
HAL Id: hal-03355356
https://hal.science/hal-03355356

Submitted on 27 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical morphology meets Deep Learning
Santiago Velasco-Forero, Samy Blusseau, Mateus Sangalli

To cite this version:
Santiago Velasco-Forero, Samy Blusseau, Mateus Sangalli. Mathematical morphology meets Deep
Learning. 13th European Congress for Stereology and Image Analysis (ECSIA), Jun 2021, Saint-
Étienne, France. �hal-03355356�

https://hal.science/hal-03355356
https://hal.archives-ouvertes.fr

Mathematical morphology meets Deep Learning
ECSIA mini-course

Santiago Velasco-Forero, Mateus Sangalli, Samy Blusseau

Center for Mathematical Morphology - Mines ParisTech - PSL Research University, France
https://github.com/Jacobiano/morpholayers

https://github.com/Jacobiano/morpholayers

Table of contents

1. Introduction

2. Deep Learning in 15 minutes

3. Mathematical morphology - Learning simple translation invariant operators

4. Depthwise Morphological Layers

5. Morphological Scale-Spaces: Introduction to Invariance and Equivariance

1

Introduction

Left to right: Santiago, Mateus and Samy

Mini-Course goals:

• Study some interactions between mathematical morphology and Deep Learning.
• Make our code accessible for everyone.
https://github.com/Jacobiano/morpholayers

2

https://github.com/Jacobiano/morpholayers

Course Description:

• A quick introduction to Deep Learning (15 minutes) (14:05 - 14:20) (S. Velasco-Forero)
• An introduction to Mathematical Morphology and learning operators (65 minutes)
(14:20 - 15:30) (S. Blusseau)

• Pause (15:30 - 15:45)
• Depthwise Morphological Layers (45 minutes) (15:45 - 16:30) (S. Velasco-Forero)
• Morphological Scale-Spaces (45 minutes) (16:30 - 17:15) (M. Sangalli)
• Course link: https://github.com/Jacobiano/morpholayers
• Seven online tutorials.

3

https://github.com/Jacobiano/morpholayers

Deep Learning in 15 minutes

Learning from data

• Learning from data consists in using examples {(xk, yk)}1≤k≤n ∈ (X ,Y) to build a
parametric map ϕ : X 7→ Y that accurately predicts the value yn+1 for any new
sample xn+1, that is yn+1 ≈ ϕ(xn+1)

xk

ϕ(xk) = ŷk ∈ Y

What animal is it?

ϕ(xk)

Figure 1: Supervised classification

The pairs (xk, yk) define the nature of the problem, supervised, denoising, segmentation,
image transformation, and so on.

4

Learning from data

• Learning from data consists in using examples {(xk, yk)}1≤k≤n ∈ (X ,Y) to build a
parametric map ϕ : X 7→ Y that accurately predicts the value yn+1 for any new
sample xn+1, that is yn+1 ≈ ϕ(xn+1)

xk

ϕ(xk) = ŷk ∈ Y

What animal is it?

ϕ(xk)

Figure 1: Supervised classification

The pairs (xk, yk) define the nature of the problem, supervised, denoising, segmentation,
image transformation, and so on. 4

Deep Neural Network

• A Deep Neural Network with d layers and parameters θ, in its simplest form, is a
compositional map that may be written as:

ϕf;θ(x) : f(d) ◦ f(d−1) ◦ f(d−2) · · · ◦ f1(x)

Usually, we use the term deep when d (number of layers) is larger than two.

Some references:

1. Deep Learning. https://www.deeplearningbook.org/
2. Dive into Deep Learning. https://d2l.ai/

5

https://www.deeplearningbook.org/
https://d2l.ai/

Dense Layer

• Dense layer , f(i)(x) := g(i)(W(i)x+ b(i)),

with g(i) is a non-linear function (activation), and θ = [W(i),b(i)] (parameters)

• The weights W(i)
p×k are multiplied with the inputs variables.

• The bias b(i)k×1 can be interpreted as a threshold on the sum.
• The activation function somehow decides, depending on its input, if a signal (the
neuron’s activation) is produced.

• A dense layer is a parametric mapping Rp 7→ Rk, where k is called the number of
units.

6

Loss function / Empirical Risk

• In the training process, we would usually tune the parameters θ so as to minimise
the difference between the labels (ideal maps {yk}) and the outputs of the DNN
(estimated maps {ŷk := ϕf;θ(xk)}) at any training instance xk, such that the difference
goes to zero as the number of samples n increases.

• For that, we define a loss function denoted by Loss : (Y × Y) 7→ R+), represents the
difference between the labels and the DNN output.

• Usually, the training process, minimise the called empirical risk, by averaging the loss
function on a large set of training examples {(xk, yk)}

θ̂ := argmin
n∑
i=1

Loss(yk,ϕf;θ(xk)) (1)

7

Minimization by backpropagration and SGD

This minimization is usually done via stochastic gradient descend (SGD).

