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Assessment of visual encryption of video and image content requires a reliable estimation of content recognizability and low
quality. As pointed out in the literature, current methods are insufficient and research into this topic, as well as into the relation
between low quality and recognizability, is still lacking. This lack of research is primarily due to a lack of data. To improve on
the status-quo we have taken a recognizability database and performed a subjective quality evaluation on a subset of the images.
This gives us a new database with both subjective recognizability and quality information and allows to delve into the relation
between low quality and recognizability. We analyze the relationship between quality and recognizability as well as the predictive
quality of state of the art visual quality indices. We show that the visual quality indices are poor indicators for the estimation of
recognizability. Furthermore, we show that they must be a poor fit because of the disparity between two distinct perceptual tasks:
quality and recognizability.

Index Terms—Selective encryption, image recognition, image quality, human visual system, visual quality indices

I. INTRODUCTION

This paper is not about encryption. It is about the relation
between recognition, i.e., what is the content of the image,
and quality, i.e., how nice does this look. But the reason why
we look at the relation between quality and recognizability
is very much due to encryption. So we will briefly give an
overview of selective encryption and how matters of quality
and recognizabiltiy relate to it.

Encryption of image content is an active field of research
[1]–[5]. For selective encryption a state-of-the-art cipher is
used, e.g., AES, where the security of the encrypted parts
is already known and encrypted parts are considered secure.
For reasons of speed, usually only a selected part of the data
is encrypted. The overall security comes from the data that
was selected for encryption, or conversely which data was left
in plain-text. Therefore, an analysis of the remaining visual
information, which can be extracted from the non-encrypted
parts of the data, is necessary.

There is a special case for selective encryption which is
called “format compliant encryption”. The definition is that a
selective encryption scheme is format compliant if a standard
compliant decoder can decode the encrypted format without
crashing (this is the source of images in the database published
with this paper). The benefit of that is that the encrypted data
can be used just like regular data. For example, with a careful
selection it is possible to use an encrypted video as a low
quality preview which can be upgraded to full quality with
the key. Depending on the application scenario, the resulting
quality can range from “preview quality” to the content should
be “unrecognizable”.

This is where the notion of quality and recognizability by
human observers becomes a primary concern. The typical use
cases for selective encryption, providing previews or preventing
an enjoyable consumption by human observers (see [6] for
typical use cases), directly aim the consumption by humans.

Subjective quality and recognizability assessment is thus
needed to ascertain the proper protection by the encryption. To
constantly evaluate such systems by actual human observers
would quickly become overly time consuming and costly. The
obvious alternative is to utilize visual quality indices (VQIs)
which are built to emulate the way the human visual system
(HVS) assesses the quality. For the development of such VQIs,
databases of distorted images with a quality score provided
by actual human observers are utilized. There exist plenty of
subjective (human assessed) and objective (issued by computer
programs) datasets for still, natural image quality assessment [7]
or for video quality assessment [8]. Subjective and objective
quality assessment studies have also been devoted to Depth
Image Based Rendering (DIBR) [9], others have focused on
3D watermarking quality assessment [10]. All these works
concern very high quality images evaluation, but only very
few works have been conducted on the quality evaluation of
selective encryption.

This in turn means that VQIs are trained primarily on high
quality databases (because that is what is available) to emulate
the human perception of high quality content. It has been
shown, [6], [11] that traditional visual quality indices are not
well equipped to handle images that move too far away from
high quality, and consequently fail at the task of evaluating
the content and quality of selectively encrypted data. Indeed,
the traditional VQIs are designed in such a way that a special
weighting is applied onto some components of the image where
the perception is more sensitive. In other words, these quality
metrics are tuned to look for differences nearby the visibility
threshold, and hence are not adapted to handle very strong
distortions. Producing new visual quality indices which can
handle selective encryption is also a field of active research
[12]–[15]. The development of visual quality indices requires
either expensive human observer experimentation or a solid
database of such observations for evaluation and design.

So the current state of affairs is that the available VQIs are
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a poor fit for evaluating the low quality of images which are
encrypted in a medium to strong fashion. Further, there is little
to no work done on the recognizability of strong to very strong
selective encryption. Even worse, we do not even know the
relationship between quality and recognizability. Still, VQIs
(mostly PSNR and SSIM because they are widely known and
readily available) are used as a primary tool for evaluating the
performances of all encryption strengths, primarily because
they are the only tools available.

For the development of visual quality indices for mid- to low-
quality images there are, to the best of the authors knowledge,
two databases: [16] and [17]. This is not an optimal situation
but at least allows for the development on one database and
the testing on the other. For the development of indices which
can handle content intelligibility the situation is somewhat
more complicated as shown in [18] which also introduces the
first database with a recognition score for images encrypted
on the border of content recognition. The database presented
in [17] also contains a recognizability score (denoted content
leak information), which is directly rated by observers when
comparing the original to the encrypted image, in addition
to the visual quality data. The presentation of the original
coupled with the tendency of the human visual system to
find patterns strongly influences the content leak information.
The translation of this content leak information [17] to the
recognition index [18] is difficult at best. Specifically, both
are susceptible to pareidolia, i.e., the tendency for incorrect
perception of a stimulus as an object, but the method in [18]
is designed to catch that (multiple originals) while the setup
in [17] is not (single original). The data in [17] is still useful
for the security evaluation of encrypted images, but not the
evaluation of the recognition threshold.

So there is a lack of data which makes it hard to produce
quality or recognizability indices for strong to very strong
distortions. In addition, we do not know if the VQIs which
are available could properly evaluate recognizability, primarily
because the relation of quality and recognizability for the HVS
in this context is not researched at all. What we do know
however, from [18], is that the VQIs most frequently used for
this task are not able to perform well in this capacity.

In this paper we present a subset of the database from [18]
to a panel of human observers to get an evaluation of perceived
quality for encrypted images at the recognition threshold. This
is not only a further database for the development of quality
based indices for selective encryption but also allows us to
study the differences and commonalities between quality and
recognizability, a hitherto unstudied subject.

The rest of the paper is structured as follows: The database,
how it was collected, its content, and where to get it, is
described in Section II; The analysis of the relations between
quality and recognizability, i.e., the conformance of quality,
perceptibility, and various visual quality and recognition indices,
is described in detail in Section III; Some topics are not directly
related to the experiments, but are still important to discuss,
those are presented in Section A; The conclusion, Section IV,
gives a recap of our findings and concludes the paper.

II. DATABASE

In this section we will describe the images contained in the
database, the setup how the acquisition was performed, the
handling of outliers and calculation of the final mean observer
score. The database is publicly available to facilitate research.

A. Images Contained in the Database

This database is a subset of the USEE database [18]. A subset
was chosen so we could perform the subjective experiments
with a large enough number of observers. The primary driver
behind the decision was how many images we could handle
and the cost and time involved.

