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Abstract

In this article we prove that the set of torsion-free groups acting by isometries on a
hyperbolic metric space whose entropy is bounded above and with a compact quotient is
finite. The number of such groups can be estimated in terms of the hyperbolicity constant
and of an upper bound of the entropy of the space and of an upper bound of the diameter of
its quotient. As a consequence we show that the set of non cyclic torsion-free δ-hyperbolic
marked groups whose entropy is bounded above by a number H is finite with cardinality
depending on δ and H alone. From these results, we draw homotopical and topological
finiteness theorems for compact metric spaces and manifolds.
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1 Introduction and definitions

Finiteness results in Riemannian geometry have a long history since Weinstein’s and Cheeger’s
celebrated theorems [Wei67], [Che70]. The following one, which is close to the purpose of
this paper, was stated without proof by Gromov in [Gro78]:

Theorem 1.1. There exist only finitely many compact, differentiable n-manifolds Y admit-
ting a Riemannian metric with sectional curvature −a2 ≤ k(Y ) < 0 and diam(Y ) ≤ D.

More precisely, Gromov attributed the homotopy version of this theorem to E. Heintze.
Actually, Heintze proved in his dissertation [Hei76, Hei74] an analogous of the famous Mar-
gulis’ lemma for Hadamard manifolds with pinched sectional curvature −a2 ≤ k(X) ≤
−b2 < 0, then deducing the finiteness of homotopy types, from Cheeger’s Finiteness the-
orem. However, Cheeger’s theorem (besides being originally stated for simply connected
manifolds) proved only finiteness up to homeomorphisms in dimension 4. To find a com-
plete proof of Theorem 1.1 in the literature it seems that we had to wait for Peters’s proof
of Cheeger’s Finiteness theorem [Pet84] or Gromov approach through his celebrated Com-
pactness theorem (see [Gro07]), as completed by Katsuda, Greene-Wu, Peters and others.

The notion of δ-hyperbolic space1 which is reminiscent of the above theorem was intro-
duced by M. Gromov as a very weak metric notion of negative curvature, at some macro-
scopic scale. For instance, for a metric space, being δ-hyperbolic is a much weaker hypothesis
than being CAT(−1) (see Proposition 1.4.3 page 12 of [CDP90]). Furthermore, even if the
metric space is a Riemannian manifold, being δ-hyperbolic gives no information on the
topology or on the geometry of balls of small radii.

We here present several finiteness results, the proof of which relies partly on a new Bishop-
Gromov Inequality. It may indeed seem paradoxical that an hypothesis which generalizes the
notion of “curvature bounded from above” would provide a Bishop-Gromov inequality, while
this inequality is usually the consequence of an hypothesis of the type “(Ricci) curvature
bounded from below”. However, in the sequel as well as in our previous works (see [BCGS20],
[BG21]), the hypothesis “(Ricci) curvature bounded from below” will be replaced by the
much weaker assumption “entropy bounded from above” (see Definition 1.2). We recall the
definition of the entropy of a metric measure space.

Definition 1.2. The entropy of a metric measure space (X, d, µ) (denoted by Ent(X, d, µ))

is the lower limit (when R→ +∞) of
1

R
ln
(
µ
(
BX(x,R)

))
. It does not depend on the choice

of x.

This invariant, possibly infinite, gives an asymptotic, hence weak, information on the
geometry of the metric space (see the comparison with other hypotheses in the section 3.3
of [BCGS20] and in the section 3.1 of [BG21]). Despite its apparent weakness it becomes
interesting when there exists a group Γ acting properly by isometries on (X, d) (and possibly
co-compactly) and when we restrict ourselves to Γ-invariant measures µ. Among these Γ-
invariant measures, our preferred example is the counting measure µΓ

x of the orbit Γx of a
given point x, defined by µΓ

x =
∑
γ∈Γ δγx, where δy is the Dirac measure at the point y.

Notice that, in the co-compact case, the entropy does not depend on the chosen Γ-
invariant measure, as shown by the

Proposition 1.3. Let (X, d) be a non compact metric space and Γ be a group acting properly
and co-compactly on (X, d) by isometries. For every positive Γ-invariant measure µ on X
such that all balls have finite measure, one has Ent(X, d, µ) = Ent(X, d, µΓ

x) for every x ∈ X.
If, furthermore, (X, d) is a length space, then Ent(X, d, µ) is actually a limit.

1In this article, a δ-hyperbolic space will be always supposed to be a proper, geodesic space, see definition 7.5.
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This proposition is classical, a proof may be found in [BCGS20], Proposition 3.3. It is
the reason why we shall sometimes use the notation Ent(X, d) instead of Ent(X, d, µ) for
Γ-invariant measures.

Let us now consider a finitely generated group Γ and let Σ be a finite and symmetric
generating set (see Definition 2.1). The couple (Γ,Σ) is here called a marked group and from
this data we can define a proper metric space, the so-called Cayley graph of (Γ,Σ), denoted
by G(Γ,Σ) and endowed with a natural distance such that the edges have length one (see
the beginning of next Section for a precise definition). Notice that, by construction, Γ acts
isometrically and co-compactly on G(Γ,Σ). We can then define the entropy of this metric
space endowed with the counting measure and we shall denote it by Ent(Γ,Σ). When, for
a finitely generated group Γ, there exists a finite generating set Σ so that the metric space
G(Γ,Σ) is δ-hyperbolic for some δ we say that Γ is hyperbolic in the sense of Gromov and
that (Γ,Σ) is δ-hyperbolic. We recall that the number δ depends on Σ.

One of our main results is the following theorem (see Theorem 4.2 and Section 2 for the
definition of an isometry between marked groups).

Theorem 1.4. Given any δ,H > 0, the set of non cyclic torsion-free δ-hyperbolic marked
groups (Γ,Σ) satisfying Ent(Γ,Σ) ≤ H is finite and has cardinality (up to isometric isomor-
phism) smaller than a number depending on δ and H only.

This number is made precise in Section 4. The number of finitely generated groups
is infinite. Even if we bound the cardinality of Σ it is impossible to bound the number
of marked groups (Γ,Σ). We need an extra piece of information and it is the size of the
relations. More precisely, for a finitely presented group Γ, the normal subgroup (of the free
group F(Σ)) generated by the relations is finitely generated (as a normal subgroup) and,
if we call R one of its generating sets. 〈Σ|R〉 is called a presentation of Γ by generators
and relations, both Σ and R being finite (see Section 2 for more details). Notice that every
element r ∈ R is a word in the elements of Σ. Now an easy lemma (see Lemma 2.3) asserts
that, if we consider finitely presented groups which admit a presentation 〈Σ|R〉 such that
the cardinality of Σ is bounded above by N ∈ N, and if the word-length of any element of
R is bounded above by p ∈ N, then the number of such groups is bounded above by an
explicit function of p and N .

Now a remarkable, yet easy, fact is that every δ-hyperbolic marked group (Γ,Σ) admits
a presentation 〈Σ|R〉 by generators and relations such that the word-length of every relation
r ∈ R is bounded from above by 4δ + 6 (see for example [BH99], chapter III.Γ, proof of
Proposition 2.2). We then only need to find a good generating set Σ for which we can control
the cardinality in terms of the data δ and H. This is given by the following proposition (see
Proposition 4.1).

Proposition 1.5. Given δ,H,D > 0, let Γ be a non-cyclic torsion-free group acting properly
and by isometries on a δ-hyperbolic space (X, d) verifying Ent(X, d) ≤ H and diam(Γ\X) ≤
D then, for every x ∈ X, the set Σ10(D+δ)(x) := {γ ∈ Γ : d(x, γx) ≤ 10(D + δ)} is a
symmetric generating set whose cardinality is bounded above by a function of δ, H and D
only.

Here the function depending on δ, H and D only is described in Subsection 4.3. This
yields Theorem 1.4 since a δ-hyperbolic marked group acts on its Cayley graph co-compactly
and the quotient has diameter one.

The above Proposition, when (X, d) is the Cayley graph of a given δ-hyperbolic marked
group (Γ,Σ), might be compared with a well-known estimate, due to Arzhantseva and
Lysenok [AL06]: the cardinality of any other generating set Σ′ of Γ or of any non-elementary
subgroup Γ′ ⊂ Γ can be bounded in terms of its entropy

#Σ′ ≤ c · Ent(Γ,Σ′).

The main difference with our result is that Arzhantseva-Lysenok’s constant c depends on
the given hyperbolic marked group (Γ,Σ) (namely, not only on its hyperbolicity constant
δ, but also on the cardinality of Σ). Our estimate is universal and bounds, by the same
constant, the cardinality of Σ for every δ-hyperbolic group (Γ,Σ) with entropy less than H.
Notice that our result does not cover Azhantseva and Lysenok’s.

Another related result is given in the recent article by K. Fujiwara and Z. Sela, [FS20].
In this paper the authors consider a Gromov-hyperbolic group Γ and sequences of generating
sets Σn of fixed cardinality and bounded entropy. It is shown that, when it converges, the
sequence Ent(Γ,Σn) is non decreasing (except for a finite number of indices n) and they
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show that the limit entropy is the entropy of some marked group. The results in [AL06], in
[FS20] and the ones in the present article give a fairly complete panorama of the situation.

Notice that Proposition 1.5 gives also a finiteness theorem for groups acting on a δ-
hyperbolic space. More precisely we also show the following result (see Theorem 4.4).

Theorem 1.6. Given δ,H,D > 0, let H(δ,H,D) be the set of torsion-free groups which
admit a proper isometric action on some δ-hyperbolic space (X, d) satisfying Ent(X, d) ≤ H
and diam(Γ\X) ≤ D. Then, H(δ,H,D) has cardinality (up to isomorphisms) bounded above
by a function of δ, H and D only.

Comparing with the aforementioned finiteness Theorem 1.1 for Riemannian manifolds
that is, considering G = π1(Y ), acting by deck transformations on the Riemannian universal
covering X of Y , we see that, besides the wider generality, in Theorem 1.6 the infinitesimal
conditions given by the upper and lower sectional curvature bounds are replaced, respec-
tively, by the macroscopic condition of δ-hyperbolicity of the universal covering, and by
the asymptotic bound on the growth of X given by the entropy (which is a much weaker
condition, for instance, than a lower bound on the Ricci curvature). Going further in this
comparison, one might ask if the δ-hyperbolicity condition is really needed for Theorem 1.6,
or if it could be replaced by the Gromov hyperbolicity of X. We will show, in Section 6,
that all the assumptions of Theorems 1.4 and 1.6 are necessary, including the upper bound
on the hyperbolicity constant.

The proof of Proposition 1.5 uses our Bishop–Gromov Inequality (see [BCGS20], Theo-
rem 5.1 and 3.1) as well as a result due to E. Breuillard, B. Green and T. Tao (see [BGT12],
Corollary 1.7 and Theorem 3.3 in the sequel). The above results also rely on the key the-
orem stated below which shows that, in the situation under consideration, the asymptotic
displacement of any hyperbolic isometry is bounded away from zero, by a positive universal
constant only depending on δ, H and D. The asymptotic displacement `(γ) of any hy-
perbolic isometry is defined in Definitions 7.20. We then show the following (see Theorem
3.4):

Theorem 1.7. Given δ,H,D > 0, consider a δ-hyperbolic metric space (X, d) and a proper
action by isometries of a non virtually cyclic group Γ on (X, d) such that the diameter of
Γ\X and the entropy of (X, d) are respectively bounded from above by D and H, every

torsion-free element γ ∈ Γ∗ verifies `(γ) >
2(5D + δ)

ν
(
35e73H(D+4δ)

)
+ 2

.

Here ν(.) is a function which comes from the above-mentioned works by E. Breuillard,
B. Green and T. Tao (see [BGT12], Corollary 1.7, stated as Theorem 3.3 in the sequel).
This is a key step of this article with the most involved proof.

In Section 5, various other finiteness results are drawn from Theorems 1.6 and 1.7. More
precisely:
in Theorem 5.4 we show that the number of δ-hyperbolic spaces X which admit a discrete
torsion-free, non-elementary cocompact group of isometries Γ with diam(Γ\X) ≤ D and
Ent(X) ≤ H is finite, up to quasi-isometries whose constants are computable in terms of
δ,D,H.
Theorem 5.14 implies in particular that the number of closed Riemannian 3-manifolds Y
with torsion-free fundamental group and with diam(Y ) ≤ D, whose universal covering Ỹ is

δ-hyperbolic and satisfies Ent(Ỹ ) ≤ H, is finite up to diffeomorphisms.
A consequence of Theorems 5.11 and 5.13 is that the number of compact connected as-
pherical ANR metric spaces Y (respectively of closed aspherical Riemannian manifolds Y of

dimension 6= 4) with diam(Y ) ≤ D and whose metric universal covering Ỹ is δ-hyperbolic

and satisfies Ent(Ỹ ) ≤ H, is finite up to homotopy equivalences (resp. up to diffeomor-
phisms).

Finally, in Section 6 a series of examples (and counter-examples) are exhibited showing
that all hypotheses of Theorems 1.4 and 1.6 are necessary. Appendices 7 present the basic
facts about Gromov hyperbolicity in order to fix notations and conventions.

Notation 1.8. In the sequel, in a metric space (X, d), when there is no ambiguity on the
choice of the metric d, we shall denote by BX(x, r) (resp. by BX(x, r)) the open (resp.
closed) ball of radius r centred at a point x ∈ X. We shall also only consider proper
geodesic spaces, that is metric spaces for which the closed balls are compact. The action
by isometries of a group Γ on (X, d) is said to be proper when, for every R > 0, the set
{γ ∈ Γ : d(x, γ x) ≤ R} is finite (this does not depend on the choice of x ∈ X).
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2 Bounding the number of groups

In this section we give the definition of a marked group and state a criterion for a family of
such groups to be finite, up to isomorphisms.

Definition 2.1. A marked group (Γ,Σ) is a finitely generated group Γ together with one of
its finite generating sets Σ, that we shall always suppose to be symmetric2.

The group Γ is canonically endowed with the algebraic distance dΣ associated to the
generating set Σ, defined as follows: considering the action of Γ on its Cayley graph G(Γ,Σ),
we denote by |γ|Σ the word metric related to Σ, i.e the minimal number of factors in a
decomposition of γ as a product of elements of Σ, we then define dΣ by

dΣ(γ, g) := | γ−1 g|Σ .

