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Approximation of exact controls for semilinear wave and heat1

equations through space-time methods2

Arnaud MÜNCH∗
3

Abstract4

We consider from the algorithmic and numerical viewpoints the exact controllability problems for5

linear and semilinear heat and wave equations. We notably report on some recent iterative approaches6

yielding to strongly convergent approximations of controlled solutions for semilinear equations. From7

the numerical perspective, we focus on the control-then-discretize strategy where the optimality system8

associated with each problem is solved within a space-time framework leading to strong convergence9

approximations with respect to the parameters of discretization. The role of global Carleman type10

estimates is emphasized in the robustness of the approaches. Numerical experiments in the one and two11

dimensional case illustrate our results of convergence.12

AMS Classifications: 35K58, 93B05, 93E24.13

Keywords: Control of semilinear PDEs, Fixed point theorem, Numerical approximation, Space-time14

discretization.15

1 Introduction16

Approximation of null controllability problems for partial differential equations is a delicate issue. In contrast17

with optimal control problems, the occurrence of a terminal constraint for the state of the equation makes18

the analysis non trivial, both at the theoretical but also at the numerical level. Thus, it is by now well-19

known since the pioneering works of Roland Glowinski in the nineties collected in [46] that the use of20

standard numerical schemes for hyperbolic equations may lead to divergent sequences of control as the21

discretization parameter goes to zero. This is due to spurious discrete high frequencies generated by the22

finite dimensional approximation. Similarly, for parabolic equations, the regularization phenomenon makes23

the approximation of controls badly conditioned and leads to highly oscillating behaviors. On the other24

hand, exact controllability results for semilinear equations, since the pioneering works of Enrique Zuazua25

[79] in the nineties, are usually based on non constructive fixed point arguments and therefore do not lead26

to method of approximations.27

We focus here on the approximation of null distributed controls for semilinear wave and heat equation.28

We first review some recent techniques that lead to robust numerical solution of null controllability prob-29

lems associated with linear wave and heat equations. The methods are characterized by the fact that we30

approximate in finite dimension in space and time simultaneously. This is made possible by introducing an31

appropriate reformulation as an equation in a space of functions depending on the spatial and time variables32

which is then discretized and solved. In particular, we do not employ usual time-marching methods for the33

evolution equations. The well-posedness of these reformulations relies on so-called generalized observabil-34

ity inequalities, also refereed to as global Carleman estimates. The methods developed here to solve the35

optimality system associated with each controllability problem fall into the emergent strategy “control-then-36

discretize”. In contrast with the classical reverse strategy “discretize-then-control”, we emphasize that it37
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leads to robust and strong convergent approximation with respect to the parameters of discretization. It is1

also notably appropriate for mesh adaptivity.2

We also design, both for the wave and the heat case, a least-squares algorithm yielding sequences con-3

verging strongly and at least linearly to a controlled solution for the semilinear equation. Each element of the4

sequence is solution of a linearized controllability problem and therefore can be approximated numerically5

though a robust space-time formulation.6

Section 2 is devoted to the wave equation and Section 3 is devoted to the heat equation. In both cases, we7

illustrate our results with numerical experiments performed with the software Freefem++ (see [48]). Section8

4 concludes with some perspectives.9

Notations In the text, Ω is a bounded domain of Rd (d ≥ 1) with C1,1 boundary and ω ⊂⊂ Ω is a10

non-empty open set. For any T > 0, we set QT := Ω × (0, T ), qT := ω × (0, T ) and ΣT := ∂Ω × (0, T ).11

The variable y is used for the state of the equation while the control is defined in term of the variable v.12

Moreover, f is the function defining the nonlinearity of the equation. Last, the variable C denotes a generic13

constant depending only on T , Ω, ω but not on any state variable.14

2 The wave equation15

This section is devoted to the linear and semilinear wave equations. We first recall some classical control-16

lability results (Section 2.1 and Section 2.2), then explain how one may construct a sequence (yk, vk)k∈N17

converging strongly to a controlled pair for the semilinear equation, based on a suitable linearization (Sec-18

tion 2.3). In Section 2.4, we discuss some methods of numerical approximation and we conclude with some19

numerical experiments in Section 2.5. We mainly focus on distributed controls although similar results are20

available for boundary controls.21

2.1 Controllability results for the linear wave equation22

The linear wave equation, completed with Dirichlet and initial conditions, reads as follows:23 {
∂tty −∆y +Ay = v1ω + F in QT ,

y = 0 on ΣT , (y(· , 0), ∂ty(· , 0)) = (u0, u1) in Ω.
(1)

Here, y is the state and v ∈ L2(qT ) is the control. We assume that the initial data (u0, u1) belongs24

to V := H1
0 (Ω) × L2(Ω), F ∈ L2(QT ) and A ∈ L∞(0, T ;Ld(Ω)). Under these assumptions, (1) possesses a25

unique weak solution in C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), see [63, 40].26

The exact controllability problem for (1) in time T is formulated as follows:27

given (u0, u1), (z0, z1) ∈ V , find a control v ∈ L2(qT ) such that the weak solution to (1)28

satisfies (y(· , T ), ∂ty(· , T )) = (z0, z1).29

In other terms, through the action on the open subset ω of Ω, we want to steer the solution from the30

state (u0, u1) to the state (z0, z1). In view of the linearity of the system (1), it is equivalent to reach the31

zero target, i.e. take (z0, z1) = (0, 0) leading the so-called null controllability problem.32

Using multiplier techniques, this controllability problem was solved in the eighties in [63] in the case33

A ≡ 0, later generalized in [40] as follows.34

Theorem 1. [40, Theorem 2.2] For any x0 ∈ Rd\Ω, let Γ0 := {x ∈ ∂Ω : (x − x0) · ν(x) > 0} and let

Oε(Γ0) := {y ∈ Rd : dist (y,Γ0) ≤ ε} for any ε > 0. Assume

(H0) T > 2 maxx∈Ω |x− x0| and ω ⊇ Oε(Γ0) ∩ Ω for some ε > 0.

Then (1) is exactly controllable in time T .

35
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In Theorem 1, Γ0 is the usual star-shaped part of Ω introduced in [63]. Using microlocal analysis, we1

recall that C. Bardos, G. Lebeau and J. Rauch proved in [6] that, in the class of C∞ domains and for A ≡ 0,2

controllability holds if and only if (ω, T ) satisfies the following geometric control condition: “every ray of3

geometric optics that propagates in Ω and is reflected on Γ enters ω at a time t < T”.4

Using duality arguments, Theorem 1 can be deduced from an observability estimate for the adjoint5

system. Thus, let us recall the following result, proved in [62].6

Proposition 1. [62, Theorem 2.1] Assume (H0). For any A ∈ L∞(0, T ;Ld(Ω)) and any (φ0, φ1) ∈ H :=

L2(Ω)×H−1(Ω), the weak solution φ to{
∂ttφ−∆φ+Aφ = 0 in QT ,

φ = 0 on ΣT , (φ(· , 0), ∂tφ(· , 0)) = (φ0, φ1) in Ω,
(2)

satisfies the following observability inequality, for some C > 0 only depending on Ω and T :

‖(φ0, φ1)‖H ≤ Ce
C‖A‖2

L∞(0,T ;Ld(Ω))‖φ‖L2(qT ). (3)

7

The inequality (3) is refereed as an observability inequality as the knowledge of φ on the subset qT of QT8

allows to observe the full system. Among all admissible controls, we usually consider the control of minimal9

L2(qT ) norm which is unique and depends continuously on the data as follows.10

Proposition 2. Let A ∈ L∞(0, T ;Ld(Ω)), F ∈ L2(QT ) and (u0, u1), (z0, z1) ∈ V be given. Assume (H0).

