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Forward scattering of a plane wave and of a spatially smoothed laser pulse in the
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We address the scattering of a high energy laser pulse on a large wavelength acoustic turbulence
of relevance for LMJ or NIF-class experiments. Both kinetic and hydrodynamic frameworks are
adopted and combined with a linearized description of the laser propagation. The resulting dis-
persion relations display important kinetic contributions to the growth of the Forward Brillouin
instability. Moreover, proof is made that the spatial incoherence often used in high energy laser
facilities are, for cold enough plasmas or in the multi-ion species case, not enough to reach full
control of the laser filamentation. Comparisons with experimental results and dedicated hydrody-
namic simulations confirm our results. The derived dispersion relations present unique tools for
assessing the propagation quality and energy deposition region of high energy laser pulses. They
also underline the importance of accounting correctly for kinetic effects, even in the millimeters and
nanoseconds scale of many ICF or high-energy-density experiments.

I. INTRODUCTION

High energy class laser facilities such as LMJ, NIF
or SG-III routinely bring matter under extreme condi-
tions, not only of interest for inertial confinement fu-
sion (ICF) [1–3], but also for high energy astrophysics
and high energy density physics [4]. Whether the laser
serves as a heat source or as a diagnostic, the accu-
rate prediction of its propagation remains crucial for
designing and conceiving experiments. To this end, a
large effort is made for understanding and mitigating the
wave mixing processes able to scatter a significant part
of the electromagnetic energy towards unwanted direc-
tions [5, 6]. A better control of the laser propagation
has been achieved experimentally by the use of Spec-
tral Dispersion (SSD) and Random Phase Plates (RPP)
optical smoothing techniques[7–10] and have been con-
sidered efficient to mitigate filamentation instability [11–
14], beam bending[15–18] and forward Brillouin. To date,
only stimulated backward Raman or Brillouin instabili-
ties [19, 20], cross beam energy transfer [21], two plasmon
decay [22, 23] or collective scattering [24, 25], are iden-
tified as critical issues in ICF, and remain active area of
research. However, the small mitigation of cross beam
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energy transfer [26] and backward Brillouin scattering
by laser smoothing techniques may presage similar ten-
dencies concerning the forward scattering. The latter
can significantly alter the laser beam propagation by in-
creasing the beam opening angle, thereby explaining the
small laser beam transmission measured in some experi-
ments [27].

To date, hydrodynamic codes remain the main tools
to describe most of ICF experiments, due to their rela-
tively affordable numerical cost. A first class of hydro-
dynamic codes, able to resolve the speckle scale struc-
ture, can describe different wave-mixing processes on a
reduced plasma using regular meshes [28–31]. However,
the Landau damping rate which is the main parameter
of wave-mixing processes in plasma, is reduced to an ad
hoc correction only valid in weakly-damped single-ion
species plasma. Moreover, the non-local electron heat
transport, thought to be important between each speck-
les during the heating phase [32, 33], is usually neglected.
The second class of hydrodynamic codes, able to describe
full scale ICF experiments on unstructured meshes, fur-
ther neglects the speckle scale structure. The laser beam
propagation is reduced to a ray-tracing scheme in which
most of wave mixing processes are omitted. Recently,
a ray-tracing algorithm has been proposed [34] to self-
consistently describe the cross beam energy transfer, the
Raman and Brillouin backward scatterings. In princi-
ple, adding the convective growth of the filamentation
and the forward Brillouin scattering are straightforward.
However, this scheme neglects the speckle scale struc-
ture and assumes linear convective rates of wave-mixing
processes based on a plane wave electromagnetic field.
Alas, the resulting micron-scale speckle dynamics that
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interweaves with the wave mixing processes, brings fur-
ther complexity to the theoretical and numerical analysis
[35]. Building a self-consistent set of equations, adapted
for Lagrangian hydrodynamic codes, that properly en-
compasses the filamentation instability, forward Brillouin
scattering and plasma smoothing effects [36–38], remains
a challenging task.

This publication ambitions are to convey new tools
able to address the spatial growth of an electromagnetic
scattered wave of wavevector and frequency close to the
RPP pulse’s and embedded in driven acoustic density
fluctuations. We first derive both the kinetic and fluid
forward scattering of a plane wave, limiting the study to
the spatial growth of stimulated forward Brillouin scat-
tering (FSBS) and the filamentation instabilities and pin-
point the importance of accounting for the kinetic plasma
response for understanding quantitatively the scattering
growth. From a simple model of RPP smoothed laser
beam ensues our dispersion relations able to predict the
growth of the forward scatter relevant for high energy
laser experiments. A comparison with dedicated hydro-
dynamic simulations and with an experiment conducted
at the LULI facility validate our predictions. The last
section gather our perspective and concluding remarks.

The SI unit system is used throughout this study while
dropping the Boltzmann constant and vectors are noted
in bold symbols.

II. SPATIAL GROWTH OF THE FORWARD
SCATTERING OF A PLANE WAVE

A. Fluid and kinetic general dispersion relation

The simplest way to obtain the growth of the forward
scattering of a light wave propagating in a plasma con-
sists in combining the perturbed Maxwell equations with
a linearized plasma response, either kinetic or fluid. We
aim at deriving and comparing in this section both frame-
works.

Following Refs. [11, 39], the perturbation of Maxwell
equations around the laser field, El, i.e. E = El + δE
and around the electron density at rest ne = ne0 + δne,
gives in the Fourier space (ωd,kd)

(ω2
d − ω2

pe − k2
dc

2)δE(ωd,kd) = ω2
0

δne
nc
⊗ El , (1)

where ωpe, ω0, nc and c are the plasma and laser fre-
quency, laser critical density and light speed in vacuum
respectively. Use has also been made of ⊗ which des-
ignates here a convolution product in the Fourier space.
Within the plane wave approximation, El = E0 cos(k0x−
ω0t), and we may write in the Fourier space,

FTω,k[E0 cos(k0x− ω0t)] =

[δ(ω − ω0,k− k0) + δ(ω + ω0,k + k0)]E0/2 , (2)

where FT[f(x, t)] designates the Fourier transform in
space and time as 1

(2π)2

∫
f(x, t)e−ikx+iωtdxdt. In this

section, k0 = k0x̂ is the x-aligned pump wavevector (x̂
is the unity vector along the x axis), thus giving

(ω2
d − ω2

pe − k2
dc

2)δE(ωd,kd) =
ω2

0

2
E0×[

δne
nc

(ωd − ω0,kd − k0) +
δne
nc

(ωd + ω0,kd + k0)

]
. (3)

The final dispersion relation can be obtained by com-
bining this equation with a linearized plasma response,
which, in the fluid framework [18] and for a plasma at
rest, reads