By definition, the algebraic distance dΣ on Γ is the restriction to the vertices of the length
distance on the graph G(Γ,Σ). For the sake of simplicity, we shall use the same notation dΣ

for these two distances, on the group and on the graph.
An isomorphism of marked groups ϕ : (Γ,Σ) → (Γ′,Σ′) is an isomorphism ϕ : Γ → Γ′

which maps Σ onto Σ′. As the generating sets are all supposed to be symmetric, we remark
that ϕ is an isomorphism of marked groups if and only if it is an isometric isomorphism
between (Γ, dΣ) and (Γ′, dΣ′). For the sake of simplicity, we shall often write that two marked
groups are “isometric” instead of writing that they are “isomorphic by an isomorphism of
marked groups”. Hence, by definition, an isometry between (Γ,Σ) and (Γ′,Σ′) will always
be assumed to be an isomorphism of marked groups.

Now let F(Σ) be the free group generated by Σ i.e., if #Σ = k, the symmetric generating
set of F(Σ) has 2k elements and let ϕΣ : F(Σ) → Γ be the canonical epimorphism which
maps Σ ⊂ F(Σ) onto Σ ⊂ Γ. Obviously ϕΣ induces an isomorphism between F(Σ)/KerϕΣ

and Γ, called the canonical isomorphism. The normal subgroup KerϕΣ ⊂ F(Σ) is called the
group of relations between elements of Σ. For any subset R of KerϕΣ such that KerϕΣ is
the smallest normal subgroup of F(Σ) which contains R, we shall say that R is a generating
set of the relations and that 〈Σ|R〉 is a presentation of Γ by generators and relations. Let
us insist on the fact that any relation in KerϕΣ is a product of conjugates of the elements
of R.

Conversely, given a finite set Σ, one can construct the associated free group F(Σ); to
any finite subset R of F(Σ) corresponds a group Γ whose presentation is 〈Σ|R〉. Indeed, let
〈〈R〉〉 be the smallest normal subgroup of F(Σ) containing R, we define Γ as F(Σ)/〈〈R〉〉.
Notation 2.2. For the sake of simplicity, we shall say that a family F of marked groups
has cardinality (up to isometries) smaller than q < +∞ whenever there exist marked groups
(Γ1,Σ1), . . . , (Γq,Σq) in F such that any other marked group (Γ,Σ) ∈ F is isometric to
some of the (Γi,Σi)’s. We shall also say that a family G of groups has cardinality (up to
isomorphisms) smaller than q whenever there exist groups Γ1, . . . ,Γq in G such that any
other group Γ ∈ G is isomorphic to some of the Γi’s.

The following criterion for finiteness is part of the folklore on the subject:

Lemma 2.3. Given integers N, p such that N ≥ 1 and p ≥ 3, let us define q :=
∑N
k=0 2(2k)p .

Then, the family of marked groups (Γ,Σ), such that the group Γ admits a presentation 〈Σ|R〉
by generators and relations with #Σ ≤ N and such that the word-length |r|Σ ≤ p for every
relation r ∈ R, has cardinality (up to isometries) smaller than q < +∞.

Proof. Given a set Σ such that 1 ≤ k := #Σ ≤ N , the number of possible presentations
〈Σ|R〉 of non trivial groups, such that the word-length of every r ∈ R is bounded from above
by p, is smaller than the number of subsets of the closed ball of radius p in F(Σ). It is thus
smaller than 2(2k)p , since the number of elements in this ball is

1 + 2k + 2k(2k − 1) . . .+ 2k(2k − 1)p−1 ≤ (2k)p ,

the proof of this last inequality being left to the reader (Hint: use the hypothesis p ≥ 3 to
solve the case k ≥ 2).

For every presentation 〈Σ′|R′〉 of a marked group (Γ′,Σ′) satisfying the assumptions of
the lemma, i.e such that #Σ′ = #Σ = k ≤ N and |r|Σ′ ≤ p for every r ∈ R′, we choose a
marked group isomorphism ψ : (F(Σ),Σ) → (F (Σ′),Σ′) and define R := ψ−1(R′). Notice

2A subset A of a group Γ is said to be “symmetric” if, for every γ ∈ A, γ−1 ∈ A.
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that every r ∈ R satisfies |r|Σ ≤ p since every element in R′ does. We obtain that 〈〈R′〉〉 =

ψ
(
〈〈R〉〉

)
and ψ induces an isomorphism ψ̃ : F(Σ)/〈〈R〉〉 → F(Σ′)/〈〈R′〉〉. It follows that

ψ̃ is an isomorphism of marked groups between
(
F(Σ)/〈〈R〉〉,Σ

)
and

(
F(Σ′)/〈〈R′〉〉,Σ′

)
.

Hence, for every marked group (Γ′,Σ′) such that #Σ′ = k, there exists some subset R of
the closed ball of radius p in F(Σ) such that (Γ′,Σ′) is isomorphic to

(
F(Σ)/〈〈R〉〉,Σ

)
, where

#Σ = #Σ′ ≤ N and every r ∈ R satisfies |r|Σ ≤ p. Therefore, for every k ≥ 1, the number
of marked groups (Γ′,Σ′) (modulo isomorphisms of marked groups, i.e. up to isometries),
such that #Σ′ = k and admitting a presentation 〈Σ′|R′〉 with relators of length at most p,
is smaller than the number of possible presentations 〈Σ|R〉 as above, and consequently is
less than 2(2k)p . Summing in k ends the proof of the lemma.

Remark 2.4. As a conclusion, if one aims at bounding the cardinality (up to isometries)
of a family F of marked groups, the goal is then clear: one has to prove that, for every
(Γ,Σ) ∈ F , the cardinality of its set of generators Σ is uniformly bounded and to find
a generating set R of its relations such that the word-length of all the elements of R is
uniformly bounded too.

In Subsections 2.1 and 2.2 we present two situations where it is possible to bound the
word-length of all the elements of a generating set of the relations.

2.1 Groups acting on a simply connected metric space

In this subsection, we consider a path-connected metric space (X, d), and a proper action by
isometries of a group Γ, on (X, d), such that the diameter of Γ\X is bounded from above by
D. Choosing x ∈ X and a real number R > 0, we denote by ΣR(x) := {γ ∈ Γ : d(x, γx) ≤ R}
and by ΓR(x) the subgroup of Γ generated by ΣR(x). Let k ≥ 2 be an integer, the set
Σ := ΣkD(x) is a symmetric generating set of Γ by Proposition 7.1, that is: ΓkD(x) = Γ.

When (X, d) is a simply connected length space, each group Γ admits a presentation
〈Σ2D(x)|R〉 such that the word-length of all the elements of R is ≤ 3. This is an immediate
consequence of the following Lemma, which can be found in J. P. Serre’s book ([Ser80] p.
30), citing A. M. Macbeath3, and see M. Gromov ([Gro07]) for a Riemannian version:

Lemma 2.5. Let X be a path-connected topological space and Γ a group acting by homeo-
morphisms on X. Then, for every path-connected open set U ⊂ X such that ∪γ∈Γ γ(U) = X,
the set Σ := {γ ∈ Γ : γ(U) ∩ U 6= ∅} is a symmetric generating set of Γ. If moreover X
is simply connected, then there exists a generating set R of the relations between elements
of Σ such that each element of R can be written as a product s σ t where s, σ, t ∈ Σ. More
precisely R is defined as the set of the s σ t ∈ F(Σ) such that U ∩ ϕΣ(s).U ∩ ϕΣ(sσ).U 6= ∅
and ϕΣ(t) = ϕΣ

(
(sσ)−1

)
.

A consequence is the following

Corollary 2.6. Let N ≥ 1 be an integer, we define q :=
∑N
k=0 2(2k)3 . The family of groups

Γ which admit a proper isometric action on a simply connected length space (X, d) such
that diam(Γ\X) ≤ D and #

(
Σ2D(x)

)
≤ N for at least one x ∈ X, has cardinality (up to

isomorphisms) smaller than q.

Proof of Corollary 2.6. For every ε > 0, we apply Lemma 2.5, choosing U := BX(x,D+ ε).
Indeed, BX(x,D + ε) is path-connected since (X, d) is a length space and, as BX(x,D + ε)
contains a fundamental domain, ∪γ∈Γ γ

(
BX(x,D + ε)

)
= ∪γ∈Γ BX(γ x,D + ε) = X. As

(X, d) is a length space, the condition BX(x,D+ ε)∩ γ
(
BX(x,D+ ε)

)
6= ∅ is equivalent to

d(x, γ x) < 2(D+ε). Lemma 2.5 then proves that Σ := {γ ∈ Γ : γ(U)∩U 6= ∅} = Σ2(D+ε)(x)
is a symmetric generating set of Γ and that there exists a generating set R of the relations
between elements of Σ such that each element of R can be written s σ t where s, σ, t ∈ Σ. We
moreover notice that, if ε is small enough, then Σ2(D+ε)(x) = Σ2D(x); indeed, the properness
of the action implies that Σ2(D+ε)(x), hence Σ2(D+ε)(x) \ Σ2D(x), is finite.

It follows that the hypotheses of Lemma 2.3 are verified by the marked group (Γ,Σ),

where Σ := Σ2D(x), where p = 3 and q :=
∑N
k=0 2(2k)3 , Lemma 2.3 then proves the finiteness,

up to isometries, of the marked groups (Γ,Σ2D(x)), hence the finiteness up to isomorphisms
of the groups Γ.

3[Ser80] also refers to analogous results by Gerstenhaber, Behr and Weil.
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2.2 Bounding hyperbolic groups

The goal of this article is to bound the number of δ-hyperbolic groups satisfying certain
properties (see Theorem 4.2 for a precise statement). The following result is a first step.

Proposition 2.7. For every k ∈ N∗ and δ ≥ 0, let qk :=
∑k
i=0 2(2i)4δ+6

. The set of δ-
hyperbolic marked groups (Γ,Σ) such that #Σ ≤ k has cardinality (up to isometries) less
than qk.

Proof. It is well known (see for example [BH99], chapter III.Γ, proof of Proposition 2.2),
that every δ-hyperbolic marked group (Γ,Σ) admits a presentation 〈Σ|R〉 by generators and
relations such that the word-length of every relation r ∈ R is bounded from above by 4δ+6.
We then apply Lemma 2.3, where we replace N by k and p by 4δ + 6.

Remark 2.8. Consequently, if one aims at bounding the number (up to isometries) of δ-
hyperbolic marked groups (Γ,Σ), belonging to a family F , the goal is then clear: one should
bound from above the cardinality of their generating sets Σ.

3 A lower bound for the asymptotic displacement

In order to prove the main theorem (Theorem 1.4) we shall make sure that there is no
sequence of spaces (X, d), with groups Γ acting properly by isometries on it, satisfying the
assumptions, and with elements γ ∈ Γ whose displacement at some point x ∈ X goes to
zero. Theorem 3.4 below is the key of the proof of Theorem 1.4. It relies on two other results
which we state before.

3.1 Main Tools

It was a revolution when M. Gromov extended the classical Bishop’s inequality to what is now
called the Bishop-Gromov’s inequality and used it to interpret Cheeger’s finiteness Theorem
as a consequence of a compactness result. Extending Bishop-Gromov’s inequality to metric
measure spaces is a challenging question. The following theorem is such an extension to
δ-hyperbolic spaces endowed with a co-compact action of some group of isometries. It is
proved in [BCGS20].

Theorem 3.1. ([BCGS20], Theorem 5.1) Let (X, d) be a δ-hyperbolic metric space, for
every proper action by isometries of a group Γ on (X, d) such that the diameter of Γ\X and
the entropy of (X, d) are respectively bounded from above by D and H, then, for all x ∈ X
and all R > r ≥ 10 (D + δ), the counting measure µΓ

x of the orbit Γx verifies the inequality:

µΓ
x

(
BX
(
x,R

))
µΓ
x

(
BX(x, r)

) < 3

(
R

r

)25/4

e6H(R− 4
5
r) .

Remark 3.2. In Theorem 3.1 the inequality itself only depends on the upper bound of the
entropy. The upper bounds of the hyperbolicity constant δ and of the diameter D enter only
in the computation of the minimal value of the radii of the balls which verify the Bishop-
Gromov’s inequality.

We shall combine Theorem 3.1 with the following result due to E. Breuillard, B. Green
and T. Tao (see [BGT12], Corollary 1.7), where A ·B is the set of products a.b, where a ∈ A
and b ∈ B :

Theorem 3.3. For every K ≥ 1, there exists universal constants ν(K), ν′(K) ∈ N∗ (only
depending on K) with the following properties: if G is a group and if A and B are finite
non-empty subsets of G such that #(A ·B) ≤ K(#A)1/2(#B)1/2 there then exist a subgroup
G0 of G and a finite normal subgroup L of G0 which verify:

(i) A is covered by ν(K) left-translates of G0,

(ii) G0/L is nilpotent and admits a generating set with less than ν′(K) elements.
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3.2 A lower bound for the asymptotic displacement

The notions of asymptotic (resp. minimal) displacement `(γ) (resp. s(γ)) of any hyperbolic
isometry is defined in Definitions 7.20. Still denoting by ν(.) the universal nondecreasing
integer valued function defined in Theorem 3.3, we have the

Theorem 3.4. Given δ,H,D > 0, consider a δ-hyperbolic metric space (X, d) and a proper
action by isometries of a non virtually cyclic group Γ on (X, d) such that the diameter of
Γ\X and the entropy of (X, d) are respectively bounded from above by D and H, then every

torsion-free element γ ∈ Γ∗ verifies `(γ) >
2(5D + δ)

ν
(
35e73H(D+4δ)

)
+ 2

.

Before proving this Theorem, we first give the following definitions and state a lemma.

Definitions 3.5. On a δ-hyperbolic space (X, d), for an hyperbolic isometry γ, we denote
by γ− and γ+ the fixed points of γ (see their definition after Theorem 7.18), by G(γ) the
set of geodesic lines such that c(−∞) = γ− and c(+∞) = γ+ and by M(γ) the subset of X
obtained as the union of these geodesic lines.
We then define Mmin(γ) as the closed non empty4 set of points of X where the function
x→ d(x, γ x) attains its infimum s(γ).

The point (i) of the following lemma is a consequence of Lemma 8.28 of [BCGS20]. We
reproduce it for the sake of completeness.

Lemma 3.6. If `(γ) > 3 δ, then

(i) every point x ∈Mmin(γ) satisfies d
(
x,M(γ)

)
≤ 7

2
δ,

(ii) every point x ∈M(γ) satisfies d
(
x,Mmin(γ)

)
≤ 15

2
δ.

