
HAL Id: hal-03355377
https://hal.science/hal-03355377v1

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling pattern matching to in-place modifications
Paul Iannetta, Laure Gonnord, Gabriel Radanne

To cite this version:
Paul Iannetta, Laure Gonnord, Gabriel Radanne. Compiling pattern matching to in-place modi-
fications. GPCE 2021 - 20th International Conference on Generative Programming: Concepts &
Experiences, Oct 2021, Chicago & Virtual, United States. �10.1145/3486609.3487204�. �hal-03355377�

https://hal.science/hal-03355377v1
https://hal.archives-ouvertes.fr


Compiling pattern matching to in-place modifications∗
(author long version)

Gabriel Radanne
Inria, EnsL, UCBL, CNRS, LIP

France
gabriel.radanne@inria.fr

Paul Iannetta
Univ Lyon, EnsL, UCBL, CNRS, Inria,

LIP
France

paul.iannetta@ens-lyon.fr

Laure Gonnord
University of Grenoble Alpes,
Grenoble INP, LCIS & LIP

France
laure.gonnord@lcis.grenoble-inp.fr

Abstract
Algebraic data types and pattern matching are popular tools
to build programs manipulating complex datastructures in
a safe yet efficient manner. On top of its safety advantages,
compilation techniques can turn patternmatching into highly
efficient deconstruction code for immutable use cases.

Conversely, high-performance datastructures and languages
prefer to leverage (controlled) mutations to maximize time
and memory efficiency. Algebraic data types provide a natu-
ral framework to efficiently describe in-place transformations
as rewrite rules. Such representation could take advantage of
parallelism opportunities that appear in tree-like structures.
We present early steps towards a new technique to com-

pile pattern matching as parallel in-place modifications of
the underlying memory representation. Towards this goal,
we combine the usual language approach which is common
in pattern-matching compilation with tools from the polyhe-
dral model, which is commonly used in high-performance
code generation to output efficient C code. We present our
formalism, along with a prototype implementation.
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1 Introduction
Algebraic datatypes are used for a wide variety of purposes
such as representing context (render trees, ray tracing, ab-
stract syntax trees), or tree-based datastructures (AVL [1],
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red-black or B-Trees [10]). These structures are widely used
in immutable functional languages, but also in high-perfor-
mance contexts which generally rely on in-place mutations
to modify the corresponding term.

Traditional techniques to optimize pattern matching [15]
relies on immutability and don’t leverage any parallelism.
More recent work [9, 12, 13, 18, 20] optimize terms used as
container, notably by improving the parallelism and data-
locality of traversals. However, these work severely limits
the possibility of changing the structure of terms by only
allowing mutations of values embedded in the structure.

The memory representation of terms is also a critical topic
in obtaining good performances. This has been tackled both
generally by providing optimized layouts for algebraic data-
types [20], and on particular cases through cache oblivious
algorithm for high performance datastructures [4]. These
representations are seldom used in functional programming
due to their incompatibility with the high degree of sharing
present in immutable datastructures [16]. However, they
offer good data-locality which modern processors can take
advantage of, notably through cache-oblivious and cache-
aware algorithms, and lend themselves better to parallelism.

Many such representations exist (see. [5] for an overview).
In the rest of this article, we assume that each subterm in
a term is laid out in a set of layers addressable in constant
time from the root of the subterm. Layers are considered
indivisible and can be copied in a cache-friendly manner.
This corresponds, for instance, to the Breadth-First Layout
where elements of a term are laid out in an array in their
breadth-first ordering. In this context, terms are a subpart of
a support, which spans the whole underlying array.

Approach and contributions In this work, we attempt
to optimize structural transformations on terms of algebraic
data-types by exhibiting parallelism and pipelining. We de-
scribe a new approach to compile pattern matching as in-
place modifications on flattened terms of algebraic data-
types. For this purpose, we define Rew, a core language to
rewrite algebraic terms (Section 2). We first use a language-
based approach to derive dependencies between operations
on subterms (Section 3.1). We then rely on optimizing compi-
lation techniques to schedule these operations (Section 3.2)
and emit the appropriate sequential code (Section 4). We
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also developed a prototype implementation, which we use
to illustrate our examples.

2 From Pattern Matching to Memory Moves
We now describe the Rew core language. Rew allows to de-
scribe Algebraic Data Types and simple rewriting rules on
them. For conciseness, we omit the type system and dynamic
semantic for this simple system (see [11, 15] for exhaustive
descriptions of rich pattern languages) and focus on the
compilation. We start with our running example before pro-
ceeding with the definition of the language.

Example 1 (Simple example of Rew program). As a run-

ning example, we consider the code below which defines the

algebraic data type for binary trees containing integers and a

transformation pull-up which pulls the right subtree up, also

represented graphically. A Rew function is similar to explicitly

typed functions using pattern-matching, but defines a rewrite.
Here, expressions only allow constructors and variables.

type tree = Empty | Node (tree,int,tree)

pull_up (t : tree) : tree = rewrite t {

| Node(a,i,Node(b,j,c)) -> Node(b,j,c)

| Empty -> Empty

}

A
A

pull up A

2.1 The Rew language
In the rest of this article, we use the following notations.
We denote types 𝑡 , expressions 𝑒 and patterns 𝑝 . We use
overbars for syntactic lists (for instance 𝑝 is a list of patterns)
and overarrows for vectors (for instance ®𝑘). The syntax of
Rew is given in Definition 1 and demonstrated in Example 1.

Types are either built-in or user-defined. We write Scalar
the set of built-in scalar types such as integers, floating-
points numbers, etc. For simplicity, we only consider non-
parametric types, but our setting easily extends to paramet-
ric types, as long as the code is monomorphic (or special-
ized before-hand). A type declaration is composed of several
constructors (written Constr ∈ Constructors), each with
several parameters. Expressions (resp. patterns) contain vari-
ables (resp. bindings) and constructors. A clause is a pair of
a pattern and an expression. A program is a list of clauses.

