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ON THE TOPOLOGY OF RANDOM REAL COMPLETE INTERSECTIONS

Given a real projective variety X and m ample line bundles L1, . . . Lm on X also dened over R, we study the topology of the real locus of the complete intersections dened by global sections of

We prove that the Gaussian measure of the space of sections dening real complete intersections with high total Betti number (for example, maximal complete intersections) is exponentially small, as d grows to innity. This is deduced by proving that, with very high probability, the real locus of a complete intersection dened by a section of L ⊗d 1 ⊕ • • • ⊕ L ⊗d m is isotopic to the real locus of a complete intersection of smaller degree.

Introduction

The goal of this paper is to study the topology of real complete intersections inside a real algebraic variety. More precisely, we are interested in the study of the Betti numbers of their real loci, as the degree of the complete intersections goes to innity. As the complex locus of such complete intersections gives restrictions on the topology of their real locus, we will start by recalling what happens in the complex case before passing to the real one.

1.1. Topology of complex complete intersections. Let X be a smooth complex projective variety of dimension n and L 1 , . . . , L m be ample line bundles over X. For any d > 0, we will denote by L d i the d-th tensor power of L i . Let us denote by ∆ d the discriminant locus in H 0 (X, ⊕ m i=1 L d i ), that is, the space of sections of ⊕ m i=1 L d i that do not vanish transversally (or, equivalently, the space of sections s whose zero locus Z s is singular). By Bertini's theorem, for d large enough, the discriminant locus ∆ d is a complex algebraic hypersurface of H 0 (X, ⊕ m i=1 L d i ) and then its complement H 0 (X, ⊕ m i=1 L d i ) \ ∆ d is connected. Therefore, given any pair of sections s, s ∈ H 0 (X, ⊕ m i=1 L d i ) \ ∆ d , one can always nd a path in H 0 (X, ⊕ m i=1 L d i ) \ ∆ d joining them and, by Ehresmann's theorem, an isotopy between their zero loci Z s and Z s . In particular, this implies that the zero loci Z s and Z s are dieomorphic and, then, that their Betti numbers are the same. As a consequence, the total Betti number b * (Z s ) of the zero locus of a section s ∈ H 0 (X, ⊕ m i=1 L d i ) \ ∆ d only depends on d and on L 1 , . . . , L m , and not on the choice of s. In particular, one can compute the value b * (Z s ), for s ∈ H 0 (X, ⊕ m i=1 L d i ) \ ∆ d , as a function of d and nd the asymptotics [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] b * (Z s ) = vd n + O(d n-1 ),

where v = v(L 1 , . . . , L m ) is a topological constant only depending on the line bundles L i , see Lemma 2.2.

1.2. Topology of real complete intersections. Let us now suppose that X is dened over R. By this, we mean that the complex variety X is equipped with an antiholomorphic involution c X : X → X, called the real structure. We call the pair (X, c X ) a real algebraic variety. For example, the complex projective space P n equipped with the standard conjugaison conj : x ∈ P n → x ∈ P n is a real algebraic variety. More generally, the solutions of a system of homogeneous real polynomial equations in n + 1 variables dene a real algebraic variety X inside P n , whose real structure is the restriction of conj to X. The real locus RX of a real Institut de Recherche Mathématique Avancée, Université de Strasbourg.

E-mail address: michele.ancona@math.unistra.fr. algebraic variety is the set of xed points of the real structure, that is RX = Fix(c X ). It is either empty or a nite union of n-dimensional smooth manifolds. Let us also suppose that L 1 , . . . , L m are real holomorphic line bundles, that is, they are equipped with real structures c L 1 , . . . , c Lm that are linear anti-holomorphic in the bers and such that π i • c L i = c X • π i , where π i : L i → X is the natural projection.

For any d > 0, let RH 0 (X, ⊕ m i=1 L d i ) be the space of real sections of ⊕ m i=1 L d i , that is, the space of sections s = (s 1 , . . . , s m ) ∈ H 0 (X,

⊕ m i=1 L d i ) such that s i • c X = c L d i
• s i , for any i ∈ {1, . . . , m}. Let R∆ d be the real discriminant locus, that is the space of real sections that do not vanish transversally. By Bertini theorem, R∆ d is a real hypersurface in RH 0 (X, ⊕ m i=1 L d i ). In contrast to the complex setting, RH 0 (X, ⊕ m i=1 L d i ) \ R∆ d is not connected and this produces the following phenomenon: the topology of the real locus RZ s of a real section s ∈ RH 0 (X, ⊕ m i=1 L d i ) depends on the choice of the section. Indeed, the real discriminant creates walls inside RH 0 (X, ⊕ m i=1 L d i ), and the Betti numbers of the real locus of a complete intersection change when we cross a wall.

This raises a natural question: what is the topology of RZ s , if we pick s at random? This question is moreover motivated by the fact that the number of connected components of RH 0 (X, ⊕ m i=1 L d i ) \ R∆ d grows very fast as d → ∞ and then a deterministic study of all the topologies seems unproachable. For example, the number of connected component of RH 0 (P n , O(d)) \ R∆ d grows super-exponentially in d, see [START_REF] Yu | Growth order of the number of classes of real plane algebraic curves as the degree grows[END_REF].

The main result of this paper (Theorem 1.2) is that, with very high probability, the real locus of Z s , with s a real section of ⊕ m i=1 L d i , is dieomorphic to the real locus of Z s , with s a (wellchosen) real section of ⊕ m i=1 L d i , for a suciently smaller d < d. As a consequence we will prove that complete intersections whose real loci have high total Betti number are very rare (Theorem 1.4).

1.3. Probability measure. In order to state our main results, let us introduce the probability measure we consider. We equip each real holomorphic line bundle L i with a smooth Hermitian metric h i that is real (meaning c * L i h i = hi ) and of positive curvature ω i . The space of real global sections RH 0 (X, ⊕ m i=1 L d i ) is then naturally equipped with a L 2 -scalar product dened by

(2) s, s L 2 = m i=1 X h d i (s i , s i ) ω ∧n i n!
for any pair of real global sections s = (s 1 , . . . , s m ) and s = (s 1 , . . . , s m ) in RH 0 (X, ⊕ m i=1 L d i ), where h d i is the real Hermitian metric on L d i induced by h i . In turn, the L 2 -scalar product (2) naturally induces a Gaussian probability measure µ d dened by

(3) µ d (A) = 1 √ π N d s∈A e -s 2 L 2 ds for any open set A ⊂ RH 0 (X, ⊕ m i=1 L d i ), where N d is the dimension of RH 0 (X, ⊕ m i=1 L d i )
and ds the Lebesgue measure induced by the L 2 -scalar product [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF].

The probability space we will consider is then

RH 0 (X, ⊕ m i=1 L d i ), µ d . A random section s = (s 1 , . . . , s m ) ∈ RH 0 (X, ⊕ m i=1 L d i ) gives us a random real subvariety Z s = Z s 1 ∩ • • • ∩ Z sm with real locus RZ s = RZ s 1 ∩ • • • ∩ RZ sm = Z s ∩ RX.
Example 1.1 (Kostlan polynomials). When (X, c X ) is the n-dimensional projective space and (L, c L , h) is the degree 1 real holomorphic line bundle equipped with the standard Fubini-Study metric, then the vector space RH 0 (X,

L d ) is isomorphic to the space R hom d [X 0 , . . . , X n ]
of degree d homogeneous real polynomials in n+1 variables and the L 2 -scalar product is the one which makes the family of monomials

(n+d)! n!α 0 !•••αn! X α 0 0 • • • X αn n α 0 +••
•+αn=d an orthonormal basis. Up to scalar multiplication, this is the only scalar product on R hom d [X 0 , . . . , X n ] which is invariant by the action of the orthogonal group O(n + 1) (acting on the variables X 0 , . . . , X n ) and such that the standard monomials are orthogonal to each other.