Then the control of minimal L2(qT ) norm v together with the corresponding controlled weak solution y of

(1)satisfy the following estimate, for some constant C > 0 only depending on Ω and T :

‖v‖L2(qT ) + ‖(y, ∂ty)‖L∞(0,T ;V ) ≤ C
(
‖F‖L2(QT ) + ‖(u0, u1)‖V + ‖(z0, z1)‖V

)
e
C‖A‖2

L∞(0,T ;Ld(Ω)) . (4)

11

2.2 Controllability results for a semilinear wave equation12

We consider now the following system for the semilinear wave equation:13 {
∂tty −∆y + f(y) = v1ω in QT ,

y = 0 on ΣT , (y(· , 0), ∂ty(· , 0)) = (u0, u1) in Ω.
(5)

Here, f : R → R is a C1 function such that |f(r)| ≤ C(1 + |r|) ln(2 + |r|) for all r ∈ R and some14

C > 0. There exists a unique global weak solution to (5) in C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) (see [20]).15

Furthermore, imposing an adequate growth condition on f at infinity, the exact controllability problem has16

been solved in [62] and generalized in [40] to more general hyperbolic equations.17

Theorem 2. [62, Theorem 2.1] Let x0, Γ0 and Oε(Γ0) be as in Theorem 1. Assume that (H0) holds. If f

satisfies

(H1) lim sup|r|→∞
|f(r)|

|r| ln1/2 |r| = 0,

then (5) is exactly controllable in time T .

18

Theorem 2 extends to the multi-dimensional case the result of [79] devoted to the one-dimensional case19

under the condition lim sup|r|→∞
|f(r)|
|r| ln2 |r| = 0, later relaxed in [15] and [66]. The exact controllability20

for subcritical nonlinearities is obtained in [27] under the sign condition rf(r) ≥ 0 for all r ∈ R. This last21

assumption has been weakened in [51] to an asymptotic sign condition leading to a semi-global controllability22

result, in the sense that the final data (z0, z1) must be prescribed in a precise subset of V .23
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The proof of Theorem 2 given in [62] is based on the fixed-point argument introduced in [78, 79] and1

the a priori estimate (4) for the linear wave equation (1). More precisely, it is shown that the operator2

Λ : L∞(0, T ;Ld(Ω)) 7→ L∞(0, T ;Ld(Ω)), where yξ := Λ(ξ) is the solution to the linear problem3 
∂ttyξ −∆yξ + f̂(ξ) yξ = −f(0) + vξ1ω in QT ,

yξ = 0 on ΣT ,

(yξ(· , 0), ∂tyξ(· , 0)) = (u0, u1) in Ω,

f̂(r) :=


f(r)− f(0)

r
r 6= 0,

f ′(0) r = 0

, (6)

and vξ is the minimal L2(qT ) norm control for which (yξ(· , T ), yξ,t(· , T )) = (z0, z1) has a fixed-point. The4

existence is obtained by using the Leray-Schauder’s Theorem; in particular, under the growth assumption5

(H1), it is shown that there exists a positive constant M = M(‖u0, u1‖V , ‖z0, z1‖V ) such that Λ maps the6

ball BL∞(0,T ;Ld(Ω))(0,M) into itself.7

2.3 Construction of a convergent sequence of state-control pairs for the semi-8

linear system (5): a least-squares approach9

We now discuss the explicit construction of a sequence (vk)k∈N that converges strongly to an exact control10

for (5). The controllability of nonlinear PDEs has attracted a large number of works in the last decades11

(see [26]). However, few are concerned with the computation of exact controls and the explicit construction12

of convergent approximations remains a challenge.13

A first idea that comes to mind is to consider the Picard iterates (yk)k∈N associated with the operator14

Λ, defined by yk+1 = Λ(yk) for k ≥ 0, starting from some y0 ∈ L∞(0, T ;Ld(Ω)). The resulting sequence15

of controls (vk)k∈N fulfills the following property: vk+1 ∈ L2(qT ) is the control of minimal L2(qT ) norm for16

which the associated solution to17 {
∂ttyk+1 −∆yk+1 + f̂(yk) yk+1 = −f(0) + vk+11ω in QT ,

yk+1 = 0 on ΣT , (yk+1(· , 0), ∂tyk+1(· , 0)) = (y0, y1) in Ω
(7)

satisfies (yk+1(· , T ), ∂tyk+1(· , T )) = (z0, z1). Such a strategy fails frequently, since the operator Λ is not in18

general a contraction, even if f is globally Lipschitz-continuous. We refer to [9] for a numerical evidence of19

the lack of convergence (see also [35] in a similar parabolic context).20

A second idea is to use a method of the Newton kind to find a zero of the C1 mapping F̃ : Y 7→ W ,21

defined by22

F̃(y, v) :=

(
∂tty −∆y + f(y)− v1ω, y(· , 0)− u0, ∂ty(· , 0)− u1, y(· , T )− z0, ∂ty(· , T )− z1

)
(8)

for some appropriates Hilbert spaces Y and W . Thus, starting from (y0, v0) ∈ Y , for each k ≥ 0 we set23

(yk+1, vk+1) = (yk, vk)− (Yk, Vk) where Vk is the control of minimal L2(qT ) norm such that the solution to24 {
∂ttYk −∆Yk + f ′(yk)Yk = Vk 1ω + ∂ttyk −∆yk + f(yk)− vk1ω in QT ,

Yk = 0 on ΣT , Yk(· , 0) = u0 − yk(· , 0), ∂tYk(· , 0) = u1 − ∂tyk(· , 0) in Ω
(9)

satisfies Yk(· , T ) = z0 − yk(· , T ) and ∂tYk(· , T ) = z1 − ∂tyk(· , T ). As is well-known, the resulting sequence25

may fail to converge if the initial guess (y0, v0) is not close enough to a zero of F̃ .26

Given any initial data (u0, u1) ∈ V , under assumptions on f that are slightly stronger than (H1) and27

d ≤ 3, we can design an algorithm providing a sequence (yk, vk)k∈N that converges to a controlled pair.28

Moreover, after a finite number of iterates, the convergence is super-linear. This is achieved by introducing29

a least-squares functional that measures how much a pair (y, v) is close to a controlled solution for (5) and,30

then by determining a particular convergent minimizing sequence. Following [9, 73], we define the Hilbert31

space32

H := {(y, v) ∈ L2(QT )× L2(qT ) : y ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), ∂tty −∆y ∈ L2(QT )},
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which is endowed with the scalar product1 (
(y, v), (y, v)

)
H := (y, y)L2(QT ) +

(
(y(· , 0),∂ty(· , 0)), (y(· , 0), ∂ty(· , 0))

)
V

+ (∂tty −∆y, ∂tty −∆y)L2(QT ) + (v, v)L2(qT ).

