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Abstract

Dedekind domains and their class groups are notions in commutative
algebra that are essential in algebraic number theory. We formalized
these structures and several fundamental properties, including number
theoretic finiteness results for class groups, in the Lean prover as part
of the mathlib mathematical library. This paper describes the formaliza-
tion process, noting the idioms we found useful in our development and
mathlib’s decentralized collaboration processes involved in this project.

1 Introduction

In its basic form, number theory studies properties of the integers Z and its
fraction field, the rational numbers Q. For the sake of generalization, as well
as for providing powerful techniques to answer questions about the original
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objects Z and Q, it is worthwhile to study finite extensions of Q, called number
fields, as well as their rings of integers (Section 2), whose relations mirror the
way Q contains Z as a subring. In this paper, we describe our project aiming
at formalizing these notions and some of their important properties. Our goal
is not to get to the definitions and properties as quickly as possible; rather,
we lay the foundations for future work, as part of a natural and more general
theory.

In particular, our project resulted in formalized definitions and elementary
properties of number fields and their rings of integers (Section 4.3), Dedekind
domains (Section 5), and the ideal class group and class number (Section 8).
Apart from the very basics concerning number fields, these concepts were not
formalized before as far as we know. We note that a formal definition of the
class number is an essential requirement for the use of theorem provers in
modern number theory research. The main proofs that we formalized show
that two definitions of Dedekind domains are equivalent (Section 5.3), that
the ring of integers of a number field is a Dedekind domain (Section 7) and
that the class group of the ring of integers of a number field is finite (Section
8). In fact, most of our results for number fields are also obtained in the more
general setting of global fields.

Our work is developed as part of the mathematical library mathlib [1] for
the Lean 3 theorem prover [2]. The formal system of Lean is a dependent type
theory augmented with quotient types and classical reasoning, both of which
are commonly used in mathlib (Section 3). As we finished parts of our work, we
contributed these to mathlib. We, in turn, used results contributed by others
after the start of the project. At several points, we had just merged a for-
malization into mathlib that another contributor needed, immediately before
they contributed a result that we needed. Due to the decentralized organiza-
tion and fluid nature of contributions to mathlib, its contents are built up of
many different contributions from over 250 different authors. Attributing each
formalization to a single set of main authors would not do justice to all others
whose additions and tweaks are essential to its current use. Therefore, we will
make clear whether a contribution is part of our project or not, but we will
not stress who we consider to be the main authors.

The source files of the formalization have been contributed to mathlib. We
have preserved the development branch that this paper is based on1. We also
maintain a repository2 containing the source code referred to in this paper.

This paper is an extended version of a paper published in the ITP 2021
conference proceedings [3]. The additions to this paper, apart from several
clarifications and enhancements throughout the text, mainly concern the
following.

• Code samples throughout have been updated to reflect parts of our for-
malization contributed to mathlib after the previous publication and to
incorporate changes in mathlib after contribution.

1https://github.com/leanprover-community/mathlib/tree/dedekind-domain-dev
2https://github.com/lean-forward/class-number-journal

https://github.com/leanprover-community/mathlib/tree/dedekind-domain-dev
https://github.com/lean-forward/class-number-journal
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• Instead of only considering class groups of Dedekind domains, we briefly
describe class groups for general domains; see the end of Section 2 and
Section 8.1.

• The new Section 3 gives a more detailed explanation of Lean as used in
mathlib, in particular the use of typeclasses and bundling.

• We discuss definitional equality in Lean in the context of overlapping
typeclass instances in Section 4.1.

• The further evolution of fraction rings in mathlib is discussed at the end of
Section 4.5.

• We elaborate on invertibility and unique factorization of ideals in Dedekind
domains in Sections 5.2 and 5.4.

• We give more details on the proof of finiteness of the class group and its
formalization in Section 8.2.

• We elaborate on future directions in Section 9.2, including research relying
on the formalization described here.

2 Mathematical background

Let us now introduce some of the main objects we study, described informally.
We assume some familiarity with basic ring and field theory.

A number field K is a finite extension of the field Q, and as such has the
structure of a finite dimensional vector space over Q; its dimension is called
the degree of K. The easiest example is Q itself, and the two-dimensional
cases are given by the quadratic number fields Q(

√
d) = {a+ b

√
d : a, b ∈ Q}

where d ∈ Z is not a square. Similarly, adding a cubic root 3
√
d of some d ∈ Z

which is not a cube leads to the number field Q( 3
√
d): it has degree 3 but not

all cubic number fields arise in this way. An example of a cubic number field
that is not of this form, and that will occupy us later for other interesting
features, is Q(α0) = {a+ bα0 + cα2

0 : a, b, c ∈ Q}, where α0 is the unique real
number satisfying α3

0 + α2
0 − 2α0 + 8 = 0. In general, taking any root α of an

irreducible polynomial of degree n over Q yields a number field of degree n,
namely Q(α) = {c0 + c1α+ . . .+ cn−1α

n−1 : c0, c1, . . . , cn−1 ∈ Q}, and, up to
isomorphism, all number fields of degree n arise in this way.

The ring of integers OK of a number field K is defined as the integral
closure of Z in K, namely

OK := {x ∈ K : f(x) = 0 where f ∈ Z[x] is a monic polynomial} ,

where we recall that a polynomial is called monic if its leading coefficient
equals 1. While it might not be immediately obvious that OK is a ring, this
follows from general algebraic properties of integral closures. Some examples
of rings of integers are the following. Taking K = Q, we get OK = Z back.
For K = Q(i) = Q(

√
−1) we get that OK is the ring of Gaussian integers

Z[i] = {a + bi : a, b ∈ Z}. But for K = Q(
√
5) we do not simply get Z[

√
5] =

{a + b
√
5 : a, b ∈ Z} as OK , since the golden ratio φ := (1 +

√
5)/2 ̸∈ Z[

√
5]

satisfies the monic polynomial equation φ2 − φ − 1 = 0; hence by definition,
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φ ∈ OK . It turns out that OK = Z[φ] = {a + bφ : a, b ∈ Z}. Finally, if
K = Q(α0) with α0 as before, then OK = {a+bα0+c(α0+α2

0)/2 : a, b, c ∈ Z},
illustrating that explicitly writing down OK can quickly become complicated.
Further well-known rings of integers are the Eisenstein integers Z[(1+

√
−3)/2]

and the ring Z[
√
2].

Thinking of OK as a generalization of Z, it is natural to ask which of its
properties still hold in OK and, when this fails, if a reasonable weakening does.

An important property of Z is that it is a principal ideal domain (PID),
meaning that every ideal is generated by one element. This implies that every
nonzero nonunit element can be written as a finite product of prime elements,
which is unique up to reordering and multiplying by ±1. A ring where this
holds is called a unique factorization domain, or UFD. For example, 6 can be
factored in primes in 4 equivalent ways, namely 6 = 2 ·3 = 3 ·2 = (−2) ·(−3) =
(−3) · (−2). In fact, the previously mentioned examples of rings of integers
are UFDs, but this is certainly not true for all rings of integers. For example,
unique factorization does not hold in OQ(

√
−5) = Z[

√
−5] : it is easy to prove

that 6 = 2 · 3 and 6 = (1 +
√
−5)(1−

√
−5) provide two essentially different3

ways to factor 6 into prime elements of Z[
√
−5].

As it turns out, there is a way to weaken this notion of unique factorization
in a meaningful way. Namely, by considering factorization of ideals instead
of elements; given a number field K, with ring of integers OK , a beautiful
and classical result by Dedekind shows that every nonzero ideal of OK can be
factored as a product of prime ideals in a unique way, up to reordering.

Although unique factorization in terms of ideals is of great importance,
it is still interesting, and sometimes necessary, to also consider factorization
properties in terms of elements. We have already mentioned that unique fac-
torization in Z follows from the fact that every ideal is generated by a single
element. Now, it is convenient to extend the notion of ideals of Z to that
of fractional ideals. These are additive subgroups of Q of the form 1

dI with
I an ideal of Z and d a nonzero integer. When the distinction is important,
we refer to an ideal I ⊆ Z as an integral ideal. The nonzero fractional ide-
als of Z naturally form a multiplicative group (whereas, for instance, there is
no integral ideal I ⊆ Z such that I ∗ (2Z) = (1)). The statement that every
ideal is generated by a single element translates to the fact that the quotient
group of nonzero fractional ideals modulo Q× is trivial (where a

b ∈ Q× corre-
sponds to 1

baZ, and the multiplicative group of invertible elements of a ring R
is denoted by R×).

It turns out that this quotient group can be defined for every ring of inte-
gers OK . The fundamental theoretical notion beneath this construction is that
of Dedekind domains: these are integral domains D which are Noetherian
(every ideal of D is finitely generated), integrally closed (if an element x in
the fraction field FracD of D is a root of a monic polynomial with coefficients
in D, then actually x ∈ D), and of Krull dimension at most 1 (every nonzero

3By “essentially different” we mean that one factorization cannot be obtained from the other
via multiplication by units.
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prime ideal of D is maximal). It can be proved that the nonzero fractional
ideals of a Dedekind domain D form a group under multiplication, and that
the quotient of this group by the image of the natural embedding of (FracD)×

is called the (ideal) class group ClD. For later reference, fractional ideals gen-
erated by one element of FracD are called principal fractional ideals, so the
image of the natural embedding of (FracD)× consists exactly of the nonzero
principal fractional ideals.