Typing for such a language is a simple subset of typing in
much richer languages [11]. As a single restriction, we con-
sider that variables can never be re-defined. In the rest of this
article, we assume the existence of an operator Type(𝑐, 𝑥)
which gives the type of 𝑥 in the context of a clause 𝑐 (i.e.,
including bindings induced by the pattern part).

Definition 1 (Syntax of the rewrite language Rew).

𝑡 ::= Constr(𝑡0, . . . , 𝑡𝑛) | 𝑡0 ∈ Scalar (Types)
𝑝 ::= 𝑥 ∈ Vars | Constr(𝑝0, . . . , 𝑝𝑛) (Patterns)
𝑒 ::= 𝑥 ∈ Vars | Constr(𝑒0, . . . , 𝑒𝑛) (Expressions)
𝑐 ::= 𝑝 → 𝑒 (Clauses)

In the rest of this article, we compile each clause indepen-
dently. As such, we now only consider a single clause 𝑝 → 𝑒 ,
for which we will compute a set of elementary operations

(copies) that should be performed. We propose an approach
in two steps, described in the rest of the Section. We also
derive a notion of dependance relation that captures a partial
ordering for these operations (a read of a term should be
performed before its use).

2.2 Characterizing coarse grain memory moves
The coarse-grain decomposition captures the structural mem-
ory moves to be performed: for instance, in the clause Node(
a,i,Node(b,j,c)) -> Node(b,j,c), we need to move the
subterm corresponding to the variable 𝑏 to the first field of
the constructor Node. For this purpose, Definition 2 presents
the notions of location of a subterm in a term and of moves

of a subterm from a location to another. A field is composed
of an index and a type, written . 𝑖/𝑡 . A subterm location is
a (potentially empty) list of fields, or an external location
(for instance, an argument of the surrounding function). A
subterm move is a variable binder annotated with its source
and destination locations.

Definition 2 (Subterm locations and movements).

f ::= . 𝑖/𝑡 𝑖 ∈ N (Field)
ℓ ::= f | External (Location)
𝑚 ::= L𝑥 : 𝑡 | ℓ → ℓ ′ M (Move)

We can compute themoves of a clause 𝑝 → 𝑒 through a tra-
versal, as defined by theMoves function below. We assume
the existence of the helper functions Vars, which gather all
the variables of an expression or a pattern, and Locs(𝑎, 𝑥)
which obtain all the positions at which 𝑥 appears in the pat-
tern or expression 𝑎. As additional restriction, a variable only
appears once in a pattern (but potentially several times in
an expression).

Moves(𝑝 → 𝑒, 𝑡) =
L𝑥 : 𝑡𝑥 | ℓ𝑝 → ℓ𝑒 M

�������������

𝑥 ∈ Vars(𝑝) ∪ Vars(𝑒)
𝑡𝑥 = Type(𝑝 → 𝑒, 𝑥)

ℓ𝑝 =

{Locs(𝑝, 𝑥) if 𝑥 ∈ Vars(𝑝)
∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℓ𝑒 ∈
{Locs(𝑒, 𝑥) if 𝑥 ∈ Vars(𝑒)
∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒





Compiling pattern matching to in-place modifications Author Version - GPCE ’21, October 17–18, 2021, (Virtual)

Example 2. On the first clause in Example 1, we obtain the

following moves:

L 𝑗 : 𝑖𝑛𝑡 | . 2/𝑡𝑟𝑒𝑒 . 1/𝑖𝑛𝑡 → . 1/𝑖𝑛𝑡 M L 𝑖 : 𝑖𝑛𝑡 | . 1/𝑖𝑛𝑡 → ∅ M
L𝑏 : 𝑡𝑟𝑒𝑒 | . 2/𝑡𝑟𝑒𝑒 . 0/𝑡𝑟𝑒𝑒 → . 0/𝑡𝑟𝑒𝑒 M L𝑎 : 𝑡𝑟𝑒𝑒 | . 0/𝑡𝑟𝑒𝑒 → ∅ M
L 𝑐 : 𝑡𝑟𝑒𝑒 | . 2/𝑡𝑟𝑒𝑒 . 2/𝑡𝑟𝑒𝑒 → . 2/𝑡𝑟𝑒𝑒 M

Given a set of movements on subterms, we must decide
if some movements should be done before the other. For
instance, in Example 2, themoves of𝑏 and 𝑗 must be executed
before the move of 𝑐 , as this last move will erase the location
. 2/𝑡𝑟𝑒𝑒 , which originally contains 𝑏 and 𝑗 . For this purpose,
we define the notion of conflict between two locations.

Definition 3 (Conflict between locations). We say that ℓ
and ℓ ′ are in conflict, written ℓ ⊲⊳ ℓ ′, if ℓ is prefix of ℓ ′ or ℓ ′
is prefix of ℓ . External locations are never in conflict with
anything. If ℓ ⊲⊳ ℓ ′, we write diff (ℓ, ℓ ′) the extra suffix.

We can give a primitive notion of “must happen before”
relation on moves: Given two moves L𝑎 : 𝑡 | ℓ𝑝 → ℓ𝑒 M and
L𝑎′ : 𝑡 ′ | ℓ ′𝑝 → ℓ ′𝑒 M, 𝑎 must happen before 𝑎′ if ℓ𝑝 ⊲⊳ ℓ ′𝑒 .

2.3 Fine grain decomposition into memory moves
The moves we have shown so far operates on subterms, i.e. a
given location and all its descendants. This coarse-grained
approach causes two issues. First, it induces more conflicts
than necessary, making the “happens before” less precise.
Indeed, any subterm will trigger a conflict, even if other
part of the term could be modified independently. Second, it
means moves will easily conflict with themselves, as is the
case of the move of 𝑐 in Example 2. In particular, it is not
clear at this stage how we could implement the move of 𝑐 .

