Fully connected layer: n(n + 1) weights Locally conn. layer: n(s + 1) weights Weight replication: s + 1 weights. Convolutional layer.

• Learning from data consists in using examples {(x k , y k )} 1≤k≤n ∈ (X , Y) to build a parametric map ϕ : X → Y that accurately predicts the value y n+1 for any new sample x n+1 , that is y n+1 ≈ ϕ(x n+1 )

• Learning from data consists in using examples {(x k , y k )} 1≤k≤n ∈ (X , Y) to build a parametric map ϕ : X → Y that accurately predicts the value y n+1 for any new sample x n+1 , that is y n+1 ≈ ϕ(x n+1 )

x k ϕ(x k ) = ŷk ∈ Y
What animal is it?

ϕ(x k )

Figure 1: Supervised classification

The pairs (x k , y k ) define the nature of the problem, supervised, denoising, segmentation, image transformation, and so on.

Deep Neural Network

• A Deep Neural Network with d layers and parameters θ, in its simplest form, is a compositional map that may be written as:

ϕ f;θ (x) : f (d) • f (d-1) • f (d-2) • • • • f 1 (x)
Usually, we use the term deep when d (number of layers) is larger than two.

Some references:

1. Deep Learning. https://www.deeplearningbook.org/ 2. Dive into Deep Learning. https://d2l.ai/

Dense Layer

• Dense layer , f (i) (x) := g (i) (W (i) x + b (i) ), with g (i) is a non-linear function (activation), and θ = [W (i) , b (i) ] (parameters)

• The weights

W (i)
p×k are multiplied with the inputs variables. • The bias b (i) k×1 can be interpreted as a threshold on the sum.

• The activation function somehow decides, depending on its input, if a signal (the neuron's activation) is produced.

• A dense layer is a parametric mapping R p → R k , where k is called the number of units.

• In the training process, we would usually tune the parameters θ so as to minimise the difference between the labels (ideal maps {y k }) and the outputs of the DNN (estimated maps { ŷk := ϕ f;θ (x k )}) at any training instance x k , such that the difference goes to zero as the number of samples n increases.

• For that, we define a loss function denoted by Loss : (Y × Y) → R + ), represents the difference between the labels and the DNN output.

• Usually, the training process, minimise the called empirical risk, by averaging the loss function on a large set of training examples

{(x k , y k )} θ := arg min n ∑ i=1 Loss(y k , ϕ f;θ (x k )) (1) 

Minimization by backpropagration and SGD

This minimization is usually done via stochastic gradient descend (SGD).

1. SGD starts from certain initial θ (Initialization).

2. Compute the loss function for some input examples (x). (Forward Pass)

3. The computation of gradient with respect to the loss function via the chain rule in networks, denoted by ∇ θ Loss(x). (Back-propagation)

4. Updates each parameter by moving it in the direction of the negative gradient, Loss(x), where η is called the learning rate. (GD update)

θ t+1 = θ t -η∇ θt
The term stochastic in SGD indicates that a random small number of training samples, called a batch is used in the gradient calculation. A pass of the whole training set is called an epoch. Usually, after each epoch, the error on a validation dataset is evaluated and when it stabilizes the training is complete.

In the case of neural networks, the loss function depends on each parameter θ i via the composition of several simple functions. In order to compute the gradient ∇ θ Loss(x) we will make extensive use of the vector chain rule, i.e, ∂ ∂x f(g(x)) = ∂f ∂g ∂g ∂x .

∇ θ Loss(y k , ϕ f,θ (x k )) = ∂Loss ∂ϕ f,θ (x k ) ∂ϕ f,θ (x) ∂θ (2)
In the case of neural networks, the loss function depends on each parameter θ i via the composition of several simple functions. In order to compute the gradient ∇ θ Loss(x) we will make extensive use of the vector chain rule, i.e, ∂ ∂x f(g(x)) = ∂f ∂g ∂g ∂x .

