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Abstract

Approximating while compressing lookup tables (LUT) with a set of neural networks (NN) is an emerging
trend in safety critical systems, such as control/command or navigation systems. Recently, as an example,
many research papers have focused on the ACAS Xu LUT compression. In this work, we explore how to
make such a compression while preserving the system safety and offering adequate means of certification.
This paper is an updated version of Safecomp 2021 publication.

1 Introduction

Due to the intensive flights traffic, the risk of collision is increasing. During the last decade, a standardization
group has defined a new competitive and effective anti-collision system named ACAS X (for Next-Generation
Airborne Collision Avoidance System) [16]. The purpose is to keep any intruder outside of the desired envelope
of the ownship.

Figure 1: ACAS Xu geometry [13]
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Figure 2: NN-based architecture [13]

1.1 ACAS Xu Overview

Among the family of ACAS X, we will focus on the ACAS Xu [9] dedicated to drone, Urban Air Mobility and
Air Taxi with horizontal automatic resolution. The system is based on a set of lookup tables (LUT) that are
used in real-time to resolve conflicts. Those LUT have been computed off-line and their size has been chosen
in order to fulfil real-time (decisions must be taken every second) and safety level (there should not be any
collision) requirements. The ownship computes six parameters (listed below) that enable to access the tables
which give an estimation of the probability to have a collision for the each possible advisory and the chosen
advisory is the one that minimizes this probability. The geometry of the system is given in figure 1, and the
definition of the parameters stands as:
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• ρ (ft): Distance from ownship to intruder

• θ (rad): Angle to intruder relative to ownship heading

• ψ (rad): Heading angle of intruder relative to ownship heading direction

• vown (ft/s): Speed of ownship

• vint (ft/s): Speed of intruder

• τ (s): Time until loss of vertical separation.

The 23 LUT provide the transitions costs between the previous advisory (pa) and the next advisory. There
are five advisories: COC (Clear Of Conflict); SR (Strong Right); SL (Strong Left); WR (Weak Right) and
WL (Weak Left). In particular, when the ownship is in the COC state, it can continue its mission. When the
ownship is in one of the other states, it has to initiate a turn with a rate that depends of the computed state.
In practice, a single table is composed of 2 sub-tables: the first contains definition of parameters values and
the second contains the costs that are half-integer (16 bits). More information on the ACAS Xu system can be
found in [19].

1.2 Purpose of the Work

Several universities have worked on replacing the LUT by neural networks (NN), the objective being to reduce
the size of the embedded code and improve the anti-collision performance. The authors of [13] have replaced
the LUT by 45 neural networks leading to an impressive reduction of the memory footprint (4GB to 3 MB),
see the figure 2 for horizontal advisory (i.e. when τ = 0). In this work, we want to explore how to compress the
LUT with neural networks while preserving the system safety and offering adequate means of certification. We
only focus in the sequel on the horizontal resolution of conflict.

Certification Problem Statement. For any safety-critical system embedded in an aircraft, airframers (appli-
cants) have to demonstrate to regulation authorities that their product is compliant with certification specifica-
tions. To this purpose, applicants use a set of standards that are recognized as acceptable means of compliance.
Existing development assurance standards are not adapted to the data-driven paradigm of the ML technique,
though such development may introduce errors that could jeopardize a safe operational use of the system (e.g.
such probabilistic approach may introduce unforeseen errors). Currently a joint working group, the EUROCAE
WG-114/SAE G-34 [8] (WG-114 for short in the sequel) is preparing the next standard to fill this gap.
Contributions. The use of NNs to approximate the LUT may lead to unexpected behaviors that should be
mitigated to guarantee that the ML-based item will not alter the safety of the system. For this purpose, the
ACAS Xu subsystem is designed as an hybrid controller: a non ML item is introduced to guarantee the safety
in all the operational domain (safety net).