A random polynomial with respect to the Gaussian probability measure induced by this scalar product is called a Kostlan polynomial [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF][START_REF] Shub | Complexity of Bezout's theorem. II. Volumes and probabilities[END_REF]. 1.4. Statements of the main results. Let us state the main result of the paper. Theorem 1.2. Let X be a real algebraic variety and L 1 , . . . , L m be real Hermitian line bundles of positive curvature.

(1) There exists a positive α 0 < 1 such that for any α 0 < α < 1 the following happens: the probability that, for a real section s ∈ RH 0 (X, ⊕ m i=1 L d i ), there exists a real section

s ∈ RH 0 (X, ⊕ m i=1 L αd i
) such that the pairs (RX, RZ s ) and (RX, RZ s ) are isotopic, is at least

1 -O(d -∞ ), as d → ∞. (Here, the notation O(d -∞ ) stands for O(d -k ) for any k ∈ N.)
(2) For any k ∈ N there exists a positive constant c such that the following happens: the probability that, for a real section s ∈ RH 0 (X, ⊕ m i=1 L d i ), there exists a real section

s ∈ RH 0 (X, ⊕ m i=1 L d-k i
) such that the pairs (RX, RZ s ) and (RX, RZ s ) are isotopic, is at least

1 -O(e -c √ d log d ), as d → ∞.
If moreover the real Hermitian metrics on L 1 , . . . , L m are analytic, this probability is at least 1 -O(e -cd ), as d → ∞ Hence, in the sense of measure, most topologies of the real locus of the intersection of degree d real ample divisors can be found in lower degree. Let us stress that this is a real phenomenon: for d large enough, the complex loci Z s and Z s of sections of L d and L αd , α < 1, are not dieomorphic (because, by (1), we have b * (Z s ) > b * (Z s )), while, by Theorem 1.2, their real loci are dieomorphic, and even isotopic, with very high probability.

For Kostlan polynomials (see Example 1.1), such approximation was proved in [START_REF] Breiding | Quantitative singularity theory for random polynomials[END_REF][START_REF] Niang | Low degree approximation of random polynomials[END_REF], while for m = 1, that is for random real hypersurfaces in a general real algebraic variety X, Theorem 1.2 coincides with [2, Theorem 1.4]. Theorem 1.2 is then natural generalization of these results for real complete intersections in a real algebraic variety X.

Remark 1.3. In Theorem 1.2, one can also allow dierent tensor powers of the line bundles, that is, one can consider

L d 1 1 ⊕ • • • ⊕ L dm m .
In this case, one should set d := max{d 1 , . . . , d m } and Theorem 1.2(1) becomes as follows: for any α 0 < α < 1, the real locus of a real section of

L d 1 1 ⊕ • • • ⊕ L dm
m is isotopic to the real locus of a real section of

L min{αd,d 1 } 1 ⊕ • • • ⊕ L min{αd,dm} m
, with probability at least 1 -O(d -∞ ), as d goes to innity. (Theorem 1.2(2) also has an analogous statement in this case.)

The proof of this slightly more general version of Theorem 1.2 is the same as the one that we present in the article. We decided to work with d 1 = • • • = d m = d for clarity of exposition and in order to avoid a heavy notation.

Let us now explain one consequence of Theorem 1.2. Recall that by the Smith-Thom inequality [START_REF] Thom | Sur l'homologie des variétés algébriques réelles[END_REF], the total Betti number of the real locus RX of a real algebraic variety is bounded from above by the total Betti number of its complex locus:

(4) n i=0 dim H i (RX, Z/2) ≤ 2n i=0 dim H i (X, Z/2).
We will more compactly write b * (RX) ≤ b * (X), where b * denotes the total Betti number with Z/2-coecients. For a algebraic curve C, Smith-Thom inequality is known as Harnack-Klein inequality [START_REF] Harnack | Ueber die Vieltheiligkeit der ebenen algebraischen Curven[END_REF][START_REF] Klein | Ueber den Verlauf der Abel'schen Integrale bei den Curven vierten Grades[END_REF] 

* (RZ s ) ≤ v(L 1 , . . . , L m )d n + O(d n-1 ), for any s ∈ RH 0 (X, ⊕ m i=1 L d i ).
Theorem 1.4. Let X be a real algebraic variety of dimension n and L 1 , . . . , L m be a real Hermitian line bundles of positive curvature.

(1) For any > 0 small enough, we have

µ d s ∈ RH 0 (X, ⊕ m i=1 L d i ), b * (RZ s ) ≥ (1 -)b * (Z s ) ≤ O(d -∞ )
as d → ∞. (Here, the notation O(d -∞ ) stands for O(d -k ) for any k ∈ N.) (2) For any a > 0 there exists c > 0 such that

µ d s ∈ RH 0 (X, ⊕ m i=1 L d i ), b * (RZ s ) ≥ b * (Z s ) -ad n-1 ≤ O(e -c √ d log d )
as d → ∞. Moreover, if the real Hermitian metrics on L 1 , . . . , L m are analytic, then

µ d s ∈ RH 0 (X, ⊕ m i=1 L d i ), b * (RZ s ) ≥ b * (Z s ) -ad n-1 ≤ O(e -cd ).
Here, the measure µ d is the Gaussian measure dened in Equation [START_REF] Breiding | Quantitative singularity theory for random polynomials[END_REF].

Hence, real algebraic complete intersections in X with high total Betti number are very rare. For the case of real curves in real algebraic surfaces, such result was proved in [START_REF] Gayet | Exponential rarefaction of real curves with many components[END_REF] using dierent techniques from those in this article, in particular using the theory of laminary currents. In our case, Theorem 1.4 is a consequence of the low degree approximation property given by Theorem 1.2. This has already been observed rst in the case of Kostlan complete intersections in P n in [START_REF] Breiding | Quantitative singularity theory for random polynomials[END_REF][START_REF] Niang | Low degree approximation of random polynomials[END_REF] and then in the case of real hypersurfaces in a real algebraic variety in [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF].

Finally, let us recall that the expected Betti numbers of the real locus of a degree d random complete intersection in a real n-dimensional algebraic variety X are of order d n/2 , as d → ∞, see [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF][START_REF] Gayet | Expected topology of random real algebraic submanifolds[END_REF][START_REF] Gayet | Lower estimates for the expected Betti numbers of random real hypersurfaces[END_REF].

Idea of the proof of Theorem 1.2. Let us give a sketch of proof of Theorem 1.2(2).

We rst dene a map RH 0 (X,

⊕ m i=1 L d i ) → RH 0 (X, ⊕ m i=1 L d-k i
), which will serve as "low degree approximation map". This map is constructed as follows. First, we x once for all a real holomorphic section σ = (σ 1 , . . . , σ m ) of ⊕ m i=1 L k i , k ∈ 2N, such that each Z σ i is a smooth hypersurface with empty real locus. Then, we consider the L 2 -orthogonal decomposition

RH 0 (X, ⊕ m i=1 L d i ) = RH σ ⊕ RH ⊥ σ ,
where RH σ is the space of section of RH 0 (X, ⊕ m i=1 L d i ) which can be written in the form (σ 1 ⊗ s 1 , . . . , σ m ⊗ s m ) =: σ ⊗ s . Then, every section s can be uniquely decomposed as

s = σ ⊗ s + s ⊥ , with s ⊥ ∈ RH ⊥ σ . Using this decomposition, the approximation map RH 0 (X, ⊕ m i=1 L d i ) → RH 0 (X, ⊕ m i=1 L d-k i )
we were looking for is s → s . In order to prove that RZ s is isotopic to RZ s with very high probability, we will use two arguments, one being deterministic and the other being probabilistic.