We then define the non-empty linear manifold2

A := {(y, v) ∈ H : (y(· , 0), ∂ty(· , 0)) = (u0, u1), (y(· , T ), ∂ty(· , T )) = (z0, z1)}

and the associated space A0 := {(y, v) ∈ H : (y(· , 0), ∂ty(· , 0)) = (0, 0), (y(· , T ), ∂ty(· , T )) = (0, 0)} and3

consider the following non-convex extremal problem of the least-squares kind4

inf
(y,v)∈A

E(y, v), E(y, v) :=
1

2

∥∥∂tty −∆y + f(y)− v 1ω
∥∥2

L2(QT )
. (10)

The functional E is well-defined in A: we check that there exists C > 0 such that E(y, v) ≤ C(1 +5

‖(y, v)‖3H) for all (y, v) ∈ A.6

Main properties of the functional E The functional E is Gâteaux-differentiable over A. Moreover, it7

is shown in [9] the following inequality.8

Proposition 3. [9, Proposition 3] Assume (H0) and let d ≤ 3. There exists C = C(ω,Ω, T ) > 0 such that

√
E(y, v) ≤ C

(
1 + ‖f ′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖f ′(y)‖2

L∞(0,T ;Ld(Ω))‖E′(y, v)‖A′0 , ∀(y, v) ∈ A. (11)
9

Consequently, any critical point (y, v) ∈ A of E such that ‖f ′(y)‖L∞(0,T ;L3(Ω)) is finite is a zero for E,10

i.e. a solution to the controllability problem and any sequence (yk, vk)k>0 satisfying ‖E′(yk, vk)‖A′0 → 0 as11

k →∞ for which ‖f ′(yk)‖L∞(0,T ;L3(Ω)) is uniformly bounded is such that E(yk, vk)→ 0 as k →∞.12

This property does not imply the convexity of the functional E (and a fortiori the strict convexity of13

E, which actually cannot hold in view of the multiple zeros for E). However, it shows that a minimizing14

sequence for E cannot be stuck in a local minimum. In order to construct a minimizing sequence for E, we15

formally look, for any (y, v) ∈ A, for a pair (Y 1, V 1) ∈ A0 solving the following linear wave equation16 {
∂ttY

1 −∆Y 1 + f ′(y) · Y 1 = V 11ω +
(
∂tty −∆y + f(y)− v 1ω

)
in QT ,

Y 1 = 0 on ΣT , (Y 1(· , 0), ∂tY
1(· , 0)) = (0, 0) in Ω.

(12)

Since (Y 1, V 1) belongs to A0, V 1 is a null control for Y 1. Among all the controls of this linear equation, we17

select the control of minimal L2(qT ) norm. In the sequel, we call the corresponding solution (Y 1, V 1) ∈ A018

the solution of minimal control norm. Then the derivative of E at (y, v) ∈ A in the direction (Y 1, V 1)19

satisfies E′(y, v) · (Y 1, V 1) = 2E(y, v) which allows to define a minimizing sequence for E.20

Given f ∈ C1(R) and p ∈ (0, 1], we introduce the following hypothesis:21

(Hp) [f ′]p := sup
a,b∈R
a 6=b

|f ′(a)− f ′(b)|
|a− b|p

< +∞22

and set β?(p) :=
√

p
2C(2p+1) where C > 0 (only depending on Ω and T ) is the constant appearing in23

Proposition 2. The following result from [9] provides a constructive way to approximate a control for the24

semilinear wave equation (5).25

5



Theorem 3. [9, Theorem 2] Assume (H0) and let d ≤ 3. Also, assume that f ′ satisfies (Hp) for some

p ∈ (0, 1] and

(H2) There exists α ≥ 0 and β ∈ [0, β?(p)) such that |f ′(r)| ≤ α+ β ln1/2(1 + |r|) for every r in R.

Then, for any initial and final data (u0, u1) and (z0, z1) in V and any starting (y0, v0) ∈ A, the sequence

(yk, vk)k∈N defined by {
(yk+1, vk+1) = (yk, vk)− λk(Y 1

k , V
1
k ), k ∈ N,

λk := argminλ∈[0,1]E
(
(yk, vk)− λ(Y 1

k , V
1
k )
)
,

(13)

where (Y 1
k , V

1
k ) ∈ A0 is the solution of minimal control norm of{

∂ttY
1
k −∆Y 1

k + f ′(yk) · Y 1
k = V 1

k 1ω + (∂ttyk −∆yk + f(yk)− vk1ω) in QT ,

Y 1
k = 0 on ΣT , (Y 1

k (· , 0), ∂tY
1
k (· , 0)) = (0, 0) in Ω

(14)

strongly converges to a pair (y, v) ∈ A satisfying (5) and the condition (y(· , T ), ∂ty(· , T )) = (z0, z1), for all

(u0, u1), (z0, z1) ∈ V . Moreover, the convergence is at least linear and at least of order p + 1 after a finite

number of iterations.

1

Theorem 3 provides a new proof of the exact controllability of semilinear multi-dimensional wave equa-2

tions which is moreover constructive, with an algorithm that converges unconditionally at least with or-3

der p+ 1.4

Remark 1. The asymptotic condition (H2) on f ′ is slightly stronger than the assumption (H1) made5

in [40]: this is due to our linearization of (5), which concerns f ′, while the linearization (34) in [40] involves6

r → (f(r) − f(0))/r. Remark however that the particular example f(r) = a + br + cr ln1/2(1 + |r|) with7

a, b ∈ R and c > 0 small enough (which is somehow the limit case in Theorem 2) satisfies (H2) as well as8

(Hp) for any p ∈ (0, 1].9

Remark 2. Defining F : A → L2(QT ) by F(y, v) := (∂tty−∆y+f(y)−v 1ω), we have E(y, v) = 1
2‖F(y, v)‖2210

and we observe that, for λk = 1, the algorithm (13) coincides with the Newton algorithm associated with11

the mapping F (see (9)). This explains the super-linear convergence property in Theorem 3, in particular12

the quadratic convergence when p = 1. The optimization of the parameter λk allows a global convergence13

property of the algorithm and leads to the so-called damped Newton method applied to F (we refer to [28,14

Chapter 8])). As far as we know, the analysis of damped type Newton methods for PDEs has deserved very15

few attention in the literature (we mention [58, 76] in the context of fluids mechanics.)16

Remark 3. Instead of the control of minimal L2-norm, we may consider weighted costs involving both the17

state and the control. In the framework of boundary controllability, it is shown in [8] using global Carleman18

estimates (see [7]) that appropriate choices of the weights lead to convergent result with linear rate assuming19

only (H2). We also refer to Section 3, in particular Theorem 8 and 9, devoted to the heat equation where20

this is discussed with more details.21

2.4 Numerical approximation of exact controls for the wave equation22

We now discuss the approximation of exact controls for the wave equation. For brevity, we employ the23

notation LAφ := ∂ttφ − ∆φ + Aφ. According to the previous section and Theorem 3, a convergent nu-24

merical approximation of controls for the linear wave equation allows to construct a convergent numerical25

approximation of controls in the semilinear case as well. We therefore focus on the linear situation.26

Without loss of generality, we assume that the target (z0, z1) vanishes and look for an approximation of

the control of minimal L2(qT )-norm solution of

inf
v∈C(u0,u1,T )

J(v), J(v) := ‖v‖2L2(qT )

6



where C(u0, u1, T ) denotes the non empty convex set of controls. Applying the Fenchel-Rockafellar duality1

theory (see [31]), the control of minimal L2(qT ) norm is expressed by v = φ1ω where φ solves (2) with initial2

data (φ0, φ1) ∈H and (φ0, φ1) solves the following extremal problem3

inf
(φ0,φ1)∈H

J?(φ0, φ1), J?(φ0, φ1) :=
1

2

∫
qT

|φ|2+

∫
QT

Fφ+ 〈φ1, u0〉H−1(Ω),H1
0 (Ω)−〈φ0, u1〉L2(Ω). (15)