δne
ne0

(ωs,ks) =
−κk2c2s

k2
sc

2
s − ω2

s − 2iωsν

Akε0E0

ncTe
×

[δE(ωs − ω0,ks − k0) + δE(ωs + ω0,ks + k0)] . (4)

Here, κ = ZiTe/mic
2
s, cs ' [(ZiTe + 3Ti)/mi]

1/2, ν =
|ks|γ0cs and Ak, are respectively the sound speed, the
Landau damping frequency and a non-local thermal cor-
rection to the ponderomotive force[40],

Ak(u) =
1

2
+ Zi

(
0.074

u2
+

0.88

u4/7
+

2.54

1 + 5.5u2

)
,

u = |ks|λmfp

√
Zi . (5)

We also made use of Te/i, me/i Zi and λmfp, the elec-
tron/ion temperature and mass, ion charge number and
electron mean-free-path, respectively. For a multi-ion
species plasma, the smallest mean-free-path among the
ion species is used to compute Ak. The correction of
Ref. [40] requires to account for the collisional acoustic
damping rate which is negligible for the plasma param-
eters addressed here (Te & 1 keV, ne ≤ 1021 cm−3 and
I0 ≤ 1015W/cm2) or irrelevant (as for the filamentation
instability, Secs. III B and III C). Note that, for the pa-
rameters explored in this study, the non-local correction
remains non negligible and therefore essential to obtain
realistic predictions [41, 42].

In the following, the normalized acoustic wave Landau
damping rate, γ0,

γ0 =

√
2Ti
mic2s

=

 Z ′ (xi) + Ti

ZiTe
Z ′ (xe)

Z ′′ (xi) +
(

Ti

ZiTe

)3/2√
Zime

mi
Z ′′ (xe)

 ,
xe/i =

√
me/ic2s
2Te/i

, (6)

will be used under the assumptions ν/|k⊥|cs = γ0 � 1,
|k⊥|λDi � 1. λDe/i is the electron/ion Debye length and
Z is the plasma dispersion function [43].

Likewise, the kinetic counterpart of Eq. (4) has been
derived in Ref. [44] and prevails in the case of a multiple
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ion Maxwellian plasma. It writes

δn(ωs,ks)

ne0
=

ε0E0

2ncTe

Z ′(ζe)
2

∑
iZ ′(ζi)

ZiTe

Ti

Zini

ne

Z ′(ζe) +
∑
iZ ′(ζi)

ZiTe

Ti

Zini

ne

× [δE(ωs − ω0,ks − k0) + δE(ωs + ω0,ks + k0)] ,
(7)

ζe/i =
ω

|ks|

√
me/i

2Te/i
,

(8)

where we also assumed |ksλDi| � 1.
To unify the fluid and kinetic descriptions, we intro-

duce the parameters

αk =
−Z ′(ζe)

2

∑
iZ ′(ζi)

ZiTe

Ti

Zini

ne

Z ′(ζe) +
∑
iZ ′(ζi)

ZiTe

Ti

Zini

ne

, (9)

αf =
κc2s

c2s − v2
φ − 2ivφcsγ0

. (10)

where vφ = ωs/|ks| is the phase velocity. Both Eqs. (4)
and (7) recast as:

δne
ne0

(ωs,ks) = −αk/f (vφ)
Akε0E0

ncTe
×

[δE(ωs − ω0,ks − k0) + δE(ωs + ω0,ks + k0)] , (11)

Note that we have applied the non-local correction [Eq.
(5)] in the kinetic framework, as there is, to the best of
our knowledge, no better simple alternative. Originally
derived in the fluid framework, its proper kinetic coun-
terpart would require to start from Refs. [45, 46] and is
out of the scope of the present study. As the Ak-factor
is relevant in the fluid framework, choice has been made
to include it in the kinetic formalism for comparison pur-
poses. Yet, its use is questionable regarding the forward
Brillouin predictions.

From the combination of Eqs. (3) with (11), for D± =
(ωs ± ω0)2 − ω2

pe − (ks ± k0)2c2, ensues

D+D− = −ω2
0αk/fAk

δn0

nc
(D+ +D−) , (12)

with δn0/nc = (ne0/nc)ε0E
2
0/(2ncTe). Note that we ne-

glected the terms in δne(ωs± 2ω0). In the kinetic frame-
work, the above equation corresponds to Eq. (36) of Ref.
[47] in the limit |ksλDi| � 1. In the fluid framework,
similar equations were derived in Refs. [11, 36, 48].

B. Spatial growth of the filamentation and of the
forward Brillouin instability

Hence, making use of ω2
0 = ω2

pe+k2
0c

2, we may simplify
D± to leading order in ωs � ω0, giving

D± = −k2
sc

2 ± 2(ωsω0 − ks · k0c
2) . (13)

(a) Kinetic, Γ/k0 (b) Kinetic, <(ksx/k0)

(c) Fluid, Γ/k0 (d) Fluid, <(ksx/k0)

Figure 1. Kinetic (a,b) and fluid (c,d) resolution of Eq. (17)
for I0 = 6 · 1014 W.cm−2, 2π/k0 = 0.35µm, Te = 1 keV,
Ti = 300 eV in a H+ and ne0 = 0.1nc.

Equation (12) thus becomes

(ωsω0−ks·k0c
2)2 =

k2
sc

2

4

(
k2
sc

2 − 2ω2
0αk/f (vφ)Ak

δn0

nc

)
.

(14)
The spatial growth of the filamentation instability may

be recovered when ωs=0 and assuming ks = −iΓF x̂ +
ksŷ,

Γ2
F =

k2
s

4k2
0c

2

(
2ω2

0αk/f (0)Ak
δn0

nc
− k2

sc
2

)
. (15)

Note that for a single ion species, αf (0) = 1 and αk(0) =
ZiTe/Ti/(1+ZiTe/Ti) so that the kinetic and fluid frame-
works coincide in the limit ZiTe/Ti � 1.

As for the forward Brillouin scattering, corresponding
to the limit 1/D− � 1/D+, non vanishing acoustic wave
frequencies are obtained with phase speeds of the order
of the sound speed. We propose to address the spatial
growth of both the filamentation and forward Brillouin
instabilities by solving Eq. (14) for ks = ksxx̂ + ksyŷ,
and assuming ksy and ksx purely real and complex re-
spectively. Equation (14) then becomes(

vφ
ηc
− ksx
|ks|

)2

=
1

4

(
k2
s

k2
0

− 2αk/f (vφ)Ak
δn0

η2nc

)
, (16)

where η =
√

1− ne0/nc is the refraction index. Hence,
u = ksx/|ks| is solution of the following second order
polynomial equation,

u2 − 2
vφ
ηc
u+

v2
φ

η2c2
− 1

4

(
k2
s

k2
0

− 2αk/f (vφ)Ak
δn0

η2nc

)
= 0 .

