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Low Quality and Recognition of Image Content
Heinz Hofbauer , Florent Autrusseau , and Andreas Uhl

Abstract—Assessment of visual encryption of video and image
content requires a reliable estimation of content recognizability and
low quality. As pointed out in the literature, current methods are
insufficient and research into this topic, as well as into the relation
between low quality and recognizability, is still lacking. This lack
of research is primarily due to a lack of data. To improve on the
status-quo we have taken a recognizability database and performed
a subjective quality evaluation on a subset of the images. This gives
us a new database with both subjective recognizability and quality
information and allows to delve into the relation between low
quality and recognizability. We analyze the relationship between
quality and recognizability as well as the predictive quality of state
of the art visual quality indices. We show that the visual quality
indices are poor indicators for the estimation of recognizability.
Furthermore, we show that they must be a poor fit because of
the disparity between two distinct perceptual tasks: quality and
recognizability.

Index Terms—Selective encryption, image recognition, image
quality, human visual system, visual quality indices.

I. INTRODUCTION

THIS paper is not about encryption. It is about the relation
between recognition, i.e., what is the content of the im-

age, and quality, i.e., how nice does this look. But the reason
why we look at the relation between quality and recognizabil-
ity is very much due to encryption. So we will briefly give an
overview of selective encryption and how matters of quality and
recognizabiltiy relate to it.

Encryption of image content is an active field of research [1]–
[5]. For selective encryption a state-of-the-art cipher is used,
e.g., Advanced Encryption Standard (AES), where the security
of the encrypted parts is already known and encrypted parts are
considered secure. For reasons of speed, usually only a selected
part of the data is encrypted. The overall security comes from the
data that was selected for encryption, or conversely which data
was left in plain-text. Therefore, an analysis of the remaining vi-
sual information, which can be extracted from the non-encrypted
parts of the data, is necessary.
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There is a special case for selective encryption which is called
“format compliant encryption”. The definition is that a selective
encryption scheme is format compliant if a standard compliant
decoder can decode the encrypted format without crashing (this
is the source of images in the database published with this pa-
per). The benefit of that is that the encrypted data can be used
just like regular data. For example, with a careful selection it
is possible to use an encrypted video as a low quality preview
which can be upgraded to full quality with the key. Depending
on the application scenario, the resulting quality can range from
“preview quality” to the content should be “unrecognizable”.

This is where the notion of quality and recognizability by
human observers becomes a primary concern. The typical use
cases for selective encryption, providing previews or prevent-
ing an enjoyable consumption by human observers (see [6] for
typical use cases), directly aim the consumption by humans.

Subjective quality and recognizability assessment is thus
needed to ascertain the proper protection by the encryption.
To constantly evaluate such systems by actual human observers
would quickly become overly time consuming and costly. The
obvious alternative is to utilize visual quality indices (VQIs)
which are built to emulate the way the human visual system
(HVS) assesses the quality. For the development of such VQIs,
databases of distorted images with a quality score provided by
actual human observers are utilized. There exist plenty of sub-
jective (human assessed) and objective (issued by computer pro-
grams) datasets for still, natural image quality assessment [7] or
for video quality assessment [8]. Subjective and objective qual-
ity assessment studies have also been devoted to Depth Image
Based Rendering (DIBR) [9], others have focused on 3D water-
marking quality assessment [10]. All these works concern very
high quality images evaluation, but only very few works have
been conducted on the quality evaluation of selective encryption.

This in turn means that VQIs are trained primarily on high
quality databases (because that is what is available) to emu-
late the human perception of high quality content. It has been
shown, [6], [11] that traditional visual quality indices are not
well equipped to handle images that move too far away from
high quality, and consequently fail at the task of evaluating the
content and quality of selectively encrypted data. Indeed, the tra-
ditional VQIs are designed in such a way that a special weighting
is applied onto some components of the image where the per-
ception is more sensitive. In other words, these quality metrics
are tuned to look for differences in a predefined quality range,
usually on high quality images to minimize the impact of encod-
ing, and hence are not adapted to handle very strong distortions.
Producing new visual quality indices which can handle selec-
tive encryption is also a field of active research [12]–[15]. The
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development of visual quality indices requires either expensive
human observer experimentation or a solid database of such ob-
servations for evaluation and design.

So the current state of affairs is that the available VQIs are
a poor fit for evaluating the low quality of images which are
encrypted in a medium to strong fashion. Further, there is lit-
tle to no work done on the recognizability of strong to very
strong selective encryption. Even worse, we do not even know
the relationship between quality and recognizability. Still, VQIs
(mostly PSNR and SSIM because they are widely known and
readily available) are used as a primary tool for evaluating the
performances of all encryption strengths, primarily because they
are the only tools available.

For the development of visual quality indices for mid- to
low-quality images there are, to the best of the authors knowl-
edge, two databases: [16] and [17]. This is not an optimal situa-
tion but at least allows for the development on one database and
the testing on the other. For the development of indices which
can handle content intelligibility the situation is somewhat more
complicated as shown in [18] which also introduces the first
database with a recognition score for images encrypted on the
border of content recognition. The database presented in [17]
also contains a recognizability score (denoted content leak in-
formation), which is directly rated by observers when compar-
ing the original to the encrypted image, in addition to the visual
quality data. The presentation of the original coupled with the
tendency of the human visual system to find patterns strongly
influences the content leak information. The translation of this
content leak information [17] to the recognition index [18] is
difficult at best. Specifically, both are susceptible to pareidolia,
i.e., the tendency for incorrect perception of a stimulus as an
object, but the method in [18] is designed to catch that (multi-
ple originals) while the setup in [17] is not (single original). The
data in [17] is still useful for the security evaluation of encrypted
images, but not the evaluation of the recognition threshold.

So there is a lack of data which makes it hard to produce
quality or recognizability indices for strong to very strong dis-
tortions. In addition, we do not know if the VQIs which are
available could properly evaluate recognizability, primarily be-
cause the relation of quality and recognizability for the HVS in
this context is not researched at all. What we do know however,
from [18], is that the VQIs most frequently used for this task are
not able to perform well in this capacity.

In this paper we present a subset of the database from [18]
to a panel of human observers to get an evaluation of perceived
quality for encrypted images at the recognition threshold. This is
not only a further database for the development of quality based
indices for selective encryption but also allows us to study the
differences and commonalities between quality and recogniz-
ability, a hitherto unstudied subject. What makes this even more
interesting is that the general usability of quality indices for the
purpose of evaluating recognizability is assumed, that is recog-
nizability is seen as an extension of quality. This is partially a
pragmatic use of what is available, i.e., visual quality indices,
and partly the reasoning that an unrecognizable image will ‘of
course’ be of low quality, after all, the only content left are dis-
tortions. Once started, this practice is repeated, largely without

thinking due to precedence of the same practice in literature. To
take a closer look at this practice is long overdue and a strong
motivation for the evaluations in this paper.