In addition, a new certification strategy is investigated to provide sufficient guaranties to authorities. The
figure 3 instantiates the WG-114 development process workflow to the ACAS Xu use case. There are three
levels of engineering: the System and Subsystem Level as proposed by ARP4754A [25] standard which provides
guidance for the system development process and are complementary to the product requirements (WG 75-1
[9] for the ACAS Xu technical requirements); the item Level where ML activities are not covered by any known
standard while the non-ML parts are supported by classical guidance for the implementation process of the
software items (DO-178C [7]) and hardware items (DO-254 [23]).

To tackle the objectives of the system development guidance, three aspects were developed. The first
concerns the learning assurance activity of the ML element (or MLM-Machine Learning Models), which aims
at ensuring that the MLM requirements (covering functional, performance and robustness aspects) have been
captured and correctly designed. The elements supporting this activity are detailed in section 2. The second
aspect (dashed green arrow) targets the item validation activity in order to check that captured requirements
fit the system needs. The third aspect (solid green arrow) targets the subsystem verification to check that the
ACAS-Xu Hybrid controller safely performs its intended use. Activities and relationships covering the two first
aspects are part of a constructed argumentation (see section 3).

2 ACAS Xu Hybrid Architecture

We propose to replace the LUT with a hybrid architecture (shown in figure 4) composed of a neural networks
based controller part (as proposed by [13]) together with a safety net to ensure a correct behavior. The idea,
that will be detailed hereafter, is to 1) apply the best practices of learning assurance to well approximate the
tables; 2) identify off-line the zones where the NN-based system differs from the LUT advisories and where
it may jeopardize the safe behavior of the system; 3) compute on-line in which zone the system is, call the
NN-based system if it behaves similarly to the LUT or switch to the safety net if not in order to always be safe
(this step is performed by check module). The safety net consists of the extract of the LUT for these zones.
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Figure 3: ACAS Xu subsystem development workflow using ML

2.1 Learning Process

The objective of the learning process is to build a model for advisory computation which performs a trade-off
between reducing the memory footprint and preserving fidelity to LUT. Ideally, this model should reconstruct
the original (but unknown) cost function. NNs are quite good universal approximators as long as the cost
function has similar bounded derivative on the whole domain which is unfortunately not the case here. The
cost function shows two local offsets where derivative reaches high value: one (figure 5) is observed for each
cost function when the range is below 5000 ft, where the cost functions switches quickly from 0 to 15000, and
the second (figure 6) concerns the case of COC advisory cost value when previous advisory is not COC, where
a local offset of +4000 is added. This issue could be resolved by either augmenting the size of the NNs (not
explored here) or finding the most suitable NN architecture.

We explored several architectures (with ReLu activation only) with the same learning process where 1) input
and output data are normalized between -1 and 1 (as suggested in [17]), 2) batches size is set to 8912, 3) Adam
optimizer [4] was used, 3) initial learning rate is set to 0.002:

1. regression (cost inference) versus classification (decision inference);

2. regular hidden layer size versus decreasing layer size. We have tested regular50 with 8 layers and 5-50-50-
50-50-50-50-5 neurons per layer; decreasing128 as 5-128-64-32-16-5 and decreasing256 as 5-256-128-64-32-
16-5.

The criteria for evaluation, that we called accuracy, is the agreement rate between advisory computed by the
NN and the ground truth LUT value. Both training and evaluation were performed in the whole data-set which
is not classical but the point is to be as close as possible to the LUT. Thus, for once overfitting is encouraged
to improve accuracy.

Training type Network shape Accu-
racy

Accuracy
mid range

Accuracy
short range

Nparam

Regression [13] 93,22 82,424 68,25 13305
Regression regular50 95,42 87,44 71,52 15855
Regression decreasing128 95,81 89,18 75,62 28229
Regression decreasing256 96,33 90,82 79,74 111173
Classification decreasing256 76,06 76,08 86,43 111173
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Figure 4: Architecture of the neural network based ACAS Xu

Figure 5: Cost function CoC → CoC Figure 6: Cost function WL → CoC

We completed the evaluation with accuracy measurement on range restricted subsets which represent the
most critical situations. At long-range, as there is no risk of collision and the advisory is most of the CoC (95
% of advisory for ranges above 10000 ft). For ranges below 5000ft, the advisory is spread with 15% CoC, 38%
SL and 36% SR. We set empirically two subsets: a mid-range subset with range below 20000 ft, and a short
range subset with ranges below 500ft. The table above shows the measured accuracy.