Here, J? is the so-called conjugate functional associated with J . The observability inequality (3) for the4

variable φ leads to the well-posedness of this extremal problem. Compared with the initial minimization of5

J over exact null controls for (1), this equivalent problem does not make appear any terminal constraint and6

therefore can be solved through an iterative descent method: the conjugate gradient algorithm is usually7

employed (see [44]) since the so-called HUM operator related to J? is coercive.8

However, at the finite dimensional level (induced by the numerical approximation in time and space), (2)9

can not be in general solved exactly: in other words, the constraint LAφ = 0 in QT is not exactly satisfied10

what makes irrelevant the observability inequality (3). For some specific geometries, let us mention however11

spectral methods initially developed by F. Bourquin in [10] (then used in [56]) leading to precise convergence12

results. At least two possibilities appear in order to bypass this difficulty. The first one is to first reformulate13

the controllability problem at the finite dimensional level leading to so-called discretize-then-control strategy.14

The discretize-then-control strategy A possible strategy is to first discretize (5) and then determine

a discrete control of minimal L2(qT ) norm by minimizing the associated discrete functional J?h , where h

stands for the discretization parameter. This has been the subject of numerous works and extended to

many others PDEs, starting from the seminal contribution of R. Glowinski and J.-L. Lions [44] (see also

[46]). The experiments there reveal that the convergence of the approach is very sensitive to the chosen

approximation. Thus, if standard time marching convergent schemes are coupled with standard finite element

approximations, the associated observability constant may not be uniformly bounded with respect to h,

leading to a divergence of the discrete family of controls (vh)h>0 as h tends to zero. In practice, the

conjugate gradient algorithm fails to converge as the discretization becomes finer. As conjectured in [44]

and later analyzed (see [80] for a review), this is due to spurious high frequencies discrete modes which are

not exactly controllable uniformly in h. This pathology can easily be avoided in practice by adding to the

conjugate functional a regularized Tikhonov parameter; this leads to so called approximate controls, solving

the control problem only up to a small remainder term:

‖yh(·, T ), ∂tyh(·, T )‖H1
0 (Ω)×L2(Ω) ≤ O(hα), ∀h > 0

where the real α is related to the order of the numerical scheme. This is sufficient for the applications

but not fully satisfactory from a theoretical viewpoint. That is why several cures aiming to filter out the

high frequencies have been proposed and analyzed, mainly for simple geometries (1d interval, unit square

in 2d, etc) with finite differences schemes. The simplest but artificial approach is to eliminate the highest

eigenmodes of a discrete approximation of the initial condition as discussed in one space dimension in [67],

and extended in [64]. We also mention so called bi-grid methods (based on the projection of the discrete

gradient of J? on a coarse grid) proposed in [45] and analyzed in [50, 65] leading to convergence results.

One may also design more elaborated discrete schemes avoiding spurious modes: we mention [43] based

on a mixed reformulation of the wave equation analyzed later with finite difference schemes in [18, 19, 3]

at the semi-discrete level and then extended in [69] to a full space-time discrete setting, leading to strong

convergent results. For instance, in [69], the following scheme

D∆t(y∆t,∆x)−D∆x(y∆t,∆x) +
1

4
(∆2

t −∆2
x)D∆x(D∆t(y∆t,∆x)) = 0

is proved to be uniformly controllable with respect to the discretization h = (∆t,∆x) as it leads to a discrete

family of controls converging strongly to a control for the wave equation as soon as the controllability T is

7



large enough such that T > 2 max(1,∆2
t/∆

2
x) (see [69, Theorem 2.8]). Here, Dη(z) stands for the standard

operator

Dη(z)(r) =
z(r + η)− 2z(r) + z(r − η)

η2
, ∀r ∈ R, ∀η > 0

associated with the centered approximation of order two of the second derivative of any smooth function z.1

The previous works, notably reviewed in [80, 34], fall within an approach that can be called “discretize2

then control” as they aim to control exactly to zero a finite dimensional approximation of the wave equation.3

A relaxed controllability approach is analyzed in [14] using a stabilized finite element method in space and4

leading for smooth two and three dimensional geometries to a strong convergent approximations (we refer5

to [14, Theorem 2.1]). The controllability requirement is imposed via appropriate penalty terms. We also6

mention [75] based on the Russel’s stabilization implies control principle, extended in [25] and [47, 2] for7

least-squares based method.8

The control-then-discretize strategy A second strategy allowing to bypass the issue of approximating9

the constraint LAφ = 0 is somehow to relax it by keeping the variable φ as the main variable into a space-time10

formulation. This leads to a “control-then-discretize” procedure, where the optimality system associated with11

problem (15) mixing the boundary condition in time and space and involving the primal and adjoint state12

is discretized within a priori a space-time approximation. The well-posedness of such system is achieved by13

using so called global or generalized observability inequalities (usually refereed to global Carleman inequality,14

see [7]).15

To this purpose, we keep φ as the main variable and introduce the Hilbert space

Φ :=
{
φ ∈ L2(QT );φ ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω), LAφ ∈ L2(0, T ;H−1(Ω))

}
,

endowed with the inner product < φ, φ >Φ:=< φ, φ >L2(qT ) + < LAφ,LAφ >L2(0,T ;H−1(Ω)). We also16

introduce the subspace W := {φ ∈ Φ, LAφ = 0} and remark that (15) is equivalent to the extremal17

problem minφ∈W J?(φ) (using that φ is uniquely determined from (φ0, φ1) ∈ L2(Ω) × H−1(Ω)). Since φ18

is now the main variable, we may address the linear constraint LAφ = 0 through a Lagrange multiplier19

λ ∈M := L2(0, T ;H1
0 (Ω)), leading to the following equivalent saddle point problem20

sup
λ∈L2(0,T,H1

0 (Ω))

inf
φ∈Φ
Lr(φ, λ), Lr(φ, λ) :=J?(φ)+

∫ T

0

〈λ, LAφ〉H1
0 (Ω),H−1(Ω)+

r

2
‖LAφ‖2L2(0,T ;H−1(Ω)) (16)

for any augmentation parameter r ≥ 0 and the following mixed formulation: for any r ≥ 0, find (φ, λ) ∈21

Φ× L2(0, T ;H1
0 (Ω)) such that22 {

ar(φ, φ) + b(λ, φ) = l(φ), ∀φ ∈ Φ,

b(λ, φ) = 0, ∀λ ∈ L2(H1
0 (Ω)),

with23 
ar : Φ× Φ→ R, ar(φ, φ) :=< φ, φ >L2(qT ) +

∫
QT

Fφ+ r < LAφ,LAφ >L2(0,T ;H−1(Ω))),

b :M× Φ→ R, b(λ, φ) :=

∫ T

0

< λ,LAφ >H1
0 (Ω),H−1(Ω),

l : Φ→ R, l(φ) :=< φ1, u0 >H−1(Ω),H1
0 (Ω) − < φ0, u1 >L2(Ω) .

(17)

It turns out that the Lagrange multiplier coincides with the controlled solution of the wave equation.24

Theorem 4. [17, Theorem 3.1] Assume (H0) and let r ≥ 0.

1. The mixed problem (17) is well-posed and its unique solution (φ, λ) ∈ Φ×L2(0, T ;H1
0 (Ω)) is the unique

saddle-point of the Lagrangian Lr defined in (16).