To alleviate these problems, we leverage the memory rep-
resentation mentioned in Section 1 by decomposing each
subtree move into a collection of memory moves on paths.
Definition 4 gives the notion of path 𝜋 which extends lo-
cations with repetitions indexed by an iteration variable
𝑘 . Path also include wildcards 𝜑 which correspond to any
field. These wildcards allow separating the representation
by layers: 𝜑𝑘 is the 𝑘𝑡ℎ layer of a subterm. Memory moves
are moves operating on memory paths. Paths correspond to
regular expressions on locations without alternatives and
of star height 1. Matching is immediate by treating named
repetitions as Kleene stars.

Definition 4 (Paths and memory movements).

𝑘 ∈ ItVars (Iteration variables)
𝜋 ::= ℓ . 𝜋 | ℓ𝑘 . 𝜋 | 𝜑𝑘 | 𝜀 (Path)

𝑚𝜋 ::= L𝜋 → 𝜋 ′ M (Memory Move)

In the rest, we freely use properties of regular languages
on paths.

The Atomize function aims to decompose subtree move-
ments (where the iteration is implicit) into memory move-
ments with explicit iteration. On the way, it eliminates spu-
rious “self-conflict”, i.e., rules whose source and destina-
tions are in conflict and reveal potential parallelism for later
phases. We first look at the output ofAtomize on an example.

Example 3. In Example 2, we obtained the followind subterm

moves for the first clause of Example 1:

L 𝑗 : 𝑖𝑛𝑡 | . 2/𝑡𝑟𝑒𝑒 . 1/𝑖𝑛𝑡 → . 1/𝑖𝑛𝑡 M L 𝑖 : 𝑖𝑛𝑡 | . 1/𝑖𝑛𝑡 → ∅ M
L𝑏 : 𝑡𝑟𝑒𝑒 | . 2/𝑡𝑟𝑒𝑒 . 0/𝑡𝑟𝑒𝑒 → . 0/𝑡𝑟𝑒𝑒 M L𝑎 : 𝑡𝑟𝑒𝑒 | . 0/𝑡𝑟𝑒𝑒 → ∅ M
L 𝑐 : 𝑡𝑟𝑒𝑒 | . 2/𝑡𝑟𝑒𝑒 . 2/𝑡𝑟𝑒𝑒 → . 2/𝑡𝑟𝑒𝑒 M

The tree can be further decomposed into independant layers (eg.

in the case of the breadth first search layout, layers are regions

of the form (2𝑖 , 2𝑖+1)), the memory moves can thus be further

broken down into generalized moves which are moves about

memory regions. In the end of the application of Atomize we
will find the following moves, where we sometimes shorten

paths of the form 𝑓 .𝑓 𝑘 as 𝑓 𝑘+1.

L . 0/𝑡𝑟𝑒𝑒. 𝜑𝑘0 → External M (a)
L . 1/𝑖𝑛𝑡 → External M (i)

L . 2/𝑡𝑟𝑒𝑒 . 0/𝑡𝑟𝑒𝑒. 𝜑𝑘1 → . 0/𝑡𝑟𝑒𝑒. 𝜑𝑘1 M (b)
L . 2/𝑡𝑟𝑒𝑒 . 1/𝑖𝑛𝑡 → . 1/𝑖𝑛𝑡 M (j)
L (. 2/𝑡𝑟𝑒𝑒)𝑘2+2 → (. 2/𝑡𝑟𝑒𝑒)𝑘2+1 M (𝑐)

L (. 2/𝑡𝑟𝑒𝑒)𝑘2+2. 0/𝑡𝑟𝑒𝑒. 𝜑𝑘3 → (. 2/𝑡𝑟𝑒𝑒)𝑘2+1. 0/𝑡𝑟𝑒𝑒. 𝜑𝑘3 M (𝑐0)
L (. 2/𝑡𝑟𝑒𝑒)𝑘2+2. 1/𝑖𝑛𝑡 → (. 2/𝑡𝑟𝑒𝑒)𝑘2+1. 1/𝑖𝑛𝑡 M (𝑐1)

The rules (𝑖) and ( 𝑗) correspond directly to the subterm moves:

Since those terms are scalar, they do not require any itera-

tion. (𝑎) and (𝑏) correspond to moves on 𝑎 and 𝑏. Since source

and destination do not conflict, we simply copy each layer

separately. ℓ . 𝜑𝑘
here denotes the 𝑘𝑡ℎ layers of the subterm an-

chored in ℓ and is used to copy a subterm layers by layers. The

subterm move for (𝑐), on the other hand, has conflicting source
and destination and requires additional care. We decompose

it into several memory moves, corresponding to climbing the

“stair” of subterms along the direction . 2/𝑡𝑟𝑒𝑒 . This is schema-

tized on Fig. 1, which represents the memory layout of a term

of type tree, along with the new memory movements in bold

arrows and the iteration directions in double arrows. The mem-

ory movement (𝑐) is on the stair itself, while (𝑐1) and (𝑐0)
correspond to all the potential subterms which are not reached
by the prime iteration direction . 2/𝑡𝑟𝑒𝑒 . Depending of whether
such subterms are scalars or terms, we decompose them further

into layers.

Let us now define auxiliary functions used in Atomize.

Definition 5 (Type of a location). The type of a non-external
location is Type(ℓ .𝑥/𝑇 ) = 𝑇 .