1. SGD starts from certain initial θ (Initialization).
2. Compute the loss function for some input examples (x). (Forward Pass)
3. The computation of gradient with respect to the loss function via the chain rule in
networks, denoted by ∇θLoss(x). (Back-propagation)

4. Updates each parameter by moving it in the direction of the negative gradient,
θt+1 = θt − η∇θtLoss(x), where η is called the learning rate. (GD update)

The term stochastic in SGD indicates that a random small number of training samples,
called a batch is used in the gradient calculation. A pass of the whole training set is
called an epoch. Usually, after each epoch, the error on a validation dataset is evaluated
and when it stabilizes the training is complete.

8

Backpropagation applied to neural networks

In the case of neural networks, the loss function depends on each parameter θi via the
composition of several simple functions. In order to compute the gradient ∇θLoss(x) we
will make extensive use of the vector chain rule, i.e, ∂

∂x f(g(x)) =
∂f
∂g

∂g
∂x .

∇θLoss(yk,ϕf,θ(xk)) =
∂Loss
∂ϕf,θ(xk)

∂ϕf,θ(x)
∂θ

(2)

In DL frameworks as Tensorflow, Pytorch, MxNet the computation of the gradient is
performed by Automatic Differentiation

9

Backpropagation applied to neural networks

In the case of neural networks, the loss function depends on each parameter θi via the
composition of several simple functions. In order to compute the gradient ∇θLoss(x) we
will make extensive use of the vector chain rule, i.e, ∂

∂x f(g(x)) =
∂f
∂g

∂g
∂x .

∇θLoss(yk,ϕf,θ(xk)) =
∂Loss
∂ϕf,θ(xk)

∂ϕf,θ(x)
∂θ

(2)

In DL frameworks as Tensorflow, Pytorch, MxNet the computation of the gradient is
performed by Automatic Differentiation

9

Gradient Descent: the intuition [Cauchy, 1847]

Given a dataset X and a model with parameters θ, we would like to find the best values
for θ such that minimize a given loss function Loss evaluated on X.

Algorithm 1 pseudocode gradient descent
1: given initial learning rate η ∈ R and dataset X
2: initialize time step t = 0, parameter vector θt=0 ∈ RP,
3: repeat
4: t=t+1
5: gt = ∇Lossi(X,θt−1) Return gradient via backpropagation

6: θt = θt−1 − ηgt
7: until stopping criterion is met
8: return optimized parameters θi

We note that in this first version, the gradient is calculated for the entire training set.
10

Stochastic Gradient Descent [Robbins and Monro, 1985]

Algorithm 2 pseudocode for stochastic gradient descent
1: given initial learning rate η ∈ R and dataset X
2: initialize time step t = 0, parameter vector θt=0 ∈ RP,
3: repeat
4: t=t+1
5: Xt = SelectBatch(X) Select a batch from data, whole data, only one, ...

6: gt = ∇Lossi(Xt,θt−1) Return gradient via backpropagation

7: θt = θt−1 − ηgt
8: until stopping criterion is met
9: return optimized parameters θi

Here, we draw m samples to calculate the gradient.

11

Summary Deep Learning

12

Tutorial 0: Deep Learning in 15 minutes.
https://github.com/Jacobiano/morpholayers

13

https://github.com/Jacobiano/morpholayers

Mathematical morphology -
Learning simple translation
invariant operators

Mathematical morphology -
Learning simple translation
invariant operators

Introduction to translation invariant
morphological operators

Analogy with linear image processing

Original

Gaussian blur Dilation 14

Analogy with linear image processing

Original

Gaussian blur Erosion 15

Analogy with linear image processing

In this course:
Mathematical Morphology is seen as a
non-linear counterpart of linear image processing.

The set of images of size M× N pixels can be identified to a vector space
(e.g. RM×N, periodic functions mapping R2 to R or R3, or mapping Z2 to R or R3)

But this is an approximation:
in practice, pixel values are non-negative and quantized (e.g. integer values in [0, 255] for
8-bits images)

It can also be identified to a complete lattice
(and this is not an approximation!)

16

Analogy with linear image processing

Complete lattice
A partially ordered set (L,≤) is a complete lattice if every subset A ⊆ L has

• a least upper bound (the supremum), denoted
∨
A,

• a greatest lower bound (the infimum), denoted
∧
A.

Example 1: (P(E),⊆) for any set E

•
∨

P(E) = E
•
∧

P(E) = ∅
• For any collection C = (Ai)i∈I of subsets of E,∨

C = ∪i∈IAi and
∧
C = ∩i∈IAi.

17

Analogy with linear image processing

Complete lattice
A partially ordered set (L,≤) is a complete lattice if every subset A ⊆ L has

• a least upper bound (the supremum), denoted
∨
A,

• a greatest lower bound (the infimum), denoted
∧
A.

Example 2: ([a,b]n,⊆n), with a ≤ b ∈ R, n ∈ N∗ and
∀x, y ∈ [a,b]n, x ≤n y ⇐⇒ xi ≤ yi ∀i ∈ {1, . . . ,n}
•
∨
[a,b]n = [b . . . b]T = b

•
∧
[a,b]n = [a . . . a]T = a

•
∨
j∈J x

(j) = [∨j x(j)1 , . . . ,∨j x(j)n]

•
∧
j∈J x

(j) = [∧j x(j)1 , . . . ,∧j x(j)n]

Typically, 8-bits images:
a = 0, b = 255 and n the number of pixels.