2. The optimal φ is the minimizer of J? over Φ, while the optimal multiplier λ is the state of the controlled

wave equation (1) in the weak sense (associated with the control φ1ω).

25
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The fundamental tool used to prove the well-posedness and notably the continuity of the linear form l is1

the following generalized observability inequality:2

‖φ(· , 0, ), ∂tφ(· , 0)‖2H ≤ C(Ω, T, ‖A‖L∞(0,T ;Ld(Ω)))

(
‖φ‖L2(qT ) + ‖LAφ‖L2(0,T ;H−1(Ω))

)
∀φ ∈ Φ, (18)

which can be easily deduced from the inequality (3) using the linearity of the equation (we refer for instance3

to [17]). With respect to (3), the main interest of (18) is that it remains true for any finite dimensional4

subspace Φh ⊂ Φ parametrized with h > 0 (with a constant independent of h). In other words, there is no5

need to prove any uniform property for some discrete observability constant.6

The well-posedness of (17) is based on two properties (that should be preserved uniformly at the finite7

dimensional level):8

(i) The coercivity of the bilinear form a over the kernel Ker (b) = {φ ∈ Φ, b(λ, φ) = 0 ∀λ ∈M} of b and9

(ii) The inf-sup property for b:

∃δ > 0 s.t. inf
λ∈M

sup
φ∈Φ

b(λ, φ)

‖λ‖M‖φ‖Φ
≥ δ.

Let T := {Th, h > 0} be family of regular triangulations of the space-time domain QT such that QT =10

∪K∈ThK. The family is indexed by h = maxK∈τh |K|. The coercivity property of the bilinear form a remains11

true over Φh × Φh for any finite dimensional subspace Φh ⊂ Φ as soon as the augmentation parameter r is12

strictly positive.13

On the other hand, a discrete inf-sup property, uniformly with respect to the parameter h, is in general14

more delicate to obtain as it depends strongly on the discrete spaces Mh ⊂M and Φh used. For instance,15

if we define Mh := {ph ∈ C(QT ); (ph)|K ∈ P1(K) ∀K ∈ Th} where Pk(K) denotes the space of polynomials16

of degree k and Φh := {ph ∈ C1(QT ); (ph)|K ∈ HCT (K) ∀K ∈ Th} where HCT denotes the Hsieh-Clough-17

Tocher composite finite element (see [23]), we numerically observe (by the inf-sup test, see [22]) that a18

discrete inf-sup property holds true when the parameter r is of order of h2. This leads in practice to a19

convergent approximation of the control of minimal L2(qT ) norm. Remark that a C1 finite element is used in20

order to ensure that LAφh belongs to L2(QT ) for any φh ∈ Φh. The theoretical study of the behavior with21

respect to h of infλ∈Mh
supφ∈Φh

b(λ,φ)
‖λ‖M‖φ‖Φ is in general a difficult question. This is a fortiori true here since22

the constraint LAφ ∈ L2(QT ) implies second derivates in time and space and involves C1 finite element.23

Hopefully, one may avoid it by stabilizing the mixed formulation with respect to the variable λ (see the24

seminal work [5]): this consists in adding to the Lagrangian some terms so as to get a coercivity property25

for the variable λ as well. This is notably employed in [68] devoted to the approximation of boundary26

controls for the wave equation, preliminary reformulated as a first order system. This reformulation as27

a first order system requires, within a conformal approximation, only C0 finite element (but needs to be28

stabilized whatever be the value of the augmentation parameter).29

Stabilization methods may also be employed in the context of non-conformal approximations. In this

respect, let us introduce V qh = {ph ∈ C(QT ); (ph)|K ∈ Pq(K) ∀K ∈ Th} and consider the discrete Lagrangian

Lh : V ph × V
q
h → R, given by

Lh(φh, λh) := J?(φh) +
h2

2
‖LAφh‖2L2(QT ) +

h

2

∑
K∈Th

∫
∂K

[[∂νφh]]2 + h−1

∫
ΣT

φ2
h − h−1

∫
ΣT

λ2
h

+

∫
QT

(−∂tφh∂tλh +∇φh · ∇λh +Aφhλh)− h

2

∑
K∈Th

∫
∂K

[[∂νλh]]2 − h2

2
‖LAλh − φh1ω‖2L2(QT ),

where [[∂νφh]] denotes the jump of the normal derivative of φh across the internal edges of the triangulation.30

The terms h2‖Lφh‖L2(QT ) and −h2‖Lλh−φh1ω‖2L2(QT ) play a symmetric role. Both vanish at the contin-31

uous level. On the other hand, the jump terms somehow aim to control the regularity of the approximation.32

The discrete Lagrangian Lh admits a unique saddle-point. The well-posedness is based on a variant of33

the generalized observability inequality (18), where the L2(0, T ;H−1(Ω)) norm of LAφ is replaced by the34

9



H−1(QT ) norm. Moreover, if the saddle-point (φ, λ) of Lr is smooth enough, the following approximation1

result holds true (we refer to [13, section 2] and also [12] in the closed context of data assimilation problems):2

Theorem 5. [13, Theorem 2.5] Assume (H0). Let p, q ≥ 1, h > 0 and r ≥ 0. Let (φh, λh) ∈ V qh ×V
p
h be the

saddle point of Lh and assume that the saddle point (φ, λ) of Lr (see (16)) belongs to Hq+1(QT )×Hp+1(QT ).

Then, there exists a positive constant C independent of h such that

‖χ(φ− φh)‖L2(QT ) ≤ C(hp‖λ‖Hp+1(QT ) + hq‖φ‖Hq+1(QT )), (19)

where χ is a cut-off function of the form χ(x, t) = χ0(x)χ1(t), with χ0 ∈ C∞0 (ω) and χ1 ∈ C∞0 (0, T ).

3

The regularity assumption on the optimal pair (φ, λ) notably holds true if the initial data (u0, u1) to be4

controlled are smooth and satisfy compatibility conditions at ∂Ω× {0} (we refer to [33]).5

To end this brief review on the control-then-discretize approach, we emphasize that, in order to avoid6

the delicate issue of the inf-sup condition, we can alternatively consider a cost that involves both the control7

and the state. Note that the minimizer of the functional (y, v) 7→ J(y, v) := ‖y‖2L2(QT ) + ‖v‖2L2(qT ) over the8

control-state pair for (1) is given by (y, v) = (−LAφ, φ 1ω), where φ ∈ Φ solves9

ar=1(φ, φ) =< ∂tφ(· , 0), u0 >H−1(Ω),H1
0 (Ω) − < φ(· , 0), u1 >L2(Ω), ∀φ ∈ Φ, (20)

a well-posed problem in view of the generalized inequality (18). When a conformal and dense finite element10

approximation space Φh ⊂ Φ is employed, Cea’s Lemma yields ar=1(φh − φ, φh − φ) → 0 as h → 0 and11

a strong convergent approximation φh1ω of a control for (1) is obtained. Once φh is computed from the12

fourth-order in time and space elliptic problem (20), an approximation of the controlled solution is defined13

by yh := −LAφh. We refer to [24] where this method is fully analyzed for the one-dimensional wave equation14

with C1(QT ) coefficients. We also refer to the recent work [8].15

It is also interesting to point out that the control-then-discretize approaches is notably well-suited for16

mesh adaptivity. We mention a growing interest for space-time (finite element) methods of approximation17

for the wave equation, initially advocated in [49] and more recently in [54], [1], [30], [29], [77].18