Definition 6 (Complement of a location). Let a location ℓ

and a type 𝑡 = Constr(𝑡𝑖 ). We consider F the sets of all the
fields (. 𝑖/𝑡𝑖 ) present in 𝑡 . The complement of ℓ in 𝑡 , written
Compl(𝑡, ℓ), is the set of paths in 𝑡 which are not ℓ . It allows
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Figure 1. Memory movements (𝑐), (𝑐0), (𝑐1) in Example 1.

us to inspect all subterms which are not in the prime iteration
direction. We define:

Compl(𝑡, []) = {}
Compl(𝑡, . 𝑖/𝑡 ′. ℓ) = (F − . 𝑖/𝑡 ′) ∪ {. 𝑖/𝑡 ′. ℓ ′ | ℓ ′ ∈ Compl(𝑡 ′, ℓ)}

The complete definition of Atomize is shown in Algo-
rithm 1. The first two cases are simple: identity moves are
removed, and scalar moves are kept as-is, as they are non-
recursive. The treatment of subterm moves depend if they
have a self-conflict. If they do not, we move each layer, which
is schematized by the move L ℓ𝑝 . 𝜑𝑘 → ℓ𝑒 . 𝜑

𝑘 M. Note that
all such moves are disjoint (neither sources nor destinations
can overlap). This hints at the possibility of parallelizing
such loop later on. In case of self-conflict, we decompose
this move further by choosing an iteration direction. The
conflict gives us a natural choice: since one location is the
prefix of the other, we use the extra suffix ℓ = diff (ℓ𝑝 , ℓ𝑒 ) to
direct the iteration. All the subterms not present along the
iteration direction are then given by Compl(ℓ). We inspect
these subterms and create new appropriate moves depend-
ing on their types. By construction of Compl, none of these
moves overlap (with themselves nor with each other).

Every single move has a domain, which is the set of valid
values that can be taken by its iteration variables, and com-
puted as a function parametrized by a formal parameter 𝑁 ,
that denotes an upper bound on the height of terms embed-
ded in the underlying array support. The domain of a move
is directly induced by the admissible lengths of its paths.

Definition 7 (Length of a path). Given a path 𝜋 , its admis-

sible length, written |𝜋 |, is the length of any location that
could match the given path. It is the linear form defined as:

|ℓ .𝜋 | = |ℓ | + |𝜋 | |𝜑𝑘 | = 𝑘

|ℓ𝑘 .𝜋 | = |ℓ | ∗ 𝑘 + |𝜋 | |𝜀 | = 0

Since this is a linear form on ®𝑘 , we write 𝐿𝜋 and ®𝑙𝜋 such that
|𝜋 | (®𝑘) = 𝐿𝜋 .®𝑘 + ®𝑙𝜋 .

Definition 8 (Domain of a move). We consider a move
𝑚 = L𝜋 → 𝜋 ′ M. The domain of𝑚 is writtenD𝑚 and defined

D𝑚 =

{
®𝑘
��� (0 ≤ |𝜋 | (®𝑘) ≤ 𝑁 ) ∧ (0 ≤ |𝜋 ′ | (®𝑘) ≤ 𝑁 ) ∧ (®0 ≤ ®𝑘)

}
Since |𝜋 | is a linear form on ®𝑘 , the domain can also be

defined as a polyhedron. We write 𝐷𝑚 and ®𝑑𝑚 such that
D𝑚 =

{
®𝑘 | 𝐷𝑚

®𝑘 + ®𝑑𝑚 ≥ ®0
}

3 Memory moves scheduling
Now that we have a fine grain characterisation of mem-
ory moves, we need to schedule them in order to generate
code. We propose a two-steps approach, classical in the HPC
community: first, we compute a compact representation for
(read/write) dependencies, and from this representation, use
optimisation to compute logical dates compatible with these
dependencies with the help of an optimisation algorithm.

3.1 Dependencies computation
A dependency happens if two moves might potentially over-
lap. Since the language of expression in Rew is pure, the only
dependencies are induced directly by the rewriting specifi-
cation: the left hand side acts as “reads” and the right hand
side as “writes” on the specified paths. Usually, there are
two types of conflicts: read-write, and write-write. However,
in our case, a write-write conflict would mean two moves
have the same destination. Since locations are entirely deter-
mined by positions in the AST of the right hand side, this is
syntactically impossible.

Therefore, we only consider read-write dependencies, i.e.,
between the source of a move and the destination of an-
other move. This naturally give rises to an ordered “happens-
before” relation on moves since the write should be done
after the read. Furthermore, not only do we want a relation

Algorithm 1 Atomize(𝑚)
Atomize(𝑀) = ∪𝑚∈𝑀 Atomize(𝑚)
Atomize(L𝑥 : 𝑡 | ℓ → ℓ M) = {}
Atomize(L𝑥 : 𝑡 ∈ Scalar | ℓ𝑝 → ℓ𝑒 M) =

{
L ℓ𝑝 → ℓ𝑒 M

}
Atomize(L𝑥 : 𝑡 ∉ Scalar | ℓ𝑝 → ℓ𝑒 M) when ¬(ℓ𝑝 ⊲⊳ ℓ𝑒 )

=

{
L ℓ𝑝 . 𝜑𝑘 → ℓ𝑒 . 𝜑

𝑘 M
}
where 𝑘 fresh

Atomize(L𝑥 : 𝑡 ∉ Scalar | ℓ𝑝 → ℓ𝑒 M) when ℓ𝑝 ⊲⊳ ℓ𝑒

=

{
L ℓ𝑝 . ℓ𝑘𝑑 → ℓ𝑒 . ℓ

𝑘
𝑑

M
}

∪
{
L ℓ𝑝 . ℓ𝑘𝑑 . ℓ → ℓ𝑒 . ℓ

𝑘
𝑑
. ℓ M

���� ℓ ∈ Compl(ℓ𝑑 )
𝑇𝑦𝑝𝑒 (ℓ) ∈ Scalar

}
∪
{
L ℓ𝑝 . ℓ𝑘𝑑 . ℓ . 𝜑

𝑘ℓ → ℓ𝑒 . ℓ
𝑘
𝑑
. ℓ . 𝜑𝑘ℓ M

���� ℓ ∈ Compl(ℓ𝑑 )
𝑇𝑦𝑝𝑒 (ℓ) ∉ Scalar

}
where 𝑘s fresh, ℓ𝑑 = diff (ℓ𝑝 , ℓ𝑒 )
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to indicate potential dependencies, but also when this depen-
dency happens, in term of the iteration variables 𝑘 . We thus
annotate this relation with constraints on the 𝑘s.