The rest of the paper is structured as follows: The database,
how it was collected, its content, and where to get it, is described
in Section II; The analysis of the relations between quality and
recognizability, i.e., the conformance of quality, perceptibility,
and various visual quality and recognition indices, is described
in detail in Section III; Some topics are not directly related to
the experiments, but are still important to discuss, those are pre-
sented in Appendix A; The conclusion, Section IV, gives a recap
of our findings and concludes the paper.

II. DATABASE

In this section we will describe the images contained in the
database, the setup how the acquisition was performed, the han-
dling of outliers and calculation of the final mean observer score.
The database is publicly available to facilitate research.

A. Images Contained in the Database

This database is a subset of the USEE database [18]. A subset
was chosen so we could perform the subjective experiments with
a large enough number of observers. The primary driver behind
the decision was how many images we could handle and the cost
and time involved.

The USEE database contains 14 images, 12 color and two
grayscale, with 6 encryption types in 9 distinct steps for a total
of 770 images (including the originals). We reduced the number
of images for the USEE Quality (USEEQ) database by remov-
ing the grayscale images and two of the encryption types (fake,
jpg). Further, we reduced the number of steps between highest
and lowest quality to 6 (from 9 in the USEE database). This
means the USEEQ contains a total of 288 images (12× 6× 4).
Fig. 1 shows examples of the encryption types for the lighthouse
image.

Reproducible Research: The database will be made avail-
able at http://wavelab.at/sources/USEEQ. It will contain the sub-
set of images from the USEE1 database, the individual scores per
observer, and the outlier pruned mean observer score (MOS).

NB: While the database contains only encrypted images they
reflect the encoding scheme. Thus, they are rather similar to
strong transmission errors or very strong encoding. These dis-
tortions are all noise-like, so for general purpose application
(which is not the focus of this paper) the database lacks strong
blur-type distortions.

B. Encryption Types

We will briefly repeat the encryption types here, more detailed
information is contained in the README of the USEE database,
as well as the specific parameters used for each image.

H.265: The approach in [19] utilizes encryption of sign co-
efficients in HEVC data. The encryption is converted to still
images by using videos of 1 frame length and applying the

1Available online at: http://wavelab.at/sources/USEE

http://wavelab.at/sources/USEEQ
http://wavelab.at/sources/USEE
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Fig. 1. Example of the encryption steps from the database for the lighthouse image.

encryption to that sequence. Since a single frame encryption
has a rather limited impact on quality an iterative method of
repeated encoding and encryption cycles was used.

j2k and j2kne: The method from [20] encrypts a JPEG2000
file in either layer or resolution progression by encrypting code-
block contributions to packets while maintaining signal mark-
ers. The difference between j2k and j2kne is that regular j2k
uses error concealment during decoding, which tries to improve
the image quality in case “strange” code block content arrives
(which is the case for encrypted parts), while j2kne has turned
error concealment off.

jxr: The encryption method for JPEG XR is proposed in [21]
and uses coefficient scan order permutation, sign bit encryp-
tion, transform-based encryption, random level shift encryption,
index-based VLC encryption, and encrypting entire frequency
bands. A diverse set of parameters and was used to get to desired
steps in quality.

C. Acquisition of Human Observer Scores

Forty five observers were enrolled to take part of this study.
All observers were either students or staff of the University of
Nantes (France). The observers were asked to wear their contact
lenses or spectacles during the experiment, they were screened
(using Snellen eye chart and Ishihara color plates) to ensure they
had a normal acuity and color vision. The observers were paid
for their contribution to the experiment, which was completed
on average in about 26 minutes per session. A statistical anal-
ysis (dendrogram) [22], [23] was conducted in order to detect
any possible inconsistent scoring. Of the 45 enrolled observers,
based on the deviant subjective scores, 9 observers were dis-
carded in the study. The average age of the remaining 36 ob-
servers is 32.94 years old.

The experiment was conducted under standardized viewing
conditions. The room illumination was set to 10 Lux, the maxi-
mum screen luminance was 200 cd/m2, the screen gamma func-
tion was 2.20 and the contrast ratio/black point of 2 cd/m2.

Our setup was thus compliant with the recommendations by
the International Telecommunication Union (ITU) [24]–[26].
The subjective protocol was set in accordance with the ITU
recommendations.

The protocol being used here is a “Paired Comparison”
setup [27] with a continuous quality scale. Two images were
shown side by side on the monitor, the original image was dis-
played on the left, and the impaired image on the right half of
the screen. A grey background was surrounding the images. A
horizontal scroll bar was positioned beneath the images, this
latter allowed to score the images between 0 and 100. The ob-
servers were asked to modulate the scroll bar according to their
perception of the distorted image quality as compared with the
original. On average, the allocated scores were rather low with
an average score of 30.57 and a standard deviation of 5.61.

At this point, thanks to the previously collected recognizabil-
ity scores [18], and the quality assessment presented here, we
have at our disposal, for each image of the USEEQ dataset,
two subjective scores: The recognizability Mean Opinion Score
(MOSR) [18] and the quality score (MOSQ), collected in the
experiments as described above.

III. ANALYSIS OF THE RELATION BETWEEN QUALITY AND

RECOGNIZABILITY

In [6] the authors showed that the usual visual quality indices,
which are built for relatively high quality imagery, are not well
suited to assess low quality, as in strongly encrypted, images.
Furthermore, they pointed out that the lack of a recognizability
database prevents any evaluation for the recognition of image
content, which is important for confidential encryption. This led
to the generation of a recognizability database in [18], which
was then used to evaluate visual quality indices to be used as
recognition indices. The authors showed that traditional visual
quality indices are poor recognition indices. They also proposed
using a structure based index (the NCC), in an attempt to create
a better index.
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Overall, the result from [18] is that the consolidation of rec-
ognizability and (low) quality is difficult. However, in [18] no
human evaluation of the low quality is available, meaning the
assessment of quality and recognizability is only speculative.
The relation between high and low quality has to some extent
been looked at in [6], but the relation of quality and recognition
has not been looked into yet due to a lack of data. We now have
a database which has images around the recognition threshold
annotated with quality information. This allows us to look into
the relation of quality and recognition, with the main goal of
understanding why visual quality indices perform so poorly.