∇ θ Loss(y k , ϕ f,θ (x k )) = ∂Loss ∂ϕ f,θ (x k ) ∂ϕ f,θ (x) ∂θ (2)
In DL frameworks as Tensorflow, Pytorch, MxNet the computation of the gradient is performed by Automatic Differentiation

Gradient Descent: the intuition [START_REF] Cauchy | Méthode générale pour la résolution des systèmes d?équations simultanées[END_REF] Given a dataset X and a model with parameters θ, we would like to find the best values for θ such that minimize a given loss function Loss evaluated on X.

Algorithm 1 pseudocode gradient descent We note that in this first version, the gradient is calculated for the entire training set.

Stochastic Gradient Descent [START_REF] Robbins | A stochastic approximation method[END_REF] Algorithm 2 pseudocode for stochastic gradient descent 1: given initial learning rate η ∈ R and dataset X 2: initialize time step t = 0, parameter vector θ t=0 ∈ R P , 3: repeat 4: t=t+1 5:

X t = SelectBatch(X) Select a batch from data, whole data, only one, ...

6:

g t = ∇Loss i (X t , θ t-1 ) Return gradient via backpropagation 7: It can also be identified to a complete lattice (and this is not an approximation!)

θ t = θ t-
A partially ordered set (L, ≤) is a complete lattice if every subset A ⊆ L has

• a least upper bound (the supremum), denoted ∨ A,

• a greatest lower bound (the infimum), denoted ∧ A.

Example 1: (P(E), ⊆) for any set E

• ∨ P(E) = E • ∧ P(E) = ∅ • For any collection C = (A i ) i∈I of subsets of E, ∨ C = ∪ i∈I A i and ∧ C = ∩ i∈I A i .
A partially ordered set (L, ≤) is a complete lattice if every subset A ⊆ L has

• a least upper bound (the supremum), denoted ∨ A,

• a greatest lower bound (the infimum), denoted ∧ A.

Example 2: ([a, b] n , ⊆ n ), with a ≤ b ∈ R, n ∈ N * and ∀x, y ∈ [a, b] n , x ≤ n y ⇐⇒ x i ≤ y i ∀i ∈ {1, . . . , n} • ∨ [a, b] n = [b . . . b] T = b • ∧ [a, b] n = [a . . . a] T = a • ∨ j∈J x (j) = [∨ j x (j) 1 , . . . , ∨ j x (j) n ] • ∧ j∈J x (j) = [∧ j x (j) 1 , . . . , ∧ j x (j) n ]
Typically, 8-bits images: a = 0, b = 255 and n the number of pixels.

Vector spaces Complete lattices

• Closed under linear combinations • Closed under supremum and infimum

• Mappings commuting with linear combinations are the linear applications

f( ∑ i λ i x i ) = ∑ i λ i f(x i )
• Mappings commuting with the supremum are the dilations δ(

∨ i x i ) = ∨ i δ(x i )
• Mappings commuting with the infimum are the erosions.

ε( ∧ i x i ) = ∧ i ε(x i )
Let F be the set of functions mapping Z 2 to R, and L : F → F an operator.

Translation invariance

For any u ∈ Z 2 , the translation τu : F → F is the operator defined by: τuf :

x → f(x -u).
We say that L is translation-invariant if for any

u ∈ Z 2 , L • τu = τu • L.
The operator L is linear and translation-invariant if and only if there exists h ∈ F such that for any

f ∈ F ∀x ∈ Z 2 , Lf(x) = f * h(x) = ∑ y∈Z 2 f(y)h(x -y).
• The function h is the kernel representing L.

• In practice we use kernels with small support (e.g.: 3 × 3 pixels).

• This is the basis of linear filtering and in particular CNNs!

The operator L is linear and translation-invariant if and only if there exists h ∈ F such that for any

f ∈ F ∀x ∈ Z 2 , Lf(x) = f * h(x) = ∑ y∈Z 2 f(y)h(x -y). X Y W i j i j Y ij = ∑ -p≤k,l≤p X i+k,j+l • W k,l .