(17)
Figures 1(a-d) display <(ksx) and the spatial growth

rate, Γ = −=(ksx), combining the unstable parts of the
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(a) Kinetic, Γ/k0 (b) Kinetic, <(ksx/k0)

(c) Fluid, Γ/k0 (d) Fluid, <(ksx/k0)

Figure 2. Kinetic (a,b) and fluid (c,d) resolution of Eq. (17)
for I0 = 6 · 1014 W.cm−2, 2π/k0 = 0.35µm, for a CH plasma
with nc = nH , Te = 700 eV, TC = TH = 500 eV and ne0 =
0.1nc. The value of the non-local correction [Eq. (5)], is
obtained with the carbon parameters, corresponding to the
smallest electron-ion mean-free-path. Use is made of the mean
charge number, mean mass number for calculating the sound
speed and normalized Landau damping rate cs and γ0.

two solutions of Eq. (17) as a function of the phase speed
and of the wavevector amplitude, in both the kinetic (a,b)
and fluid frameworks (c,d). The filamentation limit is re-
covered at vφ = 0 and care has been taken to verify that
both frameworks cöıncide, when Ti � ZiTe. Moreover, in
both calculations, <[ksx(vφ = 0)] is vanishing as expected
from the filamentation instability. As vφ increases, the
forward Brillouin instability prevails and reaches its max-
imum, for the kinetic mono-ion species case of Fig. 1(a),
around (|ks|/k0, vφ/cs) ' (0.03, 1). Interestingly, only in
the kinetic framework the forward Brillouin spatial max-
imum growth dominates the filamentation one, for the
plasma parameters addressed here. In the fluid frame-
work however both instability present a close growth rate
of ∼ 1.5 × 10−4k0 with much broader spectrum than in

the kinetic case.
The kinetic calculations allow to consider multiple ion

plasmas such as CH as illustrated in Fig. 2. In the
fluid framework, we are usually constrained to use the
averaged-ion approximation, which gives qualitatively
similar results than for Fig. 1(c) as a broad spectrum
is evidenced with no dominance of the Brillouin versus
the filamentation growth. This contrasts with the ki-
netic calculations of Fig. 2(a) where the FSBS is more
unstable than the filamentation instability. Moreover
the growth is peaked around 0.8cs (here cs is calcu-
lated on the averaged ion parameters) which is the phase
speed of the least-damped acoustic eigenmode, solution
of the free-field electrostatic Maxwellian dispersion rela-
tion [49, 50]. Notably, the forward Brillouin growth rate
is twice larger in the kinetic formalism compared to the
fluid description. This substantial difference, visible in
both the hydrogen and CH plasma, vanishes in the case of
the filamentation instability where both frameworks pre-
dict similar growth rates. This driven ion acoustic wave
(|vφ| > 0) is able to scatter the pump wave and mod-
ify its spatial spectrum. As evidenced in Figs. 1(a,c)
and 2(a,c), we expect a broadening of the plane wave
spatial spectrum resulting in an effective f-cone angle of
ks/k0 ∼ 0.03− 0.05, corresponding to ∼ 2− 3o.

Spatial smoothing techniques are commonly known to
restrain the role of some deleterious instabilities, such
as the laser filamentation, during the propagation of en-
ergetic laser pulses [7, 9, 51]. Indeed, as shown in this
section, the most unstable wavelength, regarding the fila-
mentation or the forward Brillouin instabilities, is of the
order of ten microns (for ∼ keV and 10% critical den-
sity plasmas), thus larger than the typical speckle size
of a few microns usually used in energetic laser facilities.
Hence, the plane wave approximation used in obtaining
Eq. (3) no longer holds and one might expect a more sta-
ble pump propagation. Yet, although extensively studied
in the fluid framework by mean of numerical or theoreti-
cal tools [13, 36–38, 52–55], to the best of our knowledge,
no analytical attempts were done to estimate the spatial
growth of the forward Brillouin scattering of a RPP pulse
in the kinetic framework. We propose in next section to
adapt the above analytical plane wave dispersion rela-
tions to tackle this issue.

III. FORWARD SCATTERING OF A SPATIALLY SMOOTHED LASER PULSE

A. Kinetic and fluid dispersion relations

The RPP beam model adopted here has been introduced in Refs. [56, 57] and presents an electric field, ERPP, of
the form

ERPP(t, r) =
E0

N

N∑
n,|k⊥|<km

cos(k0x− ω0t+ k⊥(n) · r⊥ + Φk⊥) , (18)
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where N is the number of diffracting elements and the phases Φk⊥ are independent random variables taking the values
0 or π with equal probability. For simplicity, we will assume a square phase plate that verifies k⊥(n) = 2nkm/N and n
an integer with n ∈ J−N/2, N/2K and km = k0/(2f]). Under these conditions, and for 〈w〉 representing the statistical
average of the random variable w, we remind that,

〈eiΦk1
+iΦk2 〉 = δ(k1 − k2) . (19)

Following the procedure introduced in Sec. II, the RPP electric field in Fourier space is

FTω,k[E0(t, r)] =
E0

2N

∑
k⊥

[eiΦk⊥ δ(ω − ω0,k− k⊥) + e−iΦk⊥ δ(ω + ω0,k + k⊥)] , (20)

where k⊥ = k0x̂ + k⊥ŷ and the sum runs over k⊥ for |k⊥| < km. Combined with the perturbed Maxwell equations
[Eq. (1)], we obtain

(ω2
d − ω2

pe − k2
dc

2)δE(ωd,kd) =
ω2

0

2N
E0

∑
k⊥

[
eiΦk⊥

δne
nc

(ωd − ω0,kd − k⊥) + e−iΦk⊥
δne
nc

(ωd + ω0,kd + k⊥)

]
. (21)

Likewise, the plasma linear response, either kinetic or fluid, involves a convolution product between E0(ω0,k⊥) and
δE(ωd,kd) which yields,

δne
ne0

(ωs,ks) = −αk/f (vφ)
Akε0E0

NncTe

∑
k⊥

[
eiΦk⊥ δE(ωs − ω0,ks − k⊥) + e−iΦk⊥ δE(ωs + ω0,ks + k⊥)

]
. (22)

When plugging Eq. (21) into (22), two sums appear, noted with two independent indices, k1 and k2. As for the
calculation of Eq. (12), we neglect the terms in δne(ωs±2ω0) that are considered too far from resonance. Introducing
D±(k1) = (ωs ± ω0)2 − ω2

pe − (ksx ± k0)2c2 − (ksy ± k1)2c2 and k1,2 = k0x̂ + k1,2ŷ, we obtain

δne
ne0

(ωs,ks) = −αk/f (vφ)Ak
δn0

nc

ω2
0

N2

∑
k1

∑
k2

[
eiΦk1

−iΦk2

D−(k1)