What is arithmetically crucial is the theorem ensuring that the ring of
integers OK of every number field K is a Dedekind domain, and that in this
case the class group ClOK

is actually finite. In particular, ClOK
can be seen

as “measuring” how far ideals of OK are from being generated by a single
element and, consequently, as a measure of the failure of unique factorization.
The order of ClOK

is called the class number ofK. Intuitively, then, the smaller
the class number, the fewer factorizations are possible. In particular, the class
number of K is equal to 1 if and only if OK is a UFD.

The statements in the previous paragraph also hold for function fields,
namely fields which are finite extensions of Fq(t) = FracFq[t], where Fq[t]
stands for the ring of univariate polynomials (in a free variable t) with coef-
ficients in a finite field Fq with q elements. Recall that when q is a prime
number, Fq is simply the field Z/qZ. A field which is either a number field or
a function field is called a global field.

The concept of class group actually not only makes sense for Dedekind
domains but more generally for (at least) any integral domain R as follows.
While the nonzero fractional ideals of R in general need not be a group, they
do form a commutative monoid. Hence, the invertible fractional ideals of R
form a group, and the class group of R (denoted ClR) is now defined as the
quotient of this group by the image of the natural embedding of (FracR)×.

In upcoming sections we will describe the formalization of the above
concepts as part of mathlib.

3 Lean and mathlib

The formal system of Lean is a dependent type theory based on the calcu-
lus of inductive constructions. This means that each element e has a unique
type t, written e : t. The natural number 0 has type N, and the rational 0
has type Q. One can then identify 0 : N with 0 : Q using a map N → Q
called a coercion (denoted by the arrow ↑ or left implicit); that is, (0 : Q) =

↑(0 : N). Types have types too, for example N : Type. The full hierarchy
consists of an impredicative universe Prop sitting at the bottom of a noncumu-
lative chain Prop : Type : Type 1 : Type 2 : ... ; “an arbitrary Type u”
is abbreviated as Type*. Propositions correspond to elements of Prop, while a
(verified) proof of the proposition P : Prop corresponds to an element p : P.
In addition to these features commonly found in a dependent type theory, Lean



Springer Nature 2021 LATEX template

6 Dedekind domains and class groups

provides proof irrelevance, quotient types and classical reasoning. Proof irrele-
vance means that for any proposition P : Prop, any two proofs p1 p2 : P are
judged equal by the system. These features are all commonly used in mathlib.

Lean uses typeclass inference to automatically infer properties of certain
objects. If we define a structure with the keyword class, then one can supply
values for the class that Lean will automatically infer, by tagging these with
instance. As an example, consider a ring R with a subring S. The instance
subring.to ring says that S is also a ring. Consequently, one can now use
lemmas about rings for S without having to invoke subring.to ring. We
put the implicit arguments to be inferred by the typeclass system in square
brackets. Other implicit arguments remain in curly brackets, while explicit
arguments go in round brackets. As an example, consider:

theorem pow_succ {M : Type u} [monoid M] (a : M) (n : N) :

a ^ (n + 1) = a * a ^ n

When invoking this theorem, one must provide the explicit arguments a, which
has type M, and a natural number n. As a result, Lean can determine the value
of M through unification and can then use the typeclass system to infer a value
for [monoid M].

The flagship general-purpose mathematical library for Lean is mathlib;
other libraries are available for more specialized purposes. Organizationally,
mathlib is characterized by a distributed and decentralized community of con-
tributors, a willingness to refactor its basic definitions, and a preference for
small, yet complete, contributions over larger projects added all at once. In
this project, as part of the development of mathlib, we followed this philoso-
phy by contributing pieces of our work as they were finished. In turn, we used
other mathlib contributors’ results as they were made available.

There is a variety of tactics available in mathlib such as simp (simpli-
fies the main goal target using lemmas tagged with the attribute [simp]),
library search (tries to close the current goal by applying a lemma from the
library) and ring (proves equality of polynomial expressions over commutative
(semi)rings). Lean uses these to simplify the statement or to close the goal.
These are very efficient when working with proofs that are calculation heavy,
or that follow from a small number of easy (or mathematically trivial) steps.

3.1 Use of typeclasses and bundling

Typeclasses were originally introduced in Haskell as a mechanism for operator
overloading [4], and are used throughout Lean’s core library and mathlib to
endow types with mathematical structures consisting of both operators and
their properties [1]. When the elaborator sees a function with an instance
parameter being applied, such as the [monoid M] parameter of pow succ a

n, a Prolog-like search is started to automatically synthesize a suitable value
for this parameter. Each of the local parameters and the declarations marked
as instance is tested in turn to see if their type matches the expected type
of the instance synthesis. All instance parameters of candidate instances are
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themselves recursively inferred, until either a suitable term is constructed or
no more candidates remain; an error is raised in the latter case [5, Section
10]. Compared to Haskell’s, Lean’s typeclasses have few structural restrictions:
notably, classes and instances can depend on any term, instances may overlap,
classes can apply to multiple types and can have functional dependencies.

In our development, we followed the common practice in mathlib of provid-
ing structure on a type, whenever such a structure exists canonically, through
typeclasses. The informal notion of providing a certain mathematical structure
on a type should not be confused with the structure keyword formally declar-
ing a structure type whose elements are tuples. To confuse matters further,
Lean implements typeclasses as structure types, where the typeclass instances
are tuples of the typeclass’s fields. Typeclasses provided us a way to treat uni-
formly situations that are informally considered the same, as we discuss in
Sections 4.1 and 4.2. Our reliance on typeclasses did not cause any noticeable
slowness in proof checking: there was no instance that should be found but
could not due to timeouts.

A central consideration in formalizing definitions for mathlib is choosing
the appropriate amount of bundling : determining whether information about
an object should be carried by the object itself (bundled), or passed as a
separate value (unbundled) [6]. For example, the is number field typeclass
of Section 4 is considered to have unbundled inheritance from the field class
because instances of these classes are passed in separate parameters, while
it has bundled inheritance from char zero and finite dimensional since
both are included as fields of the structure. Similarly, the formalization of
admissible absolute values discussed in Section 8.2 features a bundled structure
absolute value which includes a map along with proofs stating that this map
is an absolute value, and an unbundled structure is admissible which takes
the absolute value map as a separate parameter.

Unbundling has an advantage in expressivity: because each property of an
object is passed in a separate parameter, modifying one hypothesis requires
modifying one parameter. In contrast, bundling hypotheses means that each
subset of hypotheses requires its own structure declaration; any results proved
for a given structure have to be made available for other structures manually
or through automation such as typeclass inference. The advantage here is that
bundled structures result in simpler parameter lists, since fully unbundling the
field class would result in each of its 38 structure fields becoming a separate
parameter.

Technical considerations play another important role in choosing the level
of bundling: bundled properties are easily found by automation compared to
unbundled properties which require a search of the local context, bundled
inheritance between classes can only be applied when the two classes have the
same type parameters, while long unbundled inheritance chains cause expo-
nentially large terms, resulting in slowdowns and high memory consumption.
Although there is no general rule governing bundling, in general mathlib prefers
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to bundle if possible, unbundling only when the additional properties are all
Prop-valued and are not involved in long inheritance chains.

4 Number fields, global fields and rings of
integers

We refer the reader to Section 2 for the mathematical background needed in
this section.

We formalized number fields as the following typeclass:

class is_number_field (K : Type*) [field K] : Prop :=

[to_char_zero : char_zero K]

[to_finite_dimensional : finite_dimensional Q K]

The class keyword declares a structure type (in other words, a type of record)
and enables typeclass inference for terms of this type; we describe the use of
typeclasses in mathlib in Section 3.1. Round brackets mark parameters that
must explicitly be supplied by the user, such as (K : Type*), while square
brackets mark instance parameters inferred by the typeclass system, such as
[field K]. The condition [to char zero : char zero K] states that K has
characteristic zero, so the unique ring homomorphism Z → K is an embedding.
This implies that there is a Q-algebra structure on K (found by typeclass
instance synthesis), endowing K with the Q-vector space structure used in the
hypothesis [to finite dimensional : finite dimensional Q K].

Similarly, we defined the class of function fields over a finite field Fq as:

class function_field (Fq F : Type*) [field Fq] [field F] :

Prop :=

[to_algebra : algebra (ratfunc Fq) F]

[to_finite_dimensional : finite_dimensional (ratfunc Fq) F]

The hypothesis [to algebra : algebra (ratfunc Fq) F] witnesses that F
is a field extension of the field Fq(t) of rational functions over Fq, where
Fq is any field (although in our applications we will insist that Fq be actu-
ally finite). Again, the condition that this extension is finite is written using
the finite dimensional typeclass. We present a more detailed analysis of
algebra in Section 4.1 and of fraction fields including ratfunc in Section 4.5.
For now, we point out that there are many fields K that are isomorphic to the
field of rational functions Fq(t); we provided a theorem function field iff

that shows that the choice of K does not matter. Note that there is no require-
ment that the field Fq is finite, since this is not needed to state the conditions
on F. We instead add a [fintype Fq] hypothesis only to those results that
require finiteness.