As the discussion and analysis can be long, and at times very
detailed, we endeavor to succinctly summarize the most relevant
results from the longer subsections into an “in brief” paragraph
at the end. This allows to skip topics of less interest to the reader
without missing the big picture. Please also note that, with the
space available, we can not describe all measures and evalua-
tion scores in detail. While we provide a brief description, if a
more in-depth description is desired the cite literature should
be consulted. Specifically, the reader is referred to [18]2 which
contains a more in-depth description of the source database, the
encryption types, and the acquisition of the recognitions score;
this paper relies heavily on the database and data from that paper.

A. Conformance of Quality and Recognition Scores

The first experiment is to repeat what was done in [18], where
only the MOSR is available, and see how human quality assess-
ment (MOSQ) relates to recognizability. For details about the
reported values see the above cited paper and the papers given
in the following brief description. The direct relation between
quality and recognizability can be investigated by assessing the
MOSQ andMOSR scores with the following, well known, mea-
sures: the root mean squared error (RMSE) [28], a linear correla-
tion (Pearson’s r) [29], and a rank order correlation (Spearman’s
Rank order correlation (SROC) [30]). In [18] the use of SROC90,
spanning 90% of the recognition scores, is suggested over the
full SROC. The reason being that the high number of completely
visible images (which have the same rank) messes with the over-
all rank assessment of the SROC, compare Fig. 2. The removal
of 10% is based on an assumed error rate (miss-clicks and such)
of users. The images can also be classified into recognizable and
unrecognizable classes based on the quality. The classification
results in true positives, false positives, false negatives and false
positives and based on those occurrences the following statistics
can be calculated. Two reported values are operating points on
the well known receiver operating characteristic [31]. The equal
error rate (EER) is the operating point where the false positive
and the false negative rates are equal, it is primarily useful for
the comparison of methods and significance calculation [32].
The other is the false positive rate at the threshold where zero
false negatives are reported (0FNR) as this is the point of inter-
est (no insecure images are reported as secure) when assessing
the security for encryption. Finally, Matthews correlation coeffi-
cient (MCC) [33], [34] is related to the chi-squared statistics for

2Openaccess available at [Online]. Available: http://dx.doi.org/10.1016/j.ins.
2020.11.047

Fig. 2. Scatter-plot of unrecognizability (MOSR) percentages over qual-
ity scores (MOSQ). Large symbols represents equal quality/recognizability
extrema.

TABLE I
EXPERIMENTS ON THE QUALITY SUBSET

the contingency table. It is an especially good fit for classifica-
tion problems where the class size is unbalanced, as is the case
here.

Since USEEQ is a subset of the USEE database we also re-
peat the VIF [35], LEG [35], SSIM [36], PSNR, and NCC [37]
evaluations on this reduced subset to be able to properly com-
pare them. This list is extended by two indices specifically de-
signed for the assessment of selective encryption strength, the
local entropy measure (LE) [38] and The neighborhood simi-
larity degree (NSD) [39]. Further, we extend the list of VQIs
to include a sampling of recent Convolutional Neural Networks
(CNN) based methods, namely DBCNN [40], HyperIQA [41]
and NIMA [42]. These were used as an end user would, i.e., no
specific training except were required (the last training step of
the DBCNN on the LIVE database was performed as given by
their instructions). The NIMA is somewhat noteworthy in that
it not only used the TID [43] image quality database for train-
ing but also the AVA database [44] which is an aesthetic quality
database. The results are given in Table I.

The VQIs show the same overall behaviour as in [18], they
still are only a weak predictor of recognizability. The same holds
true for metrics designed specifically for selective encryption as
well as the CNN based methods. The subjective image quality
(MOSQ) on the other hand performs rather well which is kind of
surprising. The VQIs are built based on the HVS, although for
high quality images, but work poorly on this data while the sub-
jective quality scores (MOSQ) themselves work decently well.

http://dx.doi.org/10.1016/j.ins.2020.11.047
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Fig. 3. The figures give the same data, the recognition and quality scores per image, but once ordered by increasing quality (left) and once by increasing
recognizability (right).

This indicates that there is a difference in how human observers
perceive high and low quality data. For example in [17] even
for low quality images the content leakage score can be high,
meaning the human observer is well capable of differentiating
between content and quality. Further, the human visual system
is adept at noticing differences of a sufficient magnitude, but
that changes with the overall variance in the image (this is usu-
ally known as contrast masking). That is, a medium strength
error will stand out unpleasantly in a high quality image, while
a whole image affected by the same strength error will be rated
as a lower quality but no unpleasant error will stand out (this
is a topic of research termed just noticeable difference, which
is affected by contrast masking, see [45] for an overview). To
experience the effect, look at the images in Fig. 1, there is a clear
difference in the perceived quality of the H.265 and jxr encryp-
tion types, which create interesting color patterns, while the j2k
and j2kne types create a noise like structure which appears to be
more unpleasant to view.

From these examples we can see that the human visual system
acts very differently depending on the shape and distribution of
the noise or distortion. As such, VQIs are trained to resemble
the human visual system when assessing high quality data, dis-
agreeing with the human visual system when subjected to low
quality data. However, the PSNR and the NCC are not based on
the human visual system and still perform poorly here.

To take a closer look at this we have plotted the quality
(MOSQ) and recognition (MOSR) as a scatter plot, shown in
Fig. 2. Low (resp. high) recognizability corresponds to low (resp.
high) quality. However, the relationship is not linear which can
lead to cases where very similar quality scores have highly dis-
parate recognizability scores (and vice versa). Two examples of
this (similar recognition and similar quality) are marked in Fig. 2
by the large blue and red symbols. The corresponding images
are shown in Fig. 4 and will be discussed later. Even though
there is a very distinct non-linear mapping between quality and
recognition, they are clearly linked, but not as strongly correlated
(SROC = 0.859 and SROC90 = 0.888) as expected. For con-
text, the SSIM VQI has a SROC > 0.9 on the LIVE database
and we expected something similar or better here. This is likely
due to the saturation of recognizability (at some point the content
is simply recognizable) leading to the following observation. We
also see part of the differences, while quality and recognition are

linked the scores overlap only in parts. That is for 90% of the
quality range the image is clearly recognizable, while about 90%
of the variance in the recognizability is at roughly 10% of the
quality range. This becomes clearer when the scores are ordered.
Fig. 3 shows both the quality and recognizability scores, once
ordered by recognition and once by quality.