18

Analogy with linear image processing

Vector spaces Complete lattices
• Closed under linear combinations • Closed under supremum and infimum

• Mappings commuting with linear
combinations are the linear applications

f(
∑
i

λixi) =
∑
i

λif(xi)

• Mappings commuting with the supremum
are the dilations

δ(
∨
i

xi) =
∨
i

δ(xi)

• Mappings commuting with the infimum are
the erosions.

ε(
∧
i

xi) =
∧
i

ε(xi)

19

Analogy with linear image processing

Let F be the set of functions mapping Z2 to R, and L : F → F an operator.

Translation invariance
For any u ∈ Z2, the translation τu : F → F is the operator defined by: τuf : x 7→ f(x− u).
We say that L is translation-invariant if for any u ∈ Z2, L ◦ τu = τu ◦ L.

20

Analogy with linear image processing

Linear convolution (Riesz representation theorem)
The operator L is linear and translation-invariant if and only if there exists h ∈ F such
that for any f ∈ F

∀x ∈ Z2, Lf(x) = f ∗ h(x) =
∑
y∈Z2

f(y)h(x− y).

• The function h is the kernel representing L.
• In practice we use kernels with small support (e.g.: 3× 3 pixels).
• This is the basis of linear filtering and in particular CNNs!

21

Analogy with linear image processing

Linear convolution (Riesz representation theorem)
The operator L is linear and translation-invariant if and only if there exists h ∈ F such
that for any f ∈ F

∀x ∈ Z2, Lf(x) = f ∗ h(x) =
∑
y∈Z2

f(y)h(x− y).

X Y

W
i

j

i

j

Yij =
∑

−p≤k,l≤p

Xi+k,j+l ·Wk,l.

22

Analogy with linear image processing

Max-plus convolution
A dilation δ that is translation invariant and verifies δ(λ+ f) = λ+ δ(f) for any image f and
any constant λ, can be written as

∀x ∈ Z2, δf(x) =
∨
y∈Z2

f(y) + b(x− y)

where b : Z2 → R̄ is called structuring function or structuring element.

X Y

W
i

j

i

j

Yij =
∨

−p≤k,l≤p

Xi+k,j+l +Wk,l.

23

Analogy with linear image processing

Min-plus convolution
Similarly, a translation invariant erosion ε such that ε(λ+ f) = λ+ ε(f), can be written as

∀x ∈ Z2, εf(x) =
∧
y∈Z2

f(y) + b′(x− y).

X Y

W
i

j

i

j

Yij =
∧

−p≤k,l≤p

Xi+k,j+l +Wk,l.

24

Analogy with linear image processing

Vector spaces Complete lattices

Any translation invariant linear operator is a
liner convolution with a kernel h
(Riesz representation theorem)

Lf(x) = f ∗ h(x) =
∑
y∈Z2

f(y)h(x− y).

A translation invariant dilation is a max-plus con-
volution with a structurng element b

δf(x) =
∨
y∈Z2

f(y) + b(x− y)

A translation invariant erosion is a min-plus con-
volution with a structurng element b

εf(x) =
∧
y∈Z2

f(y) + b(x− y)

25

Morphological operators: dilations and erosions

Let (L,
∨
,
∧
) and (L′,

∨′
,
∧′) be two complete lattices.

Dilation
δ : L → L′ is a dilation if and only if for any family (xi)i∈I ⊆ L,

δ(
∨

i
xi) =

∨′

i
δ(xi).

Erosion
ε : L → L′ is an erosion if and only if for any family (xi)i∈I ⊆ L,

ε(
∧

i
xi) =

∧′

i
ε(xi).

26

Morphological operators: openings and closings

From dilations and erosions, many morphorlogical operators can be defined, in particular
openings and closings.

Opening
An opening γ : L → L is an operator which is
• Increasing: f ≤ g⇒ γf ≤ γg
• anti-extensive: γ ≤ id
• idempotent: γ ◦ γ = γ.

Closing
A closing φ : L → L is an operator which is
• Increasing: f ≤ g⇒ φf ≤ φg
• extensive: id ≤ φ

• idempotent: φ ◦ φ = φ.

27

Morphological operators: adjunction

Adjunction
An erosion ε : L → L′ and a dilation δ : L′ → L form an adjunction if and only if for any
x ∈ L′ and y ∈ L

δ(x) ≤ y ⇐⇒ x ≤ ε(y).

Properties:
• Any dilation δ : L′ → L has a unique adjoint erosion ε : L → L′ defined by

∀y ∈ L, ε(y) =
∨

{x ∈ L′, δ(x) ≤ y}

• Any erosion ε : L → L′ has a unique adjoint dilation δ : L′ → L defined by

∀x ∈ L′, δ(x) =
∧

{y ∈ L, x ≤ ε(y)}

• If (ε, δ) is an adjunction, then δε is an opening and εδ is a closing.