The USEE database contains 14 images, 12 color and two
grayscale, with 6 encryption types in 9 distinct steps for a
total of 770 images (including the originals). We reduced the
number of images for the USEE Quality (USEEQ) database
by removing the grayscale images and two of the encryption
types (fake, jpg). Further, we reduced the number of steps
between highest and lowest quality to 6 (from 9 in the USEE
database). This means the USEEQ contains a total of 288
images (12× 6× 4). Fig. 1 shows examples of the encryption
types for the lighthouse image.

Reproducible Research: The database will be made avail-
able at http://wavelab.at/sources/USEEQ. It will contain the
subset of images from the USEE1 database, the individual
scores per observer, and the outlier pruned mean observer
score (MOS).

B. Acquisition of Human Observer Scores

Forty five observers were enrolled to take part of this study.
All observers were either students or staff of the University
of Nantes (France). The observers were asked to wear their
contact lenses or spectacles during the experiment, they were
screened (using Snellen eye chart and Ishihara color plates) to
ensure they had a normal acuity and color vision. The observers
were paid for their contribution to the experiment, which was
completed on average in about 26 minutes per session. A
statistical analysis (dendrogram) [19], [20] was conducted in
order to detect any possible inconsistent scoring. Of the 45
enrolled observers, based on the deviant subjective scores, 9
observers were discarded in the study. The average age of the
remaining 36 observers is 32.94 years old.

The experiment was conducted under standardized viewing
conditions. The room illumination was set to 10 Lux, the
maximum screen luminance was 200 cd/m2, the screen gamma
function was 2.20 and the contrast ratio/black point of 2 cd/m2.
Our setup was thus compliant with the recommendations by
the International Telecommunication Union (ITU) [21], [22]
and [23]. The subjective protocol was set in accordance with
the ITU recommendations.

The protocol being used here is a “Paired Comparison”
setup [24] with a continuous quality scale. Two images were
shown side by side on the monitor, the original image was
displayed on the left, and the impaired image on the right half
of the screen. A grey background was surrounding the images.

1Available online at: http://wavelab.at/sources/USEE

http://wavelab.at/sources/USEEQ
http://wavelab.at/sources/USEE
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Fig. 1: Example of the encryption steps from the database for the lighthouse image.

A horizontal scroll bar was positioned beneath the images, this
latter allowed to score the images between 0 and 100. The
observers were asked to modulate the scroll bar according to
their perception of the distorted image quality as compared
with the original. On average, the allocated scores were rather
low with an average score of 30.57 and a standard deviation
of 5.61.

At this point, thanks to the previously collected recognizabil-
ity scores ( [18]), and the quality assessment presented here,
we have at our disposal, for each image of the USEEQ dataset,
two subjective scores: The recognizability Mean Opinion Score
(MOSR) [18] and the quality score (MOSQ), collected in the
experiments as described above.

III. ANALYSIS OF THE RELATION BETWEEN QUALITY AND
RECOGNIZABILITY

In [6] the authors showed that the usual visual quality
indices, which are built for high quality imagery, are not well
suited to assess low quality, as in strongly encrypted, images.
Furthermore, they pointed out that the lack of a recognizability
database prevents any evaluation for the recognition of image
content, which is important for confidential encryption. This
led to the generation of a recognizability database in [18],
which was then used to evaluate visual quality indices to be
used as recognition indices. The authors showed that traditional
visual quality indices are poor recognition indices. They also
proposed using a structure based index (the NCC), in an attempt
to create a better index.

Overall, the result from [18] is that the consolidation of
recognizability and (low) quality is difficult. However, in [18]
no human evaluation of the quality of the low quality is
available, meaning the assessment of quality and recognizability
is only speculative. The relation between high and low quality
has to some extent been looked at in [6], but the relation of
quality and recognition has not been looked into yet due to a
lack of data. We now have a database which has images at the
recognition threshold annotated with quality information. This
allows us to look into the relation of quality and recognition,
with the main goal of understanding why visual quality indices
perform so poorly.

As the discussion and analysis can be long, and at times
very detailed, we endeavor to succinctly summarize the most

relevant results from the longer subsections into an “in brief”
paragraph at the end.

A. Conformance of Quality and Recognition Scores

The first experiment is to repeat what was done in [18],
where only the MOSR is available, and see how human quality
assessment (MOSQ) relates to recognizability. For details about
the reported values see the above cited paper and the papers
given in the following brief description. The direct relation
between quality and recognizability can be investigated by
assessing the MOSQ and MOSR scores with the following,
well known, measures: the root mean squared error (RMSE)
[25], a linear correlation (Pearson’s r) [26], and a rank order
correlation (Spearman’s Rank order correlation (SROC) [27]).
The images can also be classified into recognizable and
unrecognizable classes based on the quality. The classification
results in true positives, false positives, false negatives and
false positives and based on those occurrences the following
statistics can be calculated. Two reported values are operating
points on the well known receiver operating characteristic
[28]. The equal error rate (EER) is the operating point where
the false positive and the false negative rates are equal, it is
primarily useful for the comparison of methods and significance
calculation [29]. The other is the false positive rate at the
threshold where zero false negatives are reported (0FNR) as
this is the point of interest (no insecure images are reported
as secure) when assessing the security for encryption. Finally,
Matthews correlation coefficient (MCC) [30], [31] is related
to the chi-squared statistics for the contingency table. It is an
especially good fit for classification problems where the class
size is unbalanced, as is the case here.

Since USEEQ is a subset of the USEE database we also
repeat the VIF, LEG, SSIM, PSNR, and NCC evaluation on
this reduced subset to be able to properly compare them. The
results are given in Table I.

The VQIs show the same overall behaviour as in [18], they
still are only a weak predictor of recognizability. The MOSQ

based image quality on the other hand performs rather well
which is kind of surprising. The VQIs are built based on the
HVS, although for high quality images, but work poorly on this
data while the subjective quality scores (MOSQ) themselves
work decently well. This indicates that there is a difference
in how human observers perceive high and low quality data.
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TABLE I: Experiments on the quality subset

Testset EER [%] 0FNR[%] |MCC| |SROC90| RMSE r

MOSQ 4.60 71.43 0.824 0.888 0.562 0.676
VIF 20.62 92.86 0.442 0.287 0.823 0.384
LEG 22.95 100.00 0.504 0.362 0.708 0.335
SSIM 28.42 96.43 0.331 0.182 0.703 0.216
PSNR 17.10 100.00 0.487 0.357 10.772 0.451
NCC 16.91 100.00 0.553 0.593 0.394 0.668
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Fig. 2: Scatter-plot of unrecognizability (MOSR) percentages
over quality scores (MOSQ).