What also can be seen from Fig. 3, which is an important point,
is that the recognition has a very different range than the quality.
At some point the images are recognizable and we have a flat
recognizability line, while the quality never bottoms out. This
means that users attribute different qualities to images which are
basically unrecognizable. This is another strong indicator that
the HVS does not only use image content for quality assessment.
For unrecognizable images this likely would mean that the aes-
thetics of the noise, or encryption artefacts, are important for
quality, i.e., visually pleasing artefacts lead to a higher quality
score than less pleasing artefacts, even if both images are on the
same level of recognition.

As an example of the difference in range of similar (by
one score) images consider the large symbols in Fig. 2 which
represents two cases of this phenomenon. Each pair of images
has either a similar quality score (red squares) or a similar
recognizability score (blue circles). The corresponding images
are shown in Fig. 4. Clearly, quality and recognizability can
be highly decorrelated, i.e., for two distinct images a similar
perceived quality might result in a significantly different rec-
ognizability score (and vice versa). Our method of acquiring
recognition scores relies on matching an encrypted image to it’s
original, to illustrate this we also provide the original as insets in
the figure. For a discussion about a potential bias introduced in
experiments due to the acquisition method see Appendix A-A.

Fig. 3 also shows the separation of the data into high quality,
where the images are clearly recognizable, and low quality data,
where a distinct drop in quality happens. The range between
low and high quality is denoted as medium quality. The quality
drop at the border between low and high quality is not very
visible in the combined plot but can be easily seen if the plots
are separated by encryption type, shown in Fig. 5. The classes
low, medium and high quality classes will be used later in the
paper (Sections III-E and III-F).

In brief: The quality is an error prone indicator for recog-
nizability of image content. Given that a VQI is itself an error
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Fig. 4. Two examples of quality and recognizability extremas corresponding
to the marked pairs in Fig. 2). The original images are shown as insets.

Fig. 5. Ordering of the quality score (monotonically increasing) per encryption
method, along with the recognizability index.

prone predictor of the human visual system we have a doubling
up of errors. We also have to keep in mind the different training
target for VQIs (high quality) and the effect of contrast masking
on the human visual system for bad quality. The result of this is
the apparent discrepancy of VQIs and the HVS based MOSQ as
shown in Table I.

This and the attribution of high or low quality to unrecogniz-
able images depending on the visual appearance of errors makes
the attempt to directly map quality to recognizability difficult.
That is, there is an overlap between recognition and quality but
also a large part where there is no proper relation. This can be
seen in Figs 2 and 4, where for example about 90% of the quality
range is clearly recognizable (related to about 5% of the recog-
nition range). So, while a rank based correlation between quality
and recognizability is not likely to succeed a classification into
two clusters (recognizable / unrecognizable) based on quality
evaluation might work.

TABLE II
TOTAL ERROR RATE (Et(T

∗
opt)) FOR THE OPTIMAL THRESHOLD (T ∗

opt)
GIVEN PER VQI AND FOR THE QUALITY OBTAINED FROM HUMAN

OBSERVERS (MOSQ)

B. Visual Quality Indicators as Predictors of Recognizability

A simpler task than a rank correlated estimation of quality is
the differentiation between recognizable and non-recognizable
images. That is, what is the threshold for a VQI score beyond
which images are non-recognizable. This can be simply evalu-
ated by minimizing the total error (Et) which is the sum of the
false non-recognizable rate (EFNR) and false recognizable rate
(EFRR) errors which can be defined as:

EFNR(T ) =
|QNR(T ) ∩R|

|I| ,

EFRR(T ) =
|QR(T ) ∩NR|

|I| ,

where I is the set of images, R and NR = I \R are the set of
recognizable and non-recognizable images according to human
observers, and QR(T ) and QNR(T ) are the set of recogniz-
able and non-recognizable images according to the quality with
threshold T .

The best, as in lowest error, threshold would then be

Topt = argmin
T∈[0,1]

Et(T )

= argmin
T∈[0,1]

(EFNR(T ) + EFRR(T )).

In actuality we have a number of quality values, one per input
image, so we simply search over those, i.e. a discretization of
the equation. Given that the minimum does not have to happen
only on a single value we will use T ∗

opt as the final (and single)
threshold and specify that as

T ∗
opt = min Topt

Results are shown in Table II, for the same VQIs we previously
used and for the MOSQ scores obtained from human observers.
Clearly quality and recognizability are closely related but not
the same, i.e., low but not negligible errors. The same double
error as previously discussed for VQIs can be seen here, i.e.,
VQIs are error prone predictors of the HVS while the HVS is an
error prone predictor of the recognition, as seen by the MOSQ
results. In contrast, the NCC, which does not attempt to conform
to the human visual system, exhibits a lower error rate than the
quality indices. The same can not be said for the PSNR (an
objective error metric) as well as the NSD and LE which were
explicitly designed for selective encryptions, although the lack
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TABLE III
EVALUATION OF GENERALIZATION PROPERTIES. THRESHOLD IS CALCULATED BASED ON THE ROW ENTRIES (T. SOURCE) AND APPLIED TO THE SET GIVEN IN THE

COLUMN. THE ENTRIES ARE TOTAL ERROR RATE, AND THE MAXIMUM DIFFERENCE PER ROW (WHICH HAVE A COMMON SOURCE FOR THE THRESHOLD) GIVEN

AS AN INDICATOR FOR THE GENERALIZATION POTENTIAL

of usefulness of the later two beyond the specific encryption they
were designed for has already been shown in [6].

Obviously this was calculated on the whole set and is the best
result. The question is how well are the different VQIs able to
generalize, i.e., what would happen if we applied this to unseen

data. The database is composed of four subsets, so we can calcu-
late the threshold for a subset and apply it to the other three sets.
This gives us the best result that can be achieved with a given
VQI on a single set as well as the generalization performance
when applied to a different set. Results are given in Table III.
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For each VQI the threshold is calculated for one testset, given
in T. Source, and the total error is given when evaluating clas-
sification into recognizable and non-recognizable images of the
testset given in the column. Further, each subtable gives the
maximum difference per row (maxΔ), representing the gener-
alization properties. Generally speaking the results (outside of
the prime diagonal, for which the T ∗

opt was optimized) falls short
of the overall minimum total error given in Table II. Further, the
source of the threshold can have a massive impact, compare the
rows in Table III where for threshold based on the jxr testset the
worst (H.265) is only worse by 2.78%, but if the threshold is
estimated on the j2k testset the worst (again H.265) has a total
error of 52.78%, a degradation of 50%!