Max-plus convolution

A dilation δ that is translation invariant and verifies δ(λ + f) = λ + δ(f) for any image f and any constant λ, can be written as

∀x ∈ Z 2 , δf(x) = ∨ y∈Z 2 f(y) + b(x -y)
where b :

Z 2 → R is called structuring function or structuring element. X Y W i j i j Y ij = ∨ -p≤k,l≤p X i+k,j+l + W k,l .
Similarly, a translation invariant erosion ε such that ε(λ

+ f) = λ + ε(f), can be written as ∀x ∈ Z 2 , εf(x) = ∧ y∈Z 2 f(y) + b ′ (x -y). X Y W i j i j Y ij = ∧ -p≤k,l≤p X i+k,j+l + W k,l .

Vector spaces Complete lattices

Any translation invariant linear operator is a liner convolution with a kernel h (Riesz representation theorem)

Lf(x) = f * h(x) = ∑ y∈Z 2 f(y)h(x -y).
A translation invariant dilation is a max-plus convolution with a structurng element b

δf(x) = ∨ y∈Z 2 f(y) + b(x -y)
A translation invariant erosion is a min-plus convolution with a structurng element b

εf(x) = ∧ y∈Z 2 f(y) + b(x -y)
Morphological operators: dilations and erosions

Let (L, ∨ , ∧
) and (L ′ , ∨ ′ , ∧ ′ ) be two complete lattices.

Dilation

δ : L → L ′ is a dilation if and only if for any family

(x i ) i∈I ⊆ L, δ( ∨ i x i ) = ∨ ′ i δ(x i ).
Erosion ε : L → L ′ is an erosion if and only if for any family

(x i ) i∈I ⊆ L, ε( ∧ i x i ) = ∧ ′ i ε(x i ).

Morphological operators: openings and closings

From dilations and erosions, many morphorlogical operators can be defined, in particular openings and closings.

Opening

An opening γ : L → L is an operator which is

• Increasing: f ≤ g ⇒ γf ≤ γg • anti-extensive: γ ≤ id • idempotent: γ • γ = γ.

Closing

A closing φ : L → L is an operator which is

• Increasing: f ≤ g ⇒ φf ≤ φg • extensive: id ≤ φ • idempotent: φ • φ = φ.
Morphological operators: adjunction

Adjunction

An erosion ε : L → L ′ and a dilation δ : L ′ → L form an adjunction if and only if for any x ∈ L ′ and y ∈ L

δ(x) ≤ y ⇐⇒ x ≤ ε(y).
Properties:

• Any dilation δ : L ′ → L has a unique adjoint erosion ε : L → L ′ defined by ∀y ∈ L, ε(y) = ∨ {x ∈ L ′ , δ(x) ≤ y} • Any erosion ε : L → L ′ has a unique adjoint dilation δ : L ′ → L defined by ∀x ∈ L ′ , δ(x) = ∧ {y ∈ L, x ≤ ε(y)} • If (ε, δ
) is an adjunction, then δε is an opening and εδ is a closing.

Morphological operators: examples on images

We consider images defined on E ⊂ Z 2 with integer values in [0, 255]. Then for any structuring fonction b :

Z 2 → [-255, 0] ∩ N such that for any x ∈ E, ∨ y∈E b(y -x) = 0, the operators δ b and ε b defined by ∀x ∈ E, δ b f(x) = ∨ y∈E f(y) + b(y -x) and ∀x ∈ E, ε b f(x) = ∧ y∈E f(y) -b(x -y)
are adjoint dilation and erosion.

Cross flat structuring element:

b(x) = { 0 if x ∈ C -255 otherwise C = {(0, 0)} ∪ { (cos ( kπ 2 ) , sin( kπ 2 )), 0 ≤ k ≤ 3 } .

Input Erosion ε b

Dilation δ b

Morphological operators: examples on images

Cross flat structuring element:

b(x) = { 0 if x ∈ C -255 otherwise C = {(0, 0)} ∪ { (cos ( kπ 2 ) , sin( kπ 2 )), 0 ≤ k ≤ 3 } .

Input

Opening

γ b = δ b ε b Closing φ b = ε b δ b
Tutorial 1: Simple morphological operators using morpholayers. https://github.com/Jacobiano/morpholayers

Mathematical morphology -Learning simple translation invariant operators

Learning structuring elements

Learning structuring elements: a recurrent problem

Morphologists have been interested in learning structuring elements for a long time.

