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Transition metal dichalcogenides (TMDs) represent an entire new class of 

semiconducting 2D materials with exciting properties. Defects in 2D TMDs can crucially 

affect their physical and chemical properties. However, characterization of the presence 

and spatial distribution of defects is limited either in throughput or in resolution. Here, 

we demonstrate large area mapping of reactive sulfur-deficient defects in 2D-TMDs 

coupling single-molecule localization microscopy with fluorescence labeling using thiol 

chemistry. Our method, reminiscent of PAINT strategies, relies on the specific binding by 

reversible physisorption of fluorescent probes to sulfur-vacancies via a thiol group and 

their intermittent emission to apply localization of the labeled defects with a precision 

down to 15 nm. Tuning the distance between the fluorophore and the docking thiol site 

allows us to control Föster Resonance Energy Transfer (FRET) process and reveal large 

structural defects such as grain boundaries and line defects, due to the local irregular 

lattice structure. Our methodology provides a simple and fast alternative for large-scale 

mapping of non-radiative defects in 2D materials and paves the way for in-situ and 

spatially resolved monitoring of the interaction between chemical agent and the defects in 

2D materials that has general implications for defect engineering in aqueous condition. 
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The emerging class of two-dimensional (2D) materials, such as graphene, hexagonal 

boron nitride (h-BN) and transition metal dichalcogenide (TMD) monolayers show exciting 

physical properties that are distinct from their bulk forms. However, experimentally measured 

values of these properties, such as electron mobility, photoluminescence (PL), dielectric 

screening are largely affected by the presence of defects that are introduced unintentionally in 

the monolayers during material growth and processing. Although for the many practical 

applications of semiconductor devices based on 2D materials defects are thus often not desired, 

novel properties induced by defects can also be exploited. To name a few, hydrogen evolution 

reaction can be improved by defects engineered MoS21,2; single photon emitters have been 

discovered in WSe2 and hBN on defects-related structures3,4; magnetism has been introduced 

by metal vacancies in PtSe25; gate-tunable memrisitive devices have been built based on grain 

boundaries in MoS26,7. Due to the atomic-thickness of the 2D materials, defects in such hosting 

material are highly sensitive to their environment, and can be inversely used as sensing probes8. 

It is therefore of utmost interest to study and control defects in 2D materials. Especially, with 

the rapid progress in the large scale 2D material growth by metalorganic chemical vapor 

deposition (MOCVD)9, there is a growing demand for a fast, large-scale characterization 

method of the presence and distribution of individual defects in 2D materials.  

Mapping of defects in 2D materials is often a delicate trade-off between the imaging 

resolution and the imaging scale. Atomic resolution is often achieved within tens of nanometers 

imaging area by various electron microcopies10–13, whereas optical microscopy and 

spectroscopy can reveal diffraction-limited defect spatial distribution in relatively large area 

(tens of micrometers)3,14,15. To bridge this gap, we recently demonstrated the application of 

single molecule localization microscopy (SMLM) for wide-field mapping of room temperature 

emitting defects in hBN with resolution down to 10 nm16,17. However, for the most abundant 

point defects in TMDs , e.g. the sulfur vacancies in MoS2 and WS2, SMLM cannot be directly 

applied due to their non-radiative nature at room temperature10,15,18.  

An alternative route to achieve super-resolution microscopy is point accumulation for 

imaging in nanoscale topography (PAINT) and its variations19–21. Here, free diffusing 

fluorescent probes transiently bind to the target site resulting in sparse stochastic blinking that 

allow single molecule localization with high precision (<10 nm)22. With chemical engineering 

of the probe, interaction towards specific targets can be achieved.  