Overall, as expected we observe that accuracy decreases when the range is reduced. Furthermore, at very
short ranges, we observe in LUT that the cost difference between decision is very low, then it is more difficult
for neural network to infer the exact cost. We observe that the regression approach is more effective than
classification. This result could be explained by the fact that the decision boundary have ”square” shape, not
suitable for shallow neural networks. We also observe that the decreasing architecture performs better than the
regular architecture. We can suppose that this decreasing architecture favours representation of more complex
functions in the first layers. Such complex representation is more suitable to represent offset effects. After
this study we have selected regular50 and decreasing128 since they reaches high accuracy with limited memory
(parameters) footprint.

2.2 Design of the Hybrid Architecture

The objective of the safety net is to take over when the NN does not take similar advisory as the LUT in
the same situation. To determine the zones where the NN differ from the LUT, we use formal verification
techniques. More precisely, we decompose the space as a set of p-dimensional boxes (short as p-box).

Definition 1 (p-box) Let p ∈ N, a p-dimensional box [b]p is a set of Rp defined as the cartesian product of p
intervals:

[b]p = ×
1≤i≤p

[li, ui]

wherein li ∈ R (resp ui ∈ R) is the lower bound (resp the upper bound) of the ith interval composing the box
[b]p.
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The boundaries of the p-boxes come from the parameters values of the LUT. In practice, the input state space
is split in 36, 784.106 5-boxes. For each box, we compute the possible decisions obtained either from the LUT
and the NN, and we check that they are similar, which is formalized in the property below.

Property 1 (NN-based architecture compliant with specification) We define by decisions f(l) ⊆ {CoC,
WL,SL,WR,SR} the set of reachable advisories by f from any point of l where f ∈ {NN,LUT} and l is a
p-box. We consider that a NN behaves similarly to the LUT on an p-box l if

decisions NN(l) ⊆ decisions LUT (l)

To determine which p-box satisfies the property 1, we use the verification tools Deeppoly [28], Reluplex
[13] and planet [6]. First the property 1 is checked on the p-boxes with Deeppoly. As Deeppoly computes
an over-approximation, thus either Deeppoly provides a positive answer (i.e. property holds) or an unknown
answer. Then Reluplex/planet is called on the remaining boxes (those for which Deeppoly provided
unknown).

In this work, the safety net is designed with the onwship and intruder having a constant speed of 438 ft/s
and 414 ft/s respectively. This corresponds most of the time to the worst case situation, i.e. if an aircraft
flights slower, decisions are similar. This improves the compression of the hybrid architecture and speeds up
the safety net design. In effect, we would need to design the safety so that it covers all situations. Because of
our hypotheses (τ = 0 for horizontal resolution and constant speed), the space is split in 304 000 3-boxes and
thus one 3-box is defined by (ρ, θ, ψ). The results are given in the table below.

Method Deeppoly Reluplex/planet number of
time success time failed boxes

Regression [13] 13 min 74.01% 93h 51 133
regular50 17 min 75.75% 150h 18 172
decreasing128 20 min 74.68% 69h 20 868

We plot (in figure 7) for each 3-box (ρ, θ, ψ) the lower bound li with on the left a color indicating the solver
used (Reluplex/planet or Deeppoly) and on the right a color indicating the advisory. More precisely, right
plot of the figure shows advisory for an intruder aircraft located at each point on the plot, whose coordinates
indicate the slant range (ρ) and angle to intruder (θ) and with the own-ship located at the center of the plot.
Since 87% of LUT(l) decisions are unique, it entails that the NNs take exactly the same decision as the LUT
most of the time.