δne
ne0

(ωs,ks − k1 + k2) +
e−iΦk1

+iΦk2

D+(k1)

δne
ne0

(ωs,ks + k1 − k2)

]
,

(23)

In order to finalize the RPP dispersion relation, we will
proceed to a statistical averaged using Eq. (19). On the
right-hand-side, 〈exp(−iΦk1 + iΦk2)δne〉 can be recast as

〈exp(−iΦk1 + iΦk2)δne〉 = 〈exp(−iΦk1 + iΦk2)〉〈δne〉+C ,
(24)

where C is the correlations between exp(−iΦk1 + iΦk2)
and δne. The combination of Eq. (23) with (24) shows
that C ∝ δn0/nc and therefore, to leading order in
δn0/nc, C may be neglected when averaging Eq. (23),
giving

1 = −αk/f (vφ)Ak
δn0

nc

ω2
0

N

∑
k1

[
1

D−(k1)
+

1

D+(k1)

]
.

(25)

Provided the phase plate has a sufficient number of el-
ements (i.e. N is large enough), we shall replace the
discrete sum by a continuous one. To leading order in
ωs � ω0, and making use of the pump wave dispersion
relation, ω2

0 = ω2
pe + k2

0c
2 + k2

1c
2,

D±(k1) ' −k2
sc

2 ± 2(ωsω0 − ksxk0c
2 − ksyk1c

2) , (26)

so that,

1

N

∑
k1

1

D±(k1)
' 1

2km
P.V.

∫ km

−km

dk1

D±(k1)
,

' ∓ 1

4kmksyc2
ln

[
−k2

sc
2 ± 2(ωsω0 − ksxk0c

2 − ksykmc2)

−k2
sc

2 ± 2(ωsω0 − ksxk0c2 + ksykmc2)

]
.

(27)

We introduced, P.V.
∫
f , the principal value of

∫
f . The

combination with Eq. (25) yields

−4kmksyc
2

αk/f (vφ)Akω2
0δn0/nc

' ln

[
(k2
sc

2 − 2ksykmc
2)2 − 4(ωsω0 − ksxk0c

2)2

(k2
sc

2 + 2ksykmc2)2 − 4(ωsω0 − ksxk0c2)2

]
.

(28)

In order to avoid the branch cuts of the complex loga-
rithm, it is convenient to recast the dispersion relation
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(a) Kinetic, log10(Γ/k0) (b) Kinetic, <(ksx/k0)

(c) Fluid, log10(Γ/k0) (d) Fluid, <(ksx/k0)

Figure 3. Kinetic (a,b) and fluid (c,d) resolution of Eqs. (29)-
(31) for the same parameters than in Fig. 1 assuming a RPP
beam given by Eq. (18) with f] = 8. The thermal correction
of Eq. (5) verifies Ak ≤ 0.65 for ksy ≥ 0.1k0.

into

u2 − 2
vφ
ηc
u+

v2
φ

η2c2
− 1

4
A = 0 ,

(29)

A =
1

1−B

[(
k2
s

|ks|k0
− ksy
|ks|f]

)2

−
(

k2
s

|ks|k0
+

ksy
|ks|f]

)2

B

]
,

(30)

B = exp

(
−4kmksyc

2

αk/f (vφ)Akω2
0δn0/nc

)
.

(31)

Note that the dependence of A on ksx may be neglected
(provided |ksx| � |ks|) so that u = ksx/|ks| may verify
a second order polynomial equation given by Eq. (29)
with

A ' 1

1−B

[(
|ks|
k0
− 1

f]

)2

−
(
|ks|
k0

+
1

f]

)2

B

]
, (32)

B ' exp

(
−4km|ks|c2

αk/f (vφ)Akω2
0δn0/nc

)
. (33)

The only difference between the plane wave and the RPP
dispersion relations holds in the last term of the l.h.s. of
Eqs. (17) and (29). As expected, the latter coincide when
a Taylor expansion of A [Eq. (32)] to first order in 1/f]
is done, i.e. for a vanishing RPP beam spectral width,
2km = k0/f]. Care has been taken to verify that the
RPP dispersion relations with f] ≥ 50 yield very similar
results than Eq. (17). We also verified that extracting
ksx from a numerical resolution of Eq. (25) also yields
similar results for 100 phase plate elements (i.e. when

(a) Kinetic, log10(Γ/k0) (b) Kinetic, <(ksx/k0)

(c) Fluid, log10(Γ/k0) (d) Fluid, <(ksx/k0)

(e) lineout at vφ = 0

0.00 0.05 0.10 0.15
ksy/k0 

0

2

4

6

Γ/
k 0

1e−4
kinetic
fluid

Figure 4. Kinetic (a,b) and fluid (c,d) resolution of Eqs. (29)-
(31) for the same parameters than in Fig. 2 assuming a RPP
beam given by Eq. (18) with f] = 8. The value of the
non-local correction [Eq. (5)], is obtained with the carbon
parameters, corresponding to the smallest electron-ion mean-
free-path and verifies Ak ≤ 1.4 for ksy ≥ 0.1k0. Use is made
of the mean charge number and mean mass number for calcu-
lating the sound speed and the normalized Landau damping
rate cs and γ0. Panel (e) corresponds to lineouts at vφ = 0 of
(a) and (c).

the sum runs over N = 100 regularly spaced elements of
[−km, km]).

The solutions of the RPP dispersion equations (29)-
(31) stem from a non linear algebraic solver, or using a
dichotomous algorithm applied at fixed vφ and starting
from low values of |ks|. The initial guess is seeded by
the approximated solutions of Eqs. (29), (32) and (33),
yielding convergence toward the exact solution. More-
over, if kx(ωs, ky) is a solution of Eq. (28), the symme-
try properties of our free-drift velocity dispersion rela-
tions imply that −kx(−ωs, ky) and k?x(−ωs, ky) are also
solutions (where z? is the complex conjugate of z), there-
fore helping to constrain the numerical solver to con-
verge toward a single eigenmode. The spatial growth
rate and wavevector longitudinal component are illus-
trated in Figs. 3 and 4 with identical plasma and laser
parameters than in Figs. 1 and 2, respectively and with
f] = 8. Finally, the assumption made in deriving Eqs.
(32)-(33) (|ksx| � |ks|) seems, for the parameters of in-
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terest here, scarcely verified (see Figs. 3 and 4 where for
ksy/k0 = 0.4, |ksx|/k0 reaches ∼ 0.1).

Hence, regarding the FSBS, no simple stability crite-
rion could be extracted from our dispersion relation such
as the one proposed in Refs. [13, 36, 38]. Figures 3(b,d)
and 4(b,d) also suggest that, in contrast with the plane
wave case, the FSBS growing of a RPP beam induces
acoustic fluctuations which propagating direction may
have a finite x component.