Interestingly the PSNR, which does not consider any HVS
features, has the best ‘worst case’ of only increasing theEt(T

∗
opt)

by ≈ 6.94%. On the other hand the PSNR has the highest to-
tal error, see Table II, of ≈ 9.72%. This would suggest that the
best we can hope for in an unseen data set would be ≈ 16.66%
total classification error. The same holds for the NSD but with
a slightly worse maxΔ in one case. The similarity in perfor-
mance on the recognition task despite a vast difference in qual-
ity estimation properties, c.f., Table I, indicates that quality is
certainly not the defining factor for recognizability despite what
the MOSQ performance suggests.

In Table II the CNN based VQIs were tied with PSNR in
terms of bad performance, but here we see a more diverse set
of results. Interestingly the best metric for generalization is the
NIMA, which is not based on the visual but rather on the aesthetic
quality of images. The HyperIQA and NIMA are relatively con-
sistent, the NIMA closer to the PSNR in terms of performance
and the HyperIQA is very close to the LEG, which is the second
best traditional VQI in this experiment. So in terms of translating
quality to recognizability the CNNs do not outperform the tradi-
tional methods. What is however noteworthy is the fact that the
NIMA has shown a very poor performance in terms of assessing
quality, c.f., Table I, but in terms of deciding between recogniz-
ability and non-recognizability is outperforms most other VQIs
(traditional and CNN based).

Another important result from this test, and the results from
Table III, is that the quality estimation by human observers
is also not a good base for the classification of images into
recognizable/non-recognizable classes, even though Table II
might give that impression.

In brief: We can state two main results: 1) the quality as
given by human observers (MOSQ) is a poor source for the
classification of images into recognizable and unrecognizable
clusters, and 2) current VQIs are also not well suited to operate
this classification (which comes as less of a surprise given that
most are built specifically to model the quality estimation by
the HVS). 3) CNN based VQIs are roughly equal to the (better)
traditional VQIs.

C. Refinement of CNNs and Encryption Differences

An obvious improvement to try is to perform refinement train-
ing with the CNNs. For this we perform learning with four folds,
selecting one encryption type to exclude and use the other three
for training. This again simulates the real world usage where

TABLE IV
TOTAL ERROR RATE (Et(T

∗
opt) FOR THE OPTIMAL THRESHOLD (T ∗

opt) GIVEN

PER REFINED CNN (COMPARE OF THE SHELVE CNNS IN TABLE II)

TABLE V
EVALUATION OF GENERALIZATION PROPERTIES FOR REFINED CNNS (COMPARE

TABLE III). THRESHOLD IS BASED ON ROW ENTRIES (T. SOURCE) AND

APPLIED TO THE SET GIVEN IN THE COLUMN. THE ENTRIES ARE TOTAL ERROR

RATE, AND THE MAXIMUM DIFFERENCE PER ROW (WHICH HAVE A COMMON

SOURCE FOR THE THRESHOLD) GIVEN AS AN INDICATOR FOR THE

GENERALIZATION POTENTIAL

an existing quality index, in this case trained on selective en-
cryption types, is applied to a new encryption scheme (same as
the generalization experiments above). As a basis for the refine-
ment we used the pre-trained model provided with the CNNs.
The training setup mirrors that of the CNN, basically adapting
the provided source code only to the new database but other-
wise not changing anything. It should be noted that the DBCNN
has two methods, training the full network and training the fully
connected layers only, with the later being recommended for re-
finement learning. Training the fully connected layers only did
nothing for the task at hand but training the full model lead to
the results given here.

We repeated the experiments from Section III-B, first the Total
error over all encryption types given in Table IV.

The main takeaway from this experiment is that training im-
proves overall results (Table IV). However, the CNN based met-
rics still show a similar performance to traditional VQIs and
do not approach the quality of the HVS based quality assess-
ment. On the other hand, the database is limited in size and with
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TABLE VI
THE SROC AND CONFIDENCE (AVERAGE, STANDARD DEVIATION AND SIGNAL

SHAPE) FOR THE GIVE VQIS BASED ON THE QUALITY ASSESSMENT OF THE

USEEQ DATABASE

a larger database the CNN based VQIs might well outperform
traditional VQIs, but this is speculative at this point.

The second takeaway is that the generalization apparently
does not improve the performances, in some cases the ‘worst
case’ got a lot worse than before. So training clearly sacrifices
generalization for specificity. This can be seen in the j2k/j2kne
cases where the quality improved when the other was included in
the training set as they have very similar distortions. On the flip
side, this shows that the distortion types for the various encryp-
tion methods (and likely image coding types) are very dissimilar.
This has consequences especially for the application to unseen
encryption types as the actual performance can not be properly
judged.

In brief: Training improves the specificity of the CNNs at the
cost of generalization properties. Due to the very different distor-
tion types introduced by the encryption methods generalization
to new encryption methods can hardly be judged.

D. Visual Quality Indices as Predictors for Quality on Low
Quality Images

In [6], [11] the point was raised that the use of visual quality
indices as a recognition index could not be properly evaluated
because there is a lack of quality and recognition databases. We
will use the evaluation methods from these papers and evaluate
the VQIs on the database presented in this paper. This serves a
two-fold purpose, 1) we extend the results from the given papers
with the missing information and 2) we show (again) that the cor-
respondence of VQIs to low quality images is low. The specific
methods are Spearman rank order correlation (SROC) as well
as confidence and signal shape scores which were introduced
in [6]. The SROC is simply the evaluation of the monotonous
relationship between two scores. The confidence, given as aver-
age and standard deviation, gives the possible range of qualities
which can lead to an arbitrary but fixed VQI value, specifically
this tells us how sure we can be of the quality based on the VQIs
output. This is usually not the same over all the quality range,
e.g., we can be much more assured of the PSNR when using it
on reasonably high quality images than on low quality images,
this is given as a signal shape, which can be stable, unstable or
biased towards either high or low quality images.

The results for this test are given in Table VI. For the most part
the results from [6] are confirmed here, specifically that all VQIs
have poor scores for all measures on highly impaired images.
As in [6] the VIF is better than the rest, which should not be

construed to mean that it is good, there is still ample room for
improvement.

In brief: The VQIs, no matter if they are simple statistical
measures or relying on advanced HVS models, are very poor
indicators of quality on low-quality images.

E. On Using a Fusion of Visual Quality Indicators as
Predictors for Quality and Recognition

So far we have looked at VQIs independently to predict rec-
ognizability (and low quality scores). There is also the option to
combine multiple VQIs. Given that most VQIs utilize different
image features to estimate quality, although there is a certain
overlap, the combination of all these features might well do
what one of them can not. To see the difference in the behavior
in VQIs, and also get a different view of the relation between
recognizability and quality, we can use Principal Component
Analysis (PCA) and biplots, plots of the impact on the principal
components per contributing score.