For example in [17] even for low quality images the content
leakage score can be high, meaning the human observer is well
capable of differentiating between content and quality. Further,
the human visual system is adept at noticing differences of a
sufficient magnitude, but that changes with the overall variance
in the image (this is usually known as contrast masking). That
is, a medium strength error will stand out unpleasantly in a
high quality image, while a whole image affected by the same
strength error will be rated as a lower quality but no unpleasant
error will stand out (this is a topic of research termed just
noticeable difference, which is affected by contrast masking,
see [32] for an overview). To experience the effect, look at the
images in Fig. 1, there is a clear difference in the perceived
quality of the H.265 and jxr encryption types, which create
interesting color patterns, while the j2k and j2kne types create
a noise like structure which appears to be more unpleasant to
view.

From these examples we can see that the human visual
system acts very differently depending on the shape and
distribution of the noise or distortion. As such VQIs, which are
trained to resemble the human visual system when assessing
high quality data, disagreeing with the human visual system
when subjected to low quality data. However, the PSNR and
the NCC are not based on the human visual system and still
perform poorly here.

To take a closer look at this we have plotted the quality
(MOSQ) and recognition (MOSR) as a scatter plot, shown in
Fig. 2. Even though there is a very distinct non-linear mapping
between quality and recognition, they are clearly linked, but not
strongly correlated (SROC = 0.859 and SROC90 = 0.888).

We also see part of the differences, while quality and

recognition are linked the scores overlap only in parts. That is
for 90% of the quality range the image is clearly recognizable,
while about 90% of the variance in the recognizability is at
roughly 10% of the quality range. This becomes clearer when
the scores are ordered. Fig. 3 shows both the quality and
recognizability scores, once ordered by recognition and once
by quality.

What also can be seen from Fig. 3, which is an important
point, is that the recognition has a very different range than the
quality. At some point the images are recognizable and we have
a flat recognizability line, while the quality never bottoms out.
This means that users attribute different qualities to images
which are basically unrecognizable. This is another strong
indicator that the HVS does not only use image content for
quality assessment. For unrecognizable images this likely would
mean that the aesthetics of the noise, or encryption artefacts,
are important for quality, i.e., visually pleasing artefacts lead
to a higher quality score than less pleasing artefacts, even if
both images are on the same level of recognition.

As an example of the difference in range of similar (by
one score) images consider the large symbols in Fig. 2 which
represents two cases of this phenomenon. Each pair of images
has either a similar quality score (red squares) or a similar
recognizability score (blue circles). The corresponding images
are shown in Fig. 4. Clearly, quality and recognizability
can be highly decorrelated, i.e., for two distinct images a
similar perceived quality might result in a significantly different
recognizability score (and vice versa).

Fig.3 also shows the separation of the data into high quality,
where the images are clearly recognizable, and low quality data,
where a distinct drop in quality happens. The range between
low and high quality is denoted as medium quality. The quality
drop at the border between low and high quality is not very
visible in the combined plot but can be easily seen if the plots
are separated by encryption type, shown in Fig. 5. The classes
low, medium and high quality classes will be used later in the
paper (Sections III-D and III-E).

In brief: The quality is an error prone indicator for
recognizability of image content. Given that a VQI is itself
an error prone predictor of the human visual system we have
a doubling up of errors. We also have to keep in mind the
different training target for VQIs (high quality) and the effect
of contrast masking on the human visual system for bad quality.
The result of this is the apparent discrepancy of VQIs and the
HVS based MOSQ as shown in Table I.

This and the attribution of high or low quality to unrecog-
nizable images depending on the visual appearance of errors
makes the attempt to directly map quality to recognizability
difficult. That is, there is an overlap between recognition and
quality but also a large part where there is no proper relation.
This can be seen in figs 2 and 4, where for example about
90% of the quality range is clearly recognizable (related to
about 5% of the recognition range). So, while a rank based
correlation between quality and recognizability is not likely to
succeed a classification into recognizable and unrecognizable
based on quality might work.
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Fig. 3: The figures give the same data, the recognition and quality scores per image, but once ordered by increasing quality
(left) and once by increasing recognizability (right).
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Fig. 4: Two examples of quality and recognizability extremas.
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TABLE II: Total error rate (Et(T
∗
opt) for the optimal threshold

(T ∗opt) given per VQI and for the quality obtained from human
observers (MOSQ).

VQI T ∗
opt Et(T ∗

opt)

MOSQ 0.029 3.47%
NCC 0.032 6.94%
LEG 0.110 8.33%
SSIM 0.010 9.03%
VIF 0.005 9.03%
PSNR 2.650 9.72%

B. Visual Quality Indicators as Predictors of Recognizability

A simpler task than a rank correlated estimation of quality is
the differentiation between recognizable and non-recognizable
images. That is, what is the threshold for a VQI score
beyond which images are non-recognizable. This can be simply
evaluated by minimizing the total error (Et) which is the sum of
the false non-recognizable rate (EFNR) and false recognizable
rate (EFRR) errors which can be defined as:

EFNR(T ) =
|QNR(T ) ∩R|

|I|
,

EFRR(T ) =
|QR(T ) ∩NR|

|I|
,

where I is the set of images, R and NR = I \ R are the
set of recognizable and non-recognizable images according
to human observers, and QR(T ) and QNR(T ) are the set of
recognizable and non-recognizable images according to the
quality with threshold T .

The best, as in lowest error, threshold would then be

Topt = argmin
T∈[0,1]

Et(T ) = argmin
T∈[0,1]

(EFNR(T ) + EFRR(T )) .

In actuality we have a number of quality values, one per input
image, so we simply search over those, i.e. a discretization of
the equation. Given that the minimum does not have to happen
only on a single value we will use T ∗opt as the final (and single)
threshold and specify that as

T ∗opt = min Topt
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Results are shown in Table II, for the same VQIs we
previously used and for the MOSQ scores obtained from human
observers. Clearly quality and recognizability are closely related
but not the same, i.e., low but not negligible errors. The same
double error as previously discussed for VQIs can be seen
here, i.e., VQIs are error prone predictors of the HVS while
the HVS is an error prone predictor of the recognition, as seen
by the MOSQ results. In contrast, the NCC, which does not
attempt to conform to the human visual system, exhibits a
lower error rate than the quality indices.

Obviously this was calculated on the whole set and is the
best result. The question is how well are the different VQIs
able to generalize, i.e., what would happen if we applied this
to unseen data. The database is composed of four subsets,
so we can calculate the threshold for a subset and apply it
to the other three sets. This gives us the best result that can
be achieved with a given VQI on a single set as well as the
generalization performance when applied to a different set.
Results are given in Table III. For each VQI the threshold is
calculated for one testset, given in T. Source, and the total error
is given when evaluating classification into recognizable and
non-recognizable images of the testset given in the column.
Further, each subtable gives the maximum difference per row
(max ∆), representing the generalization properties. Generally
speaking the results (outside of the prime diagonal, for which
the T ∗opt was optimized) falls short of the overall minimum
total error given in Table II. Further, the source of the threshold
can have a massive impact, compare the rows in Table IIIb
where for threshold based on the jxr testset the worst (H.265)
is only worse by 2.78%, but if the threshold is estimated on the
j2k testset the worst (again H.265) has a total error of 52.78%,
a degradation of 50%!