Yet, the problem is not solved! See [START_REF] Davidson | Morphology neural networks: An introduction with applications[END_REF][START_REF] Masci | A learning framework for morphological operators using counter-harmonic mean[END_REF][START_REF] Mondal | Image restoration by learning morphological opening-closing network[END_REF][START_REF] Kirszenberg | Going beyond p-convolutions to learn grayscale morphological operators[END_REF].

X Y W i j i j
Dilation layer

Y ij = ∨ -p≤k,l≤p X i+k,j+l + W k,l . • Fixed image X ∈ R m×n • Structuring element W ∈ R 2p+1×2p+1 , to learn • X : reshaped version of X, m × n lines, (2p + 1) 2 columns. Each line is the 2p + 1 × 2p + 1 neighbourhood of one pixel.
The dilation δ with structuring element W is seen as the mapping

δ W : X → X ∨ W defined by ( X ∨ W) i = ∨ 1≤l≤(2p+1) 2 Xi,l + W l , 1 ≤ i ≤ m × n
Learning problem: Given the input image X and an ouput image Y, find W such that δ W (X) = Y (or ≈ Y).

In our case X and Y are known and we want to solve δ W (X) = Y with respect to W. But X ∨ W is also a dilation of W, which we may note it δ X(W).

Its adjoint erosion ε

X : R m×n → R (2p+1) 2 is defined by ε X(Y) l = ( X * ∧ Y) l = ∧ 1≤i≤m×n Y i -Xi,l , 1 ≤ l ≤ (2p + 1) 2 ,
where X * = -XT . Therefore if Y is the dilation of X by some structuring element, W = ε X(Y) is such a structuring element. If not, it is the best under-approximation of a solution.

The learning problem may be formulated as minimizing a distance, e. g. the square Euclidean distance:

min W ||Y -δ W (X)|| 2 .
1. Is this a convex problem?

2. Can we solve it with gradient descent?

Gradient:

The function

δ : w ∈ R n → ∨ 1≤i≤n {x i + w i }
is differentiable almost everywhere with respect to w.

Gradient:

E 1 E 2 E 1 ∩E 2 e 1 e 2
Letting

E j =    w ∈ R n , x j + w j = ∨ 1≤i≤n {x i + w i }    ,
then δ is differentiable on the interior of E j and

∀w ∈ • E j , ∇wδ(w, x) = e j
where e j is the jth canonical base vector of R n (e ij = 1 if i = j and 0 otherwise).

Gradient:

E 1 E 2 E 1 ∩E 2 e 1 e 2 d {1,2}
Besides, let I ⊆ {1, . . . , n}. Then on

∩ i∈I E i \ ( ∪ j / ∈I E j ) d I = - ∑ i∈I e i
is a descent direction of δ.

The opening γ with structuring element W is seen as the mapping

γ W : X → δ W (ε W (X)) with ε W (X) i = ( X ∧ W * ) i = ∧ 1≤l≤(2p+1) 2 Xi,l -W T l , 1 ≤ i ≤ m × n and as before δ W (Y) i = ( Ỹ ∨ W) i = ∨ 1≤l≤(2p+1) 2 Ỹi,l + W l , 1 ≤ i ≤ m × n
(Here W T denotes column vector, like W. W is the reshaped version of a matrix A, and W T of A T ).

Learning problem:

Given the input image X and an ouput image Z, find W such that γ W (X) = Z (or ≈ Z).