Note: We converted every VQI to a quality index, meaning a
high score predicts a high quality. Among the tested VQIs, one
(CPA) is actually a distortion measure, meaning a high score
predicts a high distortion and thus low quality. This was done so
in biplots the closeness of two scores is directly visually obvious,
i.e., the angle between the vectors is directly correlated to the
influence of the vectors on the subspace projection created by
the PCA.

We increased the number of VQIs from previous experiments,
by adding the NQM [46], MSSIM [47] and VSNR [48], to in-
crease the number of potential features. Fig. 6 gives the perfor-
mance of the VQIs for the estimation of quality and recogniz-
ability per encryption type. Some metrics do perform quite well
when estimating the quality, but most of them fail at recogniz-
ability estimation.

A PCA was run independently on each selective encryp-
tion method. Fig. 7 shows the biplots, that is the influence
on the principal components per input feature, resulting from
this PCA. The yellow dots represent the unrecognized images
(MOSR < 0.2), the blue-green dots are the partially recognized
images (0.2 ≤ MOSR < 0.8), and finally, the purple dots rep-
resent the images being fully recognized MOSR ≥ 0.8). This
grouping of recognizability was described in Section III-A and
is illustrated in Fig. 3. In the biplots, when two PCA vectors
follow the same orientation and have approximately the same
length, it means these two variables are strongly connected to
each other. Logically, the recognition vector is aligned with the
evolution of colored dots. The quality vector (except for H.265)
is not completely aligned with the recognizability, expressing a
low correlation. This biplot representation is very helpful to de-
termine if one can trust a VQI estimation. That is, if all the VQI
variables were aligned, there would be a global agreement on
the predicted quality scores, whereas a wide spread, as exhibited
here, infers a weak reliability of most metrics.

The first thing to consider is that the recognition and quality
are also not aligned very well but also not strongly misaligned,
basically reinforcing what we have found previously. The second
is that the difference in relation of the VQIs to the recognizability
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Fig. 6. Comparison of the metrics’ behavior against recognizability and qual-
ity estimation tasks.

and quality explains the incapability for generalization we have
also previously seen. What is more, there is a huge difference
in the biplots for each encryption method. Specifically, j2k and
j2kne which are related exhibit a very similar pattern, while the
jxr and H.265 are very different. Thirdly, the VQIs are overall
more aligned with quality than with the recognizability (which
was to be expected given their design target). Finally, some of the
VQIs are aligned with each other but the relative alignment is not
the same over the different encryption types. This is an indicator
that a fusion approach, the use of multiple VQIs instead of a
single one, might improve the overall predictive performance.

In brief: The biplots reaffirm that the quality and recogniz-
ability are only loosely aligned. The VQIs are aligned better
with quality than recognizability, but the relative alignment of
the VQIs changes over the testsets. This reaffirms the general-
ization problem we have seen previously but also suggests that
a combination of different VQIs could be beneficial.

F. Predicting Recognizability Classes via Linear Discriminant
Analysis

In order to test the potential for a fusion approach we can use a
Linear Discriminant Analysis (LDA), similar to the PCA above.
The purpose of the PCA is to find the best dimension reduction

of our data, i.e., finding linear combinations of the input vari-
ables presenting the highest variation in the dataset. The main
objective of the LDA is to optimize, for the representation do-
main provided, the best separation between various classes. The
LDA attempts to separate the classes in the best way possible
based on input features, in our case the VQI scores per image.

As established before, a ranking for recognizability, or quality,
is difficult and not likely to succeed due to the double error
problem. To make the prediction more manageable we will split
the images into three clusters (see Section III-A and Fig. 3): ‘Not
Recognizable’ (NR) images have a recognition score (MOSR)
in [0,0.2[, ‘Mostly Recognizable’ (MR) are in the range [0.2,0.8[
and ‘Fully Recognizable’ (FR) in the range [0.8,1]. The goal is
to infer the recognizability from quality. In practice we do not
have the HVS-based quality and thus will use an ensemble of
VQIs instead. We will follow the same basic principle as before
in structuring the experiments:

1) Is the basic principle sound? This can also be stated as:
are the quality clusters related to the recognition clusters,
or can the recognizability be inferred based on quality.
Note: We have already done this in prior experiments, it
is sufficient to look at Figs. 2, 3, and 5 to see that there is
a strong relation between the quality and recognizability.

2) Can the clustering be done based on features which are
available (VQIs) and how well does that work?
The target clusters are based on the recognizability as out-
lined above. And the features are based on the VQIs in-
stead of the HVS-based quality, which we would not have
in a practical application.

3) Assuming the clustering based on VQIs works, we have
to look at generalization. That is, the available selective
encryption types are split into a training and evaluation
sets. This allows to simulate the applicability of a trained
LDA on an unseen encryption type. Alternatively, train
on one and apply to the others. This is much harder of
course but can show if the result of LDA based training
can generalize, this would reflect what we did in Table III.

The results of the LDA, based on the nine VQIs and the
MOSQ, are given in Fig. 8. A relation between recognition and
quality is undoubtedly given by the clear separation of the given
clusters along the LD1 component. The MOSQ, which we do
not have in practice, is used in the experiment to show that the
LDA in principle can handle the prediction.

In Fig. 8 the clustering along LD1 looks promising. To get
a better view on the data we split the data by encryption type
and repeated the LDA, shown in Fig. 9(a). In order to better see
the classification along LD1 we also gave the histograms of a
projection of the data onto LD1 in Fig. 9(b). The separation of the
clusters overall is decent but far from perfect, H.265 especially
has large overlaps. The next step is to repeat the experiments
without the MOSQ and apply the LDA to an ensemble of VQIs.

The results are given in Fig. 10(a), as before split by encryp-
tion type, and the histogram of the projection along LD1 is given
in Fig. 10(b). The j2k and j2kne have only minor increase in clus-
tering errors while for H.265 and jxr clusters almost completely
break down. The the MOSQ seems to have only a minor impact
on the clustering, but it is only one of many input features in the
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Fig. 7. Biplots after a principal component analysis applied independently on each distortion.

Fig. 8. LDA on the full dataset.

process. The double error, from VQI to quality to recognition,
has a clear impact as can be seen from the lower performance.

Given the weak performance of the LDA when it is based
purely on VQIs, Fig. 9, generalization is likely to be weak. And
this is exactly the result of the experiments we ran, were we
trained on one distortion type and applied the model on other
three (the same setup as in III). For reasons of brevity, and due to
the totally expected results, we will not show the specific results.
As a summary we can say that due to the more limited amount of
data for training the overall performance is degraded further. In
addition, due to the dissimilarity between the encryption types
the generalization was poor.