Interestingly the PSNR, which is very much not based on
the human visual system, has the best ‘worst case’ of only
increasing the Et(T

∗
opt) by ≈ 6.94%. On the other hand the

PSNR has the highest total error, see Table II, of ≈ 9.72%.
This would suggest that the best we can hope for in an unseen
data set would be ≈ 16.66% total classification error.

Another important result from this test, and the results from
Table IIIa, is that the quality estimation by human observers
is also not a good base for the classification of images into
recognizable/non-recognizable classes, even though Table II
might give that impression.

In brief: We can state two main results: 1) the quality as
given by human observers (MOSQ) is a poor source for the
classification of image into recognizable and unrecognizable
images, and 2) current VQIs are also not well suited to operate
this classification (which comes as less of a surprise given that
most are built specifically to model the quality estimation by
the HVS).

C. Visual Quality Indices as Predictors for Quality on Low
Quality Images

In [6], [11] the point was raised that the use of visual quality
indices as a recognition index could not be properly evaluated
because there is a lack of quality and recognition databases. We
will use the evaluation methods from these papers and evaluate

the VQIs on the database presented in this paper. This serves a
two-fold purpose, 1) we extend the results from the given papers
with the missing information and 2) we show (again) that the
correspondence of VQIs to low quality images is low. The
specific methods are Spearman rank order correlation (SROC)
as well as confidence and signal shape scores which were
introduced in [6]. The SROC is simply the evaluation of the
monotonous relationship between two scores. The confidence,
given as average and standard deviation, gives the possible
range of qualities which can lead to an arbitrary but fixed
VQI value, specifically this tells us how sure we can be of
the quality based on the VQIs output. This is usually not the
same over all the quality range, e.g., we can be much more
assured of the PSNR when using it on reasonably high quality
images than on low quality images, this is given as a signal
shape, which can be stable, unstable or biased towards either
high or low quality images.

The results for this test are given in Table IV. For the most
part the results from [6] are confirmed here, specifically that
all VQIs have poor scores for all measures on highly impaired
images. As in [6] the VIF is better than the rest, which should
not be construed to mean that it is good, there is still ample
room for improvement.

In brief: The VQIs, no matter if they are simple statistical
measures or relying on advanced HVS models, are very poor
indicators of quality on low-quality images.

D. On Using a Fusion of Visual Quality Indicators as
Predictors for Quality and Recognition

So far we have looked at VQIs independently to predict
recognizability (and low quality scores). There is also the
option to combine multiple VQIs. Given that most VQIs utilize
different image features to estimate quality, although there is
a certain overlap, the combination of all these features might
well do what one of them can not. To see the difference
in the behavior in VQIs, and also get a different view of
the relation between recognizability and quality, we can use
Principal Component Analysis (PCA) and biplots, plots of the
impact on the principal components per contributing score.

Note: We converted every VQI to a quality index, meaning a
high score predicts a high quality. Among the tested VQIs, one
(CPA) is actually a distortion measure, meaning a high score
predicts a high distortion and thus low quality. This was done
so in biplots the closeness of two scores is directly visually
obvious, i.e., the angle between the vectors is directly correlated
to the influence of the vectors on the subspace projection create
by the PCA.

We increased the number of VQIs from previous experiments,
by adding the NQM [33], MSSIM [34] and VSNR [35], to
increase the number of potential features. Fig. 6 gives the
performance of the VQIs for the estimation of quality and
recognizability per encryption type. Some metrics do perform
quite well when estimating the quality, but most of them fail
at recognizability estimation.

A PCA was run independently on each selective encryption
method. Fig. 7 shows the biplots, that is the influence on the
principal components per input feature, resulting from this PCA.
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TABLE III: Evaluation of generalization properties. Threshold is calculated based on the row entries (T. Source) and applied
to the set given in the column. The entries are total error rate, and the maximum difference per row (which have a common
source for the threshold) given as an indicator for the generalization potential.

(a) Et(T
∗
opt) for T ∗

opt base on MOSQ.

Evaluated on

T. Source 265 j2k j2kne jxr max ∆

265 1.39% 5.56% 2.78% 4.17% 4.17%
j2k 4.17% 5.56% 4.17% 6.94% 2.78%
j2kne 23.61% 9.72% 2.78% 8.33% 20.83%
jxr 4.17% 6.94% 2.78% 2.78% 4.17%

(b) Et(T
∗
opt) for T ∗

opt base on NCC.

Evaluated on

T. Source 265 j2k j2kne jxr max ∆

265 6.94% 11.11% 13.89% 6.94% 6.94%
j2k 52.78% 5.56% 2.78% 19.44% 50.00%
j2kne 11.11% 6.94% 2.78% 8.33% 8.33%
jxr 9.72% 8.33% 8.33% 6.94% 2.78%

(c) Et(T
∗
opt) for T ∗

opt base on LEG.

Evaluated on

T. Source 265 j2k j2kne jxr max ∆

265 5.56% 6.94% 11.11% 9.72% 5.56%
j2k 11.11% 4.17% 9.72% 12.50% 8.33%
j2kne 18.06% 6.94% 6.94% 13.89% 11.11%
jxr 6.94% 11.11% 13.89% 6.94% 6.94%

(d) Et(T
∗
opt) for T ∗

opt base on SSIM.

Evaluated on

T. Source 265 j2k j2kne jxr max ∆

265 5.56% 72.22% 69.44% 22.22% 66.67%
j2k 6.94% 9.72% 13.89% 5.56% 8.33%
j2kne 6.94% 9.72% 13.89% 6.94% 6.94%
jxr 6.94% 11.11% 13.89% 5.56% 8.33%

(e) Et(T
∗
opt) for T ∗

opt base on VIF.

Evaluated on

T. Source 265 j2k j2kne jxr max ∆

265 4.17% 11.11% 13.89% 6.94% 9.72%
j2k 11.11% 11.11% 15.28% 6.94% 8.33%
j2kne 9.72% 11.11% 13.89% 6.94% 6.94%
jxr 13.89% 13.89% 16.67% 4.17% 12.50%

(f) Et(T
∗
opt) for T ∗

opt base on PSNR.

Evaluated on

T. Source 265 j2k j2kne jxr max ∆

265 5.56% 9.72% 12.50% 11.11% 6.94%
j2k 6.94% 9.72% 11.11% 11.11% 4.17%
j2kne 11.11% 13.89% 8.33% 12.50% 5.56%
jxr 6.94% 11.11% 13.89% 6.94% 6.94%

TABLE IV: The SROC and Confidence (average, standard
deviation and signal shape) for the give VQIs based on the
quality assessment of the USEEQ database.