Proof of Lemma 3.6. Let us consider a geodesic c ∈ G(γ), oriented from γ− to γ+, and a
point x ∈ Mmin(γ). For every k ∈ Z, we denote by c(tk) a projection of the point γk x on
the image of the geodesic c. For every k ∈ Z, let c(t′k) be a projection of γk(c(t0)) on the
image of the geodesic c, then Proposition 8.10 (i) of [BCGS20] and the fact that c and γk ◦ c
are two geodesics from γ− to γ+ ensure that d

(
γk c(t0) , c(t′k)

)
≤ 2 δ, and this yields:

d
(
γk x, c(tk)

)
≤ d

(
γk x, c(t′k)

)
≤ d

(
γk x, γk c(t0)

)
+d
(
γk c(t0) , c(t′k)

)
≤ d(x, c)+2δ . (1)

As γ+ (resp. γ−) is the limit of γk x when k → +∞, it follows from (1) that c(tk) goes to
γ+ when k → +∞ and to γ− when k → −∞; this yields

tk → +∞ when k → +∞ , tk → −∞ when k → −∞ hence R = ∪k∈Z[tk, tk+1] . (2)

Let us now prove that

∀ ε > 0 ∃p ∈ N such that d
(
c(tp), c(tp+1)

)
> `(γ)− 1

2
ε . (3)

Indeed, from (1), we deduce that

|d
(
c(t0), c(tk)

)
− d
(
x, γk x

)
| ≤ d

(
x, c(t0)

)
+ d

(
γk x, c(tk)

)
≤ 2 d

(
x, Im(c)

)
+ 2 δ ,

thus that

lim
k→+∞

(
1

k

k−1∑
i=0

d
(
c(ti), c(ti+1)

))
≥ lim
k→+∞

(
1

k
d
(
c(t0), c(tk)

))
= lim
k→+∞

(
1

k
d
(
x, γk x

))
= `(γ) ;

a consequence is that supp∈N d
(
c(tp), c(tp+1)

)
≥ `(γ), and this proves property (3).

When `(γ) > 3 δ, choosing ε small enough, property (3) implies the existence of some
p ∈ N such that d

(
c(tp), c(tp+1)

)
> `(γ) − 1

2
ε > 3 δ, and, for every k ∈ Z, it follows from

this and from Lemma 7.11 that

d (x, γ x) = d
(
γp x, γp+1 x

)
≥ d (γp x, c(tp)) + d

(
c(tp), c(tp+1)

)
+ d

(
c(tp+1), γp+1 x

)
− 6 δ

> d
(
γk x, γk−p c(tp)

)
+ `(γ)− 1

2
ε+d

(
γk x, γk−p−1 c(tp+1)

)
− 6 δ .

4The fact that this set is non empty and, by continuity, closed is proved in [BCGS20], Lemma 8.34 (iv).
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Letting ε → 0 in this inequality and noticing that the geodesics γk−p ◦ c and γk−p−1 ◦ c
belong to G(γ) we deduce that s(γ) = d (x, γ x) ≥ 2 d

(
γk x,M(γ)

)
+ `(γ)− 6 δ, hence that

∀k ∈ Z d
(
γk x,M(γ)

)
≤ 1

2

(
s(γ)− `(γ)

)
+ 3 δ ≤ 7

2
δ (4)

where the last inequality is a consequence of Lemma 7.22. This proves (i) when letting k = 0
in (4).

Since, by Proposition 8.10 (i) of [BCGS20], every point y of M(γ) verifies d(y, c) ≤ 2δ
we get that d

(
γk x, c

)
≤ d
(
γk x,M(γ)

)
+ 2δ. From this and from (4) we deduce that

∀k ∈ Z , d
(
γk x, c

)
≤ 1

2

(
s(γ)− `(γ)

)
+ 5 δ ≤ 11

2
δ . (5)

Applying the convexity Lemma 7.7 (ii) to the two geodesics [γk x, γk+1 x] and [c(tk), c(tk+1],
we obtain that, for every point u = c(t) ∈ [c(tk), c(tk+1], there exists v ∈ [γk x, γk+1 x] :=
γk([x, γ x]) such that

d(c(t), v) ≤ Max
(
d(γk x, c(tk)) , d(γk+1 x, c(tk+1))

)
+ 2δ = . . .

· · · = Max
(
d(γk x, c) , d(γk+1 x, c)

)
+ 2δ ≤ 15

2
δ ,

where the last inequality is a consequence of (5). As, by lemma 7.23, [γk x, γk+1 x] ⊂
Mmin(γ), we get that d

(
c(t),Mmin(γ)

)
≤ 15

2
δ for every t ∈ [tk, tk+1] and every k ∈ Z, and

then that d
(
c(t),Mmin(γ)

)
≤ 15

2
δ for every t ∈ ∪k∈Z[tk, tk+1] = R by (2). Since this is

verified for every geodesic c ∈ G(γ), one has d
(
y,Mmin(γ)

)
≤ 15

2
δ for every point y ∈M(γ),

which ends the proof of (ii).

The main argument in order to prove Theorem 3.4 is the following

Proposition 3.7. Let (X, d) be a δ-hyperbolic metric space, and a group Γ acting on (X, d)
properly by isometries, such that the diameter of Γ\X and the entropy of (X, d) are respec-
tively bounded from above by D and H, then, for every R ≥ 5

2
(D + 4δ), if there exists a

torsion-free element σ of Γ∗ such that `(σ) ≤ 2(2R− 19δ)

ν
(
35e29HR

)
+ 2

, then ΓR(x) is virtually cyclic

at every point x ∈M(σ).

Proof. Given δ,H,D and R ≥ 5
2
(D+ 4δ), let us denote by ν the integer ν

(
35e29HR

)
, for the

sake of simplicity. Let σ be an element of Γ∗ such that 0 < `(σ) ≤ 2(2R−19δ)
ν+2

, choose a point

x ∈ M(σ). We note that M(σ) = M(σk) for every k ∈ Z∗. By Lemma 3.6 (ii), for every
k such that `(σk) > 3δ, there exists a point xk ∈ Mmin(σk) such that d(x, xk) ≤ 15

2
δ. The

triangle inequality and Lemma 7.22 then imply that

d(x, σkx) ≤ d(xk, σ
kxk) + 15δ = s(σk) + 15δ ≤ `(σk) + 16δ = |k| `(σ) + 16δ . (6)

Let us define A = B := Σ4R(x) = {γ ∈ Γ : d(x, γ x) ≤ 4R} and A · B = A · A := {a.b :
a ∈ A and b ∈ B}. We wish to bound #A ·A using Theorem 3.1.

Indeed, for η > 0, Theorem 3.1 implies that

#(A ·B)

(#A)1/2(#B)1/2
=

#(A ·A)

#A
≤
µΓ
x

(
BX(x, 8(R+ η))

)
µΓ
x

(
BX(x, 4R)

) ≤ 3

(
2(R+ η)

R

)25/4

e48H( 3
5
R+η) .

Taking the limit when η goes to zero, we deduce that

#(A ·B)

(#A)1/2(#B)1/2
≤ 3 · 225/4e29HR ≤ 35e29HR .

We may then apply Theorem 3.3 with K = 35e29HR, and get the following consequences:
there exist a virtually nilpotent group G0, and a subset S := {γ1, . . . , γν} of Γ, with ν(K) =
ν elements such that Σ4R(x) ⊂

⋃ν
i=1 γi ·G0. Notice that γi ·G0 and γj ·G0 are either disjoint

or equal.
Since σ is torsion-free and the action is co-compact, the hypothesis (ii) of Lemma 7.26 is

verified, hence σ is an hyperbolic isometry and is contained in a unique maximal virtually
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cyclic subgroup of Γ, denoted by Γσ. For every R′ > 19δ, we deduce from (6) that |k| `(σ) ≤
R′ − 16δ implies d(x, σk x) ≤ R′, which implies that σk ∈ ΣR′(x), this yields

#
{
k : σk ∈ ΣR′(x)

}
≥ #{k : 3δ < |k| `(σ) ≤ R′ − 16δ} > 2

(
R′ − 19δ

`(σ)
− 1

)
. (7)

The hypothesis `(σ) ≤ 2(2R− 19δ)

ν + 2
and (7), where we set R′ = 4R, imply that

#
{
k : σk ∈ Σ4R(x)

}
> 2

(
4R− 19δ

`(σ)
− 1

)
≥ 2

(
4R− 19δ

2(2R− 19δ)
(ν + 2)− 1

)
> ν .

It follows that #
{
k : σk ∈

⋃ν
i=1 γi ·G0 ∩ Σ4R(x)

}
> ν, hence that there exist p, q ∈ Z, with

p 6= q, such that σp, σq ∈ Σ4R(x) and such that σp and σq are two distinct elements of the
same coset γi .G0, for some γi ∈ S. A consequence is that σp−q is a non trivial torsion-
free element of G0. As Γ acts co-compactly on a Gromov-hyperbolic space, the virtually
nilpotent subgroup G0 is virtually cyclic by Proposition 7.24 (iii) and 7.25 (iv). As G0 is a
virtually cyclic subgroup containing σp−q and as Γσ is the maximal virtually cyclic subgroup
containing σp−q, we have G0 ⊂ Γσ.

For an element g of ΣR(x), then g−1σ g lies in the maximal virtually cyclic subgroup
g−1Γσ g. On the other hand, the triangle inequality and the Γ-invariance of the distance
give

σk ∈ Σ2R(x) =⇒ σk ∈ Σ4R(gx) ⇐⇒ g−1σk g ∈ Σ4R(x) .

The hypothesis on R implies that 2R > 19δ then, the above implication and the inequal-
ity (7), where we set R′ = 2R, yield:

#
{
k : g−1σk g ∈ Σ4R(x)

}
≥ #

{
k : σk ∈ Σ2R(x)

}
> 2

(
2R− 19δ

`(σ)
− 1

)
.

From this last inequality and from the hypothesis `(σ) ≤ 2(2R− 19δ)

ν + 2
, it comes that

#
{
k : g−1σk g ∈

ν⋃
i=1

γi ·G0 ∩ Σ4R(x)
}

= #
{
k : g−1σk g ∈ Σ4R(x)

}
> ν .

It follows that there exist k, r ∈ Z (with k 6= r) such that g−1σkg and g−1σrg belong to
Σ4R(x) and are two distinct elements of the same coset γi .G0, for some γi ∈ S. Mimicking
the previous proof, we obtain that g−1σk−rg is a non trivial hyperbolic element of G0 ⊂ Γσ
and, as it is also an hyperbolic element of g−1Γσg, the two maximal virtually cyclic subgroups
Γσ and g−1Γσg, both containing g−1σk−rg, coincide by Lemma 7.26.

As σ and g−1σg are both contained in Γσ and are both hyperbolic, they generate a
virtually cyclic subgroup of Γ and Proposition 7.24 (v) then implies that σ and g generate a
virtually cyclic subgroup of Γ which is thus included in the maximal virtually cyclic subgroup
Γσ containing σ. It follows that every g ∈ ΣR(x) belongs to Γσ, hence that ΓR(x) is included
in Γσ, and is thus virtually cyclic too.

End of the proof of Theorem 3.4. Arguing by contradiction, let us suppose that there exists

a torsion-free element σ of Γ∗ such that `(σ) ≤ 2(5D + δ)

ν
(
35e73H(D+4δ)

)
+ 2

. We then have that

`(σ) ≤ 2(2R− 19δ)

ν
(
35e29HR

)
+ 2

, with R = 5
2
(D + 4δ) and, applying Proposition 3.7, there exists a

point x ∈ X such that ΓR(x) is virtually cyclic for every R < 5
2
(D + 4δ). Hence Γ2D(x) is

virtually cyclic and, as Γ2D(x) = Γ by Proposition 7.1, Γ is virtually cyclic, a contradiction.

4 Finiteness results for groups

This section is devoted to the proof of the main theorem. According to Remark 2.8 we just
need to find a generating set of the δ-hyperbolic groups that we consider whose cardinality is
bounded above in terms of the datas. This is the goal of the next subsection.
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4.1 A bound on the number of generators

Proposition 4.1. Given δ,H,D > 0, there exists a constant N(δ,H,D) with the following
property: let Γ be a non-cyclic torsion-free group acting properly and by isometries on a δ-
hyperbolic space (X, d) verifying Ent(X, d) ≤ H and diam(Γ\X) ≤ D then, for every x ∈ X,
the generating set Σ10(D+δ)(x) of Γ has less than N(δ,H,D) elements.

The precise value of the constant is

N(δ,H,D) := ν
(

35e72H(D+δ)
)
·
(

1 +
20(D + δ)

5D + δ

(
ν
(
35e73H(D+4δ))+ 2

))
, (8)

where ν(·) is the function defined in Theorem 3.3.

Proof of Proposition 4.1. The fact that Σ10(D+δ)(x) is a generating set of Γ is a consequence
of Proposition 7.1. By Remark 7.17, Γ is non virtually cyclic because it is non cyclic.

Let us choose R := 10(D+ δ) and A = B := ΣR(x) = {γ ∈ Γ : d(x, γ x) ≤ R}. For every
η > 0, Theorem 3.1 implies that

#(A ·B)

(#A)1/2(#B)1/2
=

#(A ·A)

#A
≤
µΓ
x

(
BX(x, 2(R+ η))

)
µΓ
x

(
BX(x,R)

) ≤ 3

(
2(R+ η)

R

)25/4

e12H( 3
5
R+η) .

Taking the limit when η goes to zero, we deduce that

#(A ·B)

(#A)1/2(#B)1/2
≤ 3 · 225/4e12H( 3

5
R) ≤ 35e72H(D+δ) .

We then apply Theorem 3.3, with K = 35e72H(D+δ). We deduce that there exist a
virtually nilpotent subgroup G0 and a subset S := {g1, . . . , gN} of Γ, with N ≤ ν(K)
elements, such that ΣR(x) ⊂

⋃N
i=1 gi.G0 and the cosets gi.G0 are disjoint. We now define

S′ := {γ1, . . . , γn} to be the subset of those elements γ ∈ S such that γ .G0 ∩ ΣR(x) 6= ∅.
We then have n ≤ ν(K), and we obtain that ΣR(x) =

⋃n
i=1

(
γi .G0 ∩ ΣR(x)

)
. We may

furthermore suppose that each γi belongs to ΣR(x); indeed, if not we can replace γi by any
element of the non empty set γi .G0 ∩ ΣR(x), that we still denote by γi.
As Γ acts co-compactly and properly on the Gromov-hyperbolic space (X, d), the virtually
nilpotent subgroup G0 is virtually cyclic by Proposition 7.25 (v), and hence it is isomorphic
to (Z,+) by Remark 7.17. Then γi .G0 = {γi σk : k ∈ Z}, where σ is a generator of G0 and
the triangle inequality together with the fact that d(x, γi x) ≤ R imply that

# (γi .G0 ∩ ΣR(x)) ≤ #{k : d(x, γi σ
kx) ≤ R} ≤ #{k : d(x, σkx) ≤ 2R} ≤ #{k : |k|`(σ) ≤ 2R} .

Now, by Theorem 3.4, `(σ) >
2(5D + δ)

ν
(
35e73H(D+4δ)

)
+ 2

since Γ is torsion-free. We deduce

from the previous inequality that

# (γi .G0 ∩ ΣR(x)) ≤ 4R

`(σ)
+ 1 ≤ 1 +

20(D + δ)

5D + δ

(
ν
(
35e73H(D+4δ))+ 2

)
,

and consequently that

#ΣR(x) =

n∑
i=1

# (γi .G0 ∩ ΣR(x)) ≤ ν
(

35e72H(D+δ)
)(

1 +
20(D + δ)

5D + δ

(
ν
(
35e73H(D+4δ))+ 2

))
.