4.1 Field extensions

The definition of is number field illustrates our treatment of field extensions.
A field L containing a subfield K is said to be a field extension L/K. Often
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we encounter towers of field extensions: we might have that Q is contained
in K, K is contained in L, L is contained in an algebraic closure K of K,
and K is contained in C. We might formalize this situation by viewing Q, K,
L and K as sets of complex numbers C and defining field extensions as subset
relations between these subfields. This way, no coercions need to be inserted
in order to map elements of one field into a larger field. Unfortunately, we
can only avoid coercions as far as we are able to stay within one largest field.
For example, the definition of complex numbers depends on many results for
rational numbers, which would need to be proved again, or transported, for
the subfield of C isomorphic to Q.

Instead, we formalized results about field extensions through parametriza-
tion. The fields K and L can be arbitrary types and the hypothesis “L is
a field extension of K” is represented by an instance parameter [algebra K

L] denoting a K-algebra structure on L. The algebra structure provides us
with a ring homomorphism algebra map K L : K → L; this map is injective
because K and L are fields. In other words, field extensions are given by their
embeddings.

There are multiple possibleK-algebra structures for a field L and Lean does
not enforce uniqueness of typeclass instances, but the mathlib maintainers try
to ensure all instances that can be inferred are definitionally equal. Definitional
equality is a syntactical notion of equality found in dependent type theories
that reflects the possibility of computation: for example, the term 2 + 2 : N
is definitionally equal to 4. Whenever Lean can infer the definitional equality
of two terms (the terms are said to unify), one can be substituted for the
other. Thus, ensuring definitional equality for instances means that overlapping
instances will not lead to conflicts when one instance is expected and another
is found.

4.2 Scalar towers

The main drawback of using arbitrary embeddings to represent field extensions
is that we need to prove that these maps commute. For example, we might
start with a field extension L/Q, then define a subfield K of L, resulting in
a tower of extensions L/K/Q. In such a tower, the map Q → L should be
equal to the composition Q → K followed by K → L. Such an equality cannot
always be achieved by defining the map Q → L to be this composition: in the
example, the definition of the map Q → K depends on the map Q → L.

The solution in mathlib is to parametrize over all three maps, as long
as there is also a proof of coherence: a hypothesis of the form “L/K/F
is a tower of field extensions” is translated into three instance parameters
[algebra F K], [algebra K L] and [algebra F L], along with a parameter
[is scalar tower F K L] expressing that the maps commute.

The is scalar tower typeclass derives its name from its applicability to
any three types among which scalar multiplication operations exist:

class is_scalar_tower (M N α : Type*)
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[has_scalar M N] [has_scalar N α] [has_scalar M α] : Prop :=

(smul_assoc : ∀(x : M) (y : N) (z : α), (x · y) · z = x · (y · z))

For example, if R is a ring, A is an R-algebra and M an A-module, we can
state that M is also an R-module by adding a [is scalar tower R A M]

parameter. Since x · y for an R-algebra A is defined as algebra map R A x *

y, applying smul assoc for each x : K with y = (1 : L) and z = (1 : F ) shows
that the algebra maps indeed commute in a tower of field extensions L/K/F .

Common is scalar tower instances are declared inmathlib, such as for the
maps R → S → B when S is a R-subalgebra of A and B is an A-algebra such
that is scalar tower R A B; this also implies that the maps R → S → A
form a tower. The effect is that almost all coherence proof obligations are
automated through typeclass instance synthesis. Only when defining a new
algebra structure were we required to supply the is scalar tower instances
ourselves.

4.3 Rings of integers

When K is a number field (defined as a field satisfying is number field), the
ring OK of integers in K is defined as the integral closure of Z in K. This is
the subring containing those x : K that are a root of a monic polynomial with
coefficients in Z:

def number_field.ring_of_integers (K : Type*) [field K]

[is_number_field K] : subalgebra Z K :=

integral_closure Z K

where integral closure was already defined in mathlib. WhenK is a function
field over the finite field Fq, we defined OK analogously as integral closure

(Fq[X]) K.
Since the integers Z are integrally closed in Q, this construction of the

ring of integers of the number field Q is isomorphic, but not definitionally
equal, to Z. To avoid dealing with these isomorphisms, and also to treat the
two definitions of rings of integers on an equal footing, we introduced a type-
class is integral closure A R B stating that A is the integral closure of R
in B, and worked with a generic is integral closure instance instead of the
specific ring of integers construction when possible.

4.4 Subobjects

The ring of integers is one example of a subobject, such as a subfield, subring
or subalgebra, defined through a characteristic predicate. In mathlib, subob-
jects are “bundled”, in the form of a structure comprising the carrier set and
proofs showing the carrier set is closed under the relevant operations. Bundled
subobjects provide similar benefits to those of bundled morphisms; the choice
for the latter is explained in the mathlib overview paper [1]. Where the algebra



Springer Nature 2021 LATEX template

Dedekind domains and class groups 11

and is scalar tower typeclasses provide an interface generalizing over multi-
ple equivalent definitions, subobjects provide a specific implementation of that
interface in the form of a subtype.

Two new subobjects that we defined in our development were subfield as
well as intermediate field. We defined a subfield of a fieldK as a subset ofK
that contains 0 and 1 and is closed under addition, negation, multiplication
and taking inverses. If L is a field extension of K, we defined an intermediate
field as a subfield of L that is also a K-subalgebra: in other words, a subfield
that contains the image of algebra map K L. Other examples of subobjects
available in mathlib are submonoids, subgroups and submodules (with ideals
as a special case of submodules); all of these are provided with an instance of
the set like typeclass that supplies notation such as a membership relation
“x ∈ S”.

The new definitions found immediate use: soon after we contributed our
definition of intermediate field tomathlib, the Berkeley Galois theory group
used it in a formalization of the primitive element theorem. Soon after the
primitive element theorem was merged into mathlib, we used it in our develop-
ment of the trace form. This anecdote illustrates the decentralized development
style of mathlib, with different groups and people building on each other’s
results in a collaborative process.

Through the set like typeclass, subobjects can be coerced to types, by
sending a subobject S to the subtype of all elements of S. By putting type-
class instances on this subtype, we could reason about inductively defined
rings such as Z and subrings such as integral closure Z K uniformly. If
S : subfield K, there is a ring embedding, the map that sends x : S to K
by “forgetting” that x ∈ S, and we registered this map as an algebra S K

instance, also allowing us to treat field extensions of the form Q → C and
subfields uniformly. Similarly, for F : intermediate field K L, we defined
the corresponding algebra K F, algebra F L and is scalar tower K F L

instances.

4.5 Fields of fractions

The fraction field FracR of an integral domain R can be defined explicitly as
a quotient type as follows: starting from the type of pairs (a, b) with a, b ∈
R such that b ̸= 0, one quotients by the equivalence relation generated by
(a, b) ∼ (aα, bα) for all α ̸= 0 : R, writing the equivalence class of (a, b) as a

b .
It can easily be proved that the ring structure on R extends uniquely to a field
structure on FracR; in mathlib this construction is called fraction ring R,
and is used to define the field of rational functions K(X) = ratfunc K. When
R = Z, this yields the traditional description of Q as the set of equivalence
classes of fractions, where 2

3 = −4
−6 , etc.

The drawback of this construction is that there are many other fields that
can serve as the field of fractions for the same ring. Consider the field {z ∈ C :
ℜz ∈ Q,ℑz ∈ Q}, which is isomorphic to Frac(Z[i]) but not definitionally equal
to it. Indeed, themathlib definition of the rational numbers Q is a product type,
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not a quotient type, so we would not be able to treat Q as the field of fractions
of Z in this setup. Any properties proven for Q would have to be repeated for
Frac(Z), using transfer lemmas stating these properties are preserved by the
isomorphism between Q and Frac(Z).

The strategy used in mathlib is to rather allow for many different fraction
fields of our given integral domain R — as fields K with a suitable [algebra
R K] instance, where the map algebra map R K witnesses that all elements K
are “fractions” of elements of R — and to parametrize every result over the
choice of K. The conditions on the R-algebra structure on K are encoded as a
typeclass is fraction ring R K. In the definition used by mathlib, a fraction
ring is a special case of a ring localization, which is defined for any com-
mutative ring R. Different localizations restrict the denominators to different
multiplicative submonoids of R \ {0}.