B. Filamentation of a spatially smoothed beam

Regarding the H+-plasma case (Fig. 3), the propaga-
tion of the smoothed beam is, as expected [9, 14, 51], sta-
ble regarding the filamentation instability, i.e. no growth
is obtained at vφ = 0. In that case, Eq. (29) simplifies
to u2 = A/4 which can be recast into a second order
polynomial equation in k2

sx,

k4
sx + z2k

2
sx + z0 = 0 ,

z2 = 2k2
0

(
k− − k+B

k0(1−B)
− 2

)
,

z0 = k2
0

k2
− − k2

+B

(1−B)
,

k± =
k2
sy

k0
± ksy

f]
. (34)

The unstable solution of the above equation is purely
imaginary and corresponds to the spatial growth rate of a
spatially smoothed laser filamentation instability. Physi-
cally, the speckle typical size, f]λ0, remains smaller than
the most unstable filamentation wavelength [∼ 10µm in
Fig. 1(a)] thus preventing the transverse standing elec-
trostatic wave to grow. The artificial increase of f] in
excess of ∼ 25, i.e. yields a finite value of the filamen-
tation spatial growth rate as the speckle size starts to
be comparable with the plane wave most unstable wave-
length. For more moderate f]-numbers, the propagation
of a laser may also remains filamentation-unstable, de-
spite the use of random phase plates, in the case of a
multi-ion species plasmas such as in Fig. 4. Although
less filamentation unstable than in the plane wave case
[see Figs. 2(a,c) and 4(e)], the RPP beam has a finite
kinetic growth rate maximized at Γ ∼ 7 × 10−4k0 and
|ks| ∼ 10−2k0. Hence, the estimated gain of ∼ 12 for a
millimeter of propagation (with a wavelength of∼ 35µm)
indicates that keV-range plasmas may produce signifi-
cant RPP-laser filamentation, at least in the multi-ion
species case. Notably, another filamentation mode exists
around the speckle size |ks| = 2k0/(2f]) = 0.125k0, albeit
with a smaller growth rate Γ ∼ 2× 10−4k0.

Unfortunately, the use of random phase plates seems to
completely stabilize the filamentation in the fluid frame-
work [see dashed line, Fig. 4(e)], demonstrating that
hydrodynamic codes fail to capture correctly the laser fil-
amentation in a multi-ion species plasma. Additionally,

(a) Setup

RCF stack

gas jet

proton 
target

compressed beam

target

nozzle
interaction 
beamx

yz

(b) Experimental RCF

Figure 5. (a) Sketch of the experimental setup. (b) Experi-
mental RCF (obtained using 3 MeV protons) from two shots
of the LULI experiment, at 0 and 0.75 ns after the maximum
intensity reaches the center of the plasma slab. The scale in-
dicated at the bottom of the left image applies to both and
refers to the target plane.

the kinetic instability characterized in Fig. 4(e) is mainly
thermal as it is completely stabilized when replacing Ak
in Eq. (34) by its collisionless value, 1/2.

C. Comparison with proton radiographs of a RPP
pulse propagating in a helium gaz jet

A low temperature plasma may also be filamentation-
unstable to the propagation of a RPP pulse. For a single
ion species plasma, and provided ZiTe � Ti, we recall
that αf (0) = 1 ' αk(0), for this reason, the filamenta-
tion growth coincides in both kinetic and hydrodynamic
frameworks. Hence, restricting, in this section, the anal-
ysis to the fluid plasma response, we aim at comparing
our predictions with the laser filamentation observed ex-
perimentally at relatively low temperature.

The experiment, detailed in Ref. [14], uses a tightly fo-
cused (f] = 3) RPP pulse, therefore probably out of reach
of our dispersion relations where we neglected diffrac-
tion on the pump wave envelope [in Eq. (18)]. Hence
the choice has thus been made to lean on a longer fo-
cus experiment performed using the LULI 100TW laser
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(a) Te(t) and I0(t) (b) Γ× L

−1.5−1.0−0.50.0 0.5 1.0 1.5
t (ns)

0

50
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T e
 (e
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1012

1013

I 0
 (W
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m
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Figure 6. (a) Temporal evolution of the electron tempera-

ture from the resolution of (3/2)nedtTe = νBI02−t
2/τ2/c with

τ = 300 ps and Te(−1.5 ns) = 10 eV (left axis, black). The
intensity evolution is superimposed as a red line (right axis).
(b) Filamentation growth rate corresponding to the unsta-
ble solution of Eq. (34) normalized to the plasma length
L for vφ = 0 and in the fluid framework [Eq. (10)] with
I0 = 3.8 × 1013 W/cm2, 2π/k0 = 1µm, f] = 24, Zi = 2,
A = 4, ne = 1019 cm−3, L = 1 mm and ZiTe/Ti = 5. The
growth rate maximum is superimposed as a black line in the
RPP case and as a dashed line in the plane wave case [Eq.
(17)].

facility at the fundamental wavelength of 1.053 micron.
The beam after amplification is split in several beams:
a vacuum compressed beam (compressed beam in Fig.
5(a), with a duration of 350 fs) used for the production
of protons as a diagnostic [58], and an interaction beam
(interaction beam in Fig. 5(a), uncompressed, τ = 300
ps HWHM). The interaction beam is linearly polarized
in the plane (y,z). As shown in Fig. 5(a), both beams are
focused at 90o. An optical time slide on one beam allowed
to set a variable delay between the compressed and the
interaction beam with sub-ps precision. The compressed
beam was focused, using an f/24 (f = 2.1 m, f] = 24)
lens coupled to a RPP, producing an intensity at focus
of I0 = 3.8×1013 W/cm2, onto a L = 1 mm diameter su-
personic Helium gas jet corresponding to ne/nc ' 10−2

for a fully ionized plasma. Proton radiography of the
interaction was performed using a laminar beam of pro-
tons generated by the compressed beam. To this end,
the latter was focused (with a FWHM of ∼ 6 microns) to
a peak intensity of 4 × 1019 W/cm2 on 10 microns thick
Au foils positioned at d = 3.5 mm away from the cen-
ter of the gas jet. This produced [59] a beam of laminar
protons having a broad energy spectrum extending here
from 0 to 15 MeV. The protons originate from hydro-
genated contaminants on the target surface. They were
detected downstream, at D = 43.5 mm from the gas jet,
by a stack of radiochromic films (RCFs) [60] protected
by a 14µm-thick Al range filter. The resulting mag-
nification of the proton projection onto the RCFs was
M = (d + D)/d = 13.1. RCFs are preferentially sensi-
tive to penetrating protons, which have a large specific
energy-loss and produce a high contrast image. Since
we used a stack of films, and since protons have a well-
defined range in matter, that stack arrangement there-
fore allowed a coarse resolution in proton energy, each

film corresponding to a range, and thus a particular pro-
ton energy (determined using the code SRIM [61]). The
spatial resolution of the proton radiography is given by
the virtual source size which is ∼ 5 microns [62] and the
temporal resolution is given by the time required by the
protons to cross the interaction zone, i.e. ∼ 4 ps for 3
MeV protons. The different times shown in Fig. 5(b)
correspond to different shots.