Confidence

VQI SROC µ σ Signal Shape

VIF 0.870 0.206 0.145 Bias Low
NCC 0.827 0.638 0.256 Bias High
PSNR 0.641 0.390 0.105 Bias High
LEG 0.624 0.627 0.079 Bias High
SSIM 0.348 0.762 0.183 Stable
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Fig. 6: Comparison of the metrics’ behavior against recogniz-
ability and quality estimation tasks.

The yellow dots represent the unrecognized images (MOSR <
0.2), the blue-green dots represents the partially recognized
images (0.2 ≤ MOSR < 0.8), and finally, the purple dots
represent the images being fully recognized MOSR ≥ 0.8).
This grouping of recognizability was described in Section III-A
and illustrated in Fig. 3. In the biplots, when two PCA vectors
follow the same orientation and have approximately the same
length, it means these two variables are strongly connected to
each other. Logically, the recognition vector is aligned with the
evolution of colored dots. The quality vector (except for H.265)
is not completely aligned with the recognizability, expressing a
low correlation. This biplot representation is extremely helpful
to determine if one can trust a VQI estimation. That is, if
all the VQI variables were aligned, there would be a global
agreement on the predicted quality scores, whereas a wide
spread, as exhibited here, infers a weak reliability of most
metrics.

The first thing to consider is that the recognition and quality
are also not aligned very well but also not strongly misaligned,
basically reinforcing what we have found previously. The
second is that the difference in relation of the VQIs to
the recognizability and quality explains the incapability for
generalization we have also previously seen. What is more,
there is a huge difference in the biplots for each encryption
method. Specifically, j2k and j2kne which are related exhibit a
very similar pattern, while the jxr and H.265 are very different.
Thirdly, the VQIs are overall more aligned with quality than
with the recognizability (which was to be expected given their
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Fig. 7: Biplots after a principal component analysis applied
independently on each distortion.

design target). Finally, some of the VQIs are aligned with
each other but the relative alignment is not the same over the
different encryption types. This is an indicator that a fusion
approach, the use of multiple VQIs instead of a single one,
might improve the overall predictive performance.

In brief: The biplots reaffirm that the quality and recogniz-
ability are only loosely aligned. The VQIs are aligned better
with quality than recognizability, but the relative alignment of
the VQIs changes over the different testsets. This on one hand
reaffirms the generalization problem we have seen previously
but also suggests that a combination of different VQIs could
be beneficial.

E. Predicting Recognizability Classes via Linear Discrimi-
nant Analysis

In order to test the potential for a fusion approach we can use
a linear discriminant analysis (LDA), similar to the PCA above.
The purpose of the PCA is to find the best dimension reduction
of our data, i.e., finding linear combinations of the input
variables presenting the highest variation in the dataset. The
main objective of the LDA is to optimize, for the representation
domain provided, the best separation between various classes.
The LDA attempts to separate the classes in the best way
possible based on input features, in our case the VQI scores
per image.

As established before, a ranking for recognizability, or
quality, is difficult and not likely to succeed due to the double
error problem. To make the prediction more manageable we
will split the images into three clusters (see section III-A and
Fig. 3): ‘not recognizable’ (NR) images have a recognition
score (MOSR) in [0, 0.2[, ‘mostly recognizable’ (MR) are in
the range [0.2, 0.8[ and ‘fully recognizable’ (FR) in the range
[0.8, 1]. The goal is to infer the recognizability from quality. In
practice we do not have the HVS-based quality and thus will
use an ensemble of VQIs instead. We will follow the same
basic principle as before in structuring the experiments:

1) Is the basic principle sound? This can also be stated as:
are the quality clusters related to the recognition clusters,
or can the recognizability be inferred based on quality.
Note: We have already done this in prior experiments, it
is sufficient to look at Figs. 2, 3, and 5 to see that there is
a strong relation between the quality and recognizability.

2) Can the clustering be done based on features which are
available (VQIs) and how well does that work?
The target clusters are based on the recognizability as
outlined above. And the features are based on the VQIs
instead of the HVS-based quality, which we would not
have in a practical application.

3) Assuming the clustering based on VQIs works, we have
to look at generalization. That is, the available selective
encryption types are split into a training and evaluation
sets. This allows to simulate the applicability of a trained
LDA on an unseen encryption type. Alternatively, train
on one and apply to the others. This is much harder of
course but can show if the result of LDA based training
can generalize, this would reflect what we did in table III.
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Fig. 8: LDA on the full dataset.

The results of the LDA, based on the nine VQIs and the
MOSQ, are given in Fig. 8. A relation between recognition
and quality is undoubtedly given by the clear separation of the
given clusters along the LD1 component. The MOSQ, which
we do not have in practice, is used in the experiment to show
that the LDA in principle can handle the prediction.

In Fig. 8 the clustering along LD1 looks promising. To get
a better view on the data we split the data by encryption type
and repeated the LDA, shown in Fig. 9a. In order to better see
the classification along LD1 we also gave the histograms of
a projection of the data onto LD1 in Fig. 9b. The separation
of the clusters overall is decent but far from perfect, H.265
especially has large overlaps. The next step is to repeat the
experiments without the MOSQ and apply the LDA to an
ensemble of VQIs.

The results are given in Fig. 10a, as before split by encryption
type, and the histogram of the projection along LD1 is given
in Fig. 10b. The j2k and j2kne have only minor increase
in clustering errors while for H.265 and jxr clusters almost
completely break down. Clearly, using the MOSQ has a positive
influence on the clustering, even though it is only one of many
input features in the process. The double error, from VQI to
quality to recognition, has a clear impact as can be seen from
the lower performance.

Given the weak performance of the LDA when it is based
purely on VQIs, Fig. 9, generalization is likely to be weak.
And this is exactly the result of the experiments we ran, were
we trained on one distortion type and applied the model on
other three (the same setup as in III). For reasons of brevity,
and due to the totally expected results, we will not show the
specific results. As a summary we can say that due to the more
limited amount of data for training the overall performance is
degraded further. In addition, due to the dissimilarity between
the encryption types the generalization was poor.

In brief: The VQIs are not a good source of information to
predict the recognizability, even if multiple VQIs are combined
in an ensemble.