Coupling PAINT methods with thiol chemistry, here we demonstrate visualization of 

the spatial distribution of non-radiative defects in 2D materials, using thiol-functionalized 
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fluorescent probes that specifically interact with sulfur-vacancies23–27. The methodology is 

abbreviated as 2D-PAINT here after. By direct observation, we establish the binding affinity 

and specificity of the reversibly physisorbing thiol-functionalized probes and reveal correlation 

between the defect density and the PL emission of the TMD monolayers. By varying the 

distance between the fluorophore and the docking thiol group, we can further control Föster 

resonance energy transfer (FRET) induced fluorescent quenching28,29 and reveal fine details of 

large structural defects, such as grain boundaries and line defects. Our work open perspectives 

for mapping of a broad range of non-radiative defects in 2D materials and pave the way for in-

situ and spatially resolved monitoring of the interaction between chemical agent and defects in 

2D materials, that can potentially lead to defect healing, 2D material modification, as well as 

bio-sensing applications. 

 

 
 
Figure 1. Working principle of thiol-chemistry-assisted super-resolution optical mapping of sulfur-

vacancies in 2D transition metal dichalcogenides. (a) Fluorophores with emission wavelength clearly 

distinguishable from the photoluminescence (PL) of MoS2 are conjugated with dsDNA linker molecules and 

docking thiol molecules (1). The selective adsorption of thiol molecules at sulfur-vacancies allows labeling of 

these defects. (2). The dynamic of the adsorption/desorption of thiol molecules (3a) or the bleaching of 

fluorophores (3b) yield intermittent fluorescent signal from the fluorophores bound to a defect site, which allows 

the application of single-molecule localization microscopy. (b) The optical setup is based on total internal 
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reflection fluorescent microscopy. The evanescent wave of the laser beam confines excitation and 

photoluminescence (PL) emissions from MoS2 and fluorophores to ~100 nm from the surface, collected by a 100 

× NA 1.49 oil immersion objective lens. The emission signals from MoS2 and the fluorophores are then split into 

two paths according to their wavelength and projected side-by-side on an EMCCD camera (see Figure S1 for setup) 

(c) PL images of a MoS2 flake (path λ1) and fluorescently labelled sulfur vacancies (path λ2) are collected 

simultaneously. The images were taken with ATTO-dsDNA70bp-SH probes with a concentration of 100 pM under 

excitation power of ~15 W/cm2. Images shown here are averaged over 1000 frames for clarity. The bottom panel 

shows the spectra of ATTO-488 and transferred MoS2. The spectrum ranges of the bandpass filters are marked in 

green and red. PL image (standard deviation of 104 frames) of the zoomed-in area highlighted in blue-square 

showing diffraction-limited fluorescent pattern due to individual thiol molecules. After localization of the position 

of each molecule, overlay of the centroid positions of the detected molecules in each frame yields the reconstructed 

super-resolution (SR) map.  

 

Principles of 2D-PAINT and experimental conditions 

The principle of 2D-PAINT is depicted in Figure 1. To enable detectable transient 

labeling of sulfur-vacancies, we design probes that each consists of a fluorophore, an alkane 

thiol molecule and a double-stranded (ds) DNA as a spacer inbetween to control FRET induced 

fluorescent quenching (Figure 1a). A total internal reflection fluorescence (TIRF) microscope 

is used to image labelled sulfur-vacancies in MOCVD-grown monolayer of MoS2 flakes with 

a minimized PL background from the free diffusing probes in solution. Prior to imaging, MoS2 

flakes are transferred to glass cover slips 30. The fluorophores ATTO488 and fluorescein 

amidite (FAM) with emission peak at 520 nm are selected to avoid overlapping with PL 

emission of MoS2, which is typically between 590 nm – 720 nm (i.e. 1.7 eV and 2.2 eV)31,32 

(Figure 1c). A laser with wavelength of 488 nm excites both the fluorophores and the MoS2 

through an oil immersion TIRF objective lens. The PL image is split into two paths 

corresponding to the fluorophore and MoS2 emission respectively, as shown in Figure 1b, c. 