28

Morphological operators: examples on images

We consider images defined on E ⊂ Z2 with integer values in [0, 255]. Then for any
structuring fonction b : Z2 → [−255, 0] ∩ N such that for any x ∈ E,

∨
y∈E b(y− x) = 0, the

operators δb and εb defined by

∀x ∈ E, δbf(x) =
∨
y∈E

f(y) + b(y− x)

and

∀x ∈ E, εbf(x) =
∧
y∈E

f(y)− b(x− y)

are adjoint dilation and erosion.

29

Morphological operators: examples on images

Cross flat structuring element:

b(x) =
{

0 if x ∈ C
−255 otherwise

C = {(0, 0)}
∪
{
(cos

(kπ
2
)
, sin(kπ2)), 0 ≤ k ≤ 3

}
.

Input

Erosion εb

Dilation δb

30

Morphological operators: examples on images

Cross flat structuring element:

b(x) =
{

0 if x ∈ C
−255 otherwise

C = {(0, 0)}
∪
{
(cos

(kπ
2
)
, sin(kπ2)), 0 ≤ k ≤ 3

}
.

Input

Opening γb = δbεb

Closing φb = εbδb

31

Morphological operators: examples on images

Quadratic structuring element:

b(x) = −c · ||x||2
t2 with c ≥ 0.

Input

Erosion εb Dilation δb
32

Morphological operators: examples on images

Quadratic structuring element:

b(x) = −c · ||x||2
t2 with c ≥ 0.

Input

Opening γb = δbεb Closing φb = εbδb
33

Learning structuring elements

Just like the kernels of translation invariant linear filters are learnt in convolutional neural
networks (CNNs), structuring elements can be learnt in morphological neural networks!

This is the goal of Morpholayers bit.ly/morpholayers.

34

bit.ly/morpholayers

Tutorial 1: Simple morphological operators using morpholayers.
https://github.com/Jacobiano/morpholayers

35

https://github.com/Jacobiano/morpholayers

Mathematical morphology -
Learning simple translation
invariant operators

Learning structuring elements

Learning structuring elements: a recurrent problem

Morphologists have been interested in learning structuring elements for a long time.
Yet, the problem is not solved!
See [Davidson and Hummer, 1993, Masci et al., 2013, Mondal et al., 2020,
Kirszenberg et al., 2021].

36

Learning a dilation structuring element

X Y

W
i

j

i

j

Dilation layer

Yij =
∨

−p≤k,l≤p

Xi+k,j+l +Wk,l.

37

Learning problem

• Fixed image X ∈ Rm×n

• Structuring element W ∈ R2p+1×2p+1, to learn
• X̃ : reshaped version of X, m× n lines, (2p+ 1)2 columns. Each line is the
2p+ 1× 2p+ 1 neighbourhood of one pixel.

The dilation δ with structuring element W is seen as the mapping

δW : X 7→ X̃ ∨ W

defined by
(X̃ ∨ W)i =

∨
1≤l≤(2p+1)2

X̃i,l +Wl, 1 ≤ i ≤ m× n

Learning problem:
Given the input image X and an ouput image Y, find W such that δW(X) = Y (or ≈ Y).

38

Morphological solution by adjunction

Let (ε, δ) be an adjunction, y a fixed element and consider the equation

(E) : δ(x) = y.

We know that

if (E) has a solution, then x = ε(y) is a solution and it is the largest one.
Indeed, if y = δ(z) for some z, then x = ε(y) = εδ(z) and therefore δ(x) = δεδ(z) = δ(z) = y.
Besides, y = δ(z) implies δ(z) ≤ y and therefore z ≤ ε(y) = x.

if (E) has no solution, then x = ε(y) is the best under-approximation of a solution:

x = ε(y) =
∨

{z, δ(z) ≤ y}.

39

Morphological solution by adjunction

In our case X and Y are known and we want to solve δW(X) = Y with respect to W.
But X̃ ∨ W is also a dilation of W, which we may note it δX̃(W).
Its adjoint erosion εX̃ : Rm×n → R(2p+1)2 is defined by

εX̃(Y)l = (X̃∗ ∧ Y)l =
∧

1≤i≤m×n

Yi − X̃i,l , 1 ≤ l ≤ (2p+ 1)2,

where X̃∗ = −X̃T.
Therefore if Y is the dilation of X by some structuring element, W = εX̃(Y) is such a
structuring element. If not, it is the best under-approximation of a solution.

40

Least square error solution with gradient descent

The learning problem may be formulated as minimizing a distance, e. g. the square
Euclidean distance:

min
W

||Y− δW(X)||2.

1. Is this a convex problem?
2. Can we solve it with gradient descent?

41

Least square error solution with gradient descent

Convexity:

||Y− δW(X)||2 =
m×n∑
i=1

(fi(W)− Yi)2

with fi(W) = (X̃ ∨ W)i =
∨
1≤l≤(2p+1)2 X̃i,l +Wl.

42

Least square error solution with gradient descent

Left: An example of fi(W) in 2D. Right: (fi(W)− Yi)2 for Yi = 2 ; it is not a convex function
of W (but it looks friendly anyway).

43

Least square error solution with gradient descent

Gradient:

The function

δ : w ∈ Rn 7→
∨

1≤i≤n

{xi + wi}

is differentiable almost everywhere
with respect to w.