2.5 Numerical illustrations19

We first illustrate Theorem 5 in the one dimensional case. For simplicity, we take A ≡ 0 and F ≡ 0 in (1). The20

initial condition to be controlled is (u0, u1) = (sin(πx), 0) ∈ Hk+1(Ω)×Hk(Ω) for all k ∈ N leading to regular21

controlled and adjoint solutions. The distributed control acts in ω×(0, T ) with ω = (a, b) = (0.1, 0.4) and T =22

2. Precisely, the cut off functions are defined as χ0(t) = e−
1
2t e
− 1

2(T−t)

e−
1
T e−

1
T

and χ1(x) = e
− 1

5(x−a) e
− 1

5(b−x)

e
− 2

5(b−a) e
− 2

5(b−a)
1[a,b](x).23

Figure 1-left depicts the evolution of the relative error ‖χ(φ−φh)‖L2(QT )/‖χφ‖L2(QT ) associated with T = 224

with respect to the parameter h for various pairs of (p, q). Remark that explicit solutions are not available25

in the distributed case: we define as “exact” solution (y, φ) the one of (16) from a fine and structured mesh26

(composed of 409 000 triangles and 205 261 vertices) corresponding to h ≈ 4.41×10−3 and (uh, φh) ∈ V ph ×V
q
h27

with (p, q) = (3, 3). We observe rates close to 0.5, 2 and 3 for (p, q) = (1, 1), (p, q) = (2, 2) and (p, q) = (3, 3)28

respectively, in agreement with Theorem 5. For comparison, Figure 1-right depicts the evolution of the29

relative error for χ0(t) = 1 and χ1(x) = 1(a,b)(x), i.e. when no regularization of the control support is30

introduced. We still observe the convergence with respect to the parameter h but with a reduced rate. For31

instance, for (p, q) = (2, 2), the rate is close to 1.5. This highlights the influence of the cut off functions,32

including for very smooth initial conditions. We refer to [13, Section 5.1] for more details.33

In order to enhance the robustness of the method, we also consider in the boundary case a stiff situation34

with discontinuous initial condition: (u0, u1) = (4x1(0,1/2), 0), x ∈ (0, 1). We refer to [13, Theorem 4.6] for35

convergent results in the boundary cases. The corresponding control of minimal L2(0, T ) with T = 2 acting36

at x = 1 is given by the trace of the corresponding solution : explicit computations using d’Alembert formula37
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Figure 1: ‖χ(φ− φh)‖L2(QT )/‖χφ‖L2(QT ) vs. h with (left) and without (right) regularization of the control

support qT .

leads to v(t) = 2(1− t)1(1/2,3/2)(t). The corresponding controlled solution is1

y(x, t) =


4x 0 ≤ x+ t < 1

2 ,

2(x− t) − 1
2 < t− x < 1

2 , x+ t ≥ 1
2 ,

0 elsewhere.

The initial condition of the corresponding adjoint solution is (φ0, φ1) = (0,−2x 1(0,1/2)(x)) ∈ H1(Ω)×L2(Ω)2

Both the variable φ and y develop singularities (where y and ∇φ are discontinuous). Figure 2 depicts the3

evolution of ‖∂xφh(1, ·) − v‖L2(0,T )/‖v‖L2(0,T ) with respect to the discretization parameter h, leading to4

a rate of convergence close to 1/2. We also emphasize that the space-time discretization formulation is5

appropriated for mesh adaptivity: using the space of approximation V 1
h × V 2

h , Figure 4-left (resp. right)6

depicts the mesh obtained after seven adaptative refinements based on the local values of the gradient of7

φh (resp. λh). Starting with a coarse mesh composed of 288 triangles and 166 vertices, the final mesh is8

composed with 13068 triangles and 6700 vertices. We refer to [13, Section 5] for numerical illustrations of9

Theorem 5 with smooth initial data.10

The second experiment illustrates Theorem 3 devoted to a semilinear situation in the two dimensional11

case with Ω = (0, 1)2 (we refer to [9] for more details). The final time is taken equal to T = 3 and12

the control domain ω is depicted in Figure 3. As for the initial and final conditions, we take (u0, u1) ≡13

(100 sin(πx1) sin(πx2), 0) and (z0, z1) ≡ (0, 0), respectively. We refer to [3, 70] for numerical experiments in14

the two dimensional case. Moreover, for any real constant cf , we consider the nonlinear function f(r) =15

−cf r ln1/2(2 + |r|), for all r ∈ R. Note that f satisfies (Hp) for p = 1 and (H2) for |cf | small enough.16

Remark that the unfavorable situation (for which the norm of the uncontrolled corresponding solution17

grows) corresponds to strictly positives values of cf .18

Table 1, Figures 5 and 6 show the results obtained for cf = 10. The convergence is observed after 419

iterations. The optimal steps λk are very close to one. The main difference with lower values of cf (for20

instance cf = 5) is the behavior of the uncontrolled solution, which grows exponentially with respect to the21

time variable, as shown in Figure 5. As expected, this large value of cf induces a large gap between the22

nonlinear and the linear controls.23

We observe that the nonlinear control v? – the limit of the sequence (vk)k∈N – acts stronger from24

the beginning, precisely in order to compensate the initial exponential growth of the solution outside the25

set ω. We also observe that the control reduces the oscillations of the corresponding controlled solution (in26

comparison with the solution to the linear equation). The effect of the nonlinear control on the system is27

measured through the relative error ET := ‖(y,∂ty)(· ,T ;v?)‖V
‖(y,∂ty)(· ,T ;0)‖V where y(· , T, v?) (resp. y(· , T, 0)) is the solution28

11



10-2 10-1

10-1

100

Figure 2: ‖∂xφh(1, ·) − v‖L2(0,T )/‖v‖L2(0,T ) with re-

spect to h for different approximations.
Figure 3: Control domain ω ⊂ Ω = (0, 1)2.

x

t

x

t

Figure 4: Locally refine spacetime meshes with respect to φh (left) and λh (right).

at time T of (5) with control equal to v = v? (resp. v = 0). We obtain ET ≈ 5.83× 10−5. Larger values of cf1

such |cf | > 40 yield to first values of the sequence (λk)k∈N far from one (as observed in [59] for the solution2

of the Navier-Stokes system with large values of the Reynolds number).3
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]iterate k
√

2E(yk, vk)
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖vk−vk−1‖L2
χ(qT )

‖vk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖vk‖L2
χ(qT ) λk

0 7.44× 102 – – 38.116 732.22 1

1 1.63× 102 1.79× 100 9.30× 10−1 58.691 667.602 1

2 1.62× 100 8.42× 10−2 1.41× 10−1 60.781 642.643 1

3 1.97× 10−3 1.21× 10−3 4.66× 10−3 60.745 643.784 1

4 5.11× 10−10 6.43× 10−7 2.63× 10−6 60.745 643.785 –

Table 1: cf = 10; Norms of (yk, vk) with respect to k defined by the algorithm (38).

Figure 5: cf = 10 – ‖y4(· , t)‖L2(Ω) ( ),

‖y0(· , t)‖L2(Ω) ( ) and ‖y(· , t; 0)‖L2(Ω) ( ) w.r.t. t.

Figure 6: cf = 10 – ‖v4(· , t)‖L2
χ(ω) ( ), and

‖v0(· , t)‖L2
χ(ω) ( ) w.r.t. t.