The conditions on algebra map R K imply that K is the smallest field,
up to isomorphism, containing R, expressed by the following unique mapping
property. If g : R → A is an injective map to a ring A such that g(x) has
a multiplicative inverse for all x ̸= 0 : R, then it can be extended uniquely
to a map K → A compatible with algebra map R K and g. In particular,
given is fraction ring R K1 and is fraction ring R K2, we can derive an
isomorphism K1 ≃ K2. The construction of FracR then results in a field of
fractions (with an instance is fraction ring R (fraction ring R)) rather
than the field of fractions.

The above description of fraction fields is the third such formalization in
mathlib. The first version consisted of a quotient type quotient ring R, con-
structed similarly to the current definition of fraction ring R. Due to the
aforementioned drawback — namely, that this provided no easy way to view Q
as the field of fractions of Z, for instance — this was refactored to use a
characteristic predicate instead.

The second version defined K to be the field of fractions of R if there
existed an injective fraction map f : R → K, which is a ring homomor-
phism witnessing that all elements of K are “fractions” of elements of R; the
map and its properties were bundled as a type fraction map R K. Results
on fraction fields were parametrized over a choice of fraction map f . This
made it possible to view Q as the fraction field of Z, by providing a suitable
map called int.fraction map : fraction map Z Q. This came at a price:
informally, at any given stage of one’s reasoning, the field K is fixed and the
map f : R → K is applied implicitly, just viewing every x : R as x : K. It
is now impossible to view R ≤ K as an inclusion of R-subalgebras, because
the map f is needed explicitly to give the R-algebra structure on K. As a
workaround, mathlib used a type synonym codomain f := K and instantiated
the R-algebra structure given by f on this synonym. Again we encountered a
distinction between Q “itself” and Frac(Z) = codomain int.fraction map,
still requiring the transfer of results such as typeclass instances.

The most recent version is the one described above. Inspired by our
success in using the algebra typeclass to denote inclusions of rings, we
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unbundled the explicit (f : fraction map R K) parameters into an instance
parameter [algebra R K] that specifies the map, and an instance parameter
[is fraction ring R K] that specifies the conditions satisfied by the map.
Separating out these parameters finally allowed us to painlessly view Q as the
fraction ring of Z while preserving the original Z-algebra structure on Q.

4.6 Representing monogenic field extensions

In Section 2 we have informally said that every number field K can be written
as K = Q(α) for a root α of an irreducible polynomial P ∈ Q[X]. This can
be made precise in several ways. For instance, one can consider a large field L
(of characteristic 0) where P splits completely, then choose a root α ∈ L
and let K = Q(α) be the smallest subfield of L containing α. Or, one can
consider the quotient ring Q[X]/P and observe that this is a field where the
class X (mod P ) is a root of P . The assignment α 7→ X (mod P ) yields an
isomorphism of the two fields, but any other choice of a root α′ ∈ L leads
to another isomorphism Q(α′) ∼= Q[X]/P . Although mathematically we often
tacitly identify these constructions, there is no canonical representation of the
monogenic extensions of Q, those which can be obtained by adjoining a single
root of one polynomial.

The same continues to hold if we replace the base field Q with another
field F , thus considering extensions of the form F (α), now requiring that α
be a root of some P ∈ F [X]. Various constructions of F (α) have already
been formalized in mathlib. The ability to switch between these representa-
tions is important: sometimes K and F are fixed and we want an arbitrary α;
sometimes α is fixed and we want an arbitrary type representing F (α).

To find a uniform way to reason about all these definitions, we chose to
formalize the notion of power basis to represent monogenic field extensions:
this is a basis of the form 1, α, α2, . . . , αn−1 : K (viewing K as a F -vector
space). We defined a structure type bundling the information of a power basis.
Omitting some generalizations not needed in this paper, the definition reads:

structure power_basis (F K : Type*) [field F] [field K]

[algebra F K] :=

(gen : K) (dim : N) (basis : basis (fin dim) F K)

(basis_eq_pow : ∀ i, basis i = gen ^ (i : N))

We formalized that the previously defined notions of monogenic field extensions
are equivalent to the existence of a power basis.

With the power basis structure, we gained the ability to parametrize our
results, being able to choose the F and K in a monogenic field extension K/F ,
or being able to choose the α generating F (α) (by setting the gen field to α).
To specialize a result from an arbitrary K with a power basis over F to a
specific construction of K = F (α), one can apply the result to the power basis
pb generated by α and rewrite power basis.gen pb = α.
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5 Dedekind domains

The right setting to study algebraic properties of number fields are Dedekind
domains. We formalized fundamental results on Dedekind domains, including
the equivalence of two definitions of Dedekind domains.

5.1 Definitions

There are various equivalent conditions, used at various times, for an integral
domain D to be a Dedekind domain. The following three have been formalized
in mathlib:

• is dedekind domain D:D is a Noetherian integral domain, integrally closed
in its fraction field and has Krull dimension at most 1;

• is dedekind domain inv D: D is an integral domain and nonzero frac-
tional ideals of D have a multiplicative inverse (we discuss the notion and
formalization of fractional ideals in Section 5.2);

• is dedekind domain dvr D: D is a Noetherian integral domain and the
localization of D at each nonzero prime ideal is a discrete valuation ring.

Note that fields are Dedekind domains according to these conventions.
The mathlib community chose is dedekind domain as the main defini-

tion, since this condition is usually the one checked in practice [7]. The
other two equivalent definitions were added to mathlib, but before formal-
izing the proof that they are indeed equivalent. Having multiple definitions
allowed us to do our work in parallel without depending on unformalized
results. For example, the proof of unique ideal factorization in a Dedekind
domain initially assumed is dedekind domain inv D, and the proof that the
ring of integers OK is a Dedekind domain concluded is dedekind domain

(ring of integers K). After the equivalence between is dedekind domain

D and is dedekind domain inv D was formalized, we could easily replace
usages of is dedekind domain inv with is dedekind domain.

The conditions is dedekind domain and is dedekind domain inv require
a fraction field K, although the truth value of the predicates does not depend
on the choice of K. For ease of use, we let the type of is dedekind domain

depend only on the domain D by instantiating K in the definition as
fraction ring D. From now on, we fix a fraction field K of D.

class is_dedekind_domain (D : Type*)

[comm_ring D] [is_domain D] :=

(is_noetherian_ring : is_noetherian_ring D)

(dimension_le_one : dimension_le_one D)

(is_integrally_closed : is_integrally_closed D)

Applications of is dedekind domain can choose a specific fraction field
through the following lemma exposing the alternate definition:

lemma is_dedekind_domain_iff [is_fraction_ring D K] :

is_dedekind_domain D ↔
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is_noetherian_ring D ∧ dimension_le_one D ∧
∀ {x : K}, is_integral D x →

∃ (y : D), algebra_map D K y = x

Wemarked is dedekind domain as a typeclass by using the keyword class

rather than structure, allowing the typeclass system to automatically infer
the Dedekind domain structure when an appropriate instance is declared, such
as for PIDs or for rings of integers.

5.2 Fractional ideals

The notion which is pivotal to the definition of the ideal class group of a
Dedekind domain is that of fractional ideals: given any integral domain R
with a field of fractions F , we define is fractional as a predicate on R-
submodules J of F , informally as “there is an x : R with xJ ⊆ R”. For a
Dedekind domain, nonzero fractional ideals form a group under multiplication.
As seen in Section 4.5, this notion depends on the field F as well as on the
embedding f := algebra map R F. A more precise way of stating the above
condition is then f(x)J ⊆ f(R). We formalized the definition of fractional
ideals of R contained in F as a type fractional ideal R F, whose elements
consist of an R-submodule of F along with a proof of is fractional. The
structure of fractional ideals does not depend on the choice of a fraction field,
which we formalized as an isomorphism fractional ideal.canonical equiv

between two types of fractional ideals on R, corresponding to different fields
of fractions.

We defined the addition, multiplication and intersection operations on frac-
tional ideals, by showing that the corresponding operations on submodules
map fractional ideals to fractional ideals. We also formalized that these oper-
ations give a commutative semiring structure on the type of fractional ideals.
For example, multiplication of fractional ideals is defined as

lemma is_fractional.mul (I J : submodule R F)

is_fractional R I → is_fractional R J →
is_fractional R (I * J) := _ -- proof omitted

instance : has_mul (fractional_ideal R F) :=

⟨λ I J, ⟨I * J : submodule R F,

is_fractional.mul I.is_fractional J.is_fractional⟩⟩

Defining the quotient of two fractional ideals requires slightly more work.
Consider any R-algebra A and an injection R ↪→ A. Given ideals I, J ≤ R, the
submodule I/J ≤ A is defined by the property

lemma submodule.mem_div_iff_forall_mul_mem {x : A}

{I J : submodule R A} :

x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I

Beware that the notation 1/I might be misleading here: indeed, for general
integral domains, the equality I ∗ 1/I = 1 might not hold. As an example, one
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can consider the ideal (X,Y ) in C[X,Y ], which is not a Dedekind domain: by
definition, (X,Y )−1 consists of the elements a = p

q : Frac
(
C[X,Y ]

)
with the

property that a∗b ∈ C[X,Y ] for all b ∈ (X,Y ). This last condition is equivalent
to requiring that both a∗X and a∗Y are in C[X,Y ] and thus the denominator
q of a must be divisible both by X and by Y , so actually q ∈ C×. It follows
that (X,Y )−1 = C[X,Y ], and in particular (X,Y ) ∗ (X,Y )−1 = (X,Y ) ⊊ 1 =
C[X,Y ].