4.2 Finiteness for hyperbolic groups

Given δ,H,D > 0, from the constant N(δ,H,D) given by (8), we define the other constants:

N0(δ,H,D) :=

N(δ,H,D)∑
i=0

2(2i)4δ+6

, N1(δ,H) := N0(δ,H, 1) , (9)

N2(δ,H,D) := N1

(
16

(
δ

D
+ 2

)
, 10HD

)
. (10)

Let us recall that, in a marked group (Γ,Σ), the generating set Σ is supposed to be finite.
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Theorem 4.2. Given δ,H > 0, the set of non cyclic torsion-free δ-hyperbolic marked
groups (Γ,Σ) satisfying Ent(Γ,Σ) ≤ H has cardinality (up to isometries) smaller than
N1 := N1(δ,H).

Notice that, by Remark 7.17, when a Gromov-hyperbolic group Γ is cyclic and torsion-
free, then it is isomorphic to Z.

Proof of Theorem 4.2. Let (Γ,Σ) be a torsion-free and δ-hyperbolic marked group satisfying
Ent(Γ,Σ) ≤ H and let us consider its canonical action on its Cayley graph, which is proper
and isometric with respect to the algebraic distance dΣ and satisfies diam(Γ\X) ≤ 1. We may
apply Proposition 4.1, which implies that the closed dΣ-ball BΓ

(
e, 10(1 + δ)

)
= Σ10(1+δ)(e)

has less that N(δ,H, 1) elements, where N(·, ·, ·) is the universal function defined in (8).
Notice that Σ = BΓ

(
e, 1), which implies that #Σ ≤ N(δ,H, 1).

For the sake of simplicity we shall now write N instead of N(δ,H, 1). Then, applying

Proposition 2.7 with k = N and N1 = N1(δ,H) :=
∑N
i=0 2(2i)4δ+6

, yields Theorem 4.2.

Remark 4.3. In Theorem 4.2, each hypothesis is necessary, this is proved by detailed ex-
amples described in Section 6.1.

4.3 Finiteness for groups acting on a hyperbolic space

The next step is to show the finiteness of torsion-free groups acting isometrically, properly
and cocompactly on a δ-hyperbolic space. The main issue is that, although these groups are
Gromov-hyperbolic, we need to find a generating set for which the hyperbolicity constant of
the corresponding marked groups can be computed. Below are precise statements.

Theorem 4.4. Given δ,H,D > 0, let H(δ,H,D) be the set of torsion-free groups which
admit a proper isometric action on some δ-hyperbolic space (X, d) satisfying Ent(X, d) ≤ H
and diam(Γ\X) ≤ D. Then, H(δ,H,D) has cardinality (up to isomorphisms) bounded above
by the constant N2 := N2(δ,H,D) < +∞ defined in (10).

Consider a proper isometric action of a torsion-free group Γ on a δ-hyperbolic space
(X, d) satisfying Ent(X, d) ≤ H and diam(Γ\X) ≤ D. If Γ is cyclic, then it is isomorphic
to Z because it is torsion-free, hence Z is one element in H(δ,H,D). From now on, we only
have to consider the case where Γ is non cyclic. Let us remark that, since Γ is torsion-free,
the action, being proper, is faithful and without fixed points; indeed, for x ∈ X, the set of
γ’s such that γ x = x is a finite group, thus has torsion.

It comes from [GdlH90] (Théorèmes 3.22 and 5.12 p. 88) that every group acting properly
and cocompactly (by isometries) on a Gromov δ-hyperbolic space is a (finitely generated)
δ′-hyperbolic group. We need to find a generating set that allows to compute explicitly this
number δ′ in terms of δ and of the diameter of Γ\X. Theorem 5.12 of [GdlH90] proves that
the existence of a (λ,C) quasi-isometry from a metric geodesic space Y to a δ-hyperbolic
space X implies that Y is δ′′-hyperbolic. Following step by step the proof of this theorem
allows to make δ′′ explicit in terms of δ, λ and C. The proof and the computations in
[GdlH90] are rather long and involved, mainly because the authors want to take into account
the most general case. Here, in Proposition 4.5, we consider a particular case which suits
our purpose and where the computation of δ′ in terms of δ is simpler.

Proposition 4.5. Let Γ be a group which admits an isometric action without fixed points
on some δ-hyperbolic metric space (X, d) such that the diameter of Γ\X is bounded by D;
then Γ is a δ′-hyperbolic group, where δ′ = 16

(
δ
D

+ 2
)
, when endowed with the algebraic

distance associated to the generating set Σ10D(x) = {γ : d(x, γ x) ≤ 10D}.

Proof of Proposition 4.5. We start by two technical lemmas.

Lemma 4.6. Consider a length space (X, d) and a proper isometric action of a group Γ on
this space such that diam(Γ\X) ≤ D; for any k ∈ N∗ and any x ∈ X, let Σ := Σ(k+2)D(x) =
{γ ∈ Γ : d(x, γ x) ≤ (k+2)D}, then Σ is a generating set of Γ and the corresponding algebraic
distance dΣ verifies

∀ γ, γ′ ∈ Γ kD
(
dΣ(γ, γ′)− 1

)
≤ d(γ x, γ′ x) ≤ (k + 2)DdΣ(γ, γ′) .
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Proof of Lemma 4.6. For every γ ∈ Γ, we define n :=

[
d(x, γ x)

kD

]
+ 1. As (X, d) is a length

space, there exists a continuous path c from x to γ x whose length is < nkD. We choose
points x = x0, x1, . . . , xn = γ x on this path such that d(xi−1, xi) = kD for every integer
1 ≤ i ≤ n−1 and d(xn−1, xn) < kD. This is possible because

∑n
i=1 d(xi−1, xi) ≤ length(c) <

nkD.
For every i ∈ {1, . . . , n}, let γi be an element of Γ such that d(xi, γi x) ≤ D, we choose

γ0 := idX and γn := γ. We define σi := γ−1
i−1 γi; one then has γ = γn = σ1 · · ·σn, where

every σi belongs to Σ, since

d(x, σix) = d(γi−1 x, γi x) ≤ d(γi−1 x, xi−1) + d(xi−1, xi) + d(γi x, xi) ≤ (k + 2)D .

A first consequence is that Σ is a generating set of Γ, a second one is that

dΣ(e, γ)− 1 ≤ n− 1 ≤ d(x, γ x)

kD
.

Let now γ = s1 · · · sp be a decomposition of minimal length of γ as a product of elements
of Σ, the triangle inequality then yields

d(x, γ x) ≤
p∑
i=1

d(x, six) ≤ p(k + 2)D = (k + 2)DdΣ(e, γ) .

We thus have kD
(
dΣ(e, γ) − 1

)
≤ d(x, γ x) ≤ (k + 2)DdΣ(e, γ) and consequently, for

every γ, γ′ ∈ Γ,

kD
(
dΣ(e, γ−1 γ′)− 1

)
≤ d(x, γ−1 γ′ x) ≤ (k + 2)DdΣ(e, γ−1 γ′) .

This ends the proof.

Let us now suppose that the length space (X, d) is geodesic (see Definitions 7.2) and that
the action of Γ has no fixed point. Let us fix a point x ∈ X. For each σ ∈ Σ, we choose
one geodesic [x, σx] from x to σx, in such a way that the geodesic [x, σ−1x] is the image
by σ−1 of [σx, x], oriented in the opposite direction. For each γ ∈ Γ and σ ∈ Σ, we choose
γ([x, σx]) as the geodesic [γ x, γ σx] from γ x to γ σx. On the Cayley graph G(Γ,Σ) of Γ
(associated to the generating set Σ), we consider the distance which is the natural extension
of dΣ such that every edge is isometric to [0, 1]; we still denote this extended distance by dΣ

. We define the map V : G(Γ,Σ) → X by setting V(γ) = γ x and deciding that, for every
σ ∈ Σ, V maps homothetically the edge [γ, γ σ] onto the geodesic γ([x, σx]).

Lemma 4.7. Under the same assumptions as in Lemma 4.6, if moreover (X, d) is geodesic
and if Γ acts without fixed points, for every pair s, t ∈ G(Γ,Σ), one has:
kD dΣ(s, t)− (3k + 2)D ≤ d

(
V(s),V(t)

)
≤ (k + 2)D · dΣ(s, t).

Proof of Lemma 4.7. If s and t are on the same edge, the Lemma is trivially verified. Let
us now suppose that s and t are not on the same edge: the point s (resp. t) lies on an
edge denoted by [γ0, γ1] (resp. by [g0, g1]), where the endpoints of these edges are chosen
in such a way that the shortest path from s to t passes through γ0 and g0. One then has
simultaneously:

dΣ(s, t) = dΣ(s, γ0) + dΣ(γ0, g0) + dΣ(g0, t), dΣ(s, t) ≤ dΣ(s, γ1) + dΣ(γ1, g1) + dΣ(g1, t) .
(11)

As s ∈ [γ0, γ1] and as V is an homothety from the edge [γ0, γ1], satisfying dΣ(γ0, γ1) = 1,
of the Cayley graph, onto the geodesic [γ0 x, γ1 x], with homothety factor d(γ0 x, γ1 x), we
have d

(
γ0 x,V(s)

)
= d(γ0 x, γ1 x) · dΣ(γ0, s) ≤ (k + 2)D · dΣ(γ0, s). One proves similarly

that d
(
g0x,V(t)

)
≤ (k + 2)D · dΣ(g0, t). Lemma 4.6 and the first equation of (11) give:

d
(
V(s),V(t)

)
≤ d
(
γ0 x,V(s)

)
+ d(γ0 x, g0x) + d

(
g0x,V(t)

)
≤ (k + 2)D ·

(
dΣ(s, γ0) + dΣ(γ0, g0) + dΣ(g0, t)

)
= (k + 2)D · dΣ(s, t) ,

this proves the second inequality of Lemma 4.7.
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By addition of the two estimates (11), using the equality dΣ(γ0, s) + dΣ(s, γ1) = 1 and
its analogous for t, we get:

kD dΣ(s, t) ≤ 1

2
kD
(
dΣ(γ0, g0)+dΣ(γ1, g1)+2

)
≤ 1

2

(
d(γ0 x, g0x)+d(γ1 x, g1x)

)
+2kD, (12)

where the last inequality follows from Lemma 4.6. On the other hand, we have

d
(
V(s),V(t)

)
≥ d(γ0 x, g0x)− d

(
V(s), γ0 x

)
− d
(
V(t), g0x

)
,

d
(
V(s),V(t)

)
≥ d(γ1 x, g1x)− d

(
V(s), γ1 x

)
− d
(
V(t), g1x

)
.

and, by addition of these two inequalities, using the estimate

d
(
γ0 x,V(s)

)
+ d
(
V(s), γ1 x

)
= d
(
γ0 x, γ1 x

)
≤ (k + 2)D

(because γ−1
0 γ1 ∈ Σ) and the analogous estimate for d

(
g0x,V(t)

)
+d
(
V(t), g1x

)
, we get:

d
(
V(s),V(t)

)
≥ 1

2

(
d(γ0 x, g0x) + d(γ1 x, g1x)

)
− (k + 2)D ≥ kD dΣ(s, t)− (3k + 2)D ,

where the last inequality follows from (12). This proves the first inequality of Lemma 4.7.

For any two points s, t of the Cayley graph G(Γ,Σ), denote by [s, t] a shortest path
joining s to t in G(Γ,Σ), i.e. a geodesic of G(Γ,Σ) endowed with the accessibility distance
dΣ; then V([s, t]) is a piecewise-geodesic path from V(s) to V(t) in X which satisfies:

Length
(
V([s, t])

)
≤ (k + 2)DdΣ(s, t) ≤ k + 2

k
d
(
V(s),V(t)

)
+

(k + 2)(3k + 2)

k
D ,

where the first inequality follows, by addition of geodesic lengths, from the second inequality
of Lemma 4.7 and where the second inequality comes from the first inequality of Lemma
4.7.

Choosing k := 8 in the sequel then, by Lemma 4.6, Σ := Σ10D(x) is a generating set of
Γ and the last inequality becomes:

Length
(
V([s, t])

)
≤ 5

4
d
(
V(s),V(t)

)
+

65

2
D . (13)

Now, taking also k = 8 in Lemma 4.7, we obtain:

d
(
V(s),V(t)

)
≥ 8DdΣ(s, t)− 26D . (14)

Inequations (13) and (14) respectively prove that the hypotheses (ii) and (i) of Proposition
7.12 are verified with the following values of the parameters: a = 8D, b = 26D, λ = 5

4
and

C = 65
2
D; Proposition 7.12 then implies that the group Γ, endowed with the distance dΣ

associated to the generating set Σ := Σ10D(x) is δ′- hyperbolic with

δ′ =
4

a

(
(6λ2 + 14λ+ 5)δ +

4λ+ 3

6λ+ 2
C + b

)
≤ 16

(
δ

D
+ 2

)
.

Proof of Theorem 4.4. Now, one has, by a classical argument,

Ent
(
Γ,Σ10D(x)

)
≤ 10DEnt(X, d) ≤ 10HD .

We may then apply Theorem 4.2, where we replace δ and H respectively by 16
(
δ
D

+ 2
)

and 10HD, this shows that the set of marked groups
(
Γ,Σ10D(x)

)
has cardinality, up to

isometries, bounded by N2(δ,H,D).

Remark 4.8. In Theorem 4.4, each hypothesis is necessary, this is proved by detailed ex-
amples described in Section 6.2.

5 Finiteness results for spaces

We now derive several consequences of the previous finiteness theorems.
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5.1 Finiteness for δ-hyperbolic spaces up to quasi-isometries

Let us start by recalling some standard definitions.

Definition 5.1. Given λ ≥ 1 and c, a ≥ 0, two metric spaces (X, dX) and (Y, dY ) are
said to be (λ, c, a)-quasi isometric if there exist f : X → Y and h : Y → X satisfying the
following properties for every x, x′ ∈ X and every y, y′ ∈ Y :

• dY
(
f(x), f(x′)

)
≤ λ dX(x, x′) + c and dX

(
h(y), h(y′)

)
≤ λ dY (y, y′) + c,

• dX
(
x , h ◦ f(x)

)
≤ a and dY

(
y , f ◦ h(y)

)
≤ a

Up to trivial changes in the parameters, this definition is equivalent to the other classical
ones.