Definition 9 ((R/W) Dependencies between moves). We
consider two moves 𝑚 = L𝜋𝑝 → 𝜋𝑒 M and 𝑚′ = L𝜋 ′𝑝 →
𝜋 ′𝑒 M The dependencies between (the source of)𝑚 and (the
destination of)𝑚′ is written Q (𝑚,𝑚′) and defined as all values
of the source and destination iteration vectors for which
the memory paths actually intersect (do not have an empty
intersection). Given L(𝜋) the set of locations of 𝜋 , we have:

Q (L𝜋𝑝→𝜋𝑒 M,L𝜋 ′𝑝→𝜋 ′𝑒 M) =

{( ®𝑘
®𝑘 ′

) ����� ∃ ℓ ∈ L(𝜋𝑝 (®𝑘)) ∩ L(𝜋 ′𝑒 ( ®𝑘 ′))
}

Computing Q (𝑚,𝑚′) as a finite description such as a poly-
hedron is not immediate. Paths are not “usual” regular ex-
pressions since the 𝑘s are symbolic, not concrete integers. In
practice, we can obtain an exact representation of Q (𝑚,𝑚′)
thanks to careful syntactic manipulations on paths.

Lemma 1. Q (𝑚,𝑚′) is a union of polyhedrons and computing

its finite representation is decidable.

Example 4. (Domain and Dependencies) We now give the do-

main and dependencies of somememorymoves from Example 3

We recall the moves (𝑏) and (𝑐0).
L . 2/𝑡𝑟𝑒𝑒 . 0/𝑡𝑟𝑒𝑒. 𝜑𝑘1 → . 0/𝑡𝑟𝑒𝑒. 𝜑𝑘1 M (b)

L (. 2/𝑡𝑟𝑒𝑒)𝑘2+2. 0/𝑡𝑟𝑒𝑒. 𝜑𝑘3 → (. 2/𝑡𝑟𝑒𝑒)𝑘2+1. 0/𝑡𝑟𝑒𝑒. 𝜑𝑘3 M (𝑐0)

The domains are computed from the length of the paths.

Given the formal parameter 𝑁 , we have:

D𝑏 = {𝑘1 | 0 ≤ 𝑘1 ∧ 𝑘1 + 2 ≤ 𝑁 }
D𝑐0 = {(𝑘2 𝑘3) | 0 ≤ 𝑘2 ∧ 0 ≤ 𝑘3 ∧ 𝑘2 + 𝑘3 + 3 ≤ 𝑁 }

We also compute the following dependencies:

Q𝑏,𝑐0 = {(𝑘1 𝑘 ′2 𝑘 ′3) | 𝑘 ′2 = 0 ∧ 𝑘 ′3 = 𝑘1} Q𝑏,𝑏 = ∅
Q𝑐0,𝑐0 = {(𝑘2 𝑘3 𝑘 ′2 𝑘 ′3) | 𝑘2 + 1 = 𝑘 ′2 ∧ 𝑘3 = 𝑘 ′3}

We remark that the movement (𝑏) must be done before (𝑐0),
as they both access the memory path . 2/𝑡𝑟𝑒𝑒 . 0/𝑡𝑟𝑒𝑒 and all its
descendant. We also remark that (𝑐0) has a self dependency,
which induces an order of iteration along its first direction 𝑘2.

The direction 𝑘3 doesn’t have such an imposed order, which

hints at later parallelism opportunities.

3.2 Scheduling via constraint solving
At the end of the previous section, for each clause of our
Rew program, we obtained a tuple (M,T) where:
• each move𝑚 ∈ M has an application domain D𝑚 .
• each pair ofmoves carries a “dependency constraint”Q𝑚,𝑚′ .
Our objective is now to compute a valid schedule for the

set of moves of the initial clause, i.e., an order for the sub-
computations. We adapt in this section an approach based on
constraint solving used in polyhedral compilation [7, 8, 14]
as well as in termination proofs [2, 6].

A schedule is a function that assigns positive logical dates
to each move computation such that all dependencies are
satisfied (a computation that depends on another one is done
strictly after). This is captured in Definition 10.

Definition 10. Schedule constraints: A schedule for the
graph (M,T) is a function 𝜌 : M × Z𝑛 → N𝑑 , from the
graph vertices to N𝑑 , which is positive:
®𝑘 ∈ D𝑚 ⇒ 𝜌 (𝑚, ®𝑘) ≥ ®0 (component-wise) (Positivity)

and whose values stricly increase (according to ⪯𝑑 , the stan-
dard lexicographic order on integer vectors) at each edge
𝑡 = (𝑚,𝑚′) ∈ T :

Q𝑚,𝑚′ (𝑘, 𝑘 ′) ⇒ 𝜌 (𝑚, ®𝑘) ≺𝑑 𝜌 (𝑚′, ®𝑘 ′) (Increasing)

It is said affine if it is affine in the second parameter (the vari-
ables ®𝑘). If 𝑑 > 0 the schedule is said to be multi-dimensional
of dimension 𝑑 .

Remark. Schedules can be parallel, indeed there is no con-
straint forcing two non conflicting moves to happen one
before the other. The computation of a valid schedule might
thus find equal dates for two different moves.

Searching for one dimensional schedules First, we relax
the increasing constraint (Increasing), for 𝑑 = 1, into:

(®𝑘, ®𝑘 ′) ∈ Q𝑡 ⇒ 0 ≤ 𝜌 (𝑚′, ®𝑘 ′) − 𝜌 (𝑚, ®𝑘) ≤ 𝜖𝑡 ≤ 1

We now look for affine schedules, that is ®𝑐, 𝑐0 such that
𝜌 (𝑚, ®𝑘) = ®𝑐.®𝑘 + 𝑐0. Unfortunately, inlining this form leads to
quadratic constraints ®𝑘 ∈ D𝑚 ⇒ ®c.®k + 𝑐0 ≥ ®0. However, we
can linearize these constraints using the Farkas lemma [19]
(since D𝑚 and Q𝑚,𝑚′ are polyhedra). This construction is
detailed in Appendix A (author version only)

Lemma 2 (Constraints C). There exists a computable affine

set of constraints C computed from (M,T) that exactly de-

scribes the set of admissible schedules.