3 The heat equation1

In this section, we consider the heat equation, both in linear and semilinear regime and highlight that space-2

time approaches also lead to robust numerical approximation of exact controls. The approach is similar3

with the notable exception that it involves singular in time Carleman weights, in the framework proposed4

by Fursikov and Imanuvilov in [41]. This third section follows the same outline than the previous one.5

3.1 Controllability results for the linear heat equation6

As a preliminary step for a semilinear situation, we recall some controllability results for the linear heat equa-7

tion with potential A ∈ L∞(QT ) and right hand side F ∈ L2(ρ0,s, QT ) for a precise weight ρ0,s parametrized8

by s ∈ R?+, that is defined in the sequel. More precisely, we are interested in the existence of a control v9

such that the solution z of10 {
∂tz −∆z +Az = v1ω + F in QT ,

z = 0 on ΣT , z(· , 0) = z0 in Ω
(21)

satisfies11

z(· , T ) = 0 in Ω. (22)

We follow the usual strategy of [41] to construct a solution of the null controllability problem, using12

Carleman type estimates. Instead of using the classical estimates of [41], we use the one in [4] for which it13

is easier to deal with non zero initial data as the weight function does not blow up as t→ 0. For any s ≥ 0,14

we consider the weight functions ρs = ρs(x, t), ρ0,s = ρ0,s(x, t) and ρ1,s = ρ1,s(x, t) which are continuous,15

strictly positive and belong to L∞(QT−δ) for any δ > 0. Precisely, we use the weights introduced in [4]:16

13



(ρ0,s, ρ1,s, ρ2,s, ρ3,s) = (ξ−3/2, ξ−1, ξ−1/2, ξ1/2)ρs where ρs and ξ are defined, for all s ≥ 1 and λ ≥ 1, as1

follows:2

ρs(x, t) = esϕ(x,t), ξ(x, t) = θ(t)eλψ̂(x), (23)

with θ ∈ C2([0, T )) such that θ(0) = 1 and θ(t) = (T − t)−1 for all t ∈ [T − T1, T ] with 0 < T1 < min( 1
4 ,

3T
8 )3

and ϕ ∈ C1([0, T )) is defined by ϕ(x, t) = θ(t)
(
λe12λ − eλψ̂(x)

)
with ψ̂ = ψ̃ + 6, where ψ̃ ∈ C1(Ω) satisfies4

ψ̃ ∈ (0, 1) in Ω, ψ̃ = 0 on ∂Ω and |∇ψ̃(x)| > 0 in Ω\ω. We emphasize that the weights blow up as t → T−5

but not at t = 0 and that ρ0,s(x, t) = ξ−3/2(x, t)ρs(x, t) ≥ e3/2s for all (x, t) ∈ QT .6

3.1.1 Carleman estimates7

The controllability property for the linear system (21) is a consequence of the following Carleman estimate,8

written to simplify in the one dimensional case :9

Lemma 1. [60, Lemma 2.1] Let P0 := {q ∈ C2(QT ) : q = 0 on ΣT }. There exist λ0 ≥ 1 and s0 ≥ 1 such

that for all λ ≥ λ0 and for all s ≥ max(‖A‖2/3L∞(QT ), s0), the following Carleman estimate holds∫
Ω

ρ−2
s (0)|∂xp(0)|2 + s2λ3e14λ

∫
Ω

ρ−2
s (0)|p(0)|2 + sλ2

∫
QT

ρ−2
2,s|∂xp|2 + s3λ4

∫
QT

ρ−2
0,s|p|2

≤ C
∫
QT

ρ−2
s | − ∂tp− ∂xxp+Ap|2 + Cs3λ4

∫
qT

ρ−2
0,s|p|2, ∀p ∈ P0.

(24)

10

This estimate is deduced from the one obtained in [4, Theorem 2.5] devoted to the case A ≡ 0. In the sequel

we assume that λ = λ0. We then define and check that the bilinear form

(p, q)P :=

∫
QT

ρ−2
s L?ApL

?
Aq + s3λ4

0

∫
qT

ρ−2
0,sp q

where L?Aq := −∂tq − ∂xxq + Aq for all q ∈ P0 is a scalar product on P0 (see [36]). The completion P of11

P0 for the norm ‖ · ‖P associated with this scalar product is a Hilbert space. By density arguments, (24)12

remains true for all p ∈ P , that is, for λ = λ0,13 ∫
Ω

ρ−2
s (0)|∂xp(0)|2 + s2λ3

0e
14λ0

∫
Ω

ρ−2
s (0)|p(0)|2 + sλ2

0

∫
QT

ρ−2
2,s|∂xp|2 + s3λ4

0

∫
QT

ρ−2
0,s|p|2 ≤ C‖p‖2P (25)

for all s ≥ max(‖A‖2/3L∞(QT ), s0). This inequality leads to the following result.14

Lemma 2. [60, Lemma 2.2] Let s ≥ max(‖A‖2/3L∞(QT ), s0). There exists a unique solution p ∈ P of

(p, q)P =

∫
Ω

z0q(0) +

∫
QT

Fq, ∀q ∈ P. (26)

This solution satisfies the following estimate (with c := ‖ϕ(·, 0)‖L∞(Ω))

‖p‖P ≤ Cs−3/2
(
‖ρ0,s F‖L2(QT ) + ecs‖z0‖L2(Ω)

)
. (27)

15

3.1.2 Application to controllability16

Following closely [41], the previous lemma implies a controllability result for the linear system (21).17
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Theorem 6. [60, Theorem 2.3] Assume A ∈ L∞(QT ), s ≥ max(‖A‖2/3L∞(QT ), s0), F ∈ L2(ρ0,s, QT ) and

z0 ∈ L2(Ω). Let p the solution of (26). Then, the pair (z, v) defined by

z = ρ−2
s L?Ap and v = −s3λ4

0ρ
−2
0,sp|qT (28)

is a controlled pair and satisfies the following estimates

‖ρs z‖L2(QT ) + s−3/2λ−2
0 ‖ρ0,s v‖L2(qT ) ≤ Cs−3/2

(
‖ρ0,sF‖L2(QT ) + ecs‖z0‖L2(Ω)

)
(29)

with c := ‖ϕ(·, 0)‖L∞(Ω).

1

We refer to [38] for an estimate of the null control of minimal L2(qT ) norm (corresponding to ρ0 ≡ 1 and2

ρ = 0) in the case F ≡ 0. Thus, the resolution of (26) leads in practice to a control for the linear problem.3

Moreover, following [41], we check that the pair (z, v) defined in (28) is the unique minimizer of the functional4

J defined as5

J(z, v) :=
s3λ4

0

2

∫
QT

ρ2
s|z|2 +

1

2

∫
qT

ρ2
0,s|v|2 (30)

over the set
{

(z, v) : ρsz ∈ L2(QT ), ρ0,sv ∈ L2(qT ), (z, v1ω) solves (21)-(22) in the transposition sense
}
.6

Before to discuss the numerical approximation of controls, we explain in the next section how we can7

construct, using the estimate of Theorem (6), convergence sequence of controlled pair in semilinear situation.8

3.2 Controllability results for the semilinear heat equation9

We now consider the null controllability problem for the following system for the semilinear heat equation:10 {
∂ty −∆y + f(y) = v1ω in QT

y = 0 on ΣT , y(·, 0) = u0 in Ω
, (31)

with u0 ∈ L2(Ω), v ∈ L2(QT ) and f : R 7→ R. Recall that if f is locally Lipschitz-continuous and satisfies the11

condition |f ′(r)| ≤ C(1+|r|4+d) for all r ∈ R, then (31) possesses exactly one local in time solution. Moreover,12

in accordance with the results in [21, Section 5], under the growth condition |f(r)| ≤ C(1 + |r| ln(1 + |r|))13

for all r ∈ R and some C > 0, the solutions to (31) are globally defined in [0, T ] and one has14

y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). (32)