• The deterministic part consists in proving that the C 1 -norm of the section s ⊥ ∈ RH ⊥ σ is exponentially small along RX (Propositions 4.5 and 4.6). This will be proved using the logarithmic Bergman kernel theory. Indeed we show that the

C 1 -norm of the section s ⊥ concentrates around m i=1 Z σ i , that is, it is exponentially small outside a 1/ √ d-neighborhood of m i=1 Z σ i . As each Z σ i is disjoint from RX,
we deduce that the C 1 (RX)-norm of s ⊥ is exponentially small. In this part of the proof we adapt to complete intersections the techniques developped in [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF] for hypersurfaces.

• The probabilistic part consists in proving that, with very high probability, the C 1norm of s is big enough along RX. This is proved by showing that, with very high probability, the distance from s to the real discriminant is big enough (Proposition 5.4) and then by relating this distance with the C 1 (RX)-norm of s (Proposition 3.8). This idea comes from [START_REF] Niang | Low degree approximation of random polynomials[END_REF] and was already used in [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF]. However, for the case of real complete intersections of a real algebraic variety, the techniques involved to prove these points are harder (even with respect to the one used in [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF] for the case of hypersurfaces of a real algebraic variety). These arguments are developped in Sections 2 and 3 and could be of independent interest.

Putting together the previous two points, we get that s is a C 1 (RX)-small perturbation of σ⊗s with very high probability . By Thom's isotopy lemma, this implies that RZ s is isotopic to RZ σ⊗s = RZ s , where the last equality follows from the fact that RZ σ = ∅.

1.6. Organization of the paper. The paper is organized as follows. In Section 2, we study the topology of the complex complete intersection dened by a generic section of

H 0 (X, ⊕ m i=1 L d i ), d 1.
Using this, we compute the asymptotic of the degree of the discriminant locus

∆ d ⊂ H 0 (X, ⊕ m i=1 L d i ).
In Section 3, we study the function "distance to the real discriminant" dened on RH 0 (X, ⊕ m i=1 L d i ). This is done using some peak sections introduced in Section 3.1. In Section 4, we dene and study a L 2 -orthogonal decomposition of RH 0 (X, ⊕ m i=1 L d i ) which plays a key role in the proof of the main results. Finally, in Section 5, we prove our main results, namely Theorems 1.2 and 1.4.
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Complete intersections, Lefschetz pencils and degree of the discriminant

Throughout this section, let X be a complex projective variety and L 1 , . . . , L m be ample line bundles on X. In Section 2.1, we study the topology of the complex complete intersection

Z s 1 ∩ • • • ∩ Z sm ,
where s i is a generic section of L d i and d is large. In Section 2.2, we study the discriminant hypersurface

∆ d ⊂ H 0 (X, ⊕ m i=1 L d i )
and, in particular, we compute its degree.

Asymptotic topology of complete intersections. Let

∆ d ⊂ H 0 (X, ⊕ m i=1 L d i )
be the discriminant, that is the subset of sections s = (s 1 , . . . , s m ) which do not vanish transversally. By Bertini's theorem, for d large enough, the discriminant is an algebraic hypersurface and then, by Ehresmann's theorem, the zero loci Z s and Z s of two dierent sections s, s ∈ H 0 (X, ⊕ m i=1 L d i ) \ ∆ d are dieomorphic (and in fact, isotopic). In particular, the Euler characteristic and the total Betti number of a generic section of ⊕ m i=1 L d i only depend on d. The aim of this section is to give the asymptotics of such quantities, as d → ∞.

Proposition 2.1. Let L 1 , . . . , L m be ample line bundles over a complex projective variety X of dimension n. Let s 1 , . . . , s m be generic holomorphic sections of L d 1 , . . . , L d m and denote by Z s 1 , . . . , Z sm their vanishing loci. Then, as d → ∞, we have the following asymptotic for the Euler characteristic of the complete intersection

Z s 1 ∩ • • • ∩ Z sm : χ(Z s 1 ∩ • • • ∩ Z sm ) = (-1) n-m d n i 1 +•••+im=n-m i j ≥0, j∈{1,...,m} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m ) im+1 + O(d n-1 ).
Proof. First remark that if L is a line bundle on X and if Y is an hypersurface dened by a section of L, then the adjunction formula gives us the following equality between Chern classes:

(5) c j (Y ) = j i=0 (-1) i c 1 (L) i |Y ∧ c j-i (X) |Y .

Let us denote by

Y i := Z s 1 ∩ • • • ∩ Z s i
, so that we obtain the chain of inclusions

Y 1 ⊃ Y 2 ⊃ • • • ⊃ Y m .
We will use several times Equation ( 5) for this chain of subvarieties. We start by applying [START_REF] Niang | Low degree approximation of random polynomials[END_REF] 

for j = n -m, Y = Y m , X = Y m-1 and L = L d m |Y m-1
and obtain

(6) c n-m (Y m ) = n-m im=0 (-1) im d im c 1 (L m ) im |Ym ∧ c n-m-im (Y m-1 ) |Ym .
Remark that χ(Y m ) = Ym c n-m (Y m ), so that from (6) we obtain [START_REF] Gayet | Lower estimates for the expected Betti numbers of random real hypersurfaces[END_REF] 

χ(Y m ) = Ym n-m im=0 (-1) im d im c 1 (L m ) im |Ym ∧ c n-m-im (Y m-1 ) |Ym = n-m im=0 (-1) im d im Y m-1 c 1 (L m ) im+1 |Y m-1 ∧ c n-m-im (Y m-1 )
where in the second equality we used the identity

Ym α |Ym = Y m-1 α ∧ c 1 (L m ) |Y m-1 for any closed form α on Y m-1 . Applying (5) to j = n -m -i m , Y = Y m-1 , X = Y m-2 and L = L d m-1 |Y m-2
, we have that [START_REF] Gayet | Lower estimates for the expected Betti numbers of random real hypersurfaces[END_REF] equals

n-m im=0 im i m-1 =0 (-1) im+i m-1 d im+i m-1 Y m-1 c 1 (L m ) im+1 |Y m-1 ∧c 1 (L m-1 ) i m-1 |Y m-1 ∧c n-m-im-i m-1 (Y m-2 ) |Y m-1 (8) = n-m im=0 im i m-1 =0 (-1) im+i m-1 d im+i m-1 Y m-2 c 1 (L m ) im+1 |Y m-2 ∧c 1 (L m-2 ) i m-1 +1 |Y m-1 ∧c n-m-im-i m-1 (Y m-2 ).
Continuing by induction, we nd that the Euler characteristic

χ(Y m ) of Y m is equal to (9) n-m im=0 im i m-1 =0 • • • i 2 i 1 =1 (-1) im+i m-1 +•••+i 1 d im+i m-1 +•••+i 1 × × X c 1 (L m ) im+1 ∧ c 1 (L m-2 ) i m-1 +1 ∧ • • • ∧ c 1 (L m ) im+1 ∧ c n-m-im-i m-1 -•••-i 1 (X) = (-1) n-m d n i 1 +•••+im=n-m i j ≥0, j∈{1,...,m} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m ) im+1 + O(d n-1 ),
where in the last equality we used that the dominant term as d → ∞ is given by the indices