On the other hand, we formalized that the equality I ∗ 1/I = 1 holds for
Dedekind domains (Section 5.3) as the following lemma:

theorem fractional_ideal.mul_inv_cancel [is_dedekind_domain D]

{I : fractional_ideal D F} (hne : I ̸= 0) : I * (1 / I) = 1

This justifies the notation I−1 = 1/I. In fact, we define this notation even
for the ideal 0, by declaring that 0−1 = 0. This fits the pattern of the type-
class group with zero in mathlib, consisting of groups endowed with an extra
element 0 whose inverse is again 0.

Moreover, mathlib used to define a/b := a ∗ b−1, but our definition of
I−1 = 1/I would cause circularity. This led us to a major refactor of this
core definition. In particular, we had to weaken the definitional equality to a
proposition; this involved many small changes throughout mathlib4.

5.3 Equivalence of the definitions

We now describe how we proved and formalized that the two definitions
is dedekind domain and is dedekind domain inv of being a Dedekind
domain are equivalent. Let D be a Dedekind domain, and let f : D → K a
fraction map to a field of fractions K of D.

To show that is dedekind domain inv implies is dedekind domain, we
follow the proof given by Fröhlich in [8, Chapter 1, Section 2, Proposition 1.2.1].
A constant challenge that was faced while coding this proof was already men-
tioned in Section 4.5, namely the fact that elements of the domain must be
traced along the inclusion into the chosen field of fractions. The proofs for
being integrally closed and of dimension being less than or equal to 1 are fairly
straightforward.

Formalizing the Noetherian condition was the most challenging. Fröhlich
considers elements a1, . . . , an ∈ I and b1, . . . , bn ∈ I−1 for any nonempty
fractional ideal I, satisfying

∑
i aibi = 1. Observe now that, in mathlib, the

definition of the product A ∗ B of two fractional ideals A,B is a special case
of the product of two submodules, and therefore it is defined as

submodule.has_mul = {mul := λ (A B : submodule D K),

⊔ (a : A), submodule.map ((algebra.lmul D K) a.val) B}

Unraveling this definition, we see that it defines A∗B as the smallest (i. e., the
infimum with respect to set-theoretic inclusion as order relation) submodule

4The pull requests are available as https://github.com/leanprover-community/mathlib/pull/
5302 and https://github.com/leanprover-community/mathlib/pull/5303.

https://github.com/leanprover-community/mathlib/pull/5302
https://github.com/leanprover-community/mathlib/pull/5302
https://github.com/leanprover-community/mathlib/pull/5303
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containing all submodules a·B for a ∈ A, where a·B is the range of the function
λ b : B, a∗b. However, it is quite challenging to formalize that an element of
A ∗B must be a finite sum

∑
i ai ∗ bi, for ai ∈ A and bi ∈ B. Instead, we show

that, for every element x ∈ A ∗ B, there are finite sets T ⊆ A, T ′ ⊆ B such
that x ∈ span (T * T’), formalized as submodule.mem span mul finite-

of mem mul. Now considering a nonzero integral ideal I of the ring D, by
definition of invertibility we can write 1 ∈ (1 : fractional ideal D K) =

I * I−1. Hence, we obtain finite sets T ⊂ I and T ′ ⊂ I−1 such that 1
is contained in the D-span of T ∗ T ′. We used the norm cast tactic [9] to
resolve most coercions but this tactic did not solve coercions coming from the
inclusion algebra map D K. With coercions, the actual statement of the latter
expression in Lean is ↑T’ ⊆ ↑↑(↑I)−1, which reads

(T’ : set K) ⊆ (((I : fractional_ideal D K)−1 : submodule D K)

: set K)

From the existence of T and T ′ we concluded that I is indeed finitely generated,
thus finishing the proof.

The theorem fractional ideal.mul inv cancel proves the converse,
namely that is dedekind domain implies is dedekind domain inv. The clas-
sical proof consists of three steps: first, every maximal ideal M ⊆ D, seen as
a fractional ideal, is invertible; second, every nonzero ideal is invertible, using
that it is contained in a maximal ideal; third, the fact that every fractional
ideal J satisfies xJ ≤ I for a suitable element x ∈ D and a suitable ideal
I ⊆ D implies that every fractional ideal is invertible, concluding the proof
that nonzero fractional ideals form a group. The third step was easy, build-
ing upon the material developed for the general theory of fractional ideal.
Concerning the first two, we found that passing from the case where M is max-
imal to the general case required more code than directly showing invertibility
of arbitrary nonzero ideals. The formal statement reads

lemma coe_ideal_mul_inv [is_dedekind_domain D]

(I : ideal D) (hI0 : I ̸= 0) :

(↑I * (↑I)−1 : fractional_ideal D K) = 1

from where it becomes apparent that we had to repeatedly distinguish between
I : ideal D, and its coercion ↑I : fractional ideal D K although these
objects, from a mathematical point of view, are identical.

The formal proof of this result relies on the lemma exists not mem one-

of ne bot, which says that for every non-trivial ideal 0 ⊊ I ⊊ D, there
exists an element in the field K which is not integral (so, not in 1 :

fractional ideal D K) but lies in I−1. The proof begins by invoking that
every nonzero ideal in the Noetherian ring D contains a product of nonzero
prime ideals. This result was not previously available in mathlib. The dimen-
sion condition shows its full force when applying this lemma: each prime
ideal in the product I ∗ I−1, being nonzero, will be maximal because the
Krull dimension of D is at most 1; from this, exists not mem one of ne bot

follows easily. Having the above lemma at our disposal, we were able to
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prove that every ideal I ̸= 0 is invertible by arguing by contradiction: if
I ∗ I−1 ̸= D, we can find an element x ∈ K \ D which is in (I ∗ I−1)−1

thanks to exists not mem one of ne bot; some easy algebraic manipulation
then implies that x is actually integral over D. Since D is integrally closed,
x ∈ D, contradicting the construction of x. Combining these results gives the
equivalence between the two conditions for being a Dedekind domain.

5.4 Unique ideal factorization

As briefly indicated before, we also formalized a proof that in a Dedekind
domain every nonzero ideal can be expressed as a product of prime ideals in a
unique way up to the order of the factors. In fact, for an integral domain, every
nonzero ideal is a product of prime ideals if and only if all nonzero fractional
ideals are invertible; the uniqueness follows separately. We have formalized
one direction of this equivalence, a proof of the converse can be found in [10,
Chapter 5, §6, Theorem 10].

We formalized the unique ideal factorization property of a Dedekind
domain D by instantiating a unique factorization monoid structure on its
ideals.

instance ideal.unique_factorization_monoid :

unique_factorization_monoid (ideal D)

In mathlib, unique factorization domains are actually a special case of
unique factorization monoids (UFMs). A commutative monoid R with an
absorbing element 0 and injective multiplication is defined to be a UFM, if the
relation “x properly divides y” is well-founded (implying that every element
can be factored as a product of irreducibles) and an element of R is prime if
and only if it is irreducible (implying uniqueness of the factorization). Exam-
ples in mathlib of UFMs are the unique factorization domains N and Z as well
as, for any UFM α, the quotient of α by the subgroup of invertible elements
associates α. With much of the necessary definitions and properties already
formalized, the formalization of this unique factorization result has been done
in well under 100 lines of Lean code. One of the main mathematical ingredi-
ents (interesting in its own right) is that for ideals in a Dedekind domain, to
divide is to contain:

lemma ideal.dvd_iff_le {I J : ideal D} : (I | J) ↔ J ≤ I

Similarly, to strictly contain is to properly divide, so the well-foundedness
condition of UFMs is exactly the property that a Dedekind domain is Noethe-
rian. In order to show that all irreducible elements of the monoid of nonzero
prime ideals in D are prime elements, we formalized that irreducible ideals in
a Dedekind domain are maximal and therefore prime (note that prime ideals
of a Dedekind domain D coincide with prime elements of the monoid of its
nonzero ideals); the converse holds in every monoid.