In brief: The VQIs are not a good source of information to
predict the recognizability, even if multiple VQIs are combined
in an ensemble.

G. Predicting Quality Classes via Linear Discriminant
Analysis

So far we have only looked at the estimation of recognizabil-
ity from quality. Fig. 11 shows us how the quality based clusters
actually match quite well the recognizability of the images. The
opposite scenario is depicted in Fig. 12, the very low quality
scores (MOSQ< 5) can be estimated based on the subjective
recognizability (MOSR) and the VQI predictions. In these fig-
ures, the LDA was computed using both subjective evaluations
(MOSQ andMOSR) and VQI predictions. In Fig. 11, the quality
scores (MOSQ) were used along with the predictions, whereas
in Fig. 12, the recognizability scores (MOSR) were used along
with the VQI predictions. Once the LDA was computed, we
have mapped the unrecognized images onto the quality clus-
ters (Fig. 11) and the low quality images onto the recognizabil-
ity clusters (Fig. 12). These mapped images are represented as
black squares. As can be noticed on these figures, it happens that
the LDA seems to successfully cluster together the images hav-
ing very low MOSQ and being unrecognized by the observers.
However, we can also witness some misclassification issues on
Fig. 11. Some low quality images (blue dots) were actually
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Fig. 9. LDA with recognizability labels, launched on both subjective MOS and VQI predictions.

Fig. 10. LDA with recognizability labels, launched only on the VQI predictions.

Fig. 11. Classification of the images into ‘High Quality’ (HQ), in green, ‘Medium Quality’ (MQ), in orange, and ‘Low Quality’ (LQ), in blue. Unrecognized
images (MOSR< 0.2) are depicted by the black square symbols.
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Fig. 12. Classification of the images into ‘High Recognizability’ (HR), in green, ‘Medium Recognizability’ (MR), in orange, and ‘No Recognizability’ (NR), in
blue. Very low quality images (MOSQ< 5) are depicted by the black square symbols.

recognized by the observers (not surrounded by the black
squares). We also can see in Fig. 12 that some medium rec-
ognizability images (orange dots) actually belong to the lowest
quality cluster (surrounded by black squares).

Out of these two scenarios, the first one is the most interesting
in practice, as we might expect that some researchers may have
launched a subjective quality estimation experiment (based on
standardized protocols), but would be in need of estimating the
recognizability out of the quality scores. But the reversal of the
process should also not be discounted. There are very few VQIs
which perform well on the low quality images and basically
none that perform well for recognizability. As shown, the devel-
opment of either would be beneficial as it would also provide an
estimation for the other.

In brief: The unrecognizability and low-quality classes based
on MOSQ and MOSR have a very large overlap. If a low error
estimator for one of those could be produced a somewhat capable
estimator for the other would also be available.

IV. CONCLUSION

We have provided the community with a freely available
database of recognition score amended with a quality estimate
by human observers. We used this database to look into the re-
lation between quality, recognizability and various VQIs.

The overall relation between quality and recognizability can
be summed up as “Where quality ends, recognition begins”.
However, there is a certain overlap. This means that the range
of images, where quality scores should be applied versus where
recognition scores should be applied, is not clearly separable.
This is the unfortunate reality of using the human visual system,
which, by default, is subjective and noisy.

We found that the prediction of recognition by using visual
quality indices does not yield good results. We have shown that
there is a disparity between recognition and quality. We have
seen that, in terms of generalization, the PSNR, which is not

based on the HVS, beats all the VQIs. However, overall the
performance of PSNR (and NCC also) is not good. Further, the
disparity between recognition and quality also means that a VQI
can never properly predict a recognition score.

In the end, the implication of this work is that the automatic
evaluation of the recognizability for encrypted images is cur-
rently not possible. This means that the use of selective en-
cryption for confidential content is problematic since the correct
non-recognizability can not be automatically verified.

NB: The USEE database uses images from the Kodak
database. It can be used to extend other databases using those
images, e.g., the LIVE database, to include low quality distor-
tions for the development of VQIs. The other methods used,
LDA, PCA and so on, are not specific to low quality and be used
for other data without change.

APPENDIX A
FURTHER DISCUSSION

We felt that some points needed addressing without actually
impacting the analysis or conclusion of the paper. We compiled
them here to have a more streamlined analysis and conclusion.

A. Bias in the Recognition Experiment

By design, we give strong clues to the observers on what the
encrypted image contains. In Fig. 13 we show an original image
along with one encrypted version. The shape of the roof inside
the red ellipse can clearly be matched from within the encrypted
image, although it is almost impossible to determine what its
content is. Sometimes, an even smaller shape can be recognized,
for example the window portion inside the red rectangle can also
be identified as long as the observer sees the original image.
No quality metric can reasonably give a good score on such a
strongly distorted image, leading to a strong double error, see
Section III.
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Fig. 13. Some particular shapes within the image that despite a very poor
image quality can help the recognizability process.

Thus, the lack of any correspondence between quality and
recognizability may actually partly come from the subjective
protocol itself. Let us suppose that we designed a completely
different subjective protocol, in which, for instance, we show
an encrypted image and ask the observers: “What do you see
in this image?”. Possible answers might be: a house, a boat, a
plane, and so on. Another option would have been to show 2
images side by side, one being the original image and the other
one being encrypted. Then, we would ask the following question
to the observers: “Are these the same images?”. The recognition
rates would likely be different than what they currently are. And
who knows, maybe the VQIs would have performed better.

One reason to select the experiment that was chosen is that the
recognizability is based on statistical analysis of the results. That
means we have to know the chance a random guess is correct as
this is the basis of the recognition score calculation. The second
version can of course be controlled by showing the correct pair at
a fixed rate, e.g. 50%, but then this type of experiment is similar
in behaviour to the current protocol.

The experiment where the content of the image has to be
described has two problems, one is the chance element. The other
is that the labels need to be defined, how many labels, how many
per image, etc. This creates a similar problem than for the other
experiments in that a certain prior knowledge is available. On the
other hand some image content elements might not have a label.
For example, in Fig. 13 the window might be recognized, if there
is no label for window but for house then the correct label can be
guessed even if it can not otherwise be inferred from the image.
This setup is therefore quite complicated regarding labeling,
what to label, how many labels etc., has to be carefully chosen.
In addition, the time investment to evaluate a single image is
higher, since the correct labels have to be selected, maybe more
than once, and likely from a list which prompts a reevaluation of
what is seen in context of the label. This increases the time spent
per image, taking observer fatigue into account this necessitates
a larger number of sessions and makes the scheduling more
complex. The additional time required also comes at additional
cost.