Figure 7: Solver used for proving properties over 3-box - Polar coordinates (ρ, θ)

We can see that Deeppoly is able to quickly prove properties in area where the cost functions are very
different, whereas it does not reach a proof in areas where cost functions are very close. Difficult verification
needing Reluplex/planet are the areas where ACAS Xu system gives avoidance orders.
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2.3 Why a New Hybrid Architecture

Current implementation of ACAS Xu should embed 4 Gbytes LUT and executes at 1 Hz. Such implementation
with avionic constraints is rather challenging, see for instance [21]. In particular, there is not much such
large memory available on the market that is compatible with avionics constraints. Compression is therefore a
strategic approach but not at the cost of reduced safety. This is the reason why we approximate them as NN
together with a safety net. Using an approved fallback to mitigate safety risks is regularly used in the avionic
system architectures. This is also a strong recommendation of the AVSI report [2] to bound the behavior of ML
algorithms and prevent any unintended behaviour that may challenge the system safety.

In the table below, we have computed the size needed by the neural networks as well as the one for managing
the switch and the safety net.

Network shape Nb of Param-
eters in one
NN

NNs
Size
(MB)

Failed
boxes
(MB)

Full memory
footprint (MB)

Regression [13] 13 305 2.28 1.36 3.6
regular50 15 855 2.72 0.49 3.2
decreasing128 28 229 4.86 0.56 5.4

For the safety net and check module, we need to store p-boxes and exactly the same since check module identifies
when to switch in the safety net. Each unsafe box will be stored in the memory using the lower and upper
points. Using float32, the size needed by a 3-boxes is 28 bytes. Improving the footprint of either the NNs
and the safety net would be beneficial. Regarding the safety net, the property 1 should be considered in the
optimization criteria during the training. The compression of NN could also be improved using pruning and
quantization techniques [10].

3 Certification Methodology

Assurance cases (AC) are gaining more and more consideration as valuable methodologies for development
and certification. John Rushby [24] defines them as: Assurance cases are a method for providing assurance
for a system by giving an argument to justify a claim about the system, based on evidence about its design,
development, and tested behavior.

3.1 Notations

The idea is to detail the argumentation leading to a certain conclusion or claim. In the context of certification, a
claim is an objective to be fulfilled by the applicant. In practice, the demonstration is based on the elicitation of
requirements that correspond to the justifications that the objective is achieved. There exist several notations,
either textual or graphical, to support the design of an assurance case, such as GSN (Goal Structuring Notation)
[15]. All of them are relying on the Toulmin work [29].

Among the existing notations, we will use subsequently in the paper a graphical adaptation of Toulmin
notation proposed by the RESSAC [22] project. RESSAC was a European project that coordinated European
industry efforts to contribute to the FAA initiative called “Overarching Properties”, which promotes an alter-
native certification approach to ease the introduction of next generation systems. This notation relies on (see
figure 8): the Claim C is either the upper conclusion or intermediate conclusions (or sub-claims), the Evidence
E is a leaf that consists of a V&V documentation that supports some claim, the Reasoning R explicitly describes
the argument and the Backing B supports the reasoning. The Backing is a kind of endorsement of the reasoning,
a guarantee that the reasoning is reliable. The defeater D allows for expressing that in some circumstances the
conclusion may not be true. Such a notation is very helpful as it offers simplicity and the possibility to challenge
the reasoning steps. The context contains additional information needed to provide definitions or descriptions
of terms constraining the applicability of the assurance case to a particular environment or set of conditions.

