/K ⊗Qp). We want

to produce a finitely generated A0
/K-submodule of A0

/K ⊗ Qp which is ρ-stable, we follow

the proof of continuity of [Hid89, Proposition 1.1]. Namely, define J ⊆ A0
/K to be the ideal

generated by all lower-left entries Ξ(σ, g) for g ∈ GQ,S and let T′ be the A0
/K-submodule

of (A0
/K)

⊕2 ⊂ (A0
/K ⊗ Qp)

⊕2 generated by all vectors (x, y) with x ∈ A0
/K, y ∈ J. The
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A0
/K-module T′ is finitely generated since A0

/K is noetherian and is p-torsion free since so

is (A0
/K ⊗Qp)

⊕2. Moreover, given t(x, y) ∈ T′ and g ∈ GQ,S , we have

ρ(g) ·
(

x
y

)
=

(
A(g)x+ Ξ(g, τ)V p−µy

Ξ(σ, g)x+D(g)y

)
∈ T′

by the definition of J which ensures Ξ(σ, g)x ∈ J and by the definition of µ which ensures
Ξ(g, τ)V p−µ ∈ A0

/K. Thus, it follows that T′ is Galois stable. Finally, T′ ⊗ Qp = (A0 ⊗
Qp)

⊕2 because J contains the element Ξ(σ, τ) = p−µV which becomes a unit after inverting
p. Let us define T to be the double dual HomA0(HomA0(T′,A0

/K),A
0
/K). We have a

canonical GQ,S-equivariant A
0
/K-linear injection T′ ↪→ T with finite cokernel. Since T is a

finitely generated reflexive module over a regular local ring A0
/K of Krull dimension two,

T is a free A0
/K-module of finite rank. Since T⊗Qp is free of rank two over A0

/K⊗Qp, the

rank of T over A0
/K is two.

As for the last property, recall that an irreducible representation of GQ,S with values in
a finite extension of Qp is uniquely determined by its trace and determinant. Thus T/PkT
is isomorphic to a lattice of the Galois drepresentation ρk. □

Note that ι : A0
/K ↪→ A 0

X(k0,i)
[r]

/K
is continuous. In fact, A0

/K is local with the maximal

ideal (T−k0
e0

, ϖ) and A 0
X(k0,i)

[r]
/K

is endowed with the ϖ-adic topology. To show that ι is

continuous, we need to show that ι−1
(
ϖA 0

X(k0,i)
[r]

/K

)
contains the maximal ideal (T−k0

e0
, ϖ)

of A0
/K. In fact, this implies that ι−1(ϖnA 0

X(k0,i)
[r]

/K
) contains (T−k0

e0
, ϖ)n for every n.

The uniformizer ϖ is clearly contained in ι−1(ϖA 0
X(k0,i)

[r]
/K

) and T−k0
e0

is also contained

in ι−1(ϖA 0
X(k0,i)

[r]
/K

) since we have T−k0
e0

= ϖ T−k0
e0ϖ

∈ ϖA 0
X(k0,i)

[r]
/K

. By extending the

coefficient of the result obtained over A0
/K in the above theorem to A 0

X(k0,i)
[r]

/K
, we obtain

the following corollary:

Corollary 3.4. Under the same assumptions and notations as Theorem 2.2 and Proposi-
tion 3.2, there exists a free A 0

X(k0,i)
[r]

/K
-module T of rank two with continuous GQ,S-action

such that the representation

ρ : GQ,S −→ AutA 0
X(k0,i)

[r]
/K

(T )

satisfies πρ = π (in a suitable basis). In particular, ρ modulo mk is isomorphic to ρk for all
k ∈ Z(k0,i)[r0] where mk is the unique maximal ideal of A 0

X(k0,i)
[r]

/K
such that mk∩A0

/K = Pk.

We stress that every finitely generated module over an affinoid algebra A will always im-
plicitly be endowed with the quotient topology induced by any finite presentation (which is
independent of the presentation, see [BGR84, Proposition 3.7.3/3]) and that every finitely
generated, torsion-free module M over a power-bounded affinoid algebra A 0 will be en-
dowed with the subspace topology induced by its injection into the finitely generated
A 0[1p ]-module M ⊗Qp.
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