This simultaneous imaging allows us to correlate the defect distribution and the 

photoluminescence of the 2D-TMDs. A high concentration salt buffer (400 mM KCl 40 mM 

Tris buffer pH~8) is used to shield the electrostatic repulsion between the negatively charged 

MoS2 surface and the negatively charged DNA molecules. In the absence of the oxygen-

scavenger buffer, fluorescent probes that attach to the surface bleach rather quickly under the 

continuous excitation of the 488 nm laser, such that only a fraction of the attached probes is 

detectable on each frame allowing for localization. As can be seen in the zoomed-in images in 

Figure 1c, PL signal from a single fluorescent thiol label spreads over ~5-by-5 pixels (pixel size 

= 105 nm) according to the Point Spread Function (PSF) of the optical system. The centroids 

of the molecules imaged in each frame are localized by 2D-Gaussian fitting with the 
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localization precision that scales inversely with square root of total number of emitted photons33. 

We obtain the best precision of ~15 nm with ATTO488 fluorophore under excitation power of 

200 W/cm2. Detailed description of the localization procedure can be found in Methods. 

 

Binding affinity and specificity 

First, we perform 2D-PAINT imaging on MoS2 flakes using fluorescent probes consist of FAM 

dye, dsDNA of 70 base pairs and a thiol functional group, namely FAM-dsDNA70bp-SH. The 

schematics of the probe, with the resulting PAINT image is depicted in Figure 2a. The 

localizations based on the detected fluorescence of individual emitters are summed up from 104 

frames. Brighter spots represent a higher localization density. As shown in Figure 2a, with 

FAM-dsDNA70bp-SH probes, bindings are homogeneous over the sample with a slightly 

higher density of events along the edges, as shown in Figure 2a. This binding homogeneity is 

consistent with the homogeneous defect distribution expected from TEM and PL measurements 

on perfect triangle shape flake with homogeneous PL (see in Figure 2b). Straight edges were 

shown previously to be Mo-terminated34, thereby are more likely to be bound by thiol probes.  

As a control experiment,  we employ probes without thiol, namely FAM-dsDNA70bp. 

All other conditions are kept identical. As shown in Figure 2c, in contrast to the high 

localization density with thiol probes, only a few fluorescent events are detected when the probe 

is switched to FAM-dsDNA70bp. Such a marked difference proves that -SH is the active group 

responsible for the interaction between the probes and the MoS2 surface that yields the PL signal. 

AFM scanning of as-grown MoS2 on sapphire in buffer solution with the presence of thiol 

probes shows that the molecules can also physisorb with their main molecular axis parallel to 

the surface (Figure S11). However, such adsorption geometries not interacting directly at the 

defects will not contribute to the fluoresence signal due to the quenching by MoS2 at close 

proximity28,29. Indeed, using fluorophores that are directly conjugated to ethanethiol molecules 

(ATTO-SH), we observe almost no fluorescence on the MoS2 flake, as shown in Figure 2d. 

These results demonstrate the necessity of the thiol functional group and the dsDNA linker 

molecule to enable fluorescence detection of the probe-MoS2 interaction.  
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Figure 2. Affinity of thiol binding on MoS2 surface: 2D-PAINT reconstructed images of a MoS2 flake with 

fluorescent probes of different compositions. (a) 2D-PAINT image acquired using fluorescent probes consisting 

of a fluorophore head, dsDNA of 70 bp as linker molecule, and a thiol tail (FAM-dsDNA70bp-SH). The zoomed-

in image reveals a high density of binding on MoS2. (b) An averaged PL image of the MoS2 flake in (a) with a 

perfect 60° triangle shape and homogeneous PL intensity. (c) 2D-PAINT image acquired using fluorescent probes 

without thiol groups (FAM-dsDNA70bp). (d) 2D-PAINT image acquired using fluorophores that directly 

conjugated with thiol (ATTO-SH). All experiments are performed with 40 nM concentration of the probes. 2D-

PAINT images are reconstructed from 104 frames with normalized Gaussian rendering. Scale bars in b-c: 5 µm.  