44

Least square error solution with gradient descent

Gradient:

E1

E2
E1∩E2

e1

e2

Letting

Ej =

w ∈ Rn, xj + wj =
∨

1≤i≤n

{xi + wi}

 ,

then δ is differentiable on the interior
of Ej and

∀w ∈
◦
Ej, ∇wδ(w, x) = ej

where ej is the jth canonical base vector
of Rn (eij = 1 if i = j and 0 otherwise).

45

Least square error solution with gradient descent

Gradient:

E1

E2
E1∩E2

e1

e2

d{1,2}

Besides, let I ⊆ {1, . . . ,n}. Then on∩
i∈I Ei \ (

∪
j/∈I Ej)

dI = −
∑
i∈I

ei

is a descent direction of δ.

46

Least square error solution with gradient descent

Gradient:

For our problem, noting ℓ(W) = ||Y− δW(X)||2, we have

∇ℓ(W) = 2GT ·
[
X̃ ∨ W− Y

]
where G ∈ {0, 1}m·n×(2p+1)2 , and

Gi,k =
{

1 if X̃ik +Wk =
∨
1≤l≤(2p+1)2 X̃i,l +Wl

0 otherwise.

47

Learning an opening structuring element

The opening γ with structuring element W is seen as the mapping

γW : X 7→ δW(εW(X))

with
εW(X)i = (X̃ ∧ W∗)i =

∧
1≤l≤(2p+1)2

X̃i,l −WT
l , 1 ≤ i ≤ m× n

and as before

δW(Y)i = (Ỹ ∨ W)i =
∨

1≤l≤(2p+1)2
Ỹi,l +Wl, 1 ≤ i ≤ m× n

(Here WT denotes column vector, like W. W is the reshaped version of a matrix A, and WT

of AT).

Learning problem:
Given the input image X and an ouput image Z, find W such that γW(X) = Z (or ≈ Z).

48

Learning an opening structuring element

Learning problem:
Given the input image X and an ouput image Z, find W such that γW(X) = Z (or ≈ Z).

The problem can also be formulated with an auxiliary variable Y:{
Ỹ ∨ W = Z
X̃ ∧ W∗ = Y

As both Y and W are unknown, the first equation is actually a matrix factorization problem
in the max-plus algebra (see [Karaev and Miettinen, 2019] for algorithms).
The second equation can be seen as a criterion to choose among several approximate
solutions of the first line.
Matrix factorization is a difficult problem. Why not try gradient descent?

49

Learning an opening structuring element with gradient descent

Two alternative architectures:

• The one layer architecture: an opening layer paramterized by one structuring
element W

γW(X) = δW(εW(X))

• The two layers architecture: an erosion layer followed by a dilation layer with
independent parameters W1 and W2

gW(X) = δW2(εW1(X))

where W = [W1,W2].

50

Learning an opening structuring element with gradient descent

Two alternative gradients!
Noting:

• ∂w: derivative with respect to the parameter
• ∂x: derivative with respect to the input
• ℓ: loss function, typically ℓ(Ŷ) = ||Ŷ− Y||22 for a fixed Y (label associated to X)
• Γ(W, X) = ℓ(γW(X)) ∈ R
• G(W, X) = ℓ(gW(X)) ∈ R

we get
∇wΓ(W, X) = ∇ℓ(γW(X)) ·

[
∂wδW(εW(X)) + ∂xδW(εW(X)) · ∂wεW(X)

]T

∇wG(W, X) = ∇ℓ(g(W, X)) ·
[

∂wδW2(εW1(X))
∂xδW2(εW1(X)) · ∂wεW1(X)

]T

51

Tutorial 2: Learning morphological operators.
https://github.com/Jacobiano/morpholayers

52

https://github.com/Jacobiano/morpholayers

Conclusions on learning translation invariant morphological operators

• Training neural networks including morphological layers is a natural counterpart of
classical CNN training

• Tools already exist to experiment and discover new insights (we presented
Tensorflow + Morpholayers)

• The field is also related to algebraic problems in tropical algebra (equation solving,
matrix factorization...); studying these problems could lead to alternative training
strategies.

Note: Morphological neural networks can achieve much more than learning structuring
elements!
See [Charisopoulos and Maragos, 2017, Zhang et al., 2019, Blusseau et al., 2020,
Franchi et al., 2020, Maragos et al., 2021, Tsilivis et al., 2021].

53

Depthwise Morphological Layers

Towards convolutional layers

Fully connected layer: n(n + 1)
weights

Locally conn. layer: n(s + 1) weights Weight replication: s + 1 weights.
Convolutional layer.

54

Towards convolutional layers

Fully connected layer: n(n + 1)
weights Locally conn. layer: n(s + 1) weights

Weight replication: s + 1 weights.
Convolutional layer.

54

Towards convolutional layers

Fully connected layer: n(n + 1)
weights Locally conn. layer: n(s + 1) weights Weight replication: s + 1 weights.

Convolutional layer.

54

Convolutional Filter

Recall that strictly speaking, convolutional layers are a misnomer, since the operations
they express are more accurately described as cross-correlations.