3.2 Assurance Case for the Hybrid Controller

The objective of the certification approach is two-fold: first demonstrate the completeness and the correctness of
the ML-based item implementation with respect to the system and safety requirements; and second reinforce the
confidence that the ML-based item has been developed in a sufficiently disciplined manner to limit the likelihood
of development errors that could impact system safety. This approach covers the ”Learning Assurance” and
”AI safety risk mitigation” building blocks, pillars of the trustworthiness concept introduced by the EASA AI
Roadmap 1.0 [5].
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(C) Claim contributing to
the argument

(R) reasoning = inference
between a claim and its
subclaim(s)

(E1) Evidence (E2) Evidence contributing to R

Context = contextual
artefact or a statement

backing = justification
that strategy is adapted

defeater = conditions invali-
dating the strategy

Figure 8: Graphical RESSAC notation

The overall assurance case for the hybrid architecture is quite large as it covers the full ACAS system
development and contains 120 elements (claims, reasoning, context, backing and evidences) addressing the
objectives of the ARP4754A [25]. Due to space limit, we cannot detail everything and we chose to focus on
some objectives.

ACAS-Xu Subsystem Requirement Capture. The figure 9 shows the reasoning to demonstrate that the
ACAS Xu specification process meets the ARP4754A [25] guidance concerning the definition of system require-
ments and interfaces. The argument is based on 2 sub-claims: the capture of the functional and performance
requirements. The performance requirements are not further detailed.

(C) ACAS Xu req are captured

(R1) Requirements capture as per ARP4754A guid-
ance

(C1) functional requirements captured
per element of the hybrid architecture
Context: Description of the ACAS Xu
architecture

(R2) ACAS Xu functional require-
ments based on the architecture ele-
ments properties and impl. logic

(E1) MLM Property 1
(whatever the input,
MLM takes same deci-
sions as LUT)

(E2) safety net prop-
erty (LUT decisions
and worst case sit-
uation with chosen
speeds)

(E3) check property
(switch to LUT when
MLM property is not
hold)

(C2) performance requirements
captured e.g. agnostic per-
formance criteria (15 SESAR
criteria) such as false alarm
threshold

(B) LUT are standardized
requirements through DO-
385/ED-256

Figure 9: Assurance Case - ML subsystem requirements

The functional requirements must be refined for each item of the hybrid architecture (NNs and safety net).
The reasoning is that the LUT decisions are the behaviour reference of the controller. Thus each item of the
hybrid architecture should have equivalent properties and the switch logic should be appropriate. Specifically,
property 1 is defined to guarantee the correct operation of the MLM.

ACAS-Xu Item Verification (for the ML Element Robustness Part). As per [20], one of the main
premises of the robustness demonstration is ”real-world situations to which the subsystem is not robust should
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be identified and mitigated” (refer to claim C in figure 10). All the situations where the MLM provides incorrect
predictions (i.e. where Property 1 is not preserved by the MLM), are identified. The mitigation is realized by
the architecture design (switch to the safety net which embeds the subset of LUT needed for mitigation). The
preservation of the Property 1 is formally verified within the robustness analysis: the input space is divided into
boxes defined by points of the LUT. When decisions associated to the top-points of a box are different from one
another (frontiers of decisions), then the estimated prediction of each point of the box is considered as correct
when identical to one of the box top points. Property 1 is verified using formal methods: when Property 1 does
not hold, this means that the situation may be unsafe and that the hybrid controller should switch to the LUT
computation to take the appropriate decision.

(C) Real world situations where the MLM is not
robust are identified and mitigated

(R) Ensure that all unsafe situations
are correctly mitigated

(C1) All unsafe situations are
identified

(R) The Property 1 is formally
verified in the whole input
space to identify unsafe situa-
tions

(E2) The Property 1 is
correctly defined

(E3) The input space is
correctly decomposed
into p-boxes

(E4) The Property 1 is
formally checked in each
p-box (abstract interpre-
tation and solver)

(E1) Architecture
mitigation (switch
to the safety net
when appropriate)

Figure 10: Assurance Case - ML item robustness

ACAS-Xu Subsystem Validation. Considering that LUT standardization has been recognized by the
Authorities, one can think that the proper verification of the MLMs (to correctly approximate LUT predictions)
would be sufficient to consider them as validated. Actually, the lack of transparency of the ML technique (no
traceability capability, black box effect) may require a need for additional assurance that MLMs properties are
correct and complete. For this purpose, specific tests have been developed in a simulation environment enabling
the comparison between operational behaviors of ML-based design and real LUT design whatever the geometric
situation. The figure 11 develops the argumentation and illustrates the use of defeater (D) to challenge the
confidence that the use of standardized data may not be sufficient for demonstration of conformity.