(i 1 , . . . , i m ) such that i 1 + • • • + i m = n -m. Recalling that Y m = Z 1 ∩ • • • ∩ Z m , we have the result.
Proposition 2.2. Let L 1 , . . . , L m be ample line bundles over a complex projective variety X of dimension n. Let s 1 , . . . , s m be generic holomorphic sections of L d 1 , . . . , L d m and denote by Z s 1 , . . . , Z sm their vanishing loci. Then, as d → ∞, we have the following asymptotic for the total Betti number of

Z s 1 ∩ • • • ∩ Z sm : b * (Z s 1 ∩ • • • ∩ Z sm ) = v(L 1 , . . . , L m )d n + O(d n-1 )
where

v(L 1 , . . . , L m ) = i 1 +•••+im=n-m i j ≥0, j∈{1,...,m} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m ) im+1 . Proof. Remark that the restriction of L m to Z s 1 ∩ • • • ∩ Z s m-1 is an ample line bundle and then, for d large enough, it embeds Z s 1 ∩ • • • ∩ Z s m-1 into some complex projective space P N . In particular, Z s 1 ∩ • • • ∩ Z sm is obtained as the intersection of a generic hyperplane H of P N with Z s 1 ∩ • • • ∩ Z s m-1 .
By Lefschetz hyperplane theorem, we have b 

i (Z s 1 ∩ • • • ∩ Z sm ) = b i (Z s 1 ∩ • • • ∩ Z s m-1 ) for any i ∈ {0, . . . , n -m -1}. By induction, we then obtain that b i (Z s 1 ∩ • • • ∩ Z sm ) = b i (X)
i (Z s 1 ∩• • •∩Z sm ) = b 2n-2m-i (Z s 1 ∩• • •∩Z sm ), so that the only Betti number of Z s 1 ∩• • •∩Z sm that depends on d is b n-m (Z s 1 ∩ • • • ∩ Z sm ). In particular b * (Z s 1 ∩ • • • ∩ Z sm ) = b n-m (Z s 1 ∩ • • • ∩ Z sm ) + O(1) = (-1) n-m χ(Z s 1 ∩ • • • ∩ Z sm ) + O(1)
as d → ∞. The result then follows from Proposition 2.2.

2.2. Lefschetz pencils and degree of the discriminant. The main result of this section is the computation of the degree of the discriminant, see Lemma 2.3. This will use the estimates on the topology of a generic section s ∈ H 0 (X,

⊕ m i=1 L d i ) \ ∆ d .
Lemma 2.3 (Degree of the discriminant). Let L 1 , . . . , L m be a ample line bundle over a complex projective variety X of dimension n and denote by

∆ d the discriminant in H 0 (X, ⊕ m i=1 L d i ).
Then, there exists an homogeneous polynomial Q d vanishing on ∆ d and such that

deg(Q d ) = r(L 1 , . . . , L m )d n + O(d n-1 ),
where r(L 1 , . . . , L m ) equals ( 10)

m k=1 i 1 +•••+i k-1 +i k+1 •••+im=n-m+1 i j ≥0, j∈{1,...,m}\{k} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m-1 ) i m-1 +1 + i 1 +•••+im=n-m i j ≥0, j∈{1,...,m} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m ) im+1 + i 1 +•••+im+i m+1 =n-m-1 i j ≥0, j∈{1,...,m+1} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L k ) i k +i m+1 +2 ∧ • • • ∧ c 1 (L m ) im+1 .
Proof. Let us then compute each of these cap products separately, starting, for simplicity, with [P∆ d ]∩(0, 0, . . . , 1). In order to do this, let us consider

([s 1 ], . . . , [s m-1 ]) ∈ ⊕ m-1 i=1 PH 0 (X, L d i ) such that Z s 1 ∩ • • • ∩ Z s m-1 is a smooth complete intersection of codimension m -1 in X. We can then choose a generic pair of sections [s m ], [s m ] ∈ PH 0 (X, L d m ) such that the line γ := λ [s 1 ], . . . , [s m-1 ], [s m ] + µ [s 1 ], . . . , [s m-1 ], [s m ] , with [λ : µ] ∈ P 1 , inter- sects transversally P∆ d . We have that the fundamental class of the line [γ] is the class (0, . . . , 0, 1) ∈ ⊕ m i=1 H 2 (PH 0 (X, L d i ), Z). Remark now that the map u : Z s 1 ∩ • • • ∩ Z s m-1 P 1 dened by u(x) = [s m (x) : s m (x)] is a Lefschetz pencil on Z s 1 ∩ • • • ∩ Z s m-1
and points in the intersection γ ∩ P∆ d correspond to critical points of u. By [1, Equation (1)], the number of critical points #crit(u) of u equals

(-1) n-m+1 χ(Z s 1 ∩• • •∩Z s m-1 )+(-2) n-m χ(Z s 1 ∩• • •∩Z sm )+(-1) n-m+1 χ(Z s 1 ∩• • •∩Z sm ∩Z s m ).
By Proposition 2.1, the latter equals r m d n + O(d n-1 ) where [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF] 

r m = i 1 +•••+i m-1 =n-m+1 i j ≥0, j∈{1,...,m-1} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m-1 ) i m-1 +1 + i 1 +•••+im=n-m i j ≥0, j∈{1,...,m} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m ) im+1 + i 1 +•••+im+i m+1 =n-m-1 i j ≥0, j∈{1,...,m+1} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m ) im+i m+1 +2 .
We then obtain [P∆ d ] ∩ (0, . . . , 0, 1) = r m d n + O(d n-1 ).

Similarly, we have for any k ∈ {1, . . . , m}

(13) [P∆ d ] ∩ (0, . . . , 1 k-th place , . . . , 0) = r k d n + O(d n-1 )
with r k equal to [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] 

r k = i 1 +•••+i k-1 +i k+1 •••+im=n-m+1 i j ≥0, j∈{1,...,m}\{k} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m-1 ) i m-1 +1 + i 1 +•••+im=n-m i j ≥0, j∈{1,...,m} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L m ) im+1 + i 1 +•••+im+i m+1 =n-m-1 i j ≥0, j∈{1,...,m+1} X c 1 (L 1 ) i 1 +1 ∧ • • • ∧ c 1 (L k ) i k +i m+1 +2 ∧ • • • ∧ c 1 (L m ) im+1 .
By summing Equation ( 13) over k ∈ {1, . . . , m} we obtain

(15) [P∆ d ] ∩ (1, . . . , 1) = (r 1 + • • • + r m )d n + O(d n-1 ).
The result then follows from Equations ( 11), ( 15) and ( 14).

Distance to the real discriminant and 1-jet of sections

Let us denote by R∆ d ⊂ RH 0 (X, ⊕ m i=1 L d i ) the real locus of the discriminant, that is the subset of real sections s = (s 1 , . . . , s m ) which do not vanish transversally along X. Denition 3.1. We denote Σ d ⊂ R∆ d the space of real sections s = (s 1 , . . . , s m ) of ⊕ m i=1 L d i which do not vanish transversally along RX. We call Σ d the real discriminant.

In this section, we estimate the function "distance to the real discriminant". This is the content of Lemma 3.8, which is the main result of the section. In order to do this, in Section 3.1 we introduce the peak sections associated with ⊕ m i=1 L d i and study their C 1 -norm.