F. Predicting Quality Classes via Linear Discriminant Anal-
ysis

So far we have only looked at the estimation of recogniz-
ability from quality. Fig. 11 shows us how the quality based
clusters actually match quite well the recognizability of the
images. The opposite scenario is depicted in Fig. 12, the very

low quality scores (MOSQ) can be estimated based on the
subjective recognizability (MOSR) and the VQI predictions.
In these figures, the LDA was computed using both subjective
evaluations (either MOSQ or MOSR) and VQI predictions.
In Fig. 11, the quality scores (MOSQ) were used along with
the predictions, whereas in Fig. 12, the recognizability scores
(MOSR) were used along with the VQI predictions. Once the
LDA was computed, we have mapped the unrecognized images
onto the quality clusters (Fig. 11) and the low quality images
onto the recognizability clusters (Fig. 12). These mapped
images are represented as black squares. As can be noticed on
these figures, it happens that the LDA seems to successfully
cluster together the images having very low MOSQ and being
unrecognized by the observers. However, we can also witness
some misclassification issues on Fig.11. Some low quality
images (blue dots) were actually recognized by the observers
(not surrounded by the black squares). We also can see in
Fig.12 that some medium recognizability images (orange dots)
actually belong to the lowest quality cluster (surrounded by
black squares).

Out of these two scenarios, the first one is the most
interesting in practice, as we might expect that some researchers
may have launched a subjective quality estimation experiment
(based on standardized protocols), but would be in need of
estimating the recognizability out of the quality scores. But the
reversal of the process should also not be discounted. There are
very few VQIs which perform well on the low quality images
and basically none that perform well for recognizability. As
shown, the development of either would be beneficial as it
would also provide an estimation for the other.

In brief: The unrecognizability and low-quality classes based
on MOSQ and MOSR have a very large overlap. If a low
error estimator for one of those could be produced a somewhat
capable estimator for the other would also be available.

IV. CONCLUSION

We have provided the community with a freely available
database of recognition score amended with a quality estimate
by human observers. We used this database to look into the
relation between quality, recognizability and various visual
quality indices.

The overall relation between quality and recognizability can
be summed up as “Where quality ends, recognition begins”.
However, there is a certain overlap. This means that the range
of images, where quality scores should be applied versus where
recognition scores should be applied, is not clearly separable.
This is the unfortunate reality of using the human visual system,
which, by default, is subjective and noisy.

We found that the prediction of recognition by using visual
quality indices does not yield good results. We have shown
that there is a disparity between recognition and quality. We
have seen that, in terms of generalization, the PSNR, which is
not based on the HVS, beats all the VQIs. However, overall
the performance of PSNR (and NCC also) is not good. Further,
the disparity between recognition and quality also means that
a visual quality index can never properly predict a recognition
score.
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(a) Linear discriminant analysis on the given selective encryption type.
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(b) Histogram of projections of the LDA onto LD1.

Fig. 9: LDA with Recognizability labels, launched on both subjective MOS and VQI predictions.
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(a) Linear Discriminant Analysis without subjective ground truth.
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(b) Histogram of projections of the LDA onto LD1.

Fig. 10: LDA with Recognizability labels, launched only on the VQI predictions.

In the end, the implication of this work is that the automatic
evaluation of the recognizability for encrypted images is
currently not possible. This means that the use of selective
encryption for confidential content is problematic since the
correct non-recognizability can not be automatically verified.

APPENDIX A
FURTHER DISCUSSION

We felt that some points needed addressing without actually
impacting the analysis or conclusion of the paper. We compiled
them here to have a more streamlined analysis and conclusion.

A. Bias in the Recognition Experiment

By design, we give strong clues to the observers on what
the encrypted image contains. In Fig. 13 we show an original
image along with one encrypted version. The shape of the roof
inside the red ellipse can clearly be matched from within the

encrypted image, although it is almost impossible to determine
what its content is. Sometimes, an even smaller shape can be
recognized, for example the window portion inside the red
rectangle can also be identified as long as the observer sees
the original image. No quality metric can reasonably give a
good score on such a strongly distorted image, leading to a
strong double error, see section III.

Thus, the lack of any correspondence between quality and
recognizability may actually partly come from the subjective
protocol itself. Let us suppose that we designed a completely
different subjective protocol, in which, for instance, we show
an encrypted image and ask the observers: “What do you see
in this image?”. Possible answers might be: a house, a boat,
a plane, and so on. Another option would have been to show
2 images side by side, one being the original image and the
other one being encrypted. Then, we would ask the following
question to the observers: “Are these the same images?”. The
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(a) Linear discriminant analysis on the given selective encryption methods.
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(b) Histogram of projections of the LDA onto LD1.

Fig. 11: Classification of the images into ‘high quality’ (HQ), represented by green dots, ‘medium quality’ (MQ), represented
as orange dots, and ‘low quality’ (LQ), blue dots. Unrecognized images (R < 0.2) are depicted by the black square symbols.
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(b) Histogram of projections of the LDA onto LD1.

Fig. 12: Classification of the images into ‘high recognizability’ (HR), represented by green dots, ‘medium recognizability’
(MR), represented as orange dots, and ‘no recognizability’ (NR), blue dots. Very low quality images (Q < 5) are depicted by
the black square symbols.

Fig. 13: Some particular shapes within the image that despite
a very poor image quality can help the recognizability process.

recognition rates would likely be different than what they
currently are. And who knows, maybe the VQIs would have
performed better.

One reason to select the experiment that was chosen is that

the recognizability is based on statistical analysis of the results.
That means we have to know the chance a random guess is
correct as this is the basis of the recognition score calculation.
The second version can of course be controlled by showing
the correct pair at a fixed rate, e.g. 50%, but then this type of
experiment is similar in behaviour to the current protocol.

The experiment where the content of the image has to be
described has two problems, one is the chance element. The
other is that the labels need to be defined, how many labels,
how many per image, etc. This creates a similar problem than
for the other experiments in that a certain prior knowledge
is available. On the other hand some image content elements
might not have a label. For example, in Fig. 13 the window
might be recognized, if there is no label for window but for
house then the correct label can be guessed even if it can not
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otherwise be inferred from the image. This setup is therefore
quite complicated regarding labeling, what to label, how many
labels etc., has to be carefully chosen. In addition, the time
investment to evaluate a single image is higher, since the correct
labels have to be selected, maybe more than once, and likely
from a list which prompts a reevaluation of what is seen in
context of the label. This increases the time spent per image,
taking observer fatigue into account this necessitates a larger
number of sessions and makes the scheduling more complex.
The additional time required also comes at additional cost.

Another approach is the one taken in [17] where an original
was compared directly to the encrypted version and a subject
is supposed to judge the amount of information left in the
encrypted image. This is a direct translation of the quality
estimation protocol proposed by the ITU to the recognition
task. As already discussed this suffers from pareidolia, which
makes the proper estimation of a recognition threshold unlikely.
Compared to the data from [18] it is, however, more likely to
have a better representation of the intermediary part between
recognizable and unrecognizable as the quantification is more
fine-grained, while in [18] it is binary (recognizable or not).