 

To validate the binding specificity on defects, we perform 2D-PAINT imaging on MoS2 

samples with pre-patterned defective sites. High density of defects were deliberately introduced 

in MoS2 flakes by Xenon focused-ion beam (FIB) irradiation35. Periodical patterns with a pitch 

distance of 2 µm are irradiated on MoS2 with carefully tuned ion dose and dwell time to avoid 

complete removal of the material, which is confirmed by the Raman scattering spectra, as 

shown in Figure 3c and AFM (Figure S2). On irradiated samples, we observe a downshift of E’ 

mode and an upshift of A’1 mode with a clearly decreasing of the amplitude ratio of E’/A’1 and 

broadening of both peaks. In addition, disorder-induced modes emerge as the dose of irradiation 

increases, one of which is at the low-frequency shoulder of E’ (~377 cm-1) and the other LA(M) 

mode at ~227 cm-1 (Figure S3)36. These transitions in Raman scattering spectra strongly indicate 

an increasing concentration of sulfur-vacancies, which has been reported previously upon ion 
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or electron irradiation14,36,37. The highly defective crystal structures induced by the ion 

bombardment lead to a diminished PL emission of MoS2, as shown in Figure 3a (gray scale). 

Similar PL quenching has been reported on MoS2 with distorted lattice after oxygen plasma 

exposure37. Performing 2D-PAINT imaging on the flake using ATTO-dsDNA70bp-SH probes, 

we observe a highly selective binding on the irradiated area. Overlaying the reconstructed 

localization density map (color-coded) with the PL image of the same area demonstrates a 

strong correlation between the area of diminished PL and the area of high localization density. 

Details of the overlay can be seen in the zoomed-in image in Figure 3b. The absence of binding 

in the non-irradiated area is most likely due to re-deposition of the knocked-off atoms that 

blocks the binding sites. The correlation between the localization density and the defect density 

is also confirmed by performing 2D-PAINT imaging on monolayer MOCVD-grown WS2 flakes. 

MOCVD-grown WS2 is known for its inhomogeneity in PL emission due to the defect density 

variation across a flake15,38,39. 2D-PAINT imaging reveals a strong correlation between the 

localization density of the fluorescent events and the PL intensity of the WS2 flake (Figure S4). 

These results clearly demonstrate favorable binding between a thiol probe and a sulfur-vacancy.  

 

 
Figure 3. Specific binding of thiol probe on sulfur vacancy defects: 2D-PAINT imaging on FIB pre-

patterned MoS2. (a) Overlay of a PL image (gray scale) and a 2D-PAINT reconstructed image (color-coded) 

taken on a pre-patterned MoS2 flake by the focused-ion beam at dose of 1.1×1014 ions/cm2. Scale bar is 2 µm. 2D-

PAINT image is reconstructed from 5×103 frames with averaged shifted histogram rendering. Imaging was 

performed with ATTO-dsDNA70bp-SH probes with a concentration of 10 nM under excitation power of ~56 

W/cm2. (b) Zoomed-in image of the highlighted area in (a). Scale bar is 500 nm. (c) Raman scattering spectra of 

MoS2 flakes with no irradiation, irradiation dose 1 of 3.4×1013 ions/cm2, and dose 2 of 1.1×1014 ions/cm2.  
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Non-homogeneous FRET reveals larger structural defects 

The quenching effect evidenced in Figure 2d shows the necessity of the linker molecule. 

To study the influence of the linker molecule length on the detection of the crystal defects, we 

designed fluorescent thiol probes of various sizes. Taking advantage of the high spatial 

resolution of 2D-PAINT, we perform the imaging on MoS2 monolayer crystals that contain 

large structural defects, such as grain boundaries and line defects to investigate the homogeneity 

of the FRET effect. Sulfur-deficient grain boundaries and line defects often appear dark in the 

PL image as shown in Figure 4a34 . Figure 4b-d show the 2D-PAINT images reconstructed from 

data taken with probes of 70 bp, 50 bp and 30 bp dsDNA, respectively, corresponding to the 

contour length of 24 nm, 17 nm and 10 nm. The grain boundaries and line defects become 

clearly visible with the decreasing probe length. This even applies to the thiol probes without 

dsDNA linker molecules (Figure S5). Fine details of these large structural defects are revealed 

beyond the diffraction-limitation in the PL image. We attribute this non-homogenous 

localization density to distinct FRET quenching processes in areas with and without large 

structural defects. 