Two alternative architectures:

• The one layer architecture: an opening layer paramterized by one structuring element W

γ W (X) = δ W (ε W (X))
• The two layers architecture: an erosion layer followed by a dilation layer with independent parameters W 1 and W

2 g W (X) = δ W2 (ε W1 (X))
where

W = [W 1 , W 2 ].
Two alternative gradients! Noting:

• ∂ w : derivative with respect to the parameter • ∂ x : derivative with respect to the input

• ℓ: loss function, typically ℓ( Ŷ) = || Ŷ -Y|| 2 2 for a fixed Y (label associated to X) • Γ(W, X) = ℓ(γ W (X)) ∈ R • G(W, X) = ℓ(g W (X)) ∈ R we get ∇ w Γ(W, X) = ∇ℓ(γ W (X)) • [ ∂ w δ W (ε W (X)) + ∂ x δ W (ε W (X)) • ∂ w ε W (X) ] T ∇ w G(W, X) = ∇ℓ(g(W, X)) • [ ∂ w δ W2 (ε W1 (X)) ∂ x δ W2 (ε W1 (X)) • ∂ w ε W1 (X)
] T

• Training neural networks including morphological layers is a natural counterpart of classical CNN training

• Tools already exist to experiment and discover new insights (we presented Tensorflow + Morpholayers)

• The field is also related to algebraic problems in tropical algebra (equation solving, matrix factorization...); studying these problems could lead to alternative training strategies.

Note: Morphological neural networks can achieve much more than learning structuring elements! See [START_REF] Charisopoulos | Morphological perceptrons: geometry and training algorithms[END_REF][START_REF] Zhang | Max-plus operators applied to filter selection and model pruning in neural networks[END_REF][START_REF] Blusseau | Approximating morphological operators with part-based representations learned by asymmetric auto-encoders[END_REF][START_REF] Franchi | Deep morphological networks[END_REF], Maragos et al., 2021[START_REF] Tsilivis | Sparse approximate solutions to max-plus equations[END_REF]. In the case of images, we could have as input an image with height H, width W and C = 3 channels (red, blue and green) such that I ∈ R H×W×C . Subsequently for a bank of D filters we have K ∈ R k1×k2×C×D and biases b ∈ R D , one for each filter.

The output from this convolution procedure is as follows:

[(I * K) ij ] d := C ∑ c=1 k1-1 ∑ m=0 k2-1 ∑ n=0 I(i + m, j + n, c)K(m, n, c, d) + b(d) (4) ∀i ∈ 1, . . . , M and j ∈ 1, . . . , N. Note that [(I * K) ij ] d is a mapping R M×N×C → R M×N×D

Downsampling operators

• Convolutions with strides: We move our window more than one element at a time, skipping the intermediate locations. We refer to the number of rows and columns traversed per slide as the stride.

The operator convolution with strides (s 1 , s 2 ), is defined as 

[(I * K) ij ] d , ∀i ∈ s 1 -1, 2s 1 -1, 3s 1 -1, . . . , M and ∀j ∈ s 2 -1, 2s 2 -1, 3s 2 -1 . . . , N.
[(I * K) ij ] d with strides (s 1 , s 2 ) is a mapping R M×N×C → R M/s1×N/s2×C
• Pooling Layers The function of the pooling layer is to progressively reduce the spatial size of the representation to reduce the amount of parameters and computation in the network. Like convolutional layers, pooling operators consist of a fixed-shape window that is slid over all regions in the input according to its stride, computing a single output for each location traversed by the fixed-shape window (sometimes known as the pooling window)

MaxPooling[I ij ] c := k1-1 ∨ m=0 k2-1 ∨ n=0 I(i + m, j + n, c) (5) AveragePooling[I ij ] c := k1-1 ∑ m=0 k2-1 ∑ n=0 I(i + m, j + n, c)/(k 1 * k 2 ) (6) ∀i ∈ s 1 -1, 2s 1 -1, 3s 1 -1, . . . , M and ∀j ∈ s 2 -1, 2s 2 -1, 3s 2 -1 . . . , N
• Pooling Layers The function of the pooling layer is to progressively reduce the spatial size of the representation to reduce the amount of parameters and computation in the network. Like convolutional layers, pooling operators consist of a fixed-shape window that is slid over all regions in the input according to its stride, computing a single output for each location traversed by the fixed-shape window (sometimes known as the pooling window) 

MaxPooling[I ij ] c := k1-1 ∨ m=0 k2-1 ∨ n=0 I(i + m, j + n, c) (5) AveragePooling[I ij ] c := k1-1 ∑ m=0 k2-1 ∑ n=0 I(i + m, j + n, c)/(k 1 * k 2 ) (6) ∀i ∈ s 1 -1, 2s 1 -1,
(I ⋆ h)(x) = ∑ y∈Z d I(y)h(x -y) = ∑ y∈Z d R x (I)(y)h(-y)
where R x (I)(y) = I(x + y). We have R z (I) ⋆ h = R z (I ⋆ h).