An estimate of the plasma temperature evolution
may be obtained easily in this low temperature and
low density experiment (Te . 250 eV, ne/nc = 10−2)
by neglecting the electron thermal diffusion and ac-
counting only for the inverse Bremsstrahlung laser ab-
sorption calculated on the transversely averaged in-
tensity (neglecting the speckle-scale intensity fluctua-
tions). The resulting electron temperature evolution,

(3/2)nedtTe = νBI02−t
2/τ2

/c (where νB ∝ T
−3/2
e is the

bremsstrahlung laser absorption coefficient) has been re-
solved and is illustrated in Fig. 6(a), showing that Te .
150 eV is obtained before the pulse maximum intensity,
i.e. for I . 3× 1013 W/cm2. The colormap of Fig. 6(b)
illustrates the RPP filamentation spatial growth normal-
ized to the plasma length as a function of wavelength
and time, for the experimental parameters, intensity and
electron temperature evolution discussed above [see Fig.
6(a)]. Moreover, the RCF signal late-time evolution sug-
gests a ratio ZiTe/Ti ' 4.5 as discussed in appendix.
Hence, the RPP growth rate maximum (black plain line)
demonstrates that a reasonable gain is obtained, ΓL & 3,
when t ' −0.35 ns, I ∼ 1013 W/cm2 and Te . 80 eV.
As soon as t > −0.2 ns, the density fluctuations should
cease growing as the gain drops below unity and subse-
quently be damped by the Landau process over a few
(γ0cs2π/λs)

−1 ∼ 1 ns. This suggests that the filamenta-
tion grows and saturates rapidly before the most ener-
getic part of the beam reaches the center of the gaz jet,
leading to density fluctuations of wavelength λF ∼ 60µm
and measurable for t > 0 ns. The resulting electrostatic
field is able to deflect the probing protons causing the
proton dose modulation illustrated in Fig. 5(b). The es-
timated experimental wavelength of ' 77µm, obtained
by maximizing the Fourier transformed experimental sig-
nal over a central lineout, fairly agrees with our RPP
dispersion relations (see Fig. A1(a) in appendix). Note
that the textbook plane wave filamentation dispersion re-
lations [Eq. (17) for vφ = 0] predict a smaller dominant
wavelength of λF . 35µm (when Te . 80 eV), illustrated
as a dashed black line in Fig. 6(b). A large disagreement
of the RPP and plane wave most unstable wavelengths
is obtained when λs > f]λ0 = 24µm [in Fig. 6(b), as
discussed in Sec. III B], demonstrating the significance
of the random phase plate dispersion relations regarding
realistic conditions [63].
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D. Forward Brillouin scattering of a spatially
smoothed beam

Figures 3 and 4 show also significant differences com-
pared to the propagation of a plane wave regarding the
forward Brillouin scattering. Either fluid or kinetic, for
single or multiple ion species, the spatial growth rate ap-
pears much more peaked around vφ ' cs [or vφ ' 0.8cs
for the kinetic CH case, Fig. 4(a)] and the propagation of
the RPP pulse more unstable [Γ/k0 ∼ 0.1, Fig. 3(a) and
Fig. 4(a)] than for a plane wave case [Γ/k0 ' 2 × 10−4,
Fig. 1(a)]. Therefore degrading the pump spatial co-
herence decreases or potentially suppresses the filamen-
tation instability, however, at the expense of favoring the
spatial growth of the forward Brillouin instability. The
forward scattering of a RPP beam ensues from the su-
perposition of all the pulse spectral contributions, the
final superposition of acoustic waves may be construc-
tive or destructive depending on the wavevector direction
and amplitude relative to the plasma resonance [charac-
terized by αk/f , Eqs. (9)-(10)]. As a consequence, the
spatial growth consists in a succession of peaks aligned
around vφ ' cs and spread from |ks| = 0 to a fraction of
k0. The separation of these peaks [a few 10−2k0 for Fig.
3(a) and ∼ 10−1k0 for 4(a)], depends on the propagation
properties of the driven acoustic waves and the plasma re-
sponse such as the width of the resonance. Figures 3(a,c)
and 3(b,d) are very similar demonstrating that, even for
moderate values of ZiTe/Ti ≥ 3, the fluid framework sat-
isfactorily captures the spatial growth of the FSBS in the
single ion species case and that using the non-local cor-
rection of Eq. (5) is justified regarding the kinetic results
provided we may neglect the Coulomb collisions contri-
bution to the acoustic wave damping. In the multi-ion
species case however [see Figs. 4(a,c)], twice more un-
stable peaks are evidenced in the fluid (c) than in the
kinetic (a) framework, whereas both approaches exhibit
similar growth rate maximums.

The quality of the RPP beam propagation can be esti-
mated by comparing the spectral width of the growth
rate with the beam aperture in vacuum km/k0 =
1/(2f]) ' 0.062. For the H+-plasma, the range 0.05 .
k/k0 . 0.4 is unstable thus leading to the increase of
the f]-cone angle from 1/(2f]) = 3.6o to ∼ 21o. Hence,
a substantial modification of the beam properties could
appear during its propagation thus affecting the energy
deposition. Regarding the CH-plasma, one may notice
that unlike for the single ion case, the peaks are located
around vφ = 0.8cs, implying a lower acoustic frequency
(than for the single ion species case or than the fluid cal-
culations) and therefore less red-shifting of the scattered
wave.

The two and six unstable peaks shown in Figs. 4(a)
and (c) demonstrate that the density fluctuation should
present discrete growing modes corresponding to ∼
(16o, 21o) and ∼ (8o, 11o, 14o, 17o, 19o, 21o) light scatter-
ing angles, respectively. Although a similar maximum
growth rate is predicted by the kinetic and fluid calcu-

lations, different scattering directions are obtained. The
fluid framework suffers, in some cases, from an ill-forecast
of the scatter spectral properties.

IV. COMPARISON WITH HYDRODYNAMIC
SIMULATION

In this section we aim at validating the derived fluid
spatial growth rate through a comparison with hydrody-
namic simulations. Regarding the kinetic counterpart,
the corresponding full ”particle-in-cell” simulations re-
main out of reach of present super-computers and are
therefore out of the scope of the present manuscript.