3.1. Evaluation and 1-jet maps. Here, we introduce the so-called peak sections at real points of a real algebraic variety (see, for example, [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF][START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF][START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF]). This sections will be used to estimate the distance to the real discriminant. Throughout this Section 3.1, we consider a real ample holomorphic line bundle L on X equipped with a Hermitian metric h with positive curvature ω. This induces a scalar product on RH 0 (X, L d ) dened by

s 1 , s 2 L 2 = X h d (s 1 , s 2 ) ω n n! for any s 1 , s 2 ∈ RH 0 (X, L d ).
Denition 3.2 (Evaluation maps). For any x ∈ RX, let RH x be the kernel of the evaluation map

ev x : s ∈ RH 0 (X, L d ) → s(x) ∈ RL d x .
Similarly, for any real tangent vector v ∈ T *

x RX at x we dene the map

ev 2x,v : s ∈ RH x → ∇ v s(x) ∈ RL d x ,
where ∇ is any connection on L d (indeed, if s ∈ RH x , then the value ∇s(x) does not depend on ∇).

Denition 3.3 (Peak sections). Let x be a point in RX.

A peak section at x is a generator s x of (ker ev x ) ⊥ of unit L 2 -norm.

Denition 3.4 (First order peak sections). Let x be a points in RX.

• For any v ∈ T x RX, a rst order peak section at x associated with the tangent vector v is a generator sv of (ker ev 2x,v ) ⊥ of unit L 2 -norm. • Let B = {v 1 , . . . , v n } be an orthonormal basis of T x RX. Let sv 1 , . . . , svn be a rst order peak sections at x associated with the tangent vectors v 1 , . . . , v n . We call the rst order peak sections at x associated with the basis B the sections of the orthonormal family {s v 1 , . . . , s vn } obtained by applying the Gram-Schmidt process to the family {s v 1 , . . . , svn }.

The next two lemmas estimate the pointwise norm of the peak sections and of their derivatives. These estimates are nowadays standard and are essentially proved in [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]. Since we use slightly dierent conventions, we will give a proof for the sake of completeness. Lemma 3.5 (Estimates of peak sections). We have the following uniform estimates for 

x ∈ RX: |s x (x)| 2 h d = d n π n (1 + O(d -1 )) and |∇s x (x)| 2 h d = O(d n-1 ) ,
(L d , h d ), then we have |s x (x)| 2 h d = B d (x, x) and |∇s x (x)| 2 h d = |∇ 1 B d (x,x)| 2 h d B d (x,x)
, where ∇ 1 B d (x, x) stands for the covariant derivative with respect to the rst variable. To prove these identities, complete {s x } to a real orthonormal basis {s x , s 1 . . . , s N d } of RH 0 (X, L d ). Remark that {s 1 . . . , s N d } is an orthonormal basis of ker ev x . In particular, we have

B d (x, x) = |s x (x)| 2 h d + N d i=1 |s i (x)| 2 h d = |s x (x)| 2 h d ,
where the rst equality comes from the denition of the Bergman kernel and the second follows from the fact that s i ∈ ker ev x . The equality

|s x (x)| 2 h d = d n π n (1 + O(d -1 )) then follows from the fact B d (x, x) = d n π n (1 + O(d -1
)), see, for example, [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF][START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF]. For the equality |∇s

x (x)| 2 h d = |∇ 1 B d (x,x)| 2 h d B d (x,x)
, we rst dierentiate with respect to the rst variable the identity

B d (z, w) = s x (z) ⊗ s * x (w) + N d i=1 s i (z) ⊗ s * i (w)
and then we evaluate at (z, w) = (x, x) and we obtain

∇ 1 B d (x, x) = ∇s x (z) ⊗ s * x (x) + N d i=1 ∇s i (x) ⊗ s * i (x) = ∇s x (z) ⊗ s * x (x),
where the second equality follows again from the fact that s i ∈ ker ev x . We then obtain

|∇s x (x)| 2 h d = |∇ 1 B d (x,x)| 2 h d |sx(x)| 2 h d
. The result then follows from the fact that

|∇ 1 B d (x, x)| h d = O(d n-1/2 ), see [15, Theorem 4.2.1]
Lemma 3.6 (Estimates of rst order peak sections). We have the following uniform estimates for any x ∈ RX and any {v 1 , . . . , v n } orthonormal basis of T x RX: Proof. Let sv i be a rst order peak sections at x associated with the tangent vector v i (see Denition 3.4). Following the lines of the proof of Lemma 3.5, we obtain that

|∇ v i s v i (x)| 2 h d = d n+1 π n (1 + O(d -1 )) and ∇ v j s v i (x) 2 h d = O(d n ) for i = j as d → ∞.
|∇ v i sv i (x)| 2 h d = d n+1 π n (1 + O(d -1 )) and ∇ v j sv i (x) 2 h d = O(d n ) for i = j Remark that s v 1 =
sv 1 and so we already have the result for s v 1 . Let us suppose that we have the proved the desired estimates for the sections s v 1 , . . . , s v n-1 and let us prove them for s vn . By construction, the section s vn is constructed from the sections {s v 1 , . . . , s v n-1 } as follows: ( 16)

s vn = svn - n-1 i=1 svn , s v i L 2 s v i svn - n-1 i=1 svn , s v i L 2 s v i L 2
.

By [19, Lemma 3.1], the L 2 -scalar product between sv i and sv j is O(d -1 ) for any i = j.

Following the Gram-Schmidt process, this implies svn , s

v i L 2 = O(d -1
). In particular, we

obtain svn - n-1 i=1 svn , s v i L 2 s v i L 2 = 1 + O(d -1 ) which gives us (17) (16) = svn - n-1 i=1 a i s v i (1 + O(d -1 ))
where

a i = O(d -1
). From ( 17), the induction hypothesis and the properties of svn , we obtain

|∇ vn s vn (x)| 2 h d = d n+1 π n (1 + O(d -1 )) and |∇ v i s vn (x)| 2 h d = O(d n ) for i = n, hence the result.
3.2. Distance to the real discriminant. Let us now consider m real ample line bundles L 1 , . . . , L m on X. We equip each line bundle L i with a real Hermitian metric h i with positive curvature. This induces a L 2 -scalar product on RH 0 (X, ⊕ m i=1 L d i ) dened by Equation (2). Given s = (s 1 , . . . , s m ) ∈ RH 0 (X, ⊕ m i=1 L d i ), the next lemma estimates the L 2 -distance from s to the real discriminant Σ d , see Denition 3.1. This distance is computed with respect to the L 2 -scalar product, that is

dist Σ d (s) := min s ∈Σ d s -s L 2 .
The estimate of dist Σ d (s) in Lemma 3.8 is given in term of the distance induced by the C 1 (RX)-norm. Denition 3.7 (C 1 (RX)-norm). We dene the C 1 (RX)-norm of a real holomorphic global

section s = (s 1 , . . . , s m ) of L d 1 ⊕ • • • ⊕ L d m to be s C 1 (RX) = max x∈RX |s(x)| 2 h d + |∇s(x)| 2 h d 1/2 .
Here we use the following notations:

• |s(x)| 2 h d = m i=1 |s i (x)| 2 h d i
is the norm induced by the Hermitian metrics

h d i on L d i , i ∈ {1, . . . , m}. • |∇s(x)| 2 h d = m i=1 n j=1 ∇ v (i) j s(x) 2 h d
, where ∇ is the Chern connection of (L i , h i ) and where v

(i) 1 , . . . , v (i) n 
is an orthonormal basis of T x RX with respect to the Riemannian metric induced by the curvature form of (L i , h i ).

