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1 Introduction

Sometimes, we need a function so deeply that we have to go out and search for it. How do we
find it? Sometimes, we have clues: a function which manipulates list is probably in the List
module . . . but not always! Sometimes, all we have is its functionality: doing the sum of a list
of integers. Unfortunately, search by functionality is difficult.

Rittri [1] proposed an approximation: use the type of the function as a key to search through
libraries: in our case, int list -> int. To avoid stumbling over details such as the order of
arguments, he proposed to use matching modulo type isomorphism – a notion broader than
syntactic equality.

Unfortunately, algorithms for unification modulo type isomorphisms are extremely costly.
Doing an exhaustive search over the whole ML ecosystem was possible at the time (with a stan-
dard library of 294 functions), but is certainly not possible anymore for the OCaml ecosystem,
with 3259 opam packages, each containing several hundreds or thousands of functions.

We present Dowsing , a tool to search functions in OCaml libraries by using their types as
key. Here is an example of the tool in action for the example above:

> search db "int list -> int"
int list -> int:
BatList.sum
Thread.wait_signal

'a list -> int:
List.length

'a -> int:
Hashtbl.hash

'a list -> 'a:
List.hd
BatList.max
BatList.min
BatList.last
BatList.first

Dowsing is a work in progress, but is already capable of executing queries over a full opam
switch containing big libraries such as Core or Batteries, in a few milliseconds. Such a feat is
achieved through novel indexing techniques that allow to index types in way that is compatible
with unification modulo type isomorphisms.
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In this article, we give a quick introduction to our tool and hint at some details of our
indexing techniques. The talk will present both practical and formal aspects of this work in
greater details, along with future plans.

2 Unification modulo type isomorphism

Type isomorphisms and their use in function search have been widely studied in the 90’s [1, 2,
3]. The first requirement is that the order of function parameters do not matter. This notion
of equivalence modulo isomorphism is much more flexible than syntactic equality.

Function retrieval systems using type isomorphisms have been implemented in Lazy ML
[1] and Coq [4]. Following [1], we consider linear isomorphisms expressing associativity and
commutativity of *, neutrality of unit and curryfication:

(’a * ’b) * ’c ∼ ’a * (’b * ’c)

’a * ’b ∼ ’b * ’a

unit * ’a ∼ ’a

(’a * ’b) -> ’c ∼ ’a -> (’b -> ’c)

An additional requirement is the ability to retrieve more general types that admit an instance
equivalent to the query : in our example 'a list -> 'a is such an instance.

Such an optimized unification algorithm has already been proposed [6]. Still, we can easily
trigger its exponential behavior on highly polymorphic functions from Batteries and Core.

3 Smart indexing and smart queries

While the fundamental complexity of unification seems like a difficult obstacle to overcome,
our aim is not to unify quickly, but to search quickly. We can thus benefit from indexing
and pre-computing databases. In particular, there has been important progress regarding term
indexing [7, 5] that allow to speed up such search procedures in numerous context and varied
theories.

We propose a two steps approach:
� We once pre-process the ecosystem into a database indexed by a set of features. The

function identifiers are stored in a trie according to their feature vectors [7] that encode
structural information on their types.

� The query phase itself uses these feature vectors to reduce the number of actual unification
calls.

Features are designed such that if the feature coming from the request is not compatible with
a candidate feature in the database, then we know for sure that they cannot be unified. The
challenge is then to design features that are both sufficiently discriminating and compatible
with our notion of unification. The development of new features can be informed by metrics
regarding the actual time spent in the search procedure. If a lot of time is spent doing unification
over highly polymorphic functions, features must discriminate those the most.

We have so far identified three such features. One example is the feature by head, which
classify the head of a function into categories. For instance, the head of 'a list -> 'a is
“variable”, while the head of 'a array -> 'a array is the “constructor” array. based on this
classification, we can quickly decide if two types might unify.
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4 Conclusion

We have presented a function retrieval system for OCaml. By combining unification modulo
isomorphism and smart indexing techniques, it can efficiently manage a large database. In
particular, features allow to overcome in practice the efficiency limitations imposed by rich
unification, as informed by metrics collected on concrete queries.
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