Definition 5.2. For the sake of simplicity, we shall say that a family F of metric spaces
has cardinality smaller than q < +∞ up to (λ, c, a)-quasi isometries whenever there exist
metric spaces (X1, d1), . . . , (Xq, dq) in F such that any other metric space (X, d) ∈ F is
(λ, c, a)-quasi isometric to some of the (Xi, di)’s.

Definition 5.3. Given δ,H,D > 0 we denote by Mhyp(δ,H,D) the set of δ-hyperbolic
spaces, with entropy ≤ H, which admit the action of a non-cyclic, torsion-free, uniform
lattice Γ ⊂ Isom(X, d) such that the diameter of the quotient Γ\X is ≤ D. For the sake of
simplicity Γ is called a D-lattice for (X, d).

Recalling that N2(δ,H,D) is the constant defined in (10), we have the

Theorem 5.4. The set Mhyp(δ,H,D) has cardinality bounded above by N2(δ,H,D) up to(
5
4
, 25

2
D,D

)
-quasi isometries.

Proof. A triple (X, d, x) will be called a pointed element of Mhyp(δ,H,D) if (X, d) ∈
Mhyp(δ,H,D) and if x is a point ofX. Given any pointed element (X, d, x) ofMhyp(δ,H,D),
a marked group (ΓX ,ΣX) is called a pointed D-lattice of (X, d, x) if ΓX is a D-lattice for
(X, d) and if ΣX is the generating set Σ10D(x) := {γ ∈ ΓX \ {1} : d(x, γ x) ≤ 10D}
of ΓX (see Proposition 7.1). We are thus focusing on the orbit of x under the action of
ΓX ⊂ Isom(X, d). In this case, the action of ΓX on (X, d) is proper (by definition of a lat-
tice) and fixed point-free by Lemma 7.16 (iv). Proposition 4.5 then asserts that the marked
group (ΓX ,ΣX) is δ′-hyperbolic, where δ′ = 16

(
δ
D

+ 2
)
. By a classical argument, we also

have that Ent(ΓX ,ΣX) ≤ 10DEnt(X, d) ≤ 10HD. Theorem 4.2 then ensures that the set of
pointed D-lattices of pointed elements of Mhyp(δ,H,D) has cardinality bounded above by
N2(δ,H,D), up to isometries. More precisely any pointed D-lattice (ΓX ,ΣX) of a pointed
element (X, d, x) of Mhyp(δ,H,D) is isometric to some pointed D-lattice (ΓX0 ,ΣX0) in a
pointed element (X0, d0, x0) taken in a list of cardinality ≤ N2(δ,H,D). Let us denote by %
this isometric isomorphism.
We shall now show that (X, d) is then

(
5
4
, 25

2
D,D

)
-quasi isometric to (X0, d0). Indeed,

for every z ∈ X, let us denote by γz one of the elements of ΓX such that d
(
z, γz .x

)
=

Minγ∈ΓX d(z, γ .x). Similarly, for every y ∈ X0, let us denote by gy one of the elements of
ΓX0 such that d0

(
y, gy.x0

)
= Ming∈ΓX0

d0(y, g.x0). By definition of a D-lattice, we have:

d
(
z, γz .x

)
≤ D and d0

(
y, gy.x0

)
≤ D (15)

Let us define f : X → X0 by f(z) = %(γz).x0 and h : X0 → X by h(y) = %−1(gy).x.
Using twice Lemma 4.6 (with k = 8) and the isometry %, we get:

1

10D
d0

(
%(γz).x0, %(γz′).x0

)
≤ dΣX0

(
%(γz), %(γz′)

)
= dΣX

(
γz, γz′

)
≤ 1

8D
d(γz .x, γz′ .x)+1 .

Plugging in this last inequality the estimate d(γz .x, γz′ .x) ≤ d(z, z′) + 2D, which follows
from (15), we deduce:

d0

(
f(z), f(z′)

)
≤ 5

4
d(z, z′) +

25

2
D and similarly d

(
h(y), h(y′

)
≤ 5

4
d(y, y′) +

25

2
D .

Let us denote f(z) = %(γz).x0 by u for the sake of simplicity. As the action is fixed point-
free, %(γz) is the unique element of ΓX0 where g 7→ d0

(
u, g.x0

)
attains its minimum. A

consequence is that gu = %(γz) and that h ◦ f(z) = h(u) = %−1(gu).x = γz .x. Using (15),
it follows that d

(
z, h ◦ f(z)

)
= d(z, γz .x) ≤ D for every z ∈ X. Analogous arguments

prove that d0

(
y, f ◦ h(y)

)
= d0(y, gy.x0) ≤ D. Hence f and g provide a

(
5
4
, 25

2
D,D

)
-quasi

isometry between (X, d) and (X0, d0).
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5.2 Homotopical finiteness

We recall the following characterisation of the existence of the universal covering:

Proposition 5.5. ([Spa66] Corollaries 2.5.14 and 2.5.15) A connected, locally path-connected
topological space X has a (simply connected) universal covering if and only if it is semi-locally
simply connected (for a definition of this notion, see [Spa66]).

Given a semi-locally simply connected length space (X, d), it is automatically connected

and path-connected, hence it admits a universal covering π : X̃ → X. We moreover can
define the length of a path c : [0, a] → X̃ as the length (w.r.t. the distance d) of the path

π ◦ c : [0, a]→ X in (X, d) and define the pull-back distance d̃ on X̃ as the associated length
distance.

Definitions 5.6. Let M be any family of topological spaces and q a given integer.

• We say that M contains at most q fundamental groups if there exist X1, . . . , Xq ∈M
such that every X ∈M has a fundamental group isomorphic to the fundamental group
of one of the Xi’s.

• We say that M contains at most q homotopy types (resp. at most q topologies) if there
exist X1, . . . , Xq ∈ M such that every X ∈ M is homotopically equivalent (resp. is
homeomorphic) to one of the Xi’s.

In order to define families of metrisable spaces which verify such boundedness conditions,
we previously recall some classical definitions. The first of these notions is the following one,
introduced by K. Borsuk:

Definition 5.7. A metrisable topological space X is said to be an ANR if, for every other
metrisable topological space Y and any embedding ι : X ↪→ Y such that ι(X) is closed in Y ,
there exists a neighbourhood of ι(X) in Y which retracts onto ι(X).

Notice that a metrisable space with finite topological dimension is an ANR if and only
if it is locally contractible (see [Hu65], Theorem V.7.1 ), in particular every locally finite
CW-complex is an ANR.

Definition 5.8. A topological space X is said to be aspherical if πi(M) is trivial for every
i > 1.

Let us now define the families of metric spaces which verify the boundedness properties
introduced in Definitions 5.6

Definitions 5.9. Given δ,H,D > 0, we now consider classes of compact connected topo-
logical spaces X which admit a compatible length distance d with diameter ≤ D such that
the universal cover of (X, d), is δ-hyperbolic and has entropy ≤ H. Notice that the universal
cover of (X, d) exists in the three cases below,

• M(δ,H,D) is the set of such X which are semi-locally simply connected, with torsion-
free fundamental groups.

• M∗anr(δ,H,D) is the set of such X which are aspherical ANR spaces.

• M∗man(δ,H,D) is the set of such X which are closed aspherical topological manifolds
of dimension 6= 4.

The following lemma gives the inclusions between these sets.

Lemma 5.10. For every δ,H,D > 0, one hasM∗man(δ,H,D) ⊂M∗anr(δ,H,D) ⊂M(δ,H,D).

Proof. The inclusion M∗man(δ,H,D) ⊂ M∗anr(δ,H,D) is an immediate consequence of the
fact that every topological manifold is an ANR. Notice that every topological manifold has
a universal cover.

Let us now prove that M∗anr(δ,H,D) ⊂ M(δ,H,D). Every X ∈ M∗anr(δ,H,D), being
an ANR, is locally contractible, thus it is automatically semi-locally simply connected.
Moreover, being a compact ANR, X is homotopically equivalent to a finite CW-complex
X ′ (see [Wes04] at page 119), whose dimension is thus finite. Moreover, as X is aspherical,
X ′ is an aspherical CW-complex. Hence the cohomological dimension (see definition page
185 of [Bro82]) of the fundamental group ΓX′ of X ′ is finite, for it is bounded from above
by the dimension of the aspherical CW-complex X ′ (see [Bro82], chapter VIII, Proposition
2.2, page 185). Using Corollary 2.5, in chapter VIII, page 187 of [Bro82], it comes that ΓX′

is torsion-free. As the fundamental group ΓX of X is isomorphic to the fundamental group
ΓX′ of X ′, it follows that ΓX is torsion-free and this ends the proof.
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Finally let us recall that N = N(δ,H,D) is the constant defined in (8) and define

N ′0 = N ′0(δ,H,D) := 1 +

N∑
k=0

2(2k)3 . (16)

An hyperbolic space being supposed geodesic and proper, we have the

Theorem 5.11. The set M(δ,H,D) contains at most N ′0(δ,H,D) fundamental groups (up
to isomorphisms) and the setM∗anr(δ,H,D) contains at most N ′0(δ,H,D) homotopy classes.

The first assertion of Theorem 5.11 could be obtained as a corollary of Theorem 4.4,
with an upper bound N2(δ,H,D) >> N ′0(δ,H,D) for the number of fundamental groups.
However, as the proof of Theorem 4.4 is rather involved, it is worth giving a simplified and
quantitatively improved version here using the fact that the groups under consideration act
on simply connected spaces.

Proof of Theorem 5.11. For every X ∈ M(δ,H,D), the fundamental group of X being
torsion-free, it is cyclic if and only if it is isomorphic to Z. We thus defineM0 as the set of
those elements ofM(δ,H,D) whose fundamental group is isomorphic to Z and we may now
only consider spaces lying in M(δ,H,D) \ M0, which hence have non cyclic fundamental
groups. For every X ∈M(δ,H,D) \M0, let d be a compatible metric such that (X, d) is a

length space with diameter ≤ D whose universal cover (X̃, d̃) is δ-hyperbolic with entropy
bounded above by H. It is well known that, since X is assumed to be Hausdorff and proper,
then the canonical action of ΓX = π1(X) on X̃ is properly discontinuous (i.e. the set
{g ∈ π1(X) | gU ∩V 6= 0} is finite, for every open neighbourhoods U, V of x, see for instance
[Bou66], Chapter III, section 4.4, Proposition 7) and isometric. Applying Proposition 4.1 to

this action, we obtain that, for every x̃ ∈ X̃, Σ10(D+δ)(x̃) has less that N(δ,H,D) elements,
where N(·, ·, ·) is the function defined in (8). This yields #

(
Σ2D(x̃)

)
≤ N(δ,H,D). Now

Corollary 2.6 proves that there exists a finite list Γ1, . . . ,ΓN′0−1 of groups such that the
fundamental group ΓX of X is isomorphic to some of the Γi’s. This proves the first assertion
of Theorem 5.11.

Now, asM∗anr(δ,H,D) ⊂M(δ,H,D) by Lemma 5.10, we can apply this first assertion of
Theorem 5.11 which proves that we can choose X1, . . . , XN′0 ∈M

∗
anr(δ,H,D) such that, for

every X ∈ M∗anr(δ,H,D), there exists i ≤ N ′0 and an isomorphism % from the fundamental
group of X to that of Xi. As Xi is aspherical and connected, there exists a continuous map
f : X → Xi such that the induced map between the fundamental groups of X and Xi is
f∗ = %. Moreover, as both spaces X and Xi are path-connected and aspherical, f induces
an isomorphism πk(X) → πk(Xi) for every k ∈ N. Hence X and Xi are homotopically
equivalent by the ANR version of Whitehead’s Theorem (see [BD80], Theorem 2.5).

5.3 Topological finiteness

In order to deduce topological finiteness from homotopical finiteness, we recall the

Definition 5.12. A closed topological manifold M is said to be topologically rigid if every
homotopy equivalence with another closed topological manifold N is homotopic to a homeo-
morphism.

Deciding in which cases a closed aspherical manifold is topologically rigid is known as
“solving the Borel conjecture” in these cases.

We recall that N ′0 = N ′0(δ,H,D) is given in Theorem 5.11. We now define

N ′′0 (δ,H,D) := 2N ′0(δ,H,D) · 21+e400HD and N ′′′0 (δ,H,D) := 2N ′′0 (δ,H,D).

The main result of this subsection is the following corollary of Theorem 5.11.

Theorem 5.13. Given δ, H, D, the set M∗man(δ,H,D) contains at most N ′′′0 (δ,H,D)
topologies.

In dimension n 6= 4, the finiteness “up to homeomorphisms” given by Theorems 5.13 and
5.14 can be promoted to finiteness “up to diffeomorphisms” by classical results of Kirby-
Siebenmann [Ki-Si] and of Hirsch-Mazur [Hi-Ma] on PL-structures and their smoothings.
Moreover, finiteness up to homeomorphisms can be proved also in dimension 4, with the
extra assumption that the manifolds under consideration are nonpositively curved (or more
generally if their universal covering is a Busemann space); we will not pursue this matter
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here, see the answer to Question 3.54 in [BG21], and [BCGS21] for improvements and
complete proofs.

We shall first prove a version of Theorem 5.13, in dimension 3, where we drop the
asphericity assumption.

Indeed, let Mn
man(δ,H,D) be the set of closed topological n-manifolds X, with torsion-

free fundamental group, which admit a compatible length distance d with diameter ≤ D
such that the universal cover of (X, d) is δ-hyperbolic and has entropy ≤ H. We then get
the following result:

Theorem 5.14. Given δ,H,D > 0, the set M3
man(δ,H,D) contains at most N ′′0 (δ,H,D)

topologies.

Proof of Theorem 5.14. By Theorem 5.11, there exist groups Γ1, · · · ,Γp where p ≤ N ′0(δ,H,D)
such that the fundamental group of each X ∈ M3

man(δ,H,D) is isomorphic to one of the
Γi’s. We decompose each Γi as a free product Γi = Z ∗ · · · ∗ Z ∗ Γi(1) ∗ · · ·Γi(qi), with
each Γi(k) 6' Z and not further decomposable. Let now X be any closed 3-manifold whose
fundamental group is isomorphic to Γi. By the proof of Kneser’s Conjecture, to the above
decomposition of Γi in free products corresponds a decomposition of X in a connected sum
Z(1)# . . .#Z(hi)#X(1)# . . .#X(qi) where, to each factor of Γi which is isomorphic to Z,
corresponds a prime factor Z(h) of X which is a S2-bundle over S1, and to each Γi(k)
corresponds an irreducible factor X(k) of X (see [Hem76], Lemma 3.13). The torsion-free
assumption guarantees that none of the factors X(k) is a lens space.