Equivariance to Additive Shift

Morphological dilations, erosions, openings and closings are equivariant to additive shifts, i.e. the operation of adding a constant to the output of a signal or image Re-Scaling

(I + t)(x) = I(x) + t, globally changing its brightness • δ(I + t) = δ(I) + t • ε(I + t) = ε(I) + t • γ(I + t) = γ(I) + t • φ(I + t) = φ(I) + t
c) δ(f + t) -(f + t) = δ(f) -f ( 
• The action of scaling can be written as (R ′ s f)(x) = f(s -1 x) • When scaling is viewed as a group, we can have either zoom in(s > 1) or zoom out(s < 1)

• When it is modeled as a semigroup, we consider on the case of zoom out

• Here, we model it as a semigroup case in order to model discrete scalings, in this way, no information is created through interpolation Scale-Crosscorrelation [START_REF] Worrall | Deep scale-spaces: Equivariance over scale[END_REF] The parameter c is optimized along with the weights of the network.

(I ⋆ G h)(2 -k , x) = ∑ l≥0 ∑ y∈Z 2 I(2 -k-l , 2 k y + x)h(2 -l , y),
Quadratic Openings and Closings

γ t = δ t • ε t , φ t = ε t • δ t .
• Commutation with scaling:

δ t • R ′ s = R ′ s • δ t/s 2 ε t • R ′ s = R ′ s • ε t/s 2 γ t • R ′ s = R ′ s • γ t/s 2 φ t • R ′ s = R ′ s • φ t/s 2
• Composition:

δ t • δ s = δ t+s ε t • ε s = ε t+s γ t • γ s = γ t∨s φ t • φ s = φ t∨s t t 81
Quadratic Closings and Openings t t

• Here we apply the morphological scale-spaces to create a scale-equivariant architecture using the scale-crosscorrelation [Sangalli et al., 2021, Worrall and[START_REF] Worrall | Deep scale-spaces: Equivariance over scale[END_REF] operator

• The scale-crosscorrelation needs images defined on a space of scales 

Figure 2 :

 2 Figure 2: A level of typical architecture used in DL

Figure 5 :

 5 Figure 5: Example of a convolution with strides (2,2)

  3s 1 -1, . . . , M and ∀j ∈ s 2 -1, 2s 2 -1, 3s 2 -1 . . . , N that is perserved under certain transformations on the data • As an example, all of the images above represent the digit "five" although they differ by scale and translation• Formally, an operator ψ is invariant to a set of transformations{L g |g ∈ G} if ∀g ∈ G ψ • L g = ψ Z d → R, h : Z d → R their convolution is given by

  f + t and δ(f + t) = δ(f)

  δ(I) -I (c) I -γ(I) (d) I + t (e) δ(I + t) -(I + t) = δ(I) -I (f) I + t -γ(I + t) = I -γ(I)

scale••

  The scale-crosscorrelation is equivariant with respect to the semigroup of scalings • It assumes that the input domain of I is G = S × Z 2 , a semigroup of scales and translations• We use (morphological)scale-spaces to map I to the adequate space• Here we consider as scale spaces, operators that commute with a scaling operator,T t [R ′ s (I)] = R ′ s [T t s p (I)] for some integer p. This implies that they are scale-equivariant.• An example is the Gaussian Scale-Space: T Gt (I) = I ⋆ G t , whereG t (x) = (4πt) -1 exp ( We have T Gt • R ′ s = R ′ s • T G t/s 2• Usually obtained from PDEs, e.g., the Gaussian scale-spaceT Gt [I](x, y) = u(t, x, y) is obtained from { u t = div(∇u) = u xx + u yy , u(0, x, y) = f(x, y)• Morphological scale-spaces arise from the Hamilton-Jacobi equation u t = H(x, ∇u)• Quadratic morphological scale-spaces come from{ u t = ± ∇u 2 , u(0, x, y) = f(x, y)where a positive sign yields a dilation scale-space and a negative sign yields an erosion scale-space. + y) + c • y 2 4t .