Finding a valid schedule consists in solving this set of con-
straints with an appropriate objective function (Algorithm 2).
If a valid schedule exists, all 𝜖𝑡 are equal to 1. Otherwise, we
have a partial schedule, that we will complete in the next
section.

Algorithm 2 Compute1D(C,𝑇 ) where 𝑇 ⊆ T
1: MaximizeLP(∑𝑡 ∈𝑇 𝜖𝑡 on C) ⊲ LP instance
2: if

∑
𝑡 ∈𝑇 𝜖𝑡 = 0 then

3: return None ⊲ No solution
4: else
5: From the result, compute 𝜎
6: 𝑇𝑟𝑒𝑚 ← {𝑡 | 𝜖𝑡 = 0} ⊲ Transitions that are not

increasing
7: return Some (𝜎,𝑇𝑟𝑒𝑚)
8: end if



Author Version - GPCE ’21, October 17–18, 2021, (Virtual) Gabriel Radanne, Paul Iannetta, and Laure Gonnord

Algorithm 3 ComputeSchedule(M, T )
1: C ← ComputeConstraints(M,T)
2: 𝑖 ← 0; 𝑇 ← T
3: while 𝑇 is not empty do
4: ret← compute1D(C,𝑇 );
5: if ret = None then
6: return None ⊲ No affine schedule.
7: else if ret = Some (𝜎,𝑇𝑟𝑒𝑚) then
8: 𝜌𝑖 ← 𝜎 ⊲ 𝜎 is the 𝑖-th component of 𝜌
9: 𝑇 ← 𝑇𝑟𝑒𝑚 ; 𝑖 ← 𝑖 + 1
10: end if
11: end while
12: return Some(𝜌) ⊲ There is a 𝑖-dimensional ranking

Multidimensional schedules As all schedules are not of
dimension 1, we use a greedy algorithm, described in Algo-
rithm 3, similar to [6, 8, 14] where each component of the
schedule 𝜌 is constructed one after the other. At each loop it
makes a call to compute1D(C,𝑇 ). If it succeeds, the number
of constraints still to be satisfied have strictly decreased and
we can relaunch the procedure on the system without these
constraints (Line 9). Otherwise, the procedure ends with-
out concluding. Surprisingly, despite this greedy approach,
this technique is proven complete (if the dependencies are
exact [2]), thus it always gives an affine schedule.

Example 5. (Schedule) From Example 4 we obtain the follow-

ing schedules for (𝑏), (𝑐0), (𝑐1):

𝜌 (𝑏) = (0, 𝑘1) 𝜌 (𝑐0) = (𝑘2 + 1, 𝑘3) 𝜌 (𝑐1) = (𝑘2 + 1, 0)

As 𝑘2 ≥ 0, this schedule successfully captures that movement

(𝑏) must be done before (𝑐0). Similarly, each 𝑐0(𝑘, 𝑘 ′) is done
before before 𝑐0(𝑘 + 1, 𝑘 ′), as expected.

4 Code emission
The previous section provides us with a schedule 𝜌 (𝑚, ®𝑘) for
each move of a given clause, the objective is now to generate
a sequence of loop nests that will compute each (set of) moves
in the order specified by the schedule, without forgetting any
subcomputation. We use an algorithm inspired by previous
works on code generation for the polyhedral framework [3,
17] depicted in Algorithm 4. It contains an inner procedure
LoopGen which iterates recursively over the polyhedra to
create a tree of nested loops.
At recursive call 𝑖 , LoopGen generates the sequence of

loops corresponding to dimension 𝑖 of the schedule 𝜌 . At
this point, we collect the projection of the polyhedra along
dimension 𝑖 which we partition and merge with the pro-
cedureMergePolyhedra. This gives us a list of polyhedra
which delimit the inner loops strictly inside 𝑖 , on which we
recursively call LoopGen. When 𝑖 = 𝑑 , we emit the moves
contained in the sub-polyhedra obtained by the recursive

Algorithm 4 GenerateCodeForClause(D, 𝜌, 𝑑))
procedure LoopGen(𝑖,P) ⊲ dimension 𝑖

if 𝑖 = 𝑑 then
return Moves(P) ⊲ Obtain the moves of P

else
𝐿 ← {𝑃 |𝑖 | 𝑃 ∈ P} ⊲ Projection on dimension 𝑖

P ′← MergePolyhedra(𝐿) ⊲ Generate distinct
polyhedra with their associated moves.

return
{
LoopGen(𝑖 + 1,P ′) | P ′ ∈ P ′

}
⊲ Decompose along the inner dimensions

end if
end procedure
P1 ← { 𝐼𝑚(D𝑚, 𝜌𝑚) | 𝑚 ∈ M }
𝑟 ← LoopGen(1,P1)
Generate code from 𝑟

partitions. We initialize the set of polyhedrons with the set
of images of D𝑚 by 𝜌𝑚 .

Example 6. If we recall Example 3, we can see that there are

5 moves. The first two are telling us that the subtree a is going

into the void and should be ignored, and the last which is about

coping over the structure will also be ignored. It remains to

generate code for the three last ones. On the running example,

we denote by (𝑖, 𝑗) the iteration dimensions. The initial set P1
contains the three following images:

𝐼𝑚(𝜌𝑏,D𝑏) = {𝑖 = 0 and 0 ≤ 𝑗 ≤ 𝑁 − 2}
𝐼𝑚(𝜌𝑐1,D𝑐1) = {1 ≤ 𝑖 ≤ 𝑁 − 2 and 𝑗 = 0}
𝐼𝑚(𝜌𝑐0,D𝑐0) = {1 ≤ 𝑖 ≤ 𝑁 − 2 and 0 ≤ 𝑗 ≤ 𝑁 − 𝑖 − 2}.
From these polyhedra, we can build a partition on the first

dimension: first, projecting the former images on the first di-

mension 𝑖 gives three polyhedra 𝑃1 = {𝑖 = 0} (associated to 𝑏)
and 𝑃2)𝑃3 = {1 ≤ 𝑖 ≤ 𝑁 − 2} (associated with 𝑐0, 𝑐1 moves),

and then The partition is then P ′1 = [(𝑃1, 𝑏), (𝑃2, {𝑐0, 𝑐1})]
(we track the associated moves). The polyhedra 𝑃1 and 𝑃2 en-

code the outermost iterations necessary to compute memory

moves for 𝑏 and 𝑐0, 𝑐1. In the final code these polyhedra will

generate two successive for loops. It now remains to generate

their inner body.