Lemma 3.8 (Distance to the discriminant). Let (L 1 , c L 1 ), . . . , (L m , c Lm ) be real ample line bundles over a real algebraic variety (X, c X ) of dimension n. Then, there exists d 0 ∈ N such that, for any d ≥ d 0 and any s ∈ RH 0 (X, ⊕ m i=1 L d i ), we have

dist Σ d (s) ≤ dist C 1 (RX) (s, Σ d ).
Proof. For any x ∈ RX, let us denote by Σ d,x the space of sections s ∈ RH 0 (X, ⊕ m i=1 L d i ) that do not vanishing transversally at x, that is

Σ d,x := s ∈ RH 0 (X, ⊕ m i=1 L d i ), s(x) = 0 and ∇s(x) is not surjective . We have x∈RX Σ d,x = Σ d , so that (18) dist Σ d (s) = min x∈RX min s ∈Σ d,x s -s L 2 .
Let us consider the real 1-jets space of

⊕ m i=1 L d at x J 1 x ⊕ m i=1 RL d i := m i=1 (RL d i ) x ⊕ m i=1 (T * RX ⊗ RL d i ) x and dene W x ⊂ J 1 x m i=1 RL d i to be the image of Σ d,x under the 1-jet map j 1 x : RH 0 (X, ⊕ m i=1 L d i ) → J 1 x m i=1 RL d i
which maps s to j 1 x (s) := (s(x), ∇s(x)). The vector bundle J 1 m i=1 RL d i over RX is naturally equipped with a metric (induced by the metric

h d = h d 1 ⊕ • • • ⊕ h d m on ⊕ m i=1 L d i )
, and, with respect to this metric, the distance in the ber J 1 x m i=1 RL d i between j 1 x (s) and W x equals

dist h d (j 1 x (s), W x ) := min s ∈R∆ d,x s(x) -s (x) 2 h d + ∇s(x) -∇s (x) 2 h d 1/2 .
Remark that we have the following inequality

dist h d (j 1 x (s), W x ) ≤ min s ∈Σ d,x max y∈RX s(y) -s (y) 2 h d + ∇s(y) -∇s (y) 2 h d 1/2 =: dist C 1 (RX) (s, Σ d,x ), which implies min x∈RX dist h d (j 1 x (s), W x ) ≤ dist C 1 (RX) (s, Σ d ).
In particular, the last inequality says that, in order to prove the lemma, it is enough to prove the inequality dist Σ d (s) ≤ min x∈RX dist h d (j 1

x (s), W x ) which, in turn, is implied by the inequality [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF] dist Σ d,x (s) ≤ dist h d (j 1 x (s), W x ), for any x ∈ RX. In the remaining part of the proof, we will prove Equation [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]. For any i ∈ {1, . . . , m}, let {v

(i) 1 , . . . , v (i) 
m } be an orthonormal basis of T x RX with the respect to the Riemannian metric induced by the (positive) curvature form of the Hermitian metric h i .

For any i ∈ {1, . . . , m} let s

(i) 0 ∈ RH 0 (X, L d i ) be a peak section at x (see Denition 3.3). Similarly, let s (i) 1 , . . . , s (i) n ∈ RH 0 (X, L d i )
be the orthonormal family of the rst order peak sections at x associated with the basis {v

(i) 1 . . . , v (i) 
m } (see Denition 3.4). We can then write [START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF] s

= n j=0 a (1) j s (1) j , . . . , n j=0 a (m) j s (m) j 
+ τ 1 . . . , τ m where τ i (x) = ∇τ i (x) = 0 for any i ∈ {1, . . . , m}. Similarly, for any section s ∈ RH 0 (X, ⊕ m i=1 L d i ), we can write where τ i (x) = ∇τ i (x) = 0 for any i ∈ {1, . . . , m}. With this notations, we have

(22) s -s 2 L 2 = n j=0 m i=1 a (i) j -b (i) j 2 + m i=1 τ i -τ i 2 L 2 . Now, if s ∈ Σ d,x
, then we have b (i) 0 = 0 for any i ∈ {1, . . . , m} and the n × m real matrix (b (i) j ) i,j has rank smaller or equal than m -1 (this reects the condition "∇s (x) is not surjective"). Moreover, as we want to minimize the L 2 -distance between s and s , we can choose τ i = τ i , for any i ∈ {1, . . . , m} (indeed, remark that the section τ = (τ 1 , . . . , τ m ) vanishes at x with order at least 2, in particular for any such τ and any s ∈ Σ d,x , we have s + τ ∈ Σ d,x ). This implies that

(23) dist 2 Σ d,x (s) = min s ∈Σ d,x s -s 2 L 2 = m i=1 a (i) 0 2 + min (b (i) j ) i,j ∈Sing n×m n j=1 m i=1 a (i) j -b (i) j 2
where Sing n×m denotes the space of n × m real matrices of rank smaller or equal than m -1.

Let us now compute dist 2 h d (j 1 x (s), W x ). We keep the notations ( 20) and (21). By Lemmas 3.5 and 3.6, we have, for any s ∈ RH 0 (X, ⊕ m i=1 L d i ), (24)

j 1 x (s) -j 1 x (s ) 2 h d = m i=1 a (i) 0 -b (i) 0 2 d n π n 1 + O(d -1 ) + n j=1 m i=1 a (i) j -b (i) j 2 d n+1 π n 1 + O(d -1 ) . Now, if s ∈ Σ d,x
, we obtain that b (i) 0 = 0 for any i ∈ {1, . . . , m} and the n × m real matrix (b (i) j ) i,j lies in Sing n×m . In particular, by Equation (24), we obtain

(25) dist 2 h d (j 1 x (s), W x ) = min s ∈Σ d,x j 1 x (s) -j 1 x (s ) 2 h d = m i=1 a (i) 0 2 d n π n + O(d n-1 ) + min (b (i) j ) i,j ∈Sing n×m n j=1 m i=1 a (i) j -b (i) j 2 d n+1 π n + O(d n ) = d n m i=1 a (i) 0 2 + min (b (i) j ) i,j ∈Sing n×m n j=1 m i=1 d a (i) j -b (i) j 2 π -n + O(d -1 ) .
In particular, for d large enough, the quantity appearing in Equation ( 25) is bigger than the one in Equation ( 23). This is exactly the inequality [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF], which proves the result.

An orthogonal decomposition for real global sections

In this section we dene an orthogonal decomposition of the space of real holomorphic sections of ⊕ m i=1 L d i (see Notation 4.4) which will be a key ingredient for the proof of Theorem 1.2. In order to do this, rst recall the following result from [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF]. Proposition 4.1. [2, Proposition 2.1] Let L be an ample real holomorphic line bundle over a real algebraic variety X. There exists an even positive integer k 0 such that for any even k ≥ k 0 there exists a real section σ of L k with the following properties: (i) σ vanishes transversally and (ii) RZ σ is empty. Notation 4.2. For any i ∈ {1, . . . , m} and any even integer k large enough, we denote by σ i a real global section of L k i satisfying the properties of Proposition 4.1.

Denition 4.3. Let σ i ∈ RH 0 (X, L k i ) be a section given by Notation 4.2, for some xed even integer k large enough and denote by σ = (σ 1 , . . . , σ m ) ∈ RH 0 (X, ⊕ m i=1 L k i ). For any pair of integers d and , we dene the subspace RH d,σ of RH 0 (X, ⊕ m i=1 L d i ) to be the space of sections s = (s 1 , . . . , s m ) ∈ RH 0 (X, ⊕ m i=1 L d i ) such that s i = σ i ⊗ s i , for some

s i ∈ RH 0 (X, L d-k i ).
Notation 4.4 (Orthogonal decomposition). For any real section s ∈ RH 0 (X, ⊕ m i=1 L d i ) there exists an unique orthogonal decomposition s = s ⊥ σ +s 0 σ with s 0 σ ∈ RH d,σ and s ⊥ σ ∈ RH ⊥ d,σ . (Here, RH d,σ is as in Denition 4.3 and its orthogonal is with respect to the L 2 -scalar product dened in Equation (2).) Proposition 4.5. There exists a positive real number t 0 such that, for any t ∈ (0, t 0 ), we have the uniform estimate τ C 1 (RX) = O(d -∞ ) for any real section τ ∈ RH ⊥ d,σ td with τ L 2 = 1, as d → ∞. (Here, RH d,σ td is as in Denition 4.3 and td is the greatest integer less than or equal to td.)