Given an input image I ∈ RM×N and a filter (kernel) K of dimensions k1 × k2, the
cross-correlation operation is given by:

(I ∗ K)ij :=
k1−1∑
m=0

k2−1∑
n=0

I(i+m, j+ n)K(m,n), (3)

∀i ∈ 1, . . . ,M and j ∈ 1, . . . ,N Note that (I ∗ K)ij is a mapping RM×N 7→ RM×N

Classical Convolution is the same as cross-correlation with a flipped kernel. Anyways we
will use the term ”convolutional layers”.
Zero-Padding: In this talk, we consider zero-padding in the computation of convolution.
However in implementation this should be specified.

55

Example of Architecture

Figure 2: A level of typical architecture used in DL

56

Leaning morphological layers

Tutorial 3: Learning morphological layers in Fashion Mnist
https://github.com/Jacobiano/morpholayers

57

https://github.com/Jacobiano/morpholayers

Multivariate Convolutional Filter

CNNs consists of convolutional layers which are characterized by an input map I, a bank
of filters K and biases b.

In the case of images, we could have as input an image with height H, width W and C = 3
channels (red, blue and green) such that I ∈ RH×W×C. Subsequently for a bank of D filters
we have K ∈ Rk1×k2×C×D and biases b ∈ RD, one for each filter.

The output from this convolution procedure is as follows:

[(I ∗ K)ij]d :=
C∑
c=1

k1−1∑
m=0

k2−1∑
n=0

I(i+m, j+ n, c)K(m,n, c,d) + b(d) (4)

∀i ∈ 1, . . . ,M and j ∈ 1, . . . ,N. Note that [(I ∗ K)ij]d is a mapping RM×N×C 7→ RM×N×D

58

”Classical convolutional filters” in Multi-valued images

Figure 3: Note that operators combine multivalued information.

59

Example of Architecture

Figure 4: Architecture with two levels and a MLP for image classification

60

Downsampling operators

• Convolutions with strides: We move our window more than one element at a time,
skipping the intermediate locations. We refer to the number of rows and columns
traversed per slide as the stride.
The operator convolution with strides (s1, s2), is defined as
[(I ∗ K)ij]d,∀i ∈ s1 − 1, 2s1 − 1, 3s1 − 1, . . . ,M and ∀j ∈ s2 − 1, 2s2 − 1, 3s2 − 1 . . . ,N.

Figure 5: Example of a convolution with strides (2,2)

[(I ∗ K)ij]d with strides (s1, s2) is a mapping RM×N×C 7→ RM/s1×N/s2×C

61

Downsampling operators (Pooling Layers)

• Pooling Layers The function of the pooling layer is to progressively reduce the spatial
size of the representation to reduce the amount of parameters and computation in
the network. Like convolutional layers, pooling operators consist of a fixed-shape
window that is slid over all regions in the input according to its stride, computing a
single output for each location traversed by the fixed-shape window (sometimes
known as the pooling window)

MaxPooling[Iij]c :=
k1−1∨
m=0

k2−1∨
n=0

I(i+m, j+ n, c) (5)

AveragePooling[Iij]c :=
k1−1∑
m=0

k2−1∑
n=0

I(i+m, j+ n, c)/(k1 ∗ k2) (6)

∀i ∈ s1 − 1, 2s1 − 1, 3s1 − 1, . . . ,M and ∀j ∈ s2 − 1, 2s2 − 1, 3s2 − 1 . . . ,N
62

Downsampling operators (Pooling Layers)

• Pooling Layers The function of the pooling layer is to progressively reduce the spatial
size of the representation to reduce the amount of parameters and computation in
the network. Like convolutional layers, pooling operators consist of a fixed-shape
window that is slid over all regions in the input according to its stride, computing a
single output for each location traversed by the fixed-shape window (sometimes
known as the pooling window)

MaxPooling[Iij]c :=
k1−1∨
m=0

k2−1∨
n=0

I(i+m, j+ n, c) (5)

AveragePooling[Iij]c :=
k1−1∑
m=0

k2−1∑
n=0

I(i+m, j+ n, c)/(k1 ∗ k2) (6)

∀i ∈ s1 − 1, 2s1 − 1, 3s1 − 1, . . . ,M and ∀j ∈ s2 − 1, 2s2 − 1, 3s2 − 1 . . . ,N
62

Example Pooling

Figure 6: Example of Average and Max-Pooling with strides (2,2)

• Note that Pooling[(I ∗ K)ij]d with strides (s1, s2) is a mapping RM×N×C 7→ RM/s1×N/s2×C

• Note that Max-Pooling is a Flat Dilation with strides applied channel by channel (in
DL this is called depthwise).