We extracted the average binding density per frame on areas with and without large 

structural defects. As can be seen in Figure 4e, the binding densities on the large structural 

defects are higher than on the areas without the large structural defects and follow opposite 

trends with respect to probe length. These opposite trends in binding density are responsible for 

the improving contrast of the grain boundaries and the line defects in Figure 4d.  

The increasing binding density on the large structural defects is consistent with an 

increase in the diffusion coefficient of the probe in the absence of any FRET quenching effect. 

In the diffusion-limited regime, the number of arriving probes on each frame is proportional to 

its diffusion coefficient. Shorter probes diffuse faster than the longer ones40, therefore having a 

higher binding density. Similar trend is observed on glass substrate (not shown), which is 

consistent with the negligible FRET processes in these areas. 

That this trend is opposite on areas without large structural defects can be understood 

based on non-radiative FRET process that reduces the PL intensity of probes, resulting in a cut-

off for the low-intensity events in detection. Such truncation is more pronounced for shorter 

probes. As can be seen in Figure 4f, the fluorophore intensity measured on MoS2 flakes without 

large structural defects increases with increasing length of dsDNA linker molecule. The 

theoretical calculation shows that the effective range of FRET effect is about 40 nm (Inset in 

Figure 4f), matching with the range of dsDNA lengths used in our experiments. 
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As shown in Figure 4g, the intensity of detected binding events varies indeed according 

to the crystal structure of MoS2 monolayer. Grain boundaries and line defects in MoS2 have 

been reported as arrays of dislocations formed by atomic-ring structures at the intersection of 

two single-crystalline structures with different orientations11,34,41. The significantly reduced 

FRET rate on such defects could originate from disruption of the periodicity of the crystalline 

structure that changes the local dipoles of the MoS2 crystal, thus hindering the electromagnetic 

wave coupling between the fluorophore and the MoS2. In addition, strain around the boundaries 

can modify local band structures, thus affecting the absorption efficiency of certain energy42,43. 

However, further investigation is required to validate this hypothesis which is beyond the scope 

of this work. 

 
 

Figure 4. Fluorescent probes with varied DNA linker lengths reveal large structural defects on MoS2 (a) An 

image of PL emission of monolayer-MoS2 consisting of large structural defects, including a grain boundary (GB) 

and line defects. (b) - (d) 2D-PAINT images taken on the same area of MoS2 flake using fluorescent thiol probes 

ATTO-dsDNA-SH with dsDNA length of 70 bp, 50 bp and 30 bp, respectively, at 40 nM. The excitation power 

density is 67 W/cm2. The images are reconstructed from 5×103 frames using averaged shifted histogram. (e) 

Detected localization density per frame as a function of the number of base pairs in DNA linkers. Data are extracted 

respectively on areas with (red) and without (blue) large structural defects. (f) Intensity histogram of ATTO-

dsDNA-SH with dsDNA length of 70 bp, 50 bp and 30 bp, respectively, on a MoS2 flake without large structural 

defects. The excitation power is 19 W/cm2.The inset shows theoretically calculated normalized intensity of the 

fluorophore ATTO488 emission as a function of the fluorophore distance from the MoS2 surface. Details of the 

calculation can be found in Supplementary Information. (g) Fluorescence intensity map of (d). Scale bars 1µm. 
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Binding kinetics 

An important remaining question is the nature of the physical interaction responsible for the 

binding of the thiol probe on surface defects, for both designing more efficient 2D-PAINT 

imaging as well as for the future development of defect healing agents. We thus investigated 

the binding kinetics of thiol probes on MoS2 with bulk concentrations ranging from 100 pM to 

100 nM. The average localization density per frame is extracted over 104 frames from the same 

region of interest of 10-by-10 µm2 selected in the middle of the illuminated MoS2 flakes. As 

shown in Figure 5a, the localization density increasing with the concentration of thiol probes 

resembles Langmuir absorption isotherm, which indicates a reversible binding process. 