We note that the unique factorization result, or actually an easy corollary
thereof, is an important ingredient in our finiteness proof for the class group
of rings of integers, as we will elaborate on in Section 8.2.
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6 Principal ideal domains are Dedekind

As an example of our definitions, we discuss in some detail our formalization
of the fact that a principal ideal domain is a Dedekind domain. In the same
way that unique factorization domains are generalized in mathlib to unique
factorization monoids, there is no explicit definition of PIDs in mathlib. Rather,
it is split up into multiple hypotheses. One uses [comm ring R] [is domain

R] [is principal ideal ring R] to denote a PID R, where is domain is a
typeclass asserting that the ring is nontrivial and there are no zero divisors,
and is principal ideal ring is a typeclass defined for all commutative rings:

class is_principal_ideal_ring (R : Type*) [comm_ring R] :=

(principal : ∀ (I : ideal R), is_principal I)

Our proof that the hypotheses [comm ring R] [is domain R]

[is principal ideal ring R] imply is dedekind domain R was relatively
short:

instance principal_ideal_ring.to_dedekind_domain (R : Type*)

[comm_ring R] [is_domain R] [is_principal_ideal_ring R] :

is_dedekind_domain R :=

⟨principal_ideal_ring.is_noetherian_ring,
dimension_le_one.principal_ideal_ring R,

unique_factorization_monoid.is_integrally_closed⟩

The Noetherian property of a Dedekind domain followed easily by the pre-
viously defined lemma principal ideal ring.is noetherian ring, since, by
definition, each ideal in a principal ideal ring is finitely generated (by a single
element).

We proved the lemma dimension le one.principal ideal ring, which
is an instantiation of the existing result is prime.to maximal ideal, showing
that a nonzero prime ideal in a PID is maximal. The latter lemma uses the
characterization that I is a maximal ideal if and only if any strictly larger ideal
J ⊋ I is the full ring R. If I is a nonzero prime ideal and J ⊋ I in the PID R,
we see that a generator j of J is a divisor of any generator i of I. Since I is
prime, this implies that either j ∈ I, contradicting the assumption that J ⊋ I,
or i = 0, contradicting that I is nonzero, or finally that j is a unit, implying
J = R as desired.

The final condition of a PID being integrally closed was the most chal-
lenging. We used the previously defined instance principal ideal ring.to -

unique factorization monoid to deduce that a PID is a unique factorization
monoid (UFM), to instantiate our proof that every UFD is integrally closed.
In a PID, the Noetherian property implies that the division relation is well-
founded, and principal ideal ring.irreducible iff prime shows that
irreducible elements and prime elements coincide. To prove that an irreducible
element p is prime, the proof uses that prime elements generate prime ideals
and irreducible elements of a PID generate maximal ideals. Since all maximal
ideals are prime ideals, the ideal generated by p is maximal, hence prime, thus
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p is prime. We proved the lemma irreducible of prime, which shows the
converse holds in any commutative monoid with zero.

To show that a UFM is integrally closed, we first formalized the Ratio-
nal Root Theorem, named denom dvd of is root, which states that for a
polynomial p : R[X] and an element of the fraction field x : FracR such
that p(x) = 0, the denominator of x divides the leading coefficient of p. If
x is integral with minimal polynomial p, the leading coefficient is 1, there-
fore the denominator is a unit and x is an element of R. This gave us the
required lemma unique factorization monoid.integrally closed, which
states that the integral closure of R in its fraction field is R itself.

7 Rings of integers are Dedekind domains

An important classical result in algebraic number theory is that the ring of
integers of a number field K, defined as the integral closure of Z in K, is a
Dedekind domain. We formalized a stronger result: given a Dedekind domainD
and a field of fractions F , if K is a finite separable extension of F , then
the integral closure of D in K is a Dedekind domain with fraction field K.
Our approach was adapted from Neukirch [7, Theorem 3.1]. Throughout this
section, let D be a Dedekind domain with a field of fractions F , K a finite,
separable field extension of F and let S denote the integral closure of D in K.

The first step was to show that K is a field of frac-
tions for the integral closure, namely, that there is an instance
is fraction ring of finite extension D F K : is fraction ring S K.
The main content of is fraction ring of finite extension consisted of
showing that all elements x : K can be written as y/z for elements y ∈ S,
z ∈ D ⊆ S; the standard proof of this fact (see [11, Theorem 15.29]) formalized
readily.

We could then show that the integral closure of D in K is a Dedekind
domain, by proving it is integrally closed in K, has Krull dimension at most
1 and is Noetherian. The fact that the integral closure is integrally closed was
immediate.

To show the Krull dimension is at most 1, we needed to develop basic going-
up theory for ideals. In particular, we showed that an ideal I in an integral
extension is maximal if it lies over a maximal ideal, and used a result already
available in mathlib that a prime ideal I in a ring extension lies over a prime
ideal.

lemma is_maximal_of_is_integral_of_is_maximal_comap

[algebra R S] (hRS : algebra.is_integral R S)

(I : ideal S) [is_prime I]

(hI : is_maximal (comap (algebra_map R S) I)) : is_maximal I

theorem is_prime.comap (f : R →+* S) (I : ideal S)

[hI : is_prime I] : is_prime (comap f I)

The final condition, that the integral closure S of D in L is a Noethe-
rian ring, required the most work. We started by following the first half of
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Dummit and Foote [11, Theorem 15.29], so that it sufficed to find a non-
degenerate bilinear form B such that all integral x, y : K satisfy B(x, y) ∈
integral closure D K. We then formalized the results in Neukirch [7,
Sections 2.5–2.8] to show that the trace form is a bilinear form satisfying these
requirements.

7.1 The trace form

In the notation from the previous section, consider the bilinear map lmul :=

λ x y : K, x * y. The trace of the linear map lmul x is called the algebra
trace TrK/F (x) of x. We defined the algebra trace as a linear map, in this case
from K to F :

noncomputable def trace : K →l[F] F :=

linear_map.comp (linear_map.trace F K)

(to_linear_map (lmul F K))

This definition was marked noncomputable since linear map.trace makes a
case distinction on the existence of a finite basis, choosing an arbitrary finite
basis if one exists (since the value of linear map.trace does not depend on
this choice) and returning 0 otherwise. This latter case did not occur in our
development.

We defined the trace form to be an F -bilinear form on K, mapping x, y : K
to TrK/F (xy).

noncomputable def trace_form : bilin_form F K :=

{ bilin := λ x y, trace F K (x * y), .. /- proofs omitted -/ }

In the following, let L/K/F be a tower of finite extensions of
fields, namely we assume [algebra F K] [algebra K L] [algebra F L]

[is scalar tower F K L], as described in Section 4.2.
The value of the trace depends on the choice of F and K; we formalized

this as lemmas trace algebra map x : trace F K (algebra map F K x) =

finrank F K * x as well as trace trace x : trace F K (trace (K L x))

= trace F L x; here finrank F K is the degree of the field extension K/F .
These results followed by direct computation.

To compute TrK/F (x), it therefore suffices to consider the trace of x in the
smallest field containing x and F , which is the monogenic extension F (x) dis-
cussed in Section 4.6. There is a nice formula for the trace in F (x), although the
terms in this formula are elements in a larger field L (such as the splitting field
of minpoly F x, the minimal polynomial of x over F ). In formalizing this for-
mula, we first mapped the trace to L using the embedding algebra map F L,
which gave the following statement:

lemma power_basis.trace_gen_eq_sum_roots (pb : power_basis F K)

(h : polynomial.splits (algebra_map F L) (minpoly F pb.gen)) :

algebra_map F L (trace F K pb.gen) =

sum (roots (map (algebra_map F L) (minpoly F pb.gen)))
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We formulated the lemma in terms of the power basis, since we needed to use
it for F (x) here and for an arbitrary finite separable extension L/K later in
the proof.

The elements of roots (map (algebra map F L) (minpoly F pb.gen))

are called conjugates of x in L. Each conjugate of x is integral since it
is a root of the same monic polynomial, and integer multiples and sums
of integral elements are integral. Combining trace gen eq sum roots and
trace algebra map showed that the trace of x is an integer multiple (namely
finrank F(x) L) of a sum of conjugate roots, hence we concluded that the
trace (and trace form) of an integral element is also integral.

Finally, we showed that the trace form is nondegenerate, following Neu-
kirch [7, Proposition 2.8]. Since K/F is a finite, separable field extension, it
has a power basis pb generated by an element x : K. Letting xk denote the
k-th conjugate of x in an algebraically closed field L/K/F , the main diffi-
culty was in checking the equality

∑
k x

i+j
k = TrK/F (x

i+j). Directly applying
trace gen eq sum roots was tempting, since we had a sum over conjugates of
powers on both sides. However, the two expressions did not precisely match:
the left hand side is a sum of conjugates of x, where each conjugate is raised
to the power i + j, while the conclusion of trace gen eq sum roots resulted
in a sum over conjugates of xi+j .

Instead, the paper proof switched here to an equivalent definition of conju-
gate: the conjugates of x in L are the images (counted with multiplicity) of x
under each embedding σ : F (x) → L that fixes F . This equivalence between
the two notions of conjugate was contributed to mathlib by the Berkeley group
in the week before we realized we needed it. Mapping trace gen eq sum roots

through the equivalence gave TrK/F (x) =
∑

σ σ x. Since each σ is a ring homo-
morphism, σ xi+j = (σ x)i+j , so the conjugates of xi+j are the (i + j)-th
powers of conjugates of x, which concluded the proof.