As a consequence of the Sphere Theorem (see Theorem 4.3 of [Hem76] and [Luc09]), an
irreducible factor is aspherical if and only if its fundamental group is infinite and without
elements of order 2. As our manifolds have torsion-free fundamental group, the irreducible
factorsX(k) are then aspherical; hence, by the solution of the Borel conjecture in dimension 3
(see Remark after Theorem 2.1.2 in [AFW15], and [Hei69]), the factors X(k) are determined
up to homeomorphisms by the groups Γi(k). On the other hand the factors Z(h) are either
homeomorphic to S2 × S1, or to the non-orientable twisted S2-bundle over S1 denoted
by S2×̃S1. In the orientable case, the homeomorphism class of X is determined by the
orientations of its prime factors, and each Z(h) = S2 × S1. Therefore the number of
orientable manifolds in M3

man(δ,H,D) whose fundamental group is isomorphic to Γi is
bounded above by 2ni , where ni is the number of its prime factors. In the non-orientable
case, the homeomorphism class of X only depends on the homeomorphism type of its prime
factors. However each Z(h) is homeomorphic to S2×S1 or to S2×̃S1, and again the number
of non-orientable manifolds inM3

man(δ,H,D) whose fundamental group is isomorphic to Γi
is bounded above by 2ni . It follows that the number of topologies inM3

man(δ,H,D) is finite,
bounded by

2 · (2n1 + . . .+ 2np) < +∞ . (17)

We recall that the rank of a group is the minimal cardinality of a generating set, note that
ni ≤ rank(Γi). This, and the fact that a free product acts 0-acylindrically on its Bass-Serre
tree, allows to apply Inequality (2) of [CS17], which implies that

ni ≤ rank(Γi) ≤ 1 + e200 Ent(Γi,Σ2D(x)) ≤ 1 + e400HD

where, in the last two inequalities, we used Proposition 7.1. Plugging this estimate in (17)
ends the proof.

End of the proof of Theorem 5.13. In dimension 2, the theorem follows from Theorem 5.11
and from the classification of compact surfaces. In dimension 3, it follows from Theorem
5.14. Therefore, we can suppose that all the manifolds under consideration have dimension
≥ 5. As the fundamental group Γ of any manifoldX ∈M∗man(δ,H,D) is Gromov-hyperbolic,
because it acts cocompactly on the Gromov-hyperbolic universal cover of X, we can apply
the following theorem of A. Bartels and W. Lück ([BL12], Theorem A): every closed as-
pherical topological manifold of dimension ≥ 5, whose fundamental group is hyperbolic, is
topologically rigid. This implies that all the manifolds X ∈ M∗man(δ,H,D) of dimension
≥ 5 are topologically rigid. Now, as M∗man(δ,H,D) ⊂M∗anr(δ,H,D) (see Lemma 5.10), by
the second assertion of Theorem 5.11, we can choose X1, . . . , XN′0 ∈ M

∗
man(δ,H,D) such

that every X ∈ M∗man(δ,H,D) is homotopically equivalent to one of these Xi. As X is
topologically rigid, in dimension ≥ 5, this proves that X is homeomorphic to Xi.
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Remark 5.15. About the asphericity assumption in Theorems 5.11 and 5.13.
By the classification of closed surfaces and by Theorem 5.14, this assumption can be dropped
for surfaces and 3-manifolds whose fundamental group is torsion-free. In contrast, aspheric-
ity is necessary in dimension n ≥ 4: indeed, for given values of δ, H, D, in each dimen-
sion n ≥ 4, Example 3.70 of [BG21] exhibits infinitely many non-aspherical, 2 by 2 non-
homotopically equivalent manifolds belonging to Mn

man(δ,H,D).

6 Examples and counter-examples

In this section we show that all the hypotheses of Theorems 4.2 and 4.4 are necessary. For
this purpose we consider each hypothesis, one by one, and exhibit appropriate examples
and/or counter-examples.

6.1 On the hypotheses of Theorem 4.2

We start the justification for the assumptions of Theorem 4.2.

6.1.1 The torsion-free assumption

It is a necessary assumption. Indeed, counter-examples are constructed as follows: we first
choose a sequence (Gi, Si)i∈N of finite, 2 by 2 non isomorphic, marked groups whose Cayley
graphs all have diameters bounded from above by the same value5 D. We now choose a non
cyclic torsion-free δ0-hyperbolic marked group (Γ0,Σ0) satisfying Ent(Γ0,Σ0) ≤ H0. For
each i ∈ N∗, consider the direct product of marked groups (Γi,Σi), where Γi := Γ0 × Gi
and Σi := Σ0 × {1} ∪ {1} × Si. As dΣ0(1, γ) ≤ dΣi

(
(1, 1), (γ, g)

)
≤ dΣ0(1, γ) + D, we have

Ent(Γi, dΣi) = Ent(Γ0, dΣ0) ≤ H0 and (Γi, dΣi) is δ-hyperbolic, with δ := 2(δ0 + D). This
yields an infinite sequence of groups Γi verifying the hypotheses of Theorem 4.2, except
the “torsion-free” assumption. Hence, if one forgets the hypothesis “torsion-free”, there are
infinitely many classes of groups (modulo isomorphisms) which verify the other hypotheses
of Theorem 4.2.

6.1.2 The non-cyclicity

Let us consider the sequence of marked groups (Z, Sn)n∈N∗ , where the generating set is
Sn := {−n, . . . ,−1, 1, . . . , n}. They form an infinite family of marked groups, two by two
non isometric, though they satisfy all the hypotheses of Theorem 4.2, except that they all
are cyclic.

It is obvious that Z is torsion-free and satisfies, ∀n ∈ N∗, Ent(Z, Sn) = 0 because the
word distances verify dSn ≥ 1

n
dS1 . Moreover, each group (Z, Sn) is δ-hyperbolic with δ = 12

as follow from the following computations.
For every pair of points x, y ∈ Z, considered as vertices of the Cayley graphs of both

(Z, S1) and of (Z, Sn), one has

dS1(x, y) ≤ ndSn(x, y) < dS1(x, y) + n . (18)

Let us now consider any quadruple of points x, y, u, v of the Cayley graph of (Z, Sn), choose
x′ (resp. y′) as the first (resp. the last) vertex crossed by a geodesic of this graph joining x
and y and choose u′ (resp. v′) as the first (resp. the last) vertex crossed by a geodesic of
this graph joining u and v. Using first the second inequality (18), then Lemma 7.6 (iii) and
the fact that the Cayley graph associated to (Z, S1) is isometric to the real line (hence is
0-hyperbolic), we obtain

dSn(x, y) + dSn(u, v) ≤ dSn(x′, y′) + dSn(u′, v′) + 4 ≤ 1

n

(
dS1(x′, y′) + dS1(u′, v′))

)
+ 6

≤ 1

n
Max

(
dS1(x′, u′) + dS1(y′, v′) , dS1(x′, v′) + dS1(u′, y′)

)
+ 6 .

Using the first inequality (18), it follows that

dSn(x, y) + dSn(u, v) ≤ Max
(
dSn(x′, u′) + dSn(y′, v′) , dSn(x′, v′) + dSn(u′, y′)

)
+ 6

5For example, every finite group admits a generating set such that the corresponding Cayley graph has diameter
1: it is sufficient to take the whole group as a generating set.
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≤ Max
(
dSn(x, u) + dSn(y, v) , dSn(x, v) + dSn(u, y)

)
+ 6 .

From this last inequality, using Propositions 1.1.6 (p.3) and 1.3.1 (p.7) of [CDP90], we deduce
that (Z, Sn) is 12-hyperbolic for every n ∈ N∗ (we recall that (Z, S1) is 0-hyperbolic).

6.1.3 Boundedness of the entropy

Indeed, let (Fi,Si) be the free group with i generators, endowed with its canonical symmetric
generating set Si (with #Si = 2i). It is torsion-free, non cyclic (when i ∈ N \ {0, 1}), 0-
hyperbolic (thus 1-hyperbolic), but one has Ent(Fi,Si) = ln(2i− 1). Hence, when i runs in
N \ {0, 1}, we get an infinite family of marked groups, 2 by 2 non isomorphic, which verify
all the hypotheses of Theorem 4.2 except the boundedness of the entropy.

6.1.4 Boundedness of the hyperbolicity constant

Gromov-hyperbolicity is obviously a necessary condition. Indeed, for every integer n ≥ 2,
Zn, endowed with its canonical generating set, is torsion-free, non cyclic, with zero en-
tropy, but it is not Gromov-hyperbolic. It is an infinite sequence, even up to isometries, in
contradiction with the conclusion of Theorem 4.2.

Even if the marked groups under consideration verify all the other hypotheses of Theorem
4.2, and if they are only supposed to be Gromov-hyperbolic, without a uniform bound of
their hyperbolicity constants, one does not even have a finite number of marked groups up
to isometry.

We shall construct below infinitely many generating sets of Z ∗ Z such that the corre-
sponding marked groups are two by two non isometric though they all verify the hypothe-
ses of Theorem 4.2, except for the fact that the hypothesis “δ-hyperbolic” is replaced by
“Gromov-hyperbolic”. Given any pair p, q of integers which are mutually prime, we define
S0 := {−1, 1} and Sp,q := {p, q,−p,−q}. The Bachet-Bézout theorem proves that Sp,q is a
generating set for Z. A consequence is that a generating set for the free product Z ∗ Z is
given by the disjoint union S0

⊔
Sp,q of the subset S0 ' S0 ∗{0} of the first factor and of the

subset Sp,q ' {0}∗Sp,q of the second factor of Z∗Z. We then have the following properties:

• The marked groups (Z ∗ Z, S0

⊔
Sp,q) are all Gromov-hyperbolic (with unbounded

hyperbolicity constants) and verify all the other hypotheses of Theorem 4.2.

Indeed, Z ∗ Z is non cyclic and torsion-free and the entropy of (Z ∗ Z, S0

⊔
Sp,q) is

bounded from above by the entropy of the free group with 6 generators, i.e. by ln(11).
Moreover, as Z∗Z, endowed with the canonical generating set S0

⊔
S0 is the free group

with 2 generators, it is 0-hyperbolic, thus (Z ∗ Z, S0

⊔
Sp,q), being quasi-isometric to

(Z ∗ Z, S0

⊔
S0), is Gromov-hyperbolic.

• Furthermore, if Sp,q 6= Sp′,q′ , then the two marked groups (Z ∗ Z, S0

⊔
Sp,q) and

(Z ∗ Z, S0

⊔
Sp′,q′) are not isometric, and this implies that the cardinality (up to

isometries) of the family of marked groups {(Z ∗Z, S0

⊔
Sp,q)}(p,q)∈Z2 is infinite. The

proof of this fact goes by contradiction. Let us suppose that there exists an isometry
φ : (Z∗Z, S0

⊔
Sp,q)→ (Z∗Z, S0

⊔
Sp′,q′). We then denote by Z1 and Z2 respectively

the first and second factors Z ∗ {0} and {0} ∗ Z in the free product Z ∗ Z, and by
G1 and G2 the images of Z1 and Z2 by φ. We also denote by F the image by φ of
{0} ∗ Sp,q, it is a generating set for the cyclic group G2, because φ is an isomorphism.
Now F ⊂ S0

⊔
Sp′,q′ , since φ is an isometry; then F is included in {0} ∗ Sp′,q′ ; if not

F would intersect both sets S0 ∗ {0} and {0} ∗ Sp′,q′ , hence it would contain a pair
{a, b} of non trivial elements such that a ∈ Z1 and b ∈ Z2. Consequently the cyclic
subgroup G2 would contain the free group generated by {a, b}: a contradiction. This
implies that F = {0} ∗ Sp′,q′ .
Since φ maps {0}∗Sp,q onto {0}∗Sp′,q′ and Z2 onto Z2, its restriction ϕ to the second
factor is an isometry between the marked groups (Z, Sp,q) and (Z, Sp′,q′). This implies
that ϕ(1) = ±1, thus that ϕ = ± id and that Sp′,q′ = ϕ(Sp,q) = Sp,q.

Along the way, Theorem 4.2 also proves that the hyperbolicity constant must go to infinity
when p and q go to infinity.

6.2 On the hypotheses of Theorem 4.4

The necessity of the torsion-free assumption and of the boundedness of the entropy are already
clear from the counterexamples given in 6.1.1 and in 6.1.3
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6.2.1 Boundedness of the diameter

Let us consider again the example 6.1.3, where we replace the metric dSi of the Cayley graph
Xi by di = i · dSi . From previously, we know that (Xi, di) is 0-hyperbolic and verifies

Ent(Xi, di) =
1

i
Ent(Fi, Si) =

ln(2i− 1)

i
≤ 1 .

Hence, we get a family (Fi)i∈N∗ of torsion-free groups, whose action on (Xi, di) verifies all
the hypotheses of Theorem 4.4 except the boundedness of the diameter. The conclusion of
Theorem 4.4 is not verified since the Fi,’s are infinitely many and 2 by 2 non isomorphic.

6.2.2 Boundedness of the hyperbolicity constant

Let H(H,D) be the set of torsion-free groups which admit a proper isometric action on
some Gromov-hyperbolic space (X, d) with entropy bounded by H and diam(Γ\X) ≤ D.
The groups belonging to H(H,D) verify all the hypotheses of Theorem 4.4, except that the
spaces on which they act are only supposed to be Gromov-hyperbolic, without any uniform
bound on their hyperbolicity constants, the conclusion of Theorem 4.4 is then not valid
for H(H,D), i.e. H(H,D) contains infinitely many 2 by 2 non isomorphic groups. More
precisely, we construct a sequence of 2 by 2 non isomorphic groups belonging to the set
H(H,D) (but not to H(δ,H,D)) as follows. These groups are the fundamental groups of
closed hyperbolic 3-manifolds obtained by a sequence of Dehn surgeries from a given finite
volume hyperbolic manifold with one cusp. We will consider their actions on their Cayley
graphs associated to an appropriate choice of a generating set.