Concluding, it is (almost?) impossible to design a protocol
which gives the required information in a timely manner without
introducing a bias. The only way to deal with this is to try and
keep the bias small and be mindful of it during the evaluation.

B. Quality and Prediction in the HVS
The HVS can switch between recognition, i.e., what is in

the image, and quality, i.e., how nice does this look. But these
are distinct processes. There are a lot of images which are
beyond quality, that is images which are of such low quality
that if you look at them the question “how good does it look”
does not arise. The question is rather “What am I looking at?”.
This is where quality ends, but there still might be something
recognizable. Same on the other end of the spectrum where
the image is perfectly recognizable, and therefore the question
“What am i looking at?” does not even come to mind. But
there is still a quality we can assess.

So the ranges of recognition and quality overlap, but quality
extends beyond recognition (on recognizable images) and
recognition extends beyond quality (on very low quality
images). Since there is an overlap we can predict the quality
from recognizability and vice versa to a degree, i.e., the region
where they overlap, but not on the whole range because the
overlap is only partial.

Due to this overlap, predictions work, but not very well. But
because they do work to an extent, it is easy to assume there
must be some method which properly predicts one from the
other. But because the recognition and quality are not totally
aligned in range there might well be no ’perfect’ prediction
from one to the other.

The conclusion seems to be that there can be no proper
prediction between quality and recognizability! This does not
preclude image features chosen specifically for the prediction
of one type, e.g., every VQI, from potentially predicting
recognizability. The features are image features and not quality
features per se, but they were specifically chosen for their
alignment with quality, so might not actually be the best choice.

C. Reliance on Visual Quality Indices

It should be noted that we used the visual quality indices to
attempt to predict the recognizability purely due to availability.
We have already discussed how the double prediction, from
VQI to quality and from quality to recognizability, introduces
additional errors. But the VQIs are diverse and readily available
and thus are a natural choice to use as sources for the prediction.
However, in the long term if a proper recognizability score
is required it would be better to cut out the middleman and
attempt to develop a recognizability score directly based on
the recognizability databases. However, as this paper, and prior
papers [17], [18], have shown, the features used in VQIs are
not a good fit for the recognizability task.

The development of recognizability score therefore will need
a careful analysis of image features which can be utilized. But
with the database presented here, and in [17], at least the tools
for such a development effort are available.

D. The particular case of the Linear Discriminant Analysis

All throughout this project, several attempts have been made
to link the subjective recognizability with both the objective
and subjective quality. Various tools have been tested. We have
for instance tried to use some feature detection algorithms,
such as SIFT [36] or SURF [37]. We also made an attempt to
adapt the regular quality VQIs into the specificity of selectively
encrypted images. Effectively, we quite often witness a loss
of the image’s highest frequencies, we have thus decomposed
the images into various frequency bands (either in the Fourier
domain or in the wavelet domain), and ran independently the
VQI within each frequency range. Weighting the VQIs with
the Contrast Sensitivity Function (CSF) [38] has also been
considered, in order to give more importance to the lowest
frequency components. We have also modified the CSF to give
even more weights to the lowest frequencies. Unfortunately,
none of these numerous attempts proved to efficiently link
recognizability and quality.

The only method presenting interesting results was actually
the multivariate analysis which we have presented in this paper.
The reason for that is probably because, by design, the PCA
or LDA are able to benefit from heterogeneous data, discard
irrelevant inputs, while enhancing the relevant ones. As already
briefly mentioned in section III-D, each VQI spans a certain
range of perceived qualities. Among the tested VQIs, one for
instance has been specifically designed and tuned for optimized
performance against data hiding scenarios (the CPA [39]).
And indeed, the CPA exhibits a better performance than other
metrics near the visibility threshold. One is able to express some
quality enhancement (VIF), i.e., when a test image has a better
quality than the original, whereas the purely statistical VQIs
(PSNR or SSIM) are commonly more adequate in a medium
quality range. On the other hand, some other VQIs might
present better performances within lower quality ranges. By
feeding the LDA with predicted scores having such a disparity,
the LDA weights will automatically adjust to the metrics being
the more relevant to the task at hand. This may explain why
the LDA was able to infer the recognizability based on the
objective quality assessment from several disparate predictions.
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Finally, one very interesting asset of the LDA is its ability
to process some completely unrelated data and still produce
a succeeding clustering. In our example, the LDA mixes
altogether some similarity metrics (either HVS based or purely
based on the image statistics) and a distortion index (CPA),
along with a structural similarity measure (NCC). We could
even imagine blending in some feature detection outputs (such
as SIFT or SURF mentioned earlier). No matter the relevance
of each of these measures to the task at hand, the LDA adjusts
its weights and considers all these diverse measures at its
disposal.

ACKNOWLEDGMENT

This work was partially supported by the Austrian Science
Fund, project no. P27776.

REFERENCES

[1] S. Kotel, F. Sbiaa, M. Zeghid, M. Machhout, A. Baganne, and R. Tourki,
“Efficient hybrid encryption system based on block cipher and chaos
generator,” in 2016 IEEE International Conference on Computer and
Information Technology (CIT), 2016, pp. 375–382.

[2] A. I. Sallam, O. S. Faragallah, and E. M. El-Rabaie, “Hevc selective
encryption using rc6 block cipher technique,” IEEE Transactions on
Multimedia, vol. 20, no. 7, pp. 1636–1644, July 2018.

[3] M. K. Abdmouleh, A. Khalfallah, and M. S. Bouhlel, “A novel
selective encryption dwt-based algorithm for medical images,” in 2017
14th International Conference on Computer Graphics, Imaging and
Visualization, 2017, pp. 79–84.

[4] F. Peng, X. Zhang, Z. Lin, and M. Long, “A tunable selective encryption
scheme for h.265/hevc based on chroma ipm and coefficient scrambling,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 30,
no. 8, pp. 2765–2780, 2020.

[5] J. He, S. Huang, S. Tang, and J. Huang, “Jpeg image encryption
with improved format compatibility and file size preservation,” IEEE
Transactions on Multimedia, vol. 20, no. 10, pp. 2645–2658, 2018.

[6] H. Hofbauer and A. Uhl, “Identifying deficits of visual security metrics
for images,” Signal Processing: Image Communication, vol. 46, pp. 60 –
75, 2016.

[7] C. Yang, X. Zhang, P. An, L. Shen, and C. . J. Kuo, “Blind image quality
assessment based on multi-scale klt,” IEEE Transactions on Multimedia,
pp. 1–1, 2020.

[8] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, “Objective
video quality assessment methods: A classification, review, and perfor-
mance comparison,” IEEE Transactions on Broadcasting, vol. 57, no. 2,
pp. 165–182, 2011.

[9] S. Tian, L. Zhang, L. Morin, and O. Déforges, “A benchmark of dibr
synthesized view quality assessment metrics on a new database for
immersive media applications,” IEEE Transactions on Multimedia, vol. 21,
no. 5, pp. 1235–1247, 2019.