 In steady-state, the total number of defects occupied by fluorescent probes reaches a 

constant value, with a balance between the association and the dissociation of the free diffusing 

fluorescent probes to the defects and the bleaching of the fluorescent probes bound to the 

defects. A schematic of the binding process is shown in the inset of Figure 5a. In the case of a 

reversible binding process, the density of detected fluorescent probes bound to the defects at 

the equilibrium state is a function of the probe concentration in solution, which can be described 

mathematically as  

d

d bd

a

kQ k k kC
k

Cq η=
++

   ,   (1) 

where η is the detection efficiency, Q is the density of total defect sites available for binding, 

C [M] the concentration of thiol probes in the solution, and kd [s-1] denotes the dissociation rate, 

ka [M-1·s-1] the association rate, kb [s-1] the bleaching rate of the fluorophore. Note that equation 

(1) is just a classic Langmuir binding equation with an additional factor 
d

d

b

k
k k+

 , which 

describes the fraction of unbleached defect-bound probes. The dissociation constant defined as 

d
D

a

kK
k

= [M] is used to characterize the affinity between the probe and the defect. Detailed 

derivation can be found in the SI. Sec5. Fitting equation (1) to the experimental data, we extract 

KD as 6.48 ± 0.48 × 10-9 M at a salt concentration of 400 mM with pH ~8. The corresponding 

molar Gibbs free energy change 0
Dlog( )o RTG K C=∆  is ~ -47 kJ·mol-1 (19.3 kBT) at room 

temperature (calculation in SI.Sec6). The value is not significantly affected by the choose of 

fluorophore and the excitation power density up to 40 W/cm2 (SI. Sec 8). This low value of 
oG∆ , along with the reversible Langmuir adsorption isotherm, implies that the interaction 



 11 

between a thiol and an S-vacancy is most likely a physical adsorption mediated by an 

electrostatic interaction. 

By analyzing the blinking statistics of each localization spot, we can directly extract the 

association rate ka from the reciprocal of the mean OFF time (or the interevent time) via 1/τOFF 

= ka C in the diffusion-limited regime and the sum of the bleaching rate and the dissociation 

rate from the reciprocal of the mean ON time (event duration time) via 1/τON = kb + kd. As 

shown in Figure 5b, 1/τOFF scales indeed linearly with the probe concentration, giving the 

association rate ka = 2.86 × 106 M-1s-1 for FAM-dsDNA70bp-SH at a salt concentration of 400 

mM KCl. On the other hand, the ON time does not depend on the probe concentration 

significantly, giving 1/τON = kb + kd ~ 3 s-1 with the excitation power density of 5 W·cm-2. From 

kd=KD ka, we can extract kd ~ 2 × 10-2 s-1. This implies that a thiol probe stays at a defect site 

for ~ 50 s on average. The detectable ON time in our experiments is mainly determined by the 

bleaching of the fluorophore, which is consistent with the photophysics of the fluorophore 

embedded in 1% polyvinyl alcohol (see in Figure S7). The fraction of the defect bound FAM-

dsDNA70bp-SH probes remain fluorescent (
d

d

b

k
k k+

) is only about 0.7%. Given that the 

detectable binding saturation density in Figure 5a as 0.04 µm-2, we can estimate the density of 

the active sulfur vacancies that can interact with thiol probes in water simutanously is in the 

order of 10 µm-2. This is orders of magnitude lower than the defect density measured with TEM 

(105 µm-2), although the TEM obtained defect density is reported be higher than the actual value 

in the material since defects are often as well created by electron beam during TEM imaging44. 