The two other recursive calls to LoopGen(g)enerate inner

loops inside these “𝑃1, 𝑃2 loops”. Let us focus on the (𝑐0, 𝑐1) part.
From projections on 𝑗 we obtain two polyhedra 𝑃 ′1,2 = { 𝑗 = 0}
and 𝑃 ′2,2 = {0 ≤ 𝑗 ≤ 𝑁 − 𝑖 − 2} that depict the iterations for 𝑐1
and 𝑐0 respectively, it remains to generate the corresponding

for loops and their body. The final code is thus
1
:

1Each move is implemented as a memcopy of adjacent cells.
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for (i = 0 ; i <= 0 ; i += 1) // P1
for (j = 0 ; j <= N-2 ; j += 1)

L . 2/𝑡𝑟𝑒𝑒. 0/𝑡𝑟𝑒𝑒.𝜙 𝑗 → . 0/𝑡𝑟𝑒𝑒.𝜙 𝑗 M // b
for (i = 1 ; i <= N-2 ; i+= 1) // P2

for (j = 0 ; j <= 0 ; j += 1) // P'1,2
L (. 2/𝑡𝑟𝑒𝑒)𝑖+1. 1/𝑖𝑛𝑡 → (. 2/𝑡𝑟𝑒𝑒)𝑖. 1/𝑖𝑛𝑡 M //c1

for (j = 0 ; j <= N - i - 2 ; j += 1) // P'2,2
L (. 2/𝑡𝑟𝑒𝑒)𝑖+1. 0/𝑡𝑟𝑒𝑒.𝜙 𝑗 → (. 2/𝑡𝑟𝑒𝑒)𝑖. 0/𝑡𝑟𝑒𝑒.𝜙 𝑗 M//c0

5 Future work and conclusion
We have presented the early work towards a framework to
optimize in-place pattern matching on algebraic data types.
So far, the framework we have presented is limited. We plan
to extend it via a number of new features which are essential
to improve its applicability.

5.1 An end-to-end implementation
We have implemented the first two steps (Sections 2 and 3)
as a prototype2. The last step is so far done using standard
tooling from the HPC community which computes loop nests
based on a schedule. We aim to complete and extend this
implementation with the features mentioned next.

5.2 Richer expression language
A richer expression language is essential to extend the scope
of this work. We can in particular sketch the following ex-
tensions.

Functions on scalars Our expression language can be
easily extended to arbitrary functions on scalars such as
arithmetic operations. In practice, moves become instruc-
tions of the form 𝜋 ← 𝑓 (𝜋0, . . . , 𝜋𝑛). The notion of domain
and dependencies immediately extend to this new context.

Functions on terms Our framework transforms a function
on terms into a set of memory movements. This leads to a
notion of “inlining” for function calls on subterms, since
we know the prefix for both source and destinations of the
nested rules. Once inlined, the rules behaved as currently,
and all rules can be scheduled and compiled together.

Self-recursion The previous remark on inlining gives a
way to handle some limited form of self-recursion. Indeed,
we can inline the function itself at the position of the recur-
sive call. More concretely, given the type of tree in Example 1
and a clause of the form Node(a,i,b) -> Node(f a,i,f
b), it suffices to prefix all the moves by (. 0/𝑡𝑟𝑒𝑒 | . 2/𝑡𝑟𝑒𝑒)𝑘 .
This prefix spans all the subterms on which 𝑓 is called re-
cursively. This requires adding alternatives inside paths. We
believe our techniques to compute domains and dependen-
cies still hold up with this extension. While this is not a fully

2https://github.com/Drup/adtr/

general recursion scheme, it applies to functions such as map
or transformations such as constant folding.

5.3 Richer pattern language: guards
Guards, i.e., Boolean tests inside patterns, can easily be added
to our framework by equipping moves with conditions gov-
erning their applicability. This would have the added benefit
to allow us to compile the whole pattern matching, including
the choice of which pattern to apply. The difficulty here lies
in emitting code which properly factorize the tests during
iterations to avoid breaking memory locality.

5.4 Better code generation
Parallel code generation In this article, we only present se-
quential, fairly naive, code generation.We have only scratched
the surface of what the polyhedral model can offer in terms
of highly optimized code generation. In particular, our setup
is ideally designed to produce parallel and vectorized code.
We can also leverage our knowledge of the memory layout to
improve memory locality when iterating through subterms.

Improve code size Currently, we do not present any tech-
nique to improve the size of the generated code unlike the
papers [3, 17] we use as our basis, which are remove dead
code if any and try to unify single point polyhedra with
adjacent polyhedra.

https://github.com/Drup/adtr/
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A Detailed construction of the linear
constraint system of Lemma 2

In this section we explain how to obtain the constraint sys-
tem C to solve to obtain a valid schedule of our program
(Lemma 2). The final algorithm is depicted in Algorithm 5.

We recall that a schedule is a function that assigns positive
logical dates to each move computation such that all depen-
dencies are satisfied (a computation that depends on another
one is done strictly after). This is captured in Definition 10
that we recall here:

Definition 11. Schedule constraints: A schedule for the
graph (M,T) is a function 𝜌 : M × Z𝑛 → N𝑑 , from the
graph vertices to N𝑑 , which is positive:
®𝑘 ∈ D𝑚 ⇒ 𝜌 (𝑚, ®𝑘) ≥ ®0 (component-wise) (Positivity)

and whose values stricly increase (according to ⪯𝑑 , the stan-
dard lexicographic order on integer vectors) at each edge
𝑡 = (𝑚,𝑚′) ∈ T :

Q𝑚,𝑚′ (𝑘, 𝑘 ′) ⇒ 𝜌 (𝑚, ®𝑘) ≺𝑑 𝜌 (𝑚′, ®𝑘 ′) (Increasing)

It is said affine if it is affine in the second parameter (the vari-
ables ®𝑘). If 𝑑 > 0 the schedule is said to be multi-dimensional
of dimension 𝑑 .