We thus performed two hera hydrodynamic simula-
tions with a paraxial resolution of the RPP beam prop-
agation [30]. A 2D domain of size Lx × Ly = 2000 ×
512µm2 is used. A RPP beam propagating in the x-
direction is injected at the left boundary, xBC = 0, with
a λ0 = 0.35µm-wavelength and an averaged intensity of
I0 = 6 × 1014 W/cm2. The focal spot is located at the
center of the simulation domain, xfoc = 1000µm with
a focal number of f] = 8, and a spatial and temporal
envelope following

ĝ(y) = exp(−|y|o/2σog) , (35)

h(t) = min(t/τh, 1) , (36)

respectively with τh = 1 ps, o = 5 and σg = 200µm.
For sake of simplicity and comparison purposes, the
bremsstrahlung energy deposition is neglected and the
non-local thermal correction of Eq. (5) is accounted for.
Moreover a barotropic gas is assumed with an electron
density of ne = 0.1nc and outflow boundary for the fluid.
The mesh size is dx = 0.325µm, dy = 0.0625µm with
a Landau acoustic damping rate calculated on Eq. (6)
with the initial plasma parameters. The acoustic Landau
damping operator is computed transversely to the laser
direction in the Fourier space, as introduced in Ref. [64],
described in [63] and used in [65–67]. In order to focus
on the FSBS, we do not account for any back-scattering
in our simulations.

As illustrated in Figs. 7(a,d), the RPP beam presents
a cone angle increase as soon as x & 500µm at t = 100 ps
(and later on). Attributed to the FSBS, its growth may
be characterized and compared to our predictions.

The density fluctuation spectrum [Fig. 7(b) for the
case Ti = 300 eV] is peaked along the acoustic mode
(ω = kycs as a black solid line) as expected. We may
extract an effective spatial growth rate from our numer-
ical results by proceeding to the spatial (in the y direc-
tion) and temporal Fourier transform of two lineouts of
the density fluctuations, at x = x1 and x2 and following,

Γ =
1

2(x2 − x1)
ln

[
|δne(x2, ky, ω)|2

|δne(x1, ky, ω)|2

]
, (37)

over a time range during which the system does not
evolve much. For the parameters addressed here, the
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(a) log10(I [W.cm−2]) (b) log10(|δne(ω, ky, x2)/nc|2) (c) Γ/k0

(d) log10(I [W.cm−2]) (e) Theory, log10(Γ/k0) (f) Γ/k0

Figure 7. Simulation results for the H+ plasma with ne = 0.1nc, Te = 1 keV and Ti = 300 eV (a,b,c) and Ti = 100 eV (d,e,f).
(a,d) Intensity profile at t = 100 ps and (b) spatio-temporal spectrum at x2 = 250µm of δne(ω, ky, x2). (c,f) Effective spatial
growth rate extracted from the numerical results between 25 and 135 ps (c) and between 40 and 135 ps (f) following Eq. (37)
with (x1, x2) = (200, 300)µm (c) and (x1, x2) = (50, 150)µm (f). The corresponding theoretical growth rates as discussed in
Sec. III A are illustrated in Fig. 3(c) and panel (e) for T i = 300 and 100 eV, respectively. The acoustic eigenmode ω = kycs is
superimposed on (b,c,f) as black plain lines.

laser propagation seems to reach a steady state in a few
10 ps, hence the temporal Fourier transform has been per-
formed for t ∈ [25, 135] ps and [40, 150] ps for Ti = 300
and 100 eV, respectively. Hence, Figs. 7(c,f) illustrate
for both cases the effective spatial growth rate in the
plane (ω, ky) indicating stability around ω = 0, i.e. no
filamentation instability, consistently with the theoreti-
cal predictions and with Figs. 7(a,d). Interestingly, the
growth rate along the acoustic mode, marked by the black
plain line ω = kycs in Fig. 7(c), exhibits a succession of
peaks for ky > 0.2k0 consistently with our theory [Fig.
3(c)]. Their separation of ∼ 0.05k0 correctly agrees with
Fig. 3(c). Moreover, they extend from ky ∼ 0.2k0 to
0.5k0, therefore exceeding the initial transverse spectral
width of k0/2f] ' 0.062k0 and explaining the large cone
angle observed for x > 500µm in Fig. 7(a) of ∼ 0.2k0

(i.e. 11o). When Ti = 100 eV, the theoretical predic-
tions [Fig. 7(e)] yields only one unstable peak located
between ∼ 0.2k0 and ∼ 0.5k0. Likewise, a single large
cluster (between ky/k0 ∼ 0.2 and 0.5) may be recognized
in Fig. 7(f) with a dominant feature around ky ∼ 0.4k0,
as predicted by our dispersion relations.

Regarding the density fluctuations growth level, the
100 − 150µm-long and 105 − 110 ps-long window over
which the Fourier transform has been performed for reso-
lution purposes, does not allow a quantitative comparison
with the theoretical predictions. By contrast, the scat-
tered field growth is more suitable to quantitative com-
parisons. Indeed, the linearized paraxial propagation of

the perturbed fields δE, when accounting for diffraction,
verifies

∂xδE(kd, t) +
ik2
d

2k0
δE(kd, t) = − i

2π

k0n0

2nc
E0⊗

δne
ne

. (38)

For illustration purposes, we will model the spatial
growth rate spectrum by a succession of Dirac functions,
so that

δne
ne

(ks) '
δn0

n0

∑
kc

eiΓcxδ(ks − kc) , (39)

where (kc,Γc) are the location and amplitude of the
peaks. Hence, the solution of Eq. (38), using the pump
fields of Eq. (20), allows to compute the perturbed fields,
δE, as a function of the phase plate random variables Φk.
Finally, the corresponding averaged perturbed intensity
[using Eq. (19)] defined as δI ∝ 〈E0 ⊗ δE〉 reads

δI(kd) ∝
∑
kc

eΓcx − e−i(kd+kc)2x/8k0

(kd + kc)2 − 8ik0Γc
H(2km− |kd−kc|) ,

(40)
where H is the Heaviside step function. This demon-
strates that although high frequency density fluctuations
may grow significantly, the ∼ k−2

d factor in front of
the exponential due to diffraction tends to favor FSBS
growth for small wavevectors. For highly unstable sys-
tems such as the one addressed here, saturation occurs
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Figure 8. (top) Effective growth rate (dashed lines)
and wavevector (plain lines) that maximise Eq. (40),
(Γmax,kmax), normalized to k0 for both hydrogen simulations
of Fig. 7. (bottom) Lineout of the intensity transverse Fourier
transform at ky = 0.26k0 (Ti = 300 eV, black plain line) and
ky = 0.22k0 (Ti = 100 eV, red plain line). The theoretical
exponential growth with Γc = 0.09k0 (Ti = 300 eV, black
dashed line) and Γc = 0.2k0 (Ti = 100 eV, red dashed line)
are superimposed.

rapidly. Hence, when the pump depletion is reached, the
wavevector that saturates first is the one that maximises
δI and does not necessarily coincide with the fluctuation
density growth rate maximum. In these conditions, the
field effective growth rate and wavevector, (i.e. the ef-
fective scattered field f-cone angle), may be related to
the wavevector that maximises Eq. (40) and the cor-
responding growth rate peak amplitude and location,
(Γmax,kmax).