We speculate that this discrepany comes from the deactivation of sulfur vacancies by multiple 

sources including ~ 20% polymer contamination coverage of MoS2 from the transfer process 

(Figure S10), surface trapped airbubbles (Figure S11), different charge states of sulfur-

vacancy45, proton and O2 passivation46,47. The latter three are reversible processes. Using 

balanced super-resoltion optical fluctuation imaging (bSOFI) to analyze the chemically active 

defect density as a function of imaging frames48, we observe that the density evaluation reaches 

stable estimation at 16 000 frames (Figure S12). The implies that by this time all chemically 

active defects have been visited by the probes. We therefore extract the total chemically active 

defect density at the stable stage as ~2000 µm-2.  
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Figure 5. The Langmuir adsorption isotherm and blinking statistics revealing the binding kinetics between 

thiol and sulfur vacancies. (a) The Langmuir adsorption isotherm of FAM-dsDNA70bp-SH binding to a MoS2 

monolayer indicates a reversible binding process. The inset shows a schematic of the reversible binding process 

with the bleaching process of the fluorophore. ka denotes for the association rate, kd for the dissociation rate, and 

kb for the bleaching rate of the fluorophore. The data points (red dots) is fitted by equation (1).Error bars are 

standard deviations. (b) The reciprocal of the blinking interval time (1/τOFF = ka C) and the blinking on time (1/τON 

= kb + kd) as a function of the probe concentration (C). The linear fit gives the association rate ka of 2.86 × 106 M-

1s-1 at a salt concentration of 400 mM KCl. The blinking ON time is independent of the probe concentration.  

 

 

Discussion and conclusion 

Combining PAINT methodology with defect-specific fluorescent probes allow us to visualize 

non-radiative defects in 2D materials with resolution beyond the diffraction limit and with a 

high-throughput at room temperature. This wide-field rapid mapping technique gives a global 

picture of the distribution of sulfur-deficient point-defects as well as large structure defects 

across whole flakes of MoS2 and WS2. 2D-PAINT fills the gap between the electron scanning 

microscopy and diffraction-limited far-field optical methods, with clear advantages of 

simplicity, fast-scan and throughput compared to device-based defect characterization. By 

giving unprecedented insight on the interaction between functional groups and target defects, 

through analysis of single-molecule blinking statistics, it could serve as a platform to study 

surface chemistry on 2D materials. Moreover, our demonstration of the distance-dependent 

FRET with the defect-anchored probes on MoS2 on single-molecule level opens up a new 

perspective in developing 2D-PAINT towards a three-dimensional super-resolution 

methodology using a similar principle of metal-induced energy transfer, which has been 

recently demonstrated on graphene49. Moreover, our method could be applied to other types of 

non-radiative defects by versatile chemical modification of the fluorescent probes, such as 

WSe2. By bridging the gap between super-resolution microscopy and 2D materials, our work 

is thus an important step towards the multidimensional characterization tool that will facilitate 
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defects engineering in 2D materials  and propel the development of a variety of bio-sensing and 

chemical modification studies with 2D materials. 

 

 

Material and methods 

MOCVD growth 

Monolayer MoS2 is grown on C-plane sapphire substrates in a home-built system using metal 

organic chemical vapor deposition (MOCVD) method. As previously described, sapphire 

substrate is annealed at 1000 °C (for 2h in air) to achieve an atomically smooth surface for 

epitaxial growth50. Before growth, NaCl solution is spin coated on the substrate to suppress 

nucleation and promote the growth9,51. The two precursors Mo(CO)6 and H2S, with the flow 

rate ratio of 1:6028, are carried by Ar gas to the MOCVD chamber and undergo reaction at 

820 °C for 30 min. Mo(CO)6 is kept at 15 °C in a water bath and the valve is closed immediately 

after growth process, while H2S continues flowing during the cooling process. Throughout the 

whole growth process, the furnace is kept at 850 mbar pressure. 