Another approach is the one taken in [17] where an original
was compared directly to the encrypted version and a subject is
supposed to judge the amount of information left in the encrypted
image. This is a direct translation of the quality estimation pro-
tocol proposed by the ITU to the recognition task. As already
discussed this suffers from pareidolia, which makes the proper
estimation of a recognition threshold unlikely. Compared to the
data from [18] it is, however, more likely to have a better rep-
resentation of the intermediary part between recognizable and

unrecognizable as the quantification is more fine-grained, while
in [18] it is binary (recognizable or not).

Concluding, it is (almost?) impossible to design a protocol
which gives the required information in a timely manner without
introducing a bias. The only way to deal with this is to try and
keep the bias small and be mindful of it during the evaluation.

B. Quality and Prediction in the HVS

The HVS can switch between recognition, i.e., what is in the
image, and quality, i.e., how nice does this look. But these are
distinct processes. There are a lot of images which are beyond
quality, that is images which are of such low quality that if you
look at them the question “how good does it look” does not
arise. The question is rather “What am I looking at?”. This is
where quality ends, but there still might be something recogniz-
able. Same on the other end of the spectrum where the image
is perfectly recognizable, and therefore the question “What am
I looking at?” does not even come to mind. But there is still a
quality we can assess.

So the ranges of recognition and quality overlap, but qual-
ity extends beyond recognition (on recognizable images) and
recognition extends beyond quality (on very low quality im-
ages). Since there is an overlap we can predict the quality from
recognizability and vice versa to a degree, i.e., the region where
they overlap, but not on the whole range because the overlap is
only partial.

Due to this overlap, predictions work, but not very well. But
because they do work to an extent, it is easy to assume there must
be some method which properly predicts one from the other.
But because the recognition and quality are not totally aligned
in range there might well be no ‘perfect’ prediction from one to
the other.

The conclusion seems to be that there can be no proper predic-
tion between quality and recognizability! This does not preclude
image features chosen specifically for the prediction of one type,
e.g., every VQI, from potentially predicting recognizability. The
features are image features and not quality features per se, but
they were specifically chosen for their alignment with quality,
so might not actually be the best choice.

C. Reliance on Visual Quality Indices

It should be noted that we used the visual quality indices to
attempt to predict the recognizability purely due to availability.
We have already discussed how the double prediction, from VQI
to quality and from quality to recognizability, introduces addi-
tional errors. But the VQIs are diverse and readily available and
thus are a natural choice to use as sources for the prediction.
However, in the long term if a proper recognizability score is re-
quired it would be better to cut out the middleman and attempt to
develop a recognizability score directly based on the recogniz-
ability databases. However, as this paper, and prior papers [17],
[18], have shown, the features used in VQIs are not a good fit
for the recognizability task.

The development of recognizability score therefore will need
a careful analysis of image features which can be utilized. But
with the database presented here, and in [17], at least the tools
for such a development effort are available.
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D. The Particular Case of the Linear Discriminant Analysis

All throughout this project, several attempts have been made
to link the subjective recognizability with both the objective and
subjective quality. Various tools have been tested. We have for
instance tried to use some feature detection algorithms, such as
SIFT [49] or SURF [50]. We also made an attempt to adapt the
regular quality VQIs into the specificity of selectively encrypted
images. Effectively, we quite often witness a loss of the image’s
highest frequencies, we have thus decomposed the images into
various frequency bands (either in the Fourier domain or in the
wavelet domain), and ran independently the VQI within each fre-
quency range. Weighting some of the VQIs (the non HVS-based
ones) with the Contrast Sensitivity Function (CSF) [51] has also
been considered, in order to give more importance to the low-
est frequency components. We have also modified the CSF to
give even more weights to the lowest frequencies. Unfortunately,
none of these numerous attempts proved to efficiently link rec-
ognizability and quality.

The only method presenting interesting results was actually
the multivariate analysis which we have presented in this paper.
The reason for that is probably because, by design, the PCA
or LDA are able to benefit from heterogeneous data, discard
irrelevant inputs, while enhancing the relevant ones. As already
briefly mentioned in section III-E, each VQI spans a certain
range of perceived qualities. Among the tested VQIs, one for
instance has been specifically designed and tuned for optimized
performance against data hiding scenarios (the CPA [52]). And
indeed, the CPA exhibits a better performance than other metrics
near the visibility threshold. One is able to express some quality
enhancement (VIF), i.e., when a test image has a better quality
than the original, whereas the purely statistical VQIs (PSNR
or SSIM) are commonly more adequate in a medium quality
range. On the other hand, some other VQIs might present better
performances within lower quality ranges. By feeding the LDA
with predicted scores having such a disparity, the LDA weights
will automatically adjust to the metrics being the more relevant
to the task at hand. This may explain why the LDA was better
able to infer the recognizability based on the objective quality
assessment from several disparate predictions.

Finally, an interesting asset of the LDA is its ability to process
some completely unrelated data and still produce a succeeding
clustering. In our example, the LDA mixes altogether some sim-
ilarity metrics (either HVS based or purely based on the image
statistics) and a distortion index (CPA), along with a structural
similarity measure (NCC). We could even imagine blending in
some feature detection outputs (such as SIFT or SURF men-
tioned earlier). No matter the relevance of each of these measures
to the task at hand, the LDA adjusts its weights and considers
all these diverse measures at its disposal.

E. Training CNNs for Recognition Estimation

In the main part we trained on quality as the prediction from
quality to recognizability is the primary focus of this paper. How-
ever, the quest for a proper recognition measure is still not over,
the one prior attempt in the form of the NCC has only been a
middling success. The CNNs are well known to be adaptable and

TABLE VII
EXPERIMENTS ON THE USEE DATABASE WITH REFINED (ON THE RECOGNITION

SCORE) CNNS

training them on the recognition score directly seems reasonable.
This is what we did, a refinement training on the whole USEE
database [18], with a leave one-encryption out 6-fold training.
The same evaluations as in Section III-A were performed and
are shown in Table VII. Score for some of the other VQIs as well
as the CNNs without refinement training are given for context.

Training clearly improves the performance of CNNs a lot.
They are still worse than the NCC, and overall can not be con-
sidered good recognition metrics. However, it is unclear if this is
the full potential of the CNNs due to the rather limited number
of images in the database compared to the usual amount required
for CNN training, although this is mitigated somewhat by using
a pre-trained model for a warm start. Another note, in contrast to
Section III-C where refinement on the DBCNN fully connected
layers only did nothing we have the reverse situation here, a full
model refinement actually reduced the performance while the
full connected layer only refinement lead to the shown results.
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