In this paper, we restrict ourselves to the search of affine
multidimensional schedules. In order to linearize both Pos-
itivity and Increasing constraints, we rely on the Farkas’
Lemma, which we recall a statement below.

Lemma 3 (Farkas lemma, affine form). An affine form 𝜙 :
R𝑛 → R with 𝜙 ( ®𝑥) = ®𝑐.®𝑥 + 𝑐0 is nonnegative everywhere in a

non-empty polyhedron {®𝑥 | 𝐴®𝑥 + ®𝑎 ≥ ®0} iff:

∃®𝜆 ∈ (R+)𝑛, 𝜆0 ∈ R+ such that 𝜙 ( ®𝑥) ≡ ®𝜆.(𝐴®𝑥 + ®𝑎) + 𝜆0
The notation ≡ is a formal equality, which means that we can

deduce the equality of the affine coefficients.

∃®𝜆 ∈ (R+)𝑛, 𝜆0 ∈ R+ such that ®𝑐 = ®𝜆.𝐴 and 𝑐0 = ®𝜆.®𝑎 + 𝜆0
Linearization of positivity constraints We now use this
lemma onD𝑚 = {®𝑘 | 𝐷𝑚

®𝑘 + ®𝑑𝑚 ≥ ®0} to “eliminates” the uni-
versally quantification on ®𝑘 from the constraints (Positivity):

∃®𝜆𝑚 ∈ (R+)𝑛, 𝜆0𝑚 ∈ R+ s.t.
𝜌 (𝑚, ®𝑘) ≡ ®𝜆𝑚 .(𝐷𝑚

®𝑘 + ®𝑑𝑚) + 𝜆0𝑚
(1)

which basically says that the schedule we are searching is
expressed with the help of the constraints of theD𝑚 domain.
All the positivity constraints are thus linearized in the first
half of Algorithm 5.

Linearization of edge 𝑡 = (𝑚,𝑚′) increasing constraints
First, we relax the increasing constraint (Increasing), for
𝑑 = 1, into:

(®𝑘, ®𝑘 ′) ∈ Q𝑡 ⇒ 0 ≤ 𝜌 (𝑚′, ®𝑘 ′) − 𝜌 (𝑚, ®𝑘) ≤ 𝜖𝑡 ≤ 1 (2)

Algorithm 5 ComputeConstraints(M, T)
1: C = ∅
2: for each move𝑚 ∈ M do ⊲ Positivity constraints
3: Let 𝐷𝑚 and ®𝑑𝑚 such that D𝑚 = {®𝑘 | 𝐷𝑚

®𝑘 + ®𝑑𝑚 ≥ ®0}
4: Let ®𝜆𝑚, 𝜆0𝑚 fresh variables
5: Set 𝜎 (𝑚, ®𝑘) ← ®𝜆𝑚 .(𝐷𝑚

®𝑘 + ®𝑑𝑚) + 𝜆0𝑚
6: end for;
7: for each dependency 𝑡 = (𝑚,𝑚′) ∈ T do ⊲ Increasing

constraints
8: Let𝑄𝑡 and ®𝑞𝑡 such that Q𝑡 = {(®𝑘 ®𝑘 ′) |𝑄𝑡 (®𝑘 ®𝑘 ′)+ ®𝑞𝑡 ≥
®0}

9: Let 𝜖𝑡 , ®𝜇𝑡 , 𝜇0𝑡 fresh variables
10: Construct the equation: 𝜎 (𝑚′, ®𝑘 ′) − 𝜎 (𝑚, ®𝑘) − 𝜖𝑡 ≡
®𝜇𝑡 .(𝑄𝑡 (®𝑘 ®𝑘 ′) + ®𝑞𝑡 ) + 𝜇0𝑡

11: Identify all coefficients for ®𝑘, ®𝑘 ′ in the previous equa-
tion ⊲ This eliminates ®𝑘, ®𝑘 ′

12: C ← C ∪ these new constraints on 𝜇s and 𝜆s.
13: end for
14: return C

Applying Farkas’ lemma to Q𝑡 = {(®𝑘 ®𝑘 ′) | 𝑄𝑡 (®𝑘 ®𝑘 ′) + ®𝑞𝑡 ≥ ®0}:
∃®𝜇𝑡 ∈ (R+)𝑛𝜇0𝑡 ∈ R+ s.t.
𝜌 (𝑚′, ®𝑘 ′) − 𝜌 (𝑚, ®𝑘) − 𝜖𝑡 ≡ ®𝜇𝑡 .(𝑄𝑡 (®𝑘 ®𝑘 ′) + ®𝑞𝑡 ) + 𝜇0𝑡

(3)

A substitution of (1) in (3) and an identification on each
dimension of (®𝑘 ®𝑘 ′) leads to a set of linear inequalities that
we denote by C𝑡 . Algorithm 5 computes the union of all these
constraints with the positivity constraints, and returns it.


	Abstract
	1 Introduction
	2 From Pattern Matching to Memory Moves
	2.1 The Rew language
	2.2 Characterizing coarse grain memory moves
	2.3 Fine grain decomposition into memory moves

	3 Memory moves scheduling
	3.1 Dependencies computation
	3.2 Scheduling via constraint solving

	4 Code emission
	5 Future work and conclusion
	5.1 An end-to-end implementation
	5.2 Richer expression language
	5.3 Richer pattern language: guards
	5.4 Better code generation

	References
	A Detailed construction of the linear constraint system of lemma:constraints