4 Related work

Proved ACAS Xu Up to now, the ACAS Xu compression works only proposed to replace the LUT with a set
of neural networks. Even if there have been several papers on formal verification of NN, none of them has tackled
the certification itself. Most of the time, papers prove some local properties on the neural network which is
not sufficient to cover certification expectation. Authors of [13] proposed to prove 10 avoidance meta-properties
without any explicit link with with avoidance standard [9]. We believe that these properties are not enough for
enabling the certification of an ACAS-Xu system. Our approach is different, because we consider LUT as the
requirements (part of the standard) and we formally guarantee that outputs of our system will be exactly the
same as LUT.

Certification Methodology There are several works offering assurance case to summarize confidence for ML
components. [20] proposed a pattern to ensure the robustness of ML subsystems. We have completed and
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(C) ACAS Xu sub-system req are validated

(R1) Argument over data represen-
tativeness and completeness (R2)
Validation activities in a simulated
environment

(E1) Training data are complete
and representative of the input
domain

(E2) ACAS Xu subsystem req
are validated using ML in-
ference testing activities in a
simulated environment

(B) LUT are standardized
requirements through DO-
385/ED-256

(D) Correct LUT implementa-
tion using NN not sufficient to
validate the requirements

Figure 11: Assurance Case - ML subsystem validation

adapted this approach to integrate the specific properties (safe behaviour reference given by the LUT) and the
safety net. [26] proposed a template to structure the safety argumentation part specific to DNNs. Their work
is illustrated with an example use case based on pedestrian detection.

To the best of our knowledge, no assurance case approach has been proposed to tackle the respect of
functional and performance objectives at system level (when ML sub-components are involved) for aircraft
certification. The literature in the automotive is richer. In particular, [14] argued that assurance cases can be
used for DNNs based systems. [30] goes further as it proposes GSN patterns to reason on the safety requirements
of ML-based components and their integration within a system-level reasoning to show the compliance with
ISO 26262. Thus, our work is complementary as we address the aeronautical sector and tackle the ARP4754A.

[1] proposed a novel concept of Dynamic Assurances Cases (DAC) that is applied to an aviation system
that integrates ML-based perception function for autonomous taxiing. This concept is based on a framework of
assurance methods /tools addressing safety concerns during development and extending this level of assurance
to an in-flight operational use. They use both Assurance Case (with GSN notation) and architecture mitigation
to develop assurance components for the DAC framework. Though we share the ARP4754A objectives and
the assurance case methodology, our main objective is more to bridge the gaps of conformity of a ML-based
system to the ARP4754A safety, functional and operational objectives and guarantee an acceptable means of
compliance with certification requirements.

Learning a Surrogate NN of a LUT Neural networks are a new trend for approximating complex functions
as a replacement of LUT, for example for control command systems [27]. Significant work has been performed in
the framework of deep Q-learning, where the Q table is approximated by neural network. There have been some
experiments in the context of Calibration Look-up table for the tuning of voltage-controlled circuits [18]. It was
also explored for ACAS-Xu use case in [12, 11]. In [12], authors compares table compression using the origami
algorithm which exploits data’s redundancies and symmetries, and a method and using a neural network with
a regular architecture. In [11], further exploration of the neural network approach is performed, introducing
several tricks to enhance performance.

5 Conclusion

We have designed a safe NN-based ACAS Xu architecture and shown with an assurance case that such a way
of doing could be well argued for certification to the regulation authorities. The certification evidences will be
completed with sub-system level analyses (with simulation and reachability analysis [3]).

In the future, we also plan to implement the hybrid architecture on an embedded board to complete the
certification proof. We will also apply our methodology for other LUT-based safety critical systems.
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