63

Max-Pooling layers as dilations

Tutorial 4: Improving Max-Pooling layers using Dilations
https://github.com/Jacobiano/morpholayers

64

https://github.com/Jacobiano/morpholayers

Morphological Scale-Spaces:
Introduction to Invariance and
Equivariance

Morphological Scale-Spaces:
Introduction to Invariance and
Equivariance

Equivariance and Invariance

Invariance

• A property that is perserved under certain transformations on the data
• As an example, all of the images above represent the digit “five” although they differ
by scale and translation

• Formally, an operator ψ is invariant to a set of transformations {Lg|g ∈ G} if ∀g ∈ G

ψ ◦ Lg = ψ

65

Data Augmentation

sample from transformations training

model

• No theoretical assurance of invariance
• Needs more parameters

66

Group and Semigroup Actions

Definition
A tuple (G, ·) is a group if
1. ∀g,h, k ∈ G, (g · h) · k = g · (h · k);
2. ∃e ∈ G,∀g ∈ G , e · g = g · e = g;
3. ∀g ∈ G,∃g−1 ,g−1 · g = g · g−1 = e.

• A tuple (G, ·) that satisfies the first two
properties is called a semigroup.

• A group(semigroup) action is a family of
operators Lg : X→ X, g ∈ G that satisfies
Lg ◦ Lh = Lg·h or Lg ◦ Lh = Lh·g

Examples:

• Rotation:

• Translation:

• Scaling:

• Scaling and translation:

• Occlusion(semigroup):

• Shear:

67

Equivariance

translation

convolution

convolution

translation

Let I : Zd → R, h : Zd → R their convolution is given by

(I ⋆ h)(x) =
∑
y∈Zd

I(y)h(x− y) =
∑
y∈Zd

Rx(I)(y)h(−y)

where Rx(I)(y) = I(x+ y). We have Rz(I) ⋆ h = Rz(I ⋆ h).

68

Equivariance Formal Definition

Given an operator ψ : X→ Y and a (semi)group G, then we say that ψ is equivariant with
respect to G if there exists two actions Lg, L′g, g ∈ G, on X and Y, respectively, such that, for
all I ∈ X

ψ[Lg(I)] = L′g[ψ(I)]

• In the previous example, we saw that convolution is group equivariant with respect
to translations.

• The same is true for morphological dilations, erosions, openings and closings.
• We will also investigate two important equivarances of some morphological
operators, namely the equivariance to additive shift and to scalings.

69

Equivariance to Additive Shift

Morphological dilations, erosions, openings and closings are equivariant to additive
shifts, i.e. the operation of adding a constant to the output of a signal or image
(I+ t)(x) = I(x) + t, globally changing its brightness

• δ(I+ t) = δ(I) + t
• ε(I+ t) = ε(I) + t
• γ(I+ t) = γ(I) + t
• φ(I+ t) = φ(I) + t

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
4

2

0

2

4

6
signal
shifted signal

70

Invariance to Additive Shift

Morphological gradients and top-hats are invariant to additive shift

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
4

2

0

2

4

6
signal
dilation

(a) f and δ(f)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
4

2

0

2

4

6

shifted signal
dilation

(b) f+ t and δ(f+ t) = δ(f) + t

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

(c) δ(f+ t)− (f+ t) = δ(f)− f

71

Invariance to Additive Shift

(a) I (b) δ(I)− I (c) I− γ(I)

(d) I+ t (e) δ(I+ t)− (I+ t) = δ(I)− I (f) I+ t− γ(I+ t) = I− γ(I) 72

Tutorial 5: Learning Additive Shift Invariant Operators
https://github.com/Jacobiano/morpholayers

73

https://github.com/Jacobiano/morpholayers

Morphological Scale-Spaces:
Introduction to Invariance and
Equivariance

Morphological Scale-Spaces

Re-Scaling

• The action of scaling can be written as (R′sf)(x) = f(s−1x)
• When scaling is viewed as a group, we can have either zoom in(s > 1) or zoom
out(s < 1)

• When it is modeled as a semigroup, we consider on the case of zoom out
• Here, we model it as a semigroup case in order to model discrete scalings, in this
way, no information is created through interpolation

74

Scale Equivariance

translation
and

re-scale

ψ

ψ

translation
and

re-scale

75

Scale-Crosscorrelation [Worrall and Welling, 2019]

(I ⋆G h)(2−k, x) =
∑
l≥0

∑
y∈Z2

I(2−k−l, 2ky+ x)h(2−l, y),

sc
al
e

• The scale-crosscorrelation is equivariant with
respect to the semigroup of scalings

• It assumes that the input domain of I is
G = S × Z2, a semigroup of scales and
translations

• We use (morphological)scale-spaces to map I
to the adequate space

76

Scale-Spaces

• Here we consider as scale spaces, operators that commute with a scaling operator,

Tt[R′s(I)] = R′s[T t
sp
(I)]

for some integer p. This implies that they are scale-equivariant.
• An example is the Gaussian Scale-Space: TGt(I) = I ⋆ Gt, where
Gt(x) = (4πt)−1 exp

(
∥x∥2
4t

)
, t > 0

t

• We have TGt ◦ R′s = R′s ◦ TGt/s2

77

Scale-Spaces

• Usually obtained from PDEs, e.g., the Gaussian scale-space TGt [I](x, y) = u(t, x, y) is
obtained from {

ut = div(∇u) = uxx + uyy,
u(0, x, y) = f(x, y)

• Morphological scale-spaces arise from the Hamilton-Jacobi equation ut = H(x,∇u)
• Quadratic morphological scale-spaces come from{

ut = ±‖∇u‖2,
u(0, x, y) = f(x, y)

where a positive sign yields a dilation scale-space and a negative sign yields an
erosion scale-space.