8 Class group and class number

8.1 The class group

Recall from Section 2 that the ideal class group ClD of a Dedekind domain D
is the quotient of the group of nonzero fractional ideals of D by the nonzero
principal fractional ideals. More generally, given an integral domain R with
fraction field K, we can define the class group ClR as the quotient of the
invertible fractional ideals by the nonzero principal fractional ideals. We for-
malized this in Lean by first defining a map to principal ideal R K : K×

→ (fractional ideal R K)×, and defined the class group as

def class_group (R K : Type*) [comm_ring R] [is_domain R]

[field K] [algebra R K] [is_fraction_ring R K] :=

(fractional_ideal R K)× / (range (to_principal_ideal R K))

Here, R× for a semiring R denotes the multiplicative group of its invertible
elements. Recall from Section 5.2 that in the general case of an integral domain
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R the type of fractional ideals of R is endowed with the structure of a commuta-
tive semiring. Therefore, the quotient of the abelian group (fractional ideal

R K)× by the subgroup of nonzero principal fractional ideals is well-defined. In
the case where R is a Dedekind domain, we provided a map class group.mk0

sending nonzero integral ideals of R to the corresponding class in the class
group.

8.2 Finiteness results

In general, Dedekind domains can have infinite class groups: in fact, a cele-
brated result by Claborn shows that for every abelian group G, there exists a
Dedekind domain D with ClD ∼= G (see [12, Theorem 7]). For an extreme —
but somewhat classical — example, the Dedekind domain

D = C[X,Y ]/(Y 2 −X3 −X − 1)

has class group isomorphic to C/Z2. However, as discussed in Section 2, the
rings of integers of global fields have finite class groups.

We let K be a number field and let K ′ be a function field, with ring of
integers OK and OK′ (we fix a choice of a model Fq[t]), respectively. Most
proofs of the finiteness of ClOK

available in a modern textbook (see [7, Theo-
rems 4.4, 5.3, 6.3]) depend on Minkowski’s lattice point theorem, a result from
the geometry of numbers (which has been formalized in Isabelle/HOL [13]).
Extending this proof to show the finiteness of ClOK′ is quite involved and does
not result in a uniform proof for ClOK

and ClOK′ . Our formalization instead
adapted and generalized a classical approach to the finiteness of ClOK

, where
the use of Minkowski’s theorem is replaced by the pigeonhole principle. We
have made available online an informal writeup of the proof, used in the formal-
ization efforts5. The classical approach seems to go back to Kronecker and can
be found, for instance, in [14]. We note that some other “uniform” approaches
can be found in [15] and [16].

Let D be an Euclidean domain: in particular, it will be a PID and hence a
Dedekind domain. Given a fraction field F ofD, letK be a finite separable field
extension of F . We formalized, in the theorem class group.fintype of -

admissible of finite, that the integral closure S of D in K has a finite
class group whenever D has an “admissible” absolute value abs. This notion
originated in our project from the adaptation and generalization of the classical
finiteness proof in interaction with the formalization efforts. Very informally,
the admissibility conditions require that the remainder operator % produces
values that are not too far apart. More precisely, and in more “ordinary”
mathematical notation, writing mod instead of % and x 7→ |x| for the absolute
value function D → Z, the latter is called admissible if both:

• we have a function card : R>0 → N;

5https://github.com/lean-forward/class-number-journal/blob/jar-reviews/FiniteClassGroup.
pdf

https://github.com/lean-forward/class-number-journal/blob/jar-reviews/FiniteClassGroup.pdf
https://github.com/lean-forward/class-number-journal/blob/jar-reviews/FiniteClassGroup.pdf
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• for all ϵ ∈ R>0, b ∈ D − {0}, and finite subsets A ⊂ D, we can partition A
into at most card(ϵ) parts, such that all x, y ∈ A in the same part satisfy

|xmod b− ymod b| < ϵ|b|.

To formalize this, we made minor modifications like turning card into a total
function on R and turning A into an n-tuple (noting that in this setting there
is no need to forbid repetition of elements within the n-tuple). This resulted
in the following predicate classifying admissible absolute values abv:

structure is_admissible (abv : absolute_value D Z) extends

is_euclidean abv :=

(card : R → N) (exists_partition’ :

∀ (n : N) {ε : R} (hε : 0 < ε) {b : D} (hb : b ̸= 0)

(A : fin n → D), ∃ (t : fin n → fin (card ε)),
∀ i0 i1, t i0 = t i1 →
(abv (A i1 % b - A i0 % b) : R) < abv b · ε)

The is euclidean abv predicate asserts that the absolute value abv : D → Z
respects the remainder operator of the Euclidean domain D, in particular abv
(a % b) < abv b.

The above condition formalizes and generalizes an intermediate result in
paper proofs of the finiteness of the class group; the different proofs for number
fields and function fields (still assumingK/F separable) become the same after
this point. The direct consequence (by the pigeonhole principle) of admissibil-
ity of x 7→ |x|, applied in practice, is that for all ϵ ∈ R>0, b ∈ D−{0}, n ∈ N,
and all subsets A ∈ Dn containing more than card(ϵ)n elements, there exist dis-
tinct x, y ∈ Dn such that for all i = 1, . . . , n we have |xi mod b−yi mod b| < ϵ|b|.
We used division with remainder to replace the fractional part operator on F
in the classical proof, which was essential to incorporate function fields, and at
the same time allowed our proof to stay entirely within D to avoid coercions.

In a similar way to the algebra trace of Section 7.1, we defined the norm of
an element x : S as the determinant of the linear map lmul x. We used the
admissibility of abs to find a finite set finset approx of elements of D, such
that the following generalization of [14, Theorem 12.2.1] holds.

theorem exists_mem_finset_approx’ (a b : S) (hb : b ̸= 0) :

∃ (q : S) (r ∈ finset_approx),

abv (algebra.norm D (r · a - q * b)) < abv (algebra.norm D b)

Translated back into more “ordinary” mathematical notation, this theorem
tells us that, for all a, b ∈ S with b nonzero, there exist q ∈ S and r ∈
finset approx, such that

|NormS/D(ra− qb)| < |NormS/D(b)|.

After this, the classical approach mentioned above formalized smoothly:
we show that each class in ClK contains an ideal J with M ∈ J , where M is
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the product of all elements of finset approx, hence M is nonzero. Since the
ideals of the Dedekind domain S have unique factorization, the nonzero ideal
⟨M⟩ spanned by M has only finitely many divisors. To contain is to divide
in Dedekind domains, so there are only finitely many ideals J with M ∈ J .
Thus, we concluded that ClK is finite under the condition of the existence of
an admissible absolute value on D.

It remained to define an admissible absolute value for Z and Fq[t]. On
Z, the usual Archimedean absolute value fulfills the requirements by setting
card ϵ to be 1

ϵ , rounded up. Since remainders mod b can be chosen to lie in
the interval [0, b[, partitioning this interval into card ϵ intervals of length ϵb
induces the desired partition.

For Fq[t], we showed that |f |deg := qdeg f for f ∈ Fq[t] is an admissible
absolute value. Fix a polynomial b ∈ Fq[t] and a set A′ ⊂ Fq[t] of remainders
modulo b. Since the coefficients of polynomials in Fq[t] are elements of a finite
set of cardinality q, and the degree of each f ∈ A′ is strictly less than deg b, for
each c there are only qc distinct values for the c coefficients of the monomials
of degree deg b − c up to deg b − 1. If the highest coefficients of f, g ∈ A′

coincide, then |(f−g)|deg < qdeg b−c = q−c|b|deg. By setting card ϵ =
⌈
− logq ϵ

⌉
so that q− card ϵ ≤ ϵ, we can partition A′ into card ϵ subsets based on highest
coefficients, so that elements of each partition are within distance ϵ|b|deg as
desired.

We concluded that when K is a global field, restricting to separable exten-
sions of Fq(t) in the function field case (but see the remark below), the class
group is finite:

noncomputable instance : fintype

(class_group (number_field.ring_of_integers K) K) :=

class_group.fintype_of_admissible_of_finite Q K

absolute_value.abs_is_admissible

noncomputable instance : fintype

(class_group (function_field.ring_of_integers Fq F) F) :=

class_group.fintype_of_admissible_of_finite (ratfunc Fq) F

polynomial.card_pow_degree_is_admissible

Finally, we defined number field.class number and function field.

class number as the cardinality of the respective class groups.
We remark that it is possible to get rid of the [is separable F K] assump-

tion above. For instance, using that any function field K, given as finite
extension of Fq(t), contains an s ∈ K such that K/Fq(s) is a finite and sep-
arable extension; see for example [17, Corollary 4.4 in Chapter VIII] (noting
that Fq is perfect and K has transcendence degree 1 over Fq). One then also
needs to show that the finiteness of the class group of the integral closure of
Fq[s] in K is preserved upon replacing Fq[s] by Fq[t]. A trivial way to get rid
of the assumption in the statement above is to simply move it to our definition
of function field. While this would be mathematically consistent by the result
just cited, we did not opt to do this (for instance showing a finite extension
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of a function field is a function field would become nontrivial). Alternatively,
one could aim at dropping the separability condition in the formalized result
mentioned in the first paragraph of Section 7. Having a formalization of this
generalization would be interesting in its own right. This approach would
also still need the adaptation of some of the details in the final steps for the
finiteness of the class group in the admissible case.