Proof. Let τ = (τ 1 , . . . , τ m ) ∈ RH ⊥ d,σ td be such that τ L 2 = 1. This implies in particular that τ i L 2 ≤ 1 for any i ∈ {1, . . . , m}. By [2, Proposition 2.6], we have the uniform estimate (1) There exists a positive real number t 0 such that for any t ∈ (0, t 0 ) the following happens. Let C > 0 and r ∈ N. For any sequence w d with w d ≥ Cd -r , there exists d 0 ∈ N, such that for any d ≥ d 0 and any s

τ C 1 (RX) = O(d -∞ ). The result then follows from τ C 1 (RX) ≤ m i=1 τ i 2 C 1 (RX)
∈ RH 0 (X, ⊕ m i=1 L d i ) we have s ⊥ σ td C 1 (RX) < w d s L 2 .
(2) There exist two positive constants c 1 and c 2 such that, for any sequence of real numbers

w d with w d ≥ c 1 e -c 2 √ d log d and any s ∈ RH 0 (X, ⊕ m i=1 L d i ) we have s ⊥ σ C 1 (RX) < w d s L 2 .
If, moreover, the real Hermitian metrics h i on L i are analytic, then the last estimate is true for any sequence w d with w d ≥ c 1 e -c 2 d . Here, s ⊥ σ and s ⊥ σ td are given by Notation 4.4. Proof. Let us prove point [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF]. Take s ∈ RH 0 (X, ⊕ m i=1 L d i ) and consider the section ( s L 2 ) -1 s, which has L 2 norm equal to 1. Now, by Proposition 4.5, as

( s L 2 ) -1 s ⊥ σ td L 2 ≤ 1, there exists a constant c r > 0 (not depending on d) such that ( s L 2 ) -1 s ⊥ σ td C 1 (RX) ≤ c r d -r-1 ,
which is strictly smaller than w d , for d large enough. This proves point [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] of the result. The proof of point [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF] follows the same lines, using Proposition 4.6 instead of Proposition 4.5.

Proof of the main results

The goal of this section is to prove Theorems 1.2 and 1.4. Before this, let us recall some notations we have used so far. Let L 1 , . . . , L m be real ample line bundles over a ndimensional real algebraic variety X. We equip each line bundle with a real Hermitian metric with positive curvature. This induces a L 2 scalar product on RH 0 (X, ⊕ m i=1 L d i ) dened in Equation ( 2) and a Gaussian measure on RH 0 (X, ⊕ m i=1 L d i ) denoted by µ d and dened in Equation ( 3). Finally, we denote by Σ d the real discriminant (see Denition 3.1).

Tubular neighborhoods of the real discriminant. A tubular conical neighborhood of the real discriminant

Σ d in RH 0 (X, ⊕ m i=1 L d i ) is a tubular neighborhood of Σ d in RH 0 (X, ⊕ m i=1 L d i )
which is also a cone (that is, if s is in the neighborhood, then λs is also in the neighborhood, for any λ ∈ R * ).

The next lemma estimates the measure of small tubular conical neighborhoods of the real discriminant Σ d . It is a special case of [4, Theorem 21.1] (see also [START_REF] Niang | Low degree approximation of random polynomials[END_REF]Proposition 4] and [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF]Lemma 3.4]).

Lemma 5.1 (Volume of tubular conical neighborhoods). Let L 1 , . . . , L m be real Hermitian ample line bundles over a real algebraic variety X of dimension n. Then there exists a positive constant c (not depending on d), such that, for any sequence r d of positive real numbers verifying r d ≤ cd -2n , one has

µ d {s ∈ RH 0 (X, ⊕ m i=1 L d i ), dist Σ d (s) ≤ r d s L 2 } ≤ O(r d d 2n ).
(Here, µ d is the Gaussian probability measure dened in Equation (3).)

Proof. Let us denote by S d the unit sphere in RH 0 (X, 

⊕ m i=1 L d i ), that is S d := {s ∈ RH 0 (X, ⊕ m i=1 L d i ), s L 2 =
U ⊂ S d , ν d (U ) = Vol(U )Vol(S d ) -1 ), then the Gaussian measure of every cone C d in RH 0 (X, ⊕ m i=1 L d i ) equals ν d (C d ∩ S d ).
This implies that the Gaussian measure of the cone Recall, that, by Lemma 2.3, there exists a polynomial of degree bounded by cd n (for some c > 0 independent of d) whose zero locus contains SΣ d . We are then in the hypotheses of [ such that

C d = {dist Σ d (s) ≤ r d s L 2 }
s -s C 1 (RX) < dist C 1 (RX) (s, Σ d ),
we have that the pairs ) with probability 1 -O(d -∞ ). Now, the section s 0 σ td lies in the space RH d,σ td so that there exists s ∈ RH 0 (X, ⊕ m i=1 L d-k td i ) such that s 0 σ td = σ td ⊗ s . Assertion [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] of the theorem then follows from the fact that the real zero locus of s 0 σ td coincides with the real zero locus of s . Indeed, the real zero locus of s 0 σ td equals RZ σ ∪ RZ s and this is equal to RZ s , because RZ σ = ∅.

The proof of the assertion (2) of the theorem follows the same lines, using the orthogonal decomposition s = s ⊥ σ + s 0 σ and Proposition 5.4(2).

Proof of Theorem 1.4. We start with the proof of Assertion [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF]. Recall that we want to prove that for small enough > 0, we have Assertion [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF] is proved in the same way, using Theorem 1.2(2) instead of Theorem 1.2(1).

  and reads b 0 (RC) ≤ g(C) + 1 where g(C) denotes the genus of C.Putting together Smith-Thom inequality (4) and the asymptotics (1) for the total Betti number of a complete intersection, we nd b

  for any i ∈ {0, . . . , n -m -1}. In particular, for any i ∈ {0, . . . , n -m -1}, the Betti number b i (Z s 1 ∩ • • • ∩ Z sm ) does not depend on d. By Poincaré duality, we also have

  b

  First, we remark that if (s 1 , . . . , s m ) ∈ ∆ d then (λ 1 s 1 , . . . , λ m s m ) ∈ ∆ d for any λ 1 , . . . , λ m ∈ C * . This implies that the degree of ∆ d equals the number of intersection points of P∆ d ⊂ ⊕ m i=1 PH 0 (X, L d i ) with a generic line γ ⊂ ⊕ m i=1 PH 0 (X, L d i ), whose homology class [γ] is the class of multidegree (1, . . . , 1) ∈ H 2 (⊕ m i=1 PH 0 (X, L d i ), Z) ⊕ m i=1 H 2 (PH 0 (X, L d i ), Z). This number equals the cap product between the fundamental class [P∆ d ] of P∆ d and the class (1, . . . , 1) ∈ ⊕ m i=1 H 2 (PH 0 (X, L d i ), Z). Denoting by ∩ the cap product, we have the equality (11) deg(∆ d ) = [P∆ d ]∩(1, . . . , 1) = [P∆ d ]∩(1, 0, . . . , 0)+[P∆ d ]∩(0, 1, . . . , 0)+[P∆ d ]∩(0, 0, . . . , 1).