We consider a non compact 3-dimensional hyperbolic manifold (X, g) with finite volume
and, for the sake of simplicity, only one cusp, denoted by C. Let π : (H3, can) → (X, g)
be the universal covering of (X, g). We shall first consider the fundamental group Γ of
(X, g) as the group of automorphisms of this covering. Provided that C is chosen deep
enough in X, we choose one connected component K of π−1(C). It is an horoball whose
boundary ∂K is an horosphere, hence K is diffeomorphic to ∂K×R+. Any γ ∈ Γ exchanges
the connected components of π−1(C) and, denoting by P the parabolic subgroup of those
elements γ verifying γ(K) = K, it is classical that the cusp C is the quotient of K by P
and that the cusp torus T = ∂C is the quotient of ∂K by P .

Let us now fix a basis {α, β} of H1(P\∂K,Z) = H1(T,Z) ' Z2, we then have P ' Z2.
Given any pair of mutually prime integers (a, b), one defines the Dehn filling with slope
(a, b) as the closed manifold Xa,b constructed as follows: we glue a solid torus T0 = D2×S1

to X \ C, identifying their boundaries via a diffeomorphism φ : ∂T0 = ∂D2 × S1 → T
which maps ∂D2 onto a simple6 closed curve c(a, b) which represents the homology class
aα+bβ and the factor S1 onto a representative c(a′, b′) of any homology class a′α+b′β such
that ab′ − ba′ = ±1. It is now classical that the differentiable structure of Xa,b does not
depend on the choice of (a′, b′) (see for example [Mar16], Lemma 10.1.2), nor on the choice
of the representative c(a, b) of the homology class aα+ bβ (see [Mar16], Lemma 10.1.2 and
Proposition 6.3.16). By the Van Kampen theorem, the fundamental group of Xa,b (denoted
by Γa,b) is isomorphic to Γ/ � c(a, b) �= Γa,b, where � c(a, b) � is the smallest normal
subgroup of Γ which contains the homotopy class of the loop c(a, b) (see for instance [Mar16],
Proposition 10.1.3.). Let us now fix a generating set S of Γ, define N ′1 := #(S). Denoting
by pa,b the quotient map Γ → Γa,b, then Sa,b := pa,b(S) is a generating set for Γa,b which
verifies #(Sa,b) ≤ N ′1.

We shall now consider the proper, isometric, canonical action of the group Γa,b on its
Cayley graph Ga,b associated to the generating set Sa,b and endowed with the word distance
da,b := dSa,b . It is trivial that diam

(
Γa,b\Ga,b

)
≤ 1. On the one hand, the entropy of

(Ga,b, da,b) is bounded from above by the entropy of the free group generated by Sa,b, hence
Ent(Ga,b, da,b) ≤ ln(2n− 1), where n = #Sa,b.

On the other hand, it is known, since the works of W. Thurston ([Thu97]), that there ex-
ists a finite subset E of Z2 (the set of exceptional slopes) such that Xa,b admits an hyperbolic
Riemannian metric, denoted by ga,b, for every coprime couple (a, b) /∈ E. Let us denote by I
the infinite set of all coprime (a, b) ∈ Z2\E, we shall suppose in the sequel that (a, b) ∈ I. As
Γa,b is the fundamental group of the hyperbolic manifold (Xa,b, ga,b), acting co-compactly on
its universal cover, the group Γa,b is torsion-free and Gromov-hyperbolic, hence its Cayley

6On the torus T2, endowed with the flat metric such that {α, β} is orthonormal, the proof of the existence of
a simple geodesic representative of the homology class aα+ bβ is immediate when a, b are mutually prime.
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graph (Ga,b, da,b) is Gromov-hyperbolic too. This proves that Γa,b ∈ H(H,D).
Now, a result of T. Jorgensen, revisited by W. Thurston ([Thu97]) (for a complete explana-
tion, see [NZ85], particularly equation (1)) implies that

∀(a, b) ∈ I, Vol((Xa,b, ga,b)) < Vol(X, g) and lim
(a,b)→∞

Vol(Xa,b, ga,b) = Vol(X, g) .

Hence, there exists a sequence (ai, bi)i∈N of elements of I, going to infinity, such that

∀i ∈ N, Vol(Xai,bi , gai,bi) < Vol(Xai+1,bi+1 , gai+1,bi+1) .

It follows that, for i 6= j, (Xai,bi , gai,bi) and (Xaj ,bj , gaj ,bj ) are not isometric thus, by
Mostow’s rigidity Theorem, that their fundamental groups Γai,bi and Γaj ,bj are not isomor-
phic. This proves that (Γai,bi)i∈N is a sequence of two by two non isomorphic elements of
H(H,D).

7 Appendices

7.1 Geodesic and length spaces

A result by M. Gromov ([Gro07] Proposition 3.22, whose proof, written for Riemannian
manifolds, is still valid on path-connected metric spaces is the following

Proposition 7.1. For every group Γ which admits a proper isometric action on a path-
connected metric space (X, d) such that diam(Γ\X) ≤ D, and for every x ∈ X, the subset
Σ2D(x) := {σ ∈ Γ∗ : d(x, σx) ≤ 2D} is a symmetric generating set of Γ.

Proof. By the path-connectedness, for every γ ∈ Γ and every ε > 0, there exists a finite set
{y0, y1, . . . , yN} ⊂ X verifying y0 = x, yN = γ x and d(yi−1, yi) < ε for every i ∈ {1, . . . , N}.
Let us choose γ0, γ1, . . . , γN ∈ Γ such that γ0 = e, γN = γ and d(yi, γi x) ≤ D, we then
get γ = σ1 · . . . · σN , where σi = γ−1

i−1 · γi ∈ Σ2D+ε(x) and the finiteness of Σ3D(x) proves
that Σ2D+ε(x) = Σ2D(x) when ε is sufficiently small. This proves that Σ2D(x) = Σ2D+ε(x)
is a symmetric generating set of Γ, the properness of the action implying the finiteness of
Σ2D(x).

The following definitions are classical (see for example [BH99] Définitions I.1.3 p. 4):

Definitions 7.2. In any metric space (X, d)

• a (normal) geodesic is a map c from some interval I ⊂ R to X such that, for every
t, t′ ∈ I d(c(t), c(t′)) = |t− t′|,

• when I is a closed interval (resp. ]−∞,+∞[) the geodesic is called a geodesic segment
(resp. a geodesic line), the image of a geodesic segment c with origin x and endpoint
y is often denoted by [x, y] (though this does not suppose that this geodesic segment is
unique),

• a (normal) local geodesic is a map c from some interval I ⊂ R to X such that, for
every t ∈ I, there exists ε > 0 such that d(c(t′), c(t′′)) = |t′ − t′′| for every t′, t′′ ∈
]t− ε, t+ ε[∩I,

• a metric space (X, d) is geodesic if any two points can be joined by at least one geodesic.

Definition 7.3. Given a geodesic segment [x0, x1], the natural parametrization of this
segment is the map t 7→ xt from [0, 1] to [x0, x1], defined by d(x0, xt) = t d(x0, x1).

7.2 About Gromov-hyperbolic spaces

7.2.1 Definitions

Given three nonnegative numbers α, β, γ, we define the tripod T := T (α, β, γ) as the metric
simplicial tree with 3 vertices x′, y′, z′ of valence 1 (the endpoints), one vertex c of va-
lence 3 (the branching point), and 3 edges [cx′], [cy′], [cz′] of respective lengths α, β, γ (the
branches). We denote by dT (u, v) the distance on this tree between two points u, v ∈ T , i.e.
the minimal length of a path contained in T and joining u to v.

For the sake of simplicity, we only consider geodesic metric spaces (see Definition in
section 7.1). In such a space a geodesic triangle ∆ = [x, y, z] is the union of three geodesics
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[x, y], [y, z] and [z, x]. Given three points x, y, z in a geodesic metric space, there exists at
least one geodesic triangle ∆ = [x, y, z] whose sides have respective lengths d(x, y), d(y, z)
and d(x, z).

Lemma 7.4. To any geodesic triangle ∆ corresponds a metric tripod (T∆, dT ) and a surjec-
tive map f∆ : ∆→ T∆ (called the approximation of ∆ by a tripod) such that, in restriction
to each side of ∆, f∆ is an isometry,

Indeed, if ∆ = [x, y, z], T∆ is constructed as the tripod T (α, β, γ), where (by the triangle
inequality) (α, β, γ) is the unique element of [0,+∞[3 such that d(x, y) = α+β, d(x, z) = α+
γ and d(y, z) = β+γ. This choice of (α, β, γ) implies the existence of the map f∆ : ∆→ T∆

as asserted in Lemma 7.4.

Definitions 7.5. A geodesic triangle ∆ of (X, d) is said to be δ-thin if, for every u ∈ T
and every v, w ∈ f−1

∆ ({u}), one has d(v, w) ≤ δ.
In this text, a metric space is said to be δ-hyperbolic if it is geodesic, proper, and if all

its geodesic triangles are δ-thin.

The following results are well known (and often taken as definitions of δ-hyperbolicity);
their proof may be found (with variable constants, depending on the choice of the definition)
in any classical source (see for example [GdlH90], [CDP90], [BH99]).

Lemma 7.6. For every δ-hyperbolic space (X, d), one has:

(i) (Tripod Approximation) For every geodesic triangle ∆, its approximation f∆ : ∆ →
(T∆, dT ) by a tripod verifies

d(u, v)− δ ≤ dT
(
f∆(u), f∆(v)

)
≤ d(u, v).

(ii) (Rips Lemma) Every geodesic triangle ∆ = [x, y, z] is δ-slim, i.e. for every point
u ∈ [y, z], one has: d(u, [x, y]∪ [x, z]) ≤ δ. Reciprocally, every δ-slim triangle is 4δ-thin
(see [GdlH90], Proposition 2.21 and proof at page 43).

(iii) ( Quadrangle Lemma) For every four points x, y, z, w ∈ X, one has

d(x, z) + d(y, w) ≤ Max
(
d(x, y) + d(z, w) ; d(x,w) + d(y, z)

)
+ 2 δ .

The proof of the properties (i) and (ii) of the following Lemma is given in [GdlH90],
Proposition 2.5 p. 45.

Lemma 7.7. (Quasi-Convexity) In every δ-hyperbolic space (X, d), let [x0, x1] and [y0, y1]
be two geodesic segments endowed with their natural parametrizations t 7→ xt and t 7→ yt
(see Definition 7.3) , then

(i) if x0 = y0, then d(xt, yt) ≤ t d(x1, y1) + δ;

(ii) in the general case d(xt, yt) ≤ (1− t)d(x0, y0) + t d(x1, y1) + 2 δ.

7.2.2 Projections and almost equality in the triangle inequality

The proofs of the following results can be found (for example) in [BCGS20], section 8.2.

Definition 7.8. For every closed subset F of a metric space (X, d) and every point x ∈ X,
a projection of x on F is a (any) point x̄ ∈ F such that d(x, x̄) = d(x, F ) := infz∈F d(x, z).

When it exists, a projection of x on F is generally not unique. By continuity of the
distance there always exists a projection of x on F when F is compact, and when F is
closed if the metric space is proper. However, the assumption proper space is not necessary
when F is the image of a geodesic, as proved by the following

Lemma 7.9. (Projection on Geodesic) If c is a geodesic line (or ray, or segment) in a
metric space (X, d), every point x ∈ X admits a projection on the image Im(c) of c and the
map x 7→ d(x, Im(c)) is Lipschitz with Lipschitz constant 1.

Lemma 7.10. (almost equality in the triangle inequality) In a δ-hyperbolic space (X, d),
for a geodesic c of (X, d) and a point y on it and for every point x ∈ X, any of its projections
x̄ on the geodesic c verifies d(x, y) ≥ d(x, x̄) + d(x̄, y)− 2 δ.

Lemma 7.11. In a δ-hyperbolic space (X, d), for every geodesic (segment or line) c, for
any pair of points x, y ∈ X, if x̄ and ȳ are projections of x and y (respectively) on c, then
one has:

d(x̄, ȳ) > 3 δ =⇒ d(x, y) ≥ d(x, ȳ) + d(ȳ, y)− 4δ ≥ d(x, x̄) + d(x̄, ȳ) + d(ȳ, y)− 6 δ .
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Proof. By Lemma 7.6 (iii), we have:

d(x, ȳ) + d(y, x̄) ≤ Max
(
d(x, y) + d(x̄, ȳ) ; d(x̄, x) + d(ȳ, y)

)
+ 2δ . (19)

From Lemma 7.10, we get

d(x, ȳ) + d(y, x̄) ≥ d(x, x̄) + 2 d(x̄, ȳ) + d(y, ȳ)− 4δ > d(x, x̄) + d(y, ȳ) + 2δ .

Plugging this estimate in (19) gives d(x, ȳ) + d(y, x̄) ≤ d(x, y) + d(x̄, ȳ) + 2δ and, using
Lemma 7.10, that

d(x, x̄) + 2 d(x̄, ȳ) + d(y, ȳ)− 4δ ≤ d(x, ȳ) + d(y, ȳ) + d(x̄, ȳ)− 2δ ≤ d(x, y) + d(x̄, ȳ) + 2δ ,

and this proves Lemma 7.11.

For more informations about Gromov-hyperbolic metric spaces see the original publica-
tion [Gro87] and [GdlH90], [CDP90] and [BH99].

7.3 Quasi-isometry and hyperbolicity

We are going to prove a weak version of Theorem 5.12 of [GdlH90], which is sufficient for
our purposes and whose proof, under our stronger hypotheses, is easier to follow and to
make explicit. In Theorem 5.12 of [GdlH90] it is proved that the existence of a (λ,C)
quasi-isometry from a metric geodesic space Y to a δ-hyperbolic space X implies that Y is
δ′′-hyperbolic. The value of δ′′ becomes explicit if one follows the computations contained
in pages 82 to 88 of [GdlH90]. Our weak version of Theorem 5.12 of [GdlH90] is the

Proposition 7.12. Let (Y, dY ) and (X, dX) be two proper and geodesic metric spaces, if
there exists a continuous map f : Y → X satisfying the following properties

(i) for every y, y′ ∈ Y , dX
(
f(y), f(y′)

)
≥ a · dY (y, y′)− b,

(ii) for every pair of points y, y′ ∈ Y and every geodesic [y, y′] connecting these two points,
f([y, y′]) is rectifiable and Length

(
f([y, y′])

)
≤ λ · dY

(
f(y), f(y′)

)
+ C

then, if (X, dX) is δ- hyperbolic, (Y, dY ) is δ′′- hyperbolic with

δ′′ =
4

a

(
(6λ2 + 14λ+ 5)δ +

4λ+ 3

6λ+ 2
C + b

)
≤ 4

a

(
(6λ2 + 14λ+ 5)δ + C + b

)
.

Theorem 5.12 of [GdlH90] is stronger than this proposition, because it only assumes
that f is a quasi-isometry, i.e. that the path f([y, y′]) is a quasi-geodesic which may be
discontinuous.