  

  M×N , periodic functions mapping R 2 to R or R 3 , or mapping Z 2 to R or R 3 )

	In this course:	
	Mathematical Morphology is seen as a non-linear counterpart of linear image processing.
	Tutorial 0: Deep Learning in 15 minutes. The set of images of size M × N pixels can be identified to a vector space https://github.com/Jacobiano/morpholayers Introduction to translation invariant Original Original (e.g. R But this is an approximation: 1 -ηg t 8: until stopping criterion is met 9: return optimized parameters θ i in practice, pixel values are non-negative and quantized (e.g. integer values in [0, 255] for morphological operators 8-bits images)
	Here, we draw m samples to calculate the gradient.	
	Gaussian blur Gaussian blur	Dilation Erosion

•

  We use the scale-spaces in order to lift images to those spacesInput f : Z 2 → R n scale-space

		. . .	max	. . .
		scale cross correlations	
		batch normalizations	
		ReLUs	
	s		
	y	x	

This is the goal of Morpholayers bit.ly/morpholayers.

Deep Learning in 15 minutes

Let (ε, δ) be an adjunction, y a fixed element and consider the equation

We know that if (E) has a solution, then x = ε(y) is a solution and it is the largest one. Indeed, if y = δ(z) for some z, then x = ε(y) = εδ(z) and therefore δ(x) = δεδ(z) = δ(z) = y.

Besides, y = δ(z) implies δ(z) ≤ y and therefore z ≤ ε(y) = x.

if (E) has no solution, then x = ε(y) is the best under-approximation of a solution:

Convexity:

Gradient:

where G ∈ {0, 1} m•n×(2p+1) 2 , and

Learning problem:

Given the input image X and an ouput image Z, find W such that γ W (X) = Z (or ≈ Z).

The problem can also be formulated with an auxiliary variable Y:

As both Y and W are unknown, the first equation is actually a matrix factorization problem in the max-plus algebra (see [START_REF] Karaev | Algorithms for approximate subtropical matrix factorization[END_REF] for algorithms).

The second equation can be seen as a criterion to choose among several approximate solutions of the first line.

Matrix factorization is a difficult problem. Why not try gradient descent?

Depthwise Morphological Layers Towards convolutional layers

Fully connected layer: n(n + 1) weights

Convolutional Filter

Recall that strictly speaking, convolutional layers are a misnomer, since the operations they express are more accurately described as cross-correlations.

Given an input image I ∈ R M×N and a filter (kernel) K of dimensions k 1 × k 2 , the cross-correlation operation is given by:

∀i ∈ 1, . . . , M and j ∈ 1, . . . , N Note that

Classical Convolution is the same as cross-correlation with a flipped kernel. Anyways we will use the term "convolutional layers". Zero-Padding: In this talk, we consider zero-padding in the computation of convolution. However in implementation this should be specified. • Note that Pooling[(

Example Pooling

• Note that Max-Pooling is a Flat Dilation with strides applied channel by channel (in

Group and Semigroup Actions Definition

• A tuple (G, •) that satisfies the first two properties is called a semigroup.

• A group(semigroup) action is a family of operators L g : X → X, g ∈ G that satisfies

Examples:

• Rotation:

• Translation:

• Scaling:

• Scaling and translation:

• Occlusion(semigroup):

• Shear:

Equivariance Formal Definition

Given an operator ψ : X → Y and a (semi)group G, then we say that ψ is equivariant with respect to G if there exists two actions L g , L ′ g , g ∈ G, on X and Y, respectively, such that, for all

• In the previous example, we saw that convolution is group equivariant with respect to translations.

• The same is true for morphological dilations, erosions, openings and closings.

• We will also investigate two important equivarances of some morphological operators, namely the equivariance to additive shift and to scalings.