We rounded off our development by determining the class number in
the simplest possible case: the rational numbers Q. First, we formalized the
theorem class number eq one iff, stating that the class number of K is 1
if and only if OK is a principal ideal domain. After defining the isomorphism
rat.ring of integers equiv showing OQ is Z, we could use the fact that Z
is a PID to conclude that the class number of Q is equal to 1:

theorem rat.class_number : number_field.class_number Q = 1 :=

class_number_eq_one_iff.mpr

(is_principal_ideal_ring.of_surjective _

rat.ring_of_integers_equiv.symm.surjective)

9 Discussion

9.1 Related work

Broadly speaking, one could see our formalization work as part of num-
ber theory. There are several formalization results in this direction. Most
notably, Eberl formalized a substantial part of analytic number theory in
Isabelle/HOL [18]. Narrowing somewhat to a more algebraic setting, Cano,
Cohen, Dénès, Mörtberg and Siles formalized in Coq constructive defini-
tions in ring theory, with a particular focus on factorization properties and
with applications to algebraic notions like well-founded divisibility and Krull
dimension [19]. Moreover, de Lima, Galdino, Borges Avelar and Ayala-Rincón
recently formalized in PVS basic notions regarding ring theory, with a particu-
lar focus on quotients: isomorphism theorems, the Chinese remainder theorem
and the definitions of prime and maximal ideals [20]. We are not aware of
any other formal developments of fractional ideals, Dedekind domains or class
groups of rings of integers.

There are many libraries formalizing basic notions of commutative algebra
such as field extensions and ideals, including the Mathematical Components
library in Coq [21], the algebraic library for Isabelle/HOL [22], the set.mm

database for MetaMath [23] and the Mizar Mathematical Library [24]. The
field of algebraic numbers, or more generally algebraic closures of arbitrary
fields, are also available in many provers. For example, Blot [25] formalized
algebraic numbers in Coq, Cohen [26] constructed the subfield of real algebraic
numbers in Coq, Thiemann, Yamada and Joosten [27] formalized algebraic
numbers in Isabelle/HOL, Carneiro [28] in MetaMath, and Watase [29] in
Mizar. To our knowledge, the Coq Mathematical Components library is the
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only formal development beside ours specifically dealing with number fields [21,
field/algnum.v].

Apart from the general theory of algebraic numbers, there are formaliza-
tions of specific rings of integers. For instance, the Gaussian integers Z[i] have
been formalized in Isabelle/HOL by Eberl [30], in MetaMath by Carneiro [31]
and in Mizar by Futa, Mizushima, and Okazaki [32]. Eberl’s Isabelle/HOL
formalization deserves special mention in this context since it introduces tech-
niques from algebraic number theory, defining the integer-valued norm on Z[i]
and classifying the prime elements of Z[i].

An application of our work is the formalization of the adèlic ring of a
global field in Lean (Maŕıa Inés de Frutos-Fernández, [33]). In particular, the
author formalized adic valuations on Dedekind domains, and also proved a
correspondence between idèle and ideal class groups. Our work on Dedekind
domains and class groups was an essential building block for this project.

Finally, since our project became available in the mathlib library, a team led
by Brasca has begun formalizing Fermat’s Last Theorem for regular primes.
Fermat’s Last Theorem is the assertion that, for all integers n ≥ 3,

∀x, y, z ∈ Z, xn + yn = zn =⇒ x · y · z = 0. (FLTn)

It is immediate to see that, for positive integers n and m, if n divides m, then
the validity of (FLTn) implies that of (FLTm). Therefore, also taking into
account that (FLT4) was already dealt with by Fermat himself, it suffices to
only consider exponents that are odd prime numbers.

Now, an odd prime number p is said to be regular if it does not divide the
order of the class group ClQ(ζp) of the number field obtained by adjoining to Q
a primitive pth root of unity ζp; the latter means that ζpp = 1 and ζp ̸= 1 or,
equivalently, that ζp is a root of the irreducible polynomial

Xp − 1

X − 1
= Xp−1 +Xp−2 + · · ·+X + 1.

A classical result, due to Kummer’s work in 1847, is that (FLTp) is true for
every regular prime number p. This is the result Brasca and his team have
begun formalizing in Lean 3 in the on-going work [34], and it evidently requires
the finiteness of the class group in order to define the notion of a regular prime
as above6. Moreover, most arguments occurring in Kummer’s proof pertain to
the structure of the ring of integers Z[ζp] = OQ(ζp) as a Dedekind domain, and
our work lies at the core of the formalization of these structures.

6It is actually possible to simply define a regular prime only in terms of divisibility of some
Bernoulli numbers, instead of mentioning class groups. But this definition would at any rate need
to be translated in terms of class numbers in order to implement Kummer’s proof.
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9.2 Future directions

Having formalized various basic results of algebraic number theory, there are
several natural directions for future work, including formalizing some of the
following results.

• The group of units of the ring of integers O×
K in a number field K is finitely

generated, or even Dirichlet’s unit theorem [7, Theorem 7.4], stating that
O×

K has rank r + s − 1 and that its torsion subgroup is the cyclic group of
roots of unity in K. Here r denotes the number of real embeddings of K
and s the number of conjugate pairs of complex non-real embeddings of K.
The finite generation result also holds in function fields, again with a precise
description of the rank and of the torsion.

• Other finiteness results in algebraic number theory, most notably Hermite’s
theorem about the existence of finitely many number fields, up to isomor-
phism, with bounded discriminant [7, Theorem 2.16]. While this could be
done without interpreting the primes dividing the discriminant as the primes
that ramify in the number field, it would certainly be interesting to set up
some basic ramification theory: on the one hand, this would also prove essen-
tial for many other developments and, on the other, it would allow to prove
a version of Hermite’s theorem stating that, up to isomorphism, there are
only finitely many number fields with bounded degree and restricted rami-
fication. As usual, there are analogous results in the function field setting,
though they are less straightforward. One reason for this is that the nonde-
generacy of the trace form from Section 7.1 does not hold any more when
the separability condition is dropped.

• Class number computations, starting with, say, quadratic number fields.
This could be a step towards the verification of correctness of number-
theoretic software, such as KASH/KANT [35] and PARI/GP [36]. Along the
same lines, unit group computations would also be of much interest, most
notably the explicit computation of r + s − 1 generators for the free part
of O×

K . Restricting to quadratic fields, we see that the rank is positive (and

equal to 1) if and only if the field is of the shape Q(
√
d) for some positive

integer d that is not a square. Finding a generator can be done by using
continued fractions, of which the basics are already implemented in Lean by
Kevin Kappelmann, though certifying that a given (perhaps externally com-
puted) element is indeed a generator could also be done without continued
fractions.

• Applications of algebraic number theory to solving Diophantine equations,
such as determining all pairs of integers (x, y) such that y2 = x3 + D for
some nonzero D ∈ Z. It would be interesting to deal with some values of D
where no elementary techniques are available and where factorization in the
ring of integers of Q(

√
D), along with information about the class number,

could solve the equation.
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9.3 Conclusion

In this project, we confirmed the rule that the hardest part of formalization is
to get the definitions right. Once this is accomplished, the paper proof (some-
times first adapted with formalization in mind) almost always translates into a
formal proof without too much effort. In particular, we regularly had to invent
abstractions to treat instances of the “same” situation uniformly. Instead of
fixing a canonical representation, be it F ⊆ K ⊆ L as subfields or the field of
fractions FracR, or the monogenic K(α), we found that making the essence of
the situation an explicit parameter, as in is scalar tower, is fraction ring

or power basis, allows to treat equivalent viewpoints uniformly without the
need for transferring results.

The formalization efforts described in this paper cannot be cleanly sep-
arated from the development of mathlib as a whole. The decentralized
organization and highly integrated design of mathlib meant that we could
contribute our formalizations as we completed them, resulting in a quick inte-
gration into the rest of the library. Other contributors building on these results
often extended them to meet our requirements, before we could identify that
we needed them, as the anecdote in Section 4.4 illustrates. In other words, the
low barriers for contributions ensured mutually beneficial collaboration.

Quantifying the ratio between the length of our formal proofs and their
paper counterparts in an accurate and meaningful way will be very difficult as
background assumptions and levels of detail varied significantly. We actually
did not always literally follow some written text, but deviated from the paper
mathematics (often discussed orally, on blackboards, through Zulip, etc.) on
many occasions. An important aspect we had to take into account was to con-
sistently combine different descriptions of mathematical objects from different
sources. The formalization project described in this paper resulted in the con-
tribution of thousands of lines of Lean code involving hundreds of declarations.
A rough estimate concerning the former would be that about five thousand
lines of project specific code were added, and about half of that number of
lines of more generic background code. We validated existing design choices
used in mathlib, refactored those that did not scale well and contributed our
own set of designs. The real achievement was not to complete each proof, but
to build a better foundation for formal mathematics.
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