  Here, we have denoted by n the dimension of X, by ∇ the Chern connection of (L d , h d ) and by |•| h d the norm induced by h d .

+ τ 1

 1 . . . , τ m

1 / 2 Proposition 4 . 6 .

 1246 Let k be an integer large enough. There exists c > 0 (depending on k) such that we have the uniform estimate τ C 1 (RX) ≤ O(e -c √ d log d ) for any real section τ ∈ RH ⊥ d,σ with τ L 2 = 1, as d → ∞. If the real Hermitian metrics h i on L i are analytic, then we have the uniform estimate τ C 1 (RX) ≤ O(e -cd ) for any real section τ ∈ RH ⊥ d,σ with τ L 2 = 1. Proof. The proof follows the lines of the proof of Proposition 4.3, by using [2, Proposition 2.7] instead of [2, Proposition 2.6]. Using the notation of the orthogonal decomposition given in Notation 4.4, Propositions 4.5 and 4.6 in particular imply the following result. Proposition 4.7. Let σ = (σ 1 , . . . , σ m ) ∈ RH 0 (X, ⊕ m i=1 L k i ) be a section given by Denition 4.3, for some xed k large enough.

  we are interested in equals ν d {s ∈ S d , dist(s, SΣ d ) ≤ r d }. In order to obtain the result, it is then equivalent to prove the estimate (26) ν d {s ∈ S d , dist(s, SΣ d ) ≤ r d } ≤ O(r d d 2n ).

4 ,

 4 Theorem 21.1] which gives us the estimate (27) ν d {s ∈ S d , dist(s, SΣ d ) ≤ r d } ≤ c N d d n r dfor some constant c > 0 (independent of d), where N d is the dimension of RH 0 (X, ⊕ m i=1 L d ). By Riemann-Roch Theorem, we have that the dimensionN d of RH 0 (X, ⊕ m i=1 L d ) is O(d n ), so that the right-hand side of (27) is O(r d d 2n), which gives us (26) and, then, the result. 5.2. Quantitative stability of real sections. In this section, we study how much we can perturb a real section s ∈ RH 0 (X, ⊕ m i=1 L d i ) \ Σ d without changing the topology of its real locus. This is the content of Corollary 5.3 which will use the estimates on the distance to the real discriminant Σ d proved in Section 3.2. In the case of Kostlan polynomials similar results can be found in [5,Proposition 3] and [3, Theorem 7]. Lemma 5.2. Let s ∈ RH 0 (X, ⊕ m i=1 L d i ) \ Σ d be a real section (see Denition 3.1 for the denition of the real discriminant Σ d ). Then, for any real global section s ∈ RH 0 (X, ⊕ m i=1 L d i )

µ

  d {s ∈ RH 0 (X, ⊕ m i=1 L d ), b * (RZ s ) < (1 -)b * (Z s )} = 1 -O(d -∞ )as d → ∞. Let α 0 be given by point[START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] of Theorem 1.2 and denote δ 0 = 1 -α 0 . By Theorem 1.2(1), for any 0 < δ < δ 0 , the real zero locus of a global section s of L d is dieomorphic to the real zero locus of a global section s of L (1-δ)d with probability1 -O(d -∞). Now, by Smith-Thom inequality (see Equation (4)), the total Betti number b * (RZ s ) of the real zero locus a generic section s of L (1-δ)d is smaller or equal than b * (Z s ), which, by Proposition 2.2, has the asymptotic b* (Z s ) = v(L 1 , . . . , L m ) (1 -δ)d n + O(d n-1). In particular, with probability 1 -O(d -∞ ), the total Betti number b * (RZ s ) of the real zero locus of a section s of L d is smaller than v(L 1 , . . . , L m ) (1 -δ/2)d n , as d → ∞. Choosing so that (1 -) > (1 -δ/2) n we have the result.

  as d → ∞. Here, we have denoted by n the dimension of X, by ∇ the Chern connection of (L d , h d ) and by |•| h d the norm induced by h d . Proof. Let B d (z 1 , z 2 ) be the Bergman kernel associated with the Hermitian line bundle

  1}. Let us also denote by SΣ d the trace of the discriminant on S d , that is SΣ d := S d ∩ Σ d . Now, if we denote by ν d the probability measure on S d induced by its volume form (that is, for any

  (RX, RZ s ) and (RX, RZ s ) are isotopic. (Here, • C 1 (RX) is given by Denition 3.7.)Proof. Consider the path of real sections s By Thom's Isotopy Lemma, this implies that the pairs (RX, RZ st 0 ) and (RX, RZ st 1 ) are isotopic for any t 0 , t 1 ∈ [0, 1]. Taking t 0 = 0 and t 1 = 1 we have the result. implies that the Gaussian measure of the set (32) is bigger than the Gaussian measure of the set(33) s ∈ RH 0 (X, ⊕ m i=1 L d i ), s ⊥ σ td C 1 (RX) < dist Σ d (s)which, in turn, by Proposition 5.4[START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF], is bigger than 1 -O(d -∞ ). We have proved that the pair (RX, RZ s ) is isotopic to the pair (RX, RZ s 0

	σ td

t = (1 -t)s + ts for t ∈ [0, 1]. Then, by the hypothesis s -s C 1 (RX) < dist C 1 (RX) (s, Σ d ), we have that s t is a path of real sections vanishing transversally along RX for any t ∈ [0, 1].

Corollary 5.3. There exists a positive integer d 0 such that for any d ≥ d 0 and any real section s ∈ RH 0 (X, ⊕ m i=1 L d i ) \ Σ d , the following happens. For any real section s ∈ RH 0 (X, ⊕ m i=1 L d i )

such that

we have that the pairs (1) There exists t 0 > 0 such that, for any t ∈ (0, t 0 ), we have

(2) There exists a positive c > 0 such that

Moreover, if the real Hermitian metrics on L 1 , . . . , L m are analytic, then the last measure is even bigger than 1 -O(e -cd ). Proof. First, remark that, by Proposition 5.1, for any m ∈ N, setting

Also, by point [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] of Proposition 4.7, for any t < t 0 , any integer r, any sequence w d of the form C 2 d -r , any d large enough and any real section s

Putting together (28) and (29), we have that, for any such sequences r d and w d , (30)

By choosing w d = r d , we then obtain that for any m ∈ N (31)

which proves the point (1) of the proposition. Point [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF] of the proposition follows the same lines, using point [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF] Let σ ∈ RH 0 (X, ⊕ m i=1 L k i ) be a section given by Denition 4.3, for some xed k large enough. We want to prove that there exists α 0 < 1 such that for any α > α 0 , the Gaussian measure of the set (32

, where (RX, RZ s ) ∼ (RX, RZ s ) means there the two pairs are isotopic.

Let us consider the positive real t 0 given by Proposition 5.4(1) and set α 0 = 1 -kt 0 . Then, for any α > α 0 , there exists t < t 0 , such that the inequality αd ≥ d -k td holds. Let us x such α and t. For any s ∈ RH 0 (X, ⊕ m i=1 L d i ), let us write the orthogonal decomposition s = s ⊥ σ td + s 0 σ td given by Notation 4.4. By Lemma 5.3, if the C 1 (RX)-norm of s σ td is smaller than dist Σ d (s), then the pairs (RX, RZ s ) and (RX, RZ s 0 σ td ) are isotopic. This