[10] M. Corsini, E. D. Gelasca, T. Ebrahimi, and M. Barni, “Watermarked
3-d mesh quality assessment,” IEEE Transactions on Multimedia, vol. 9,
no. 2, pp. 247–256, 2007.

[11] H. Hofbauer and A. Uhl, “Applicability of no-reference visual quality
indices for visual security assessment,” in Proceedings of the 6th ACM
Workshop on Information Hiding and Multimedia Security (IH&MMSec
2018), 2018, pp. 139–144.

[12] A. S. Abraham, L. R. Nair, and M. S. Deepa, “A novel method for
evaluation of visual security of images,” in 2017 International Conference
on Networks Advances in Computational Technologies (NetACT), 2017,
pp. 387–391.

[13] T. Xiang, S. Guo, and X. Li, “Perceptual visual security index based
on edge and texture similarities,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 5, pp. 951–963, 2016.

[14] T. Xiang, Y. Yang, H. Liu, and S. Guo, “Visual security evaluation
of perceptually encrypted images based on image importance,” IEEE
Transactions on Circuits and Systems for Video Technology, pp. 1–1,
2019.

[15] G. Yue, C. Hou, K. Gu, T. Zhou, and H. Liu, “No-reference quality
evaluator of transparently encrypted images,” IEEE Transactions on
Multimedia, vol. 21, no. 9, pp. 2184–2194, 2019.

[16] T. Stütz, V. Pankajakshan, F. Autrusseau, A. Uhl, and H. Hofbauer,
“Subjective and objective quality assessment of transparently encrypted
JPEG2000 images,” in Proceedings of the ACM Multimedia and Security
Workshop (MMSEC ’10). Rome, Italy: ACM, Sep. 2010, pp. 247–252.

[17] S. Guo, T. Xiang, X. Li, and Y. Yang, “Peid: A perceptually encrypted
image database for visual security evaluation,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 1151–1163, 2020.

[18] H. Hofbauer, F. Autrusseau, and A. Uhl, “To recognize or not to recognize
— a database of encrypted images with subjective recognition ground
truth,” Information Sciences, no. 551, pp. 128–145, 2020.

[19] M. H. Chehreghani and M. H. Chehreghani, “Learning representations
from dendrograms,” Machine Learning, vol. 109, no. 9, 2020.

[20] H. Hofbauer, F. Autrusseau, and A. Uhl, “To see or not to see: Determin-
ing the recognition threshold of encrypted images,” in Proceedings of
7th European Workshop on Visual Information Processing (EUVIP’18),
2018, p. 6.

[21] Telecommunication Standardization Sector of ITU, “Telephone Transmis-
sion Quality audiovisual quality in multimedia services,” 1996, ITU-T
REC P.910.

[22] ITU Radiocommunication Assembly, “Methodology for the subjective
assessmen of the quality of television pictures,” 2002, ITU-R BT.500-11.

[23] ——, “Methodology for the subjective assessment of the quality of
television pictures,” 2012, ITU-R BT.500-13.

[24] J. Lee, “On designing paired comparison experiments for subjective
multimedia quality assessment,” IEEE Transactions on Multimedia,
vol. 16, no. 2, pp. 564–571, 2014.

[25] VQEG contributors, “Hybrid perceptual/bitstream group test plan - draft
version 1.9,” Video Quality Experts Group (VQEG), Tech. Rep., 2010.

[26] K. Pearson, “Note on Regression and Inheritance in the Case of Two
Parents,” Proceedings of the Royal Society of London Series I, vol. 58,
pp. 240–242, Jan. 1895.

[27] C. Spearman, “The proof and measurement of association between two
things,” The American Journal of Psychology, vol. 100, no. 3/4, pp.
441–471, 1904.

[28] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861 – 874, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016786550500303X

[29] H. Hofbauer and A. Uhl, “Calculating a boundary for the significance
from the equal-error rate,” in Proceedings of the 9th IAPR/IEEE
International Conference on Biometrics (ICB’16), 2016, pp. 1–4.

[30] B. Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme,” biochimica et biophysica acta (bba) -
protein structure, vol. 405, no. 2, pp. 442 – 451, 1975.

[31] D. Powers, “Evaluation: From precision, recall and f-factor to roc,
informedness, markedness & correlation,” Machine Learning Technology,
vol. 2, 01 2008.

[32] J. Wu, G. Shi, and W. Lin, “Survey of visual just noticeable difference
estimation,” Frontiers of Computer Science, vol. 13, no. 1, pp. 4–15,
2019.

[33] N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C.
Bovik, “Image quality assessment based on a degradation model,” IEEE
Transactions on Image Processing, vol. 9, no. 4, pp. 636–650, Apr. 2000.

[34] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural
similarity for image quality assessment,” in Proc. 37th IEEE Asilomar
Conference on Signals, Systems and Computers, 2003, pp. 1398–1402.

[35] D. Chandler and S. Hemami, “VSNR: A wavelet-based visual signal-to-
noise ratio for natural images,” IEEE Transactions on Image Processing,
vol. 16, no. 9, pp. 2284–2298, Sep. 2007.

[36] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004. [Online].
Available: http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

[37] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Comput. Vis. Image Underst., vol. 110, no. 3, p. 346–359,
Jun. 2008. [Online]. Available: https://doi.org/10.1016/j.cviu.2007.09.014

[38] P. Barten, Contrast sensitivity of the human eye and its effect
on image quality. SPIE Press, 1999. [Online]. Available: http:
//spie.org/x648.html?product_id=353254

[39] M. Carosi, V. Pankajakshan, and F. Autrusseau, “Toward a simplified
perceptual quality metric for watermarking applications,” in Proceedings
of the SPIE conference on Electronic Imaging, vol. 7542, 2010.

https://www.fwf.ac.at
https://www.fwf.ac.at
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1016/j.cviu.2007.09.014
http://spie.org/x648.html?product_id=353254
http://spie.org/x648.html?product_id=353254

	Introduction
	Database
	Images Contained in the Database
	Acquisition of Human Observer Scores

	Analysis of the Relation Between Quality and Recognizability
	Conformance of Quality and Recognition Scores
	Visual Quality Indicators as Predictors of Recognizability
	Visual Quality Indices as Predictors for Quality on Low Quality Images
	On Using a Fusion of Visual Quality Indicators as Predictors for Quality and Recognition
	Predicting Recognizability Classes via Linear Discriminant Analysis
	Predicting Quality Classes via Linear Discriminant Analysis

	Conclusion
	Appendix A: Further Discussion
	Bias in the Recognition Experiment
	Quality and Prediction in the HVS
	Reliance on Visual Quality Indices
	The particular case of the Linear Discriminant Analysis

	References