Figure 8(a) illustrates the spatial evolution of
(Γmax,kmax) for the two simulations of Fig. 7 and
demonstrates that, the wavevector and peak growth rate
that maximize δI remain essentially unchanged over the
first 20 microns of the laser propagation (and correspond-
ing to a > 1010-factor increase of δI). The exponential
growths of δI(ky = kmax) extracted from the hydrody-
namic simulations and illustrated in Fig. 8(b) as plain
lines, correctly agree with our theoretical predictions (as
dashed lines) and show that saturation is reached after

∼ 10µm. Moreover, kmax/k0 ' 0.28 and 0.35 [the loca-
tion of the growing peaks in Fig. 3(c) and 7(e)], corre-
sponding to a beam deflection of 560 and 700µm after
2 mm of propagation, compare satisfactorily with Figs.
7(a) and 7(d) for Ti = 300 and 100 eV, respectively.
Hence, our dispersion relations are validated quantita-
tively in the fluid formalism. The kinetic counterpart
will be confronted to numerical studies in a future work.

V. CONCLUSION

The spatial growths of the filamentation and of the
forward Brillouin instabilities of a RPP beam have been
compared in the fluid and kinetic frameworks. Although
the latter confirm the importance of spatial smoothing
techniques on the control of the laser filamentation, this
instability persists in the case of multi-ion or cold-enough
plasmas. Albeit hydrodynamic codes predictions are cor-
rect regarding the description of the laser filamentation
in a single-ion species plasma, they fail to capture the
correct behavior in the multi-ion species case. Moreover,
we also conclude that the use of Random phase plates
does not guaranty stability of the laser propagation re-
garding FSBS. RPP beams can suffer large angle scatter-
ings. Except for a single ion species plasma for moderate
to large ZiTe/Ti-ratios, the FSBS growth can be imper-
fectly described in hydrodynamic codes leading to an ill
prediction of the beam cone-angle increase and of the
plasma smoothing. This brings to light the significance
of the kinetic damping of driven acoustic waves able to
affect the scattered spectrum.

During the calculation of the spatial growth of the
forward instabilities, we neglected the transverse spa-
tial laser envelope and its variations due to diffraction.
Hence, our results should remain valid in realistic condi-
tions for large-enough and flat-enough focal spots and for
long enough focus. Moreover, our analytical results are
averaged over the random phase plate elements thus fail-
ing to capture the corresponding statistical fluctuations.

The use of SSD, which causes the so-called speckles
to vanish and change position during the interaction, is
known experimentally to significantly stabilize the pump
propagation [28]. The framework developed in this pub-
lication allows to include the spectral dispersion in the
dispersion relations of importance for LMJ or NIF like
facilities and is left for future work. Moreover, combin-
ing our spatial growth rates with our recent Monte-Carlo
algorithm [34] opens the way to the description of the
RPP forward Brillouin scattering in the vastly used ray
tracing schemes, possibly greatly improving their predic-
tions regarding high-energy laser experiments. For this
end, the impact of a flow on the growth of the FSBS or
the filamentation instability must be examined. Further-
more, a better understanding of the competition between
the convective or absolute modes in the kinetic frame-
work is required, as studied in Refs. [36, 38] for the fluid
case (see Ref. [68] regarding the stimulated Raman scat-
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Figure A1. (a) Fourier transform of a central lineout across
RCF similar as those shown in Fig. 5(b), unravelling a peak at
the dominant wavelength. The two curves correspond to two
different shots, taken at different times, as indicated in inset.
(b) Temporal evolution of the peak amplitude (blue circles)
observed in the Fourier transform identified by the yellow ar-
row in panel (a). Each point correspond to a different shot,
where the time of the proton probing was changed with re-
spect to the interaction laser propagating in the plasma [see
examples of probing at two different times in Fig. 5(b)]. A
decreasing exponential slope, exp(−νt), is plotted for a Lan-
dau damping frequency given by ν = γ0cs2π/[77µm] with the
use of Eq. (6) for a He2+ plasma with Te = 300 eV [see Fig.
6(a)] and various ZiTe/Ti.

tering) or following Ref. [69]. Finally, the comparison
of our model with NIF or LMJ-relevant experiments is
currently underway.
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APPENDIX: CONSTRAINING ZiTe/Ti IN THE
EXPERIMENT OF SEC. III C

Figure A1(a) shows the Fourier transform of a RCF
transverse lineout pointing out to a peak around a spa-
tial frequency of 2π/λs ∼ 0.08µm−1, i.e. a wavelength
of λs ' 77µm. Moreover, the comparison of the peak
position at different times (blue plain line at t = 0 ns
and red dashed line t = 0.5 ns) demonstrates that the
dominant wavelength remains mostly unchanged. In that
condition, and noting that the probing proton deflection
results from an electric field, the RCF dose modulation
level depends mainly on the electron pressure fluctuations
amplitude [70]. Hence, the peak temporal evolution of
the experimental signal [blue circles in Fig. A1(b)] cor-
relates with the damping of the lingering acoustic waves,
previously triggered by the filamentation instability over
the first nanosecond of the interaction beam. In this
low density configuration (ne/nc ' 10−2), we may there-
fore directly compare this decrease with an exponential
slope, δne ∝ exp(−νt) where ν = γ0cs2π/λs is the Lan-
dau damping acoustic rate. The calculations for a He2+

plasma with Te = 300 eV [as suggested by Fig. 6(a)]
and for three different values of ZiTe/Ti illustrated in
Fig. A1(b) demonstrate that ZiTe/Ti = 5 reproduces
correctly the experimental data. The experimental point
at t = 0.5 ns is more consitent with the red curve which
may suggest a value of ZiTe/Ti larger than 5 earlier. Be-
cause of the available experimental data and the weak
dependence of the filamentation growth rate on ZiTe/Ti,
choice has been made to set the ratio to 5 for the analysis
of Sec. III C.
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A. Héron, Physics of Plasmas 11, 4814 (2004).

[69] L. S. Hall and W. Heckrotte, Phys. Rev. 166, 120 (1968).
[70] N. L. Kugland, D. D. Ryutov, C. Plechaty, J. S. Ross,

and H.-S. Park, Rev. Sci. Instrum. 83, 101301 (2012).