The first step in the proof of Proposition 7.12 is Proposition 1.6 of Chapter III of [BH99],
which may be written

Lemma 7.13. In a δ-hyperbolic metric space (X, d), for every continuous rectifiable path
c : [0, 1]→ X, every point x of any geodesic segment joining c(0) to c(1) verifies

d(x, Im(c)) ≤ δ
(

1 + log+
2

(
length(c)

δ

))
, where log+

2 (x) := max
(

log2(x), 0
)
.

The second step in the proof of Proposition 7.12 is the following result, which can be
found in [BH99] (chapter III, Théorème 1.7), we only explicit here the constants C1 and C2

and simplify the proof7.

Proposition 7.14. In a δ-hyperbolic metric space (X, d), given λ ≥ 1 and C ≥ 0, for every
continuous rectifiable path c : [0, a]→ X which verifies Length

(
c([t, t′])

)
≤ λ · d

(
c(t), c(t′)

)
+

C, for every [t, t′] ⊂ [0, a],

(i) every geodesic segment [c(0), c(a)] lies in the C1-neighbourhood of the image of c, where

C1 := (6λ+ 2)δ +
C

6λ+ 2

(ii) the image of c lies in the C2–neighbourhood of the geodesic segment [c(0), c(a)], where
C2 = C2(λ,C, δ) := (1 + λ)C1 + C

2
.

7Indeed, in [BH99] (chapter III), the proof of Theorem 1.7 is longer because the authors have to take into
account the case of non continuous quasi-geodesics, this is the aim of their Lemma 1.11 (p. 403) to prove that
the solution in the non continuous case is a consequence of the solution in the continuous case.
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End of the proof of Proposition 7.12. Let ∆ := [y0, y1, y2] be a geodesic triangle in (Y, dY ),
i.e. the union of geodesics [y0, y1], [y1, y2] and [y2, y0] of (Y, dY ). Let u be any point of the
side [y1, y2]. By the hypothesis (ii), the δ-hyperbolicity of (X, d) and Proposition 7.14 (ii),
one has dX

(
f(u), [f(y1), f(y2)]

)
< C2, for any choice of the geodesic segment [f(y1), f(y2)]

joining the endpoints of the path f([y1, y2]). We now choose a point v ∈ [f(y1), f(y2)] such
that dX

(
f(u), v

)
< C2. Let us choose geodesics [f(y0), f(y1)] and [f(y0), f(y2)] in order to

complete the geodesic triangle ∆′ := [f(y0), f(y1), f(y2)]; as the triangle ∆′ is δ-slim (see
Lemma 7.6 (iii)), there exists v′ ∈ [f(y0), f(y1)] ∪ [f(y0), f(y2)] such that dX(v, v′) ≤ δ.

By what we just have proved, one has either v′ ∈ [f(y0), f(y1)], and then, by the hypoth-
esis (ii), the δ-hyperbolicity of (X, d) and Proposition 7.14 (i), one has dX

(
v′ , f([y0, y1])

)
<

C1, or v′ ∈ [f(y0), f(y2)], and then, by the same argument, one has dX
(
v′ , f([y0, y2])

)
< C1;

in both cases, there exists u′ ∈ [y0, y1] ∪ [y0, y2] such that dX
(
v′, f(u′)

)
< C1. Hence, for

every u ∈ [y1, y2] there exists u′ ∈ [y0, y1]∪ [y0, y2] such that dX
(
f(u), f(u′)

)
< C1 +C2 + δ,

thus (using the hypothesis (i)) such that dY (u, u′) <
1

a
(C1 +C2 + b+ δ) . This proves that

the triangle ∆ is δ′′

4
-slim (in the sense of Lemma 7.6 (ii)) where δ′′ =

4

a
(C1 + C2 + b+ δ),

thus (using Lemma 7.6 (ii)) that it is δ′′-thin (in the sense of Definitions 7.5). We conclude
that (Y, dY ) is δ′′-hyperbolic.

7.4 About actions of groups

7.4.1 General properties

Let Γ be a group acting by isometries on a metric space. We recall that Γ is said to be
discrete if it is a discrete subgroup of the isometry group of (X, d) for the compact-open
topology. For every R > 0, and every x ∈ X, we defined ΣR(x) := {γ ∈ Γ : γ x ∈ BX(x,R)}.

The following Proposition is proved (for example) in [BCGS20] Proposition 8.12:

Proposition 7.15. On a metric space (X, d) every faithful and proper action by isometries
is discrete. Conversely, if (X, d) is a proper metric space, then every faithful and discrete
action by isometries is proper.

Lemma 7.16. Every proper action by isometries of a group Γ on a metric space (X, d)
verifies:

(i) the quotient space Γ\X is a metric space when endowed with the quotient-distance d̄
defined by d̄(Γ · x,Γ · y) := infγ∈Γ d(x, γ y),

(ii) if (X, d) is a proper space and if (Γ\X, d̄) has finite diameter, then Γ\X is compact,

(iii) if Γ acts without fixed points, then the action is faithful and discrete.

(iv) if Γ is torsion-free, then the action is faithful, discrete and without fixed points

For a proof of this result see (for example) [BCGS20], Lemma 8.13.
The following remark is well known, for a proof, see for instance [BCGS20], Remark 8.14

Remark 7.17. Every non trivial, torsion-free, virtually cyclic group is isomorphic to (Z,+).

7.4.2 Properties of actions on Gromov-hyperbolic spaces

Let (X, d) be any δ-hyperbolic space, denote by ∂X its ideal boundary8. It is well known
that every isometry γ of (X, d) can be extended as a continuous mapping from X ∪ ∂X to
X ∪ ∂X (see for example Proposition 11.2.1 p. 134 of [CDP90]). An isometry γ of (X, d) is
said to be

• elliptic if, for at least one x ∈ X (thus for every x ∈ X), the sequence k 7→ γkx is
bounded,

• parabolic if, for at least one x ∈ X (thus for every x ∈ X), the sequence k 7→ γkx
admits one and only one accumulation point, denoted by γ∞, located on the ideal
boundary ∂X (γ∞ does not depend on the choice of x),

• hyperbolic if, for at least one x ∈ X (thus for every x ∈ X), the map k → γkx is a
quasi-isometry from Z to X.

8For two definitions of the ideal boundary and of its topology, see Definition 7.1 p. 117 of [GdlH90] and chapter
2 of [CDP90], these two definitions being equivalent by Proposition 7.4 p. 120 of [GdlH90].
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The following Theorem is classical.

Theorem 7.18. (see [CDP90], Théorème 9.2.1 p. 98) On a δ-hyperbolic space, every isom-
etry is either elliptic, or parabolic, or hyperbolic.

If γ is an hyperbolic (resp. parabolic) isometry, it is a classical result [see for example
[CDP90], Proposition 10.6.6 p. 118, (resp. [GdlH90], Théorème 17 in Chapter 8)] that the
action of γ on X ∪ ∂X admits exactly two (resp. one) fixed points, which are the limits γ+

and γ− of γpx and γ−px when p→ +∞ (resp. which is the limit γ∞ of γkx when k → ±∞).
The following remark is also well known; its proof is trivial (and left to the reader) if one

notices that, by Lemma 7.15, every discrete subgroup of the group Isom(X, d) of isometries
of (X, d) acts properly on (X, d).

Remark 7.19. On a δ-hyperbolic space (X, d), if Γ is a discrete subgroup of Isom(X, d),
then

(i) an element of Γ∗ is elliptic if and only if it has torsion; if Γ is torsion-free, every
γ ∈ Γ∗ is either hyperbolic or parabolic;

(ii) for every γ ∈ Γ∗ and every k ∈ Z∗ such that γk 6= idX , γ is hyperbolic (resp. parabolic,
resp. elliptic) if and only if γk is hyperbolic (resp. parabolic, resp. elliptic); moreover,
in the cases where γ is hyperbolic or parabolic, then γk and γ have the same set of fixed
points.

Definitions 7.20. To each non trivial isometry γ of a δ-hyperbolic space (X, d), one asso-
ciates:

• its asymptotic displacement `(γ), i.e. the limit9 (when k → +∞) of 1
k
d(x, γk x),

• its minimal displacement s(γ) := infx∈X d(x, γ x).

Notice that `(γk) = |k| `(γ) for every k ∈ Z.
The following Lemma is classical (see for instance [CDP90], Proposition 10.6.3, p. 118):

Lemma 7.21. On a δ-hyperbolic space (X, d), an isometry γ is hyperbolic if and only if
`(γ) > 0.

The following lemma is proved in [BCGS20], Lemma 8.23 (i):

Lemma 7.22. A non trivial isometry γ of a δ-hyperbolic space (X, d) verifies `(γ) ≤ s(γ) ≤
`(γ) + δ,

The following lemma is proved in [BCGS20], Lemma 8.27:

Lemma 7.23. For every hyperbolic isometry γ, for every x ∈ Mmin(γ) and any choice of
a geodesic segment [x, γ x] from x to γ x, the union ∪p∈Z γp ([x, γ x]) is a γ-invariant local
geodesic included in Mmin(γ).

7.5 Elementary subgroups

In this section we consider discrete subgroups G of the isometry group of a Gromov-
hyperbolic space X. A classification of these groups has been sketched by M. Gromov
[Gro87] (see also [DSU17], [CCMT15]), in terms of their limit set LG (i.e. the set of ac-
cumulation points of any orbit of the action of G on X); he classified these groups in the
following classes10:

• elliptic groups (also said bounded): finite groups all of whose orbits are bounded;

• parabolic (or, according to the original terminology, horocyclic) groups: infinite groups
G such that #(LG) = 1. A parabolic group thus only contains parabolic or elliptic
elements11.

• lineal groups: infinite groups G such that #(LG) = 2. A lineal group only contains
hyperbolic or elliptic elements (for a proof, see for instance [Cou16] section 3.4.2).

9By sub-additivity, this limit exists and, by the triangle inequality, it does not depend on the point x, see for
example [CDP90], Proposition 10.6.1 page 118).

10Here we only consider groups acting discretely; excluding for instance focal groups whose action is not discrete.
11Indeed, if G contains an hyperbolic isometry g, its fixed points g+ and g− are accumulation points of the

sequence
(
gk x

)
k∈Z, they thus belong to LG.
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• groups of general type: groups G such that #(LG) ≥ 3 (in this case LG is infinite);
this is equivalent to say that G contains (at least) two hyperbolic elements whose fixed
points sets are disjoint12.

In the three first cases, the action of G on X is said to be elementary. By extension, an
hyperbolic group will be said to be elementary if the action of G (by left translations) on
G (endowed with the algebraic word-metric) is elementary; as, for this action, LG coincides
with the ideal boundary ∂G, an hyperbolic group is elementary iff #(∂G) ≤ 2.
Notice that, if the action of G is elementary, the set Fix(g) of fixed points of any non elliptic
element g ∈ G coincides13 with the limit set LG of G.

In the three following Propositions, we shall recall basic properties of elementary groups,
most of them being immediate corollaries of the above classification. For proofs or references,
see for instance [BCGS20]

Proposition 7.24. (Elementary actions) Let G be a discrete subgroup of the isometry group
of any Gromov-hyperbolic space X, then:

(i) if γ1, γ2 ∈ G are two hyperbolic elements with a common fixed point, then they have
the same pair of fixed points, i.e. {γ−1 , γ

+
1 } = {γ−2 , γ

+
2 };

(ii) if γ ∈ G is an hyperbolic isometry, the subgroup Gγ =
{
g ∈ G : g

(
{γ−, γ+}

)
= {γ−, γ+}

}
is the maximal subgroup among all virtually cyclic subgroups of G which contain γ; if
moreover G is torsion-free, then Gγ =

{
g ∈ G : g(γ−) = γ− and g(γ+) = γ+

}
;

(iii) if G est amenable (e.g. virtually nilpotent), then the action of G is elementary;

(iv) if G is virtually nilpotent, its non elliptic elements are either all parabolic or all hy-
perbolic and all have the same set of fixed points.

(v) if γ ∈ G is an hyperbolic isometry, for every g ∈ G, the subgroup generated by γ and
g γ g−1 is virtually cyclic if and only if the subgroup generated by γ and g is virtually
cyclic;

(vi) if a and b are hyperbolic isometries and if 〈a, b〉 is not virtually cyclic then, for every
p, q ∈ Z∗, ap and bq are hyperbolic and 〈ap, bq〉 is not virtually cyclic;

(vii) if γ ∈ G is an hyperbolic isometry, any subset S of G such that 〈γ, g〉 is virtually cyclic
for every g ∈ S generates a virtually cyclic group.

In the co-compact case, one has the following classical results:

Proposition 7.25 (see [GdlH90], [CDP90], [BH99]). Let G be a discrete group of isometries
acting co-compactly on a Gromov-hyperbolic space X, then

(i) G is a finitely generated Gromov-hyperbolic group;

(ii) G does not contain any parabolic isometry;

(iii) G is elementary if and only if the space X is elementary;

(iv) G is elementary if and only if it is virtually cyclic;

(v) every virtually nilpotent subgroup of G is virtually cyclic.

A corollary of these results is the following elementary lemma:

Lemma 7.26. For every group Γ and every torsion-free γ ∈ Γ, if one of the two following
properties is satisfied:

(i) there exists a proper isometric action of Γ on some Gromov-hyperbolic space (X, dX)
such that γ acts as a non-parabolic isometry, or

(ii) there exists a proper co-compact isometric action of Γ on some Gromov-hyperbolic
space (X, dX) ,

then γ is contained in a unique maximal virtually cyclic subgroup of Γ and acts on (X, d) as
an hyperbolic isometry.

12If G contains two hyperbolic elements g1 and g2 whose sets of fixed points Fix(g1) and Fix(g2) are disjoint,
a trivial consequence is that #(LG) > 2, since #(LG) contains Fix(g1) ∪ Fix(g2) the converse implication is
proved for instance in [Cou16], Lemma 3.7. The fact that, if #(LG) > 2, then LG is infinite and uncountable is
announced in [Gro87], section 3.5, Theorem p.194; one can find a complete proof in [DSU17], Proposition 6.2.14.

13Indeed, for any parabolic (resp. lineal) group G, for every parabolic (resp. hyperbolic) isometry g ∈ G,
the fixed points of g are the accumulation points of the sequence

(
gk x

)
k∈Z, thus Fix(g) ⊂ LG; furthermore, as

#
(
Fix(g)

)
= #(LG), then Fix(g) = LG.
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Proof. A proof of this Lemma can be found in [BCGS20] if the hypothesis (i) is assumed.
Now, by Proposition 7.25 (ii), property (ii) implies that none of the elements of Γ acts on
(X, dX) as a parabolic isometry, hence property (ii) implies property (i), which ends the
proof.
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