 

Fluorescent thiol probes 

Single stranded (ss) DNA with 5’ modification of thiol C6 and 3’ modification of ATTO-488 

or FAM dyes were annealed in-house with complementary strands to form dsDNA probes: 

ATTO-dsDNA-SH and FAM-dsDNA-SH. ssDNA with 3’modification of FAM were annealed 

with complementary strands to form dsDNA probes: FAM-dsDNA. Three lengths of DNA were 

used, namely 30bp, 50bp, and 70bp. All ssDNA products are ordered from MicroSynth. ATTO-

SH were ordered from ATTO-TEC. 

 

Microscope setup 

Imaging was carried out on a custom-built microscope that was described previously16. A 

schematics of the optical setup is depicted in Figure S1. Briefly, a coverslip with transferred 

2D-TMDs is placed on an inverted microscope (IX71, Olympus) with a piezo stage (Nano-

Drive, Mad City Labs) driven with a feedback loop to minimize the drift in z-direction. A 100 

mW 488 nm laser (Sapphire, Coherent) is used to excite the sample at an angle beyond the 

critical angle of glass/water boundary (58.9°). The excitation power is controlled by an acousto-

optic tunable filter (AOTFnC-VIS-TN,AA Opto-Electronic). The laser beam is focused at the 

back focal plane of the objective (UApo N ×100, NA 1.49, Olympus) to enable a wide-field 

illumination. The emission from the sample is collected by the same objective lens through a 
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dichroic mirror (ZT488/561rpc, Chroma) and an emission filter (StopLine 405/488/568, 

Semrock). The emission goes further through a pre-calibrated adaptive optics (micAO 3DSR, 

Imagine Optics) to minimize distortion of the point spread function. The emission of MoS2 and 

fluorophores are split into two paths with wavelength windows of 509 nm-530 nm and 675 nm-

725 nm by a dual-channel view optical system (DV2, Photometrics) with a dichroic mirror 

(T565lpxr, Chroma) and two emission filters (ET 525/36, ET 700/50, Chroma). The split 

images are projected adjacently to an EMCCD camera (iXon DU-897, Andor) with a back-

projected pixel size of 105 nm. 

 

Imaging process  

For each experiment, 5000 to 20000 frames of dual-channel image were typically recorded. The 

gain of the EMCCD was set at 150 and the exposure time was set as 50 ms for a laser power 

density of 5 W cm-2 and 30 ms for a higher excitation power. Between binding experiments 

with different fluorescent probes on the same MoS2 samples, extensive washing by the buffer 

solution and bleaching by a moderate laser power was performed to ensure a clean MoS2 surface.  

 

Localization procedure 

Centroids of the defect-bound fluorophores are localized using the FIJI plugin ThunderStrom52. 

Briefly, we first select the image area corresponding to fluorophore emission and apply a 

wavelet filter (B-Spline). Fluorophores with intensity peak higher than 1.5×STD of the first 

wavelet level are selected for localization. The selected peaks are then fitted by 2D-Gaussian 

function to extract centroids. Lateral drift correction is done by cross-correlation of the 

reconstructed images.  

 

Focused-ion beam patterning 

FIB irradiation and patterning were performed at Helios G4 PFIB UXe microscope using 

focused Xenon plasma beam. All investigated patterned samples were irradiated at constant 90 

µs dwell time, 2 µm pixel distance and  30 kV beam with varying beam currents (10 pA – 100 

pA) for different irradiation doses. The irradiation dose was calculated with ion beam exposure 

formula for 2D materials53. 

 

Raman scattering spectroscopy 

Raman spectra of the monolayer MoS2 flakes were collected by a (Renishaw inVia Confocal 

Raman Microscope) spectrometer at room temperature using a 532 nm laser with excitation 
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power of ~ 1 mW. Point measurements were performed on the transferred MoS2 flakes on glass 

substrates with or without pre-patterned FIB irradiation. The excitation spot size is about 1µm. 

 

Data Availability 

The data that support the findings of this study are available from the corresponding authors on 

reasonable request. 
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