78

Quadratic Morphological Scale-Spaces

Quadratic Dilations and Erosions

δt(I)(x) =
∨
y∈Rd

I(x− y)− c · ‖y‖
2

4t ,

εt(I)(x) =
∧
y∈Rd

I(x+ y) + c · ‖y‖
2

4t .

The parameter c is optimized along with the weights of the network.

Quadratic Openings and Closings

γt = δt ◦ εt,
φt = εt ◦ δt.

79

Properties

• Commutation with scaling:

δt ◦ R′s = R′s ◦ δt/s2
εt ◦ R′s = R′s ◦ εt/s2
γt ◦ R′s = R′s ◦ γt/s2
φt ◦ R′s = R′s ◦ φt/s2

• Composition:

δt ◦ δs = δt+s

εt ◦ εs = εt+s

γt ◦ γs = γt∨s

φt ◦ φs = φt∨s

80

Quadratic Dilations and Erosions

t

t

81

Quadratic Closings and Openings

t

t

82

Scale-Equivariant Networks

• Here we apply the morphological scale-spaces to create a scale-equivariant
architecture using the scale-crosscorrelation
[Sangalli et al., 2021, Worrall and Welling, 2019] operator

• The scale-crosscorrelation needs images defined on a space of scales
• We use the scale-spaces in order to lift images to those spaces

Input f : Z2 → Rnscale-space
. . .

scale cross correlations
batch normalizations

ReLUs

max
. . .

s
xy

83

Tutorial 6: Learning Scale Equivariant Operators
https://github.com/Jacobiano/morpholayers

84

https://github.com/Jacobiano/morpholayers

References i

Blusseau, S., Ponchon, B., Velasco-Forero, S., Angulo, J., and Bloch, I. (2020).
Approximating morphological operators with part-based representations learned by
asymmetric auto-encoders.
Mathematical Morphology-Theory and Applications, 4(1):64–86.

Cauchy, A. (1847).
Méthode générale pour la résolution des systèmes d?équations simultanées.
arXiv preprint arXiv:1608.03983.

Charisopoulos, V. and Maragos, P. (2017).
Morphological perceptrons: geometry and training algorithms.
In International Symposium on Mathematical Morphology and Its Applications to
Signal and Image Processing, pages 3–15. Springer.

85

References ii

Davidson, J. L. and Hummer, F. (1993).
Morphology neural networks: An introduction with applications.
Circuits, Systems and Signal Processing, 12(2):177–210.

Franchi, G., Fehri, A., and Yao, A. (2020).
Deep morphological networks.
Pattern Recognition, 102:107246.

Karaev, S. and Miettinen, P. (2019).
Algorithms for approximate subtropical matrix factorization.
Data Mining and Knowledge Discovery, 33(2):526–576.

86

References iii

Kirszenberg, A., Tochon, G., Puybareau, É., and Angulo, J. (2021).
Going beyond p-convolutions to learn grayscale morphological operators.
In International Conference on Discrete Geometry and Mathematical Morphology,
pages 470–482. Springer.

Maragos, P., Charisopoulos, V., and Theodosis, E. (2021).
Tropical geometry and machine learning.
Proceedings of the IEEE, 109(5):728–755.

Masci, J., Angulo, J., and Schmidhuber, J. (2013).
A learning framework for morphological operators using counter–harmonic mean.
In International Symposium on Mathematical Morphology and Its Applications to
Signal and Image Processing, pages 329–340. Springer.

87

References iv

Mondal, R., Dey, M. S., and Chanda, B. (2020).
Image restoration by learning morphological opening-closing network.
Mathematical Morphology - Theory and Applications, 4(1):87–107.

Robbins, H. and Monro, S. (1985).
A stochastic approximation method.
In Herbert Robbins Selected Papers, pages 102–109. Springer.

Sangalli, M., Blusseau, S., Velasco-Forero, S., and Angulo, J. (2021).
Scale equivariant neural networks with morphological scale-spaces.
In International Conference on Discrete Geometry and Mathematical Morphology,
pages 483–495. Springer.

88

References v

Tsilivis, N., Tsiamis, A., and Maragos, P. (2021).
Sparse approximate solutions to max-plus equations.
In International Conference on Discrete Geometry and Mathematical Morphology,
pages 538–550. Springer.

Worrall, D. E. and Welling, M. (2019).
Deep scale-spaces: Equivariance over scale.
arXiv preprint arXiv:1905.11697.

Zhang, Y., Blusseau, S., Velasco-Forero, S., Bloch, I., and Angulo, J. (2019).
Max-plus operators applied to filter selection and model pruning in neural
networks.
In International Symposium on Mathematical Morphology and Its Applications to
Signal and Image Processing, pages 310–322. Springer.

89

	Introduction
	Deep Learning in 15 minutes
	Mathematical morphology - Learning simple translation invariant operators
	Introduction to translation invariant morphological operators
	Learning structuring elements

	Depthwise Morphological Layers
	Morphological Scale-Spaces: Introduction to Invariance and Equivariance
	Equivariance and Invariance
	Morphological Scale-Spaces