Without the above growth condition, the solutions to (31) can blow up before t = T ; in general, the blow-up15

time depends on f and the size of ‖u0‖L2(Ω). We refer to [53] and to [42, Section 2 and Section 5] for a16

survey on this issue.17

System (31) is said to be exactly controllable to trajectories at time T if, for any u0 ∈ L2(Ω) and18

any globally defined bounded trajectory y? ∈ C0([0, T ];L2(Ω)) (corresponding to data u?0 ∈ L2(Ω) and19

f? ∈ L2(qT )), there exist controls f ∈ L2(qT ) and associated states y that are again globally defined in [0, T ]20

and satisfy (32) and21

y(x, T ) = y?(x, T ), ∀x ∈ Ω. (33)

As for the wave equation, the uniform controllability strongly depends on the growth properties of the22

nonlinear function f at infinity. The following has been proven by Fernández-Cara and Zuazua in [39]:23

Theorem 7. [39, Theorem 1.2] Let T > 0 be given and d ≥ 1. Assume that (31) admits at least one

solution y?, globally defined in [0, T ] and bounded in QT . Assume that f : R 7→ R is C1 and satisfies

|f ′(r)| ≤ C(1 + |r|4+d) for every r ∈ R. If

(H4) lim sup
|r|→∞

|f(r)|
|r| ln3/2 |r|

= 0,

then (31) is exactly controllable to y? in time T .

24
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Therefore, if |f(r)| does not grow at infinity faster than |r| lnp(1 + |r|) for some p < 3/2, then (31) is1

controllable. On the contrary, if f is too “super-linear” at infinity (specifically if p > 2), then for some2

initial data the control cannot compensate the blow-up phenomenon occurring in Ω\ω (see [39, Theorem3

1.1]). The problem remains open when f behaves at infinity like |r| lnp(1 + |r|) with 3/2 ≤ p ≤ 2. In [55],4

Le Balc’h has proved the uniform controllability for p ≤ 2 assuming that T is large enough and imposing5

sign conditions on f , notably that f(r) > 0 for r > 0 or f(r) < 0 for r < 0 (a condition not satisfied6

for f(r) = −r lnp(1 + |r|)).7

Theorem 7 is deduced in [39] from a null controllability result corresponding to the null trajectory, i.e.8

y? ≡ 0 corresponding to v? ≡ 0, u?0 ≡ 0 and assuming f(0) = 0. The proof is based on a fixed-point method,9

initially introduced in [79] for a one-dimensional wave equation. Precisely, a stability result is shown for the10

operator Λ : L∞(QT ) 7→ L∞(QT ), where y := Λ(z) is a null controlled solution of the linear boundary value11

problem12 {
∂ty −∆y + y f̃(z) = v1ω in QT

y = 0 on ΣT , y(· , 0) = u0 in Ω
, f̃(r) :=

{
f(r)/r r 6= 0

f ′(0) r = 0
. (34)

Then, Kakutani’s Theorem provides the existence of at least one fixed-point for the operator Λ, which is13

also a controlled solution for (31). The control of minimal L∞(qT ) norm is considered in [39] leading to14

controlled solution in L∞(QT ).15

3.3 Construction of two sequences converging to a controlled pair for (31)16

We now discuss how we can design sequences (yk, vk)k∈IN converging to a controlled pair for (31). The17

motivation, difficulties and ideas are very similar to the ones explained in Section 2.3 dedicated to the wave18

equation. The arguments for the heat equation are however a bit more technical since singular Carleman19

weights appear in the various estimates.20

As for the wave equation, one may consider for any initial guess in L∞(QT ) the Picard iterates associated21

with the operator Λ. Numerical experiments reported in [35, Section 4] exhibit the non convergence of the22

sequence (yk)k∈N for some initial conditions large enough, related to the fact that the operator Λ is not23

contracting.24

In the one-dimensional case, a least-squares type approach, based on the minimization over Z := L2((T −
t)−1, QT ) = {z : (T − t)−1z ∈ L2(QT )} of the functional R : Z → R+ defined by R(z) := ‖z − Λ(z)‖2Z
has been introduced in [35]. Assuming u0 ∈ L∞(Ω), f̃ ∈ C1(R) and (f̃)′ ∈ L∞(R), it is proved (see [35,

Proposition 3.2]) that R ∈ C1(Z;R+) and that, for some constant C > 0(
1− C‖(f̃)′‖L∞(R)‖u0‖L∞(Ω)

)√
R(z) ≤ ‖R′(z)‖L2(QT ) ∀z ∈ Z

implying that if ‖(f̃)′‖L∞(R)‖u0‖L∞(Ω) is small enough, then any critical point for R is a fixed point for Λ25

(see [35, Proposition 3.2]). In particular, taking u0 small in L∞ makes of no relevance the behavior of f̃ at26

infinity, as it enters in the framework of local controllability results. Under such smallness assumption on27

the data, numerical experiments (see [35, Section 4]) display the convergence of gradient based minimizing28

sequences for R and a better behavior than the ones associated with the Picard iterates for Λ.29

Similarly, we can employ a Newton type method to find a zero of the mapping F̃ : Y 7→W defined by30

F̃(y, v) = (∂ty −∆y + f(y)− v1ω, y(· , 0)− u0) ∀(y, v) ∈ Y, (35)

where the Hilbert space Y and W are defined as follows31

Y :=
{

(y, v) : ρsy ∈ L2(QT ), ρ0,s(∂ty −∆y) ∈ L2(QT ), y = 0 on ΣT , ρ0,sv ∈ L2(qT )
}

and W := L2(ρ0,s, QT ) × L2(Ω) for some appropriates weights. Here, L2(ρ0,s, QT ) stands for the space32

{z : ρ0,sz ∈ L2(QT )}. It is shown in [35, Section 3.3] that, if f ∈ C1(R) and f ′ ∈ L∞(R), then F̃ ∈ C1(Y ;W ).33

16



This enables to derive the Newton iterative sequence. Starting from (y0, v0) in Y , we set, for each k ≥ 0,1

(yk+1, vk+1) = (yk, vk)− (Yk, Vk), where Vk is a null control for the system2 {
∂tYk −∆Yk + f ′(yk)Yk = Vk 1ω + ∂tyk −∆yk + f(yk)− vk1ω in QT ,

Yk = 0 on ΣT , Yk(· , 0) = u0 − yk(· , 0) in Ω
(36)

and Yk(·, T ) = −yk(·, T ). Numerical experiments in [35, Section 4] exhibit however the lack of convergence3

of the Newton method for large values of ‖u0‖L2(Ω).4

3.3.1 A least-squares approach related to a Newton type linearization5

Let us introduce, for each s ≥ s0, the vector space6

A0,s :={(y, v) : ρsy ∈ L2(QT ), ρ0,sv ∈ L2(qT ), ρ0,s(∂ty −∆y) ∈ L2(QT ), y(· , 0) = 0 in Ω, y = 0 on ΣT },

where ρs, ρ1,s and ρ0,s are defined in (23). Endowed with the scalar product7 (
(y, v), (y, v)

)
A0,s

:=
(
ρsy, ρsy

)
L2(QT )

+
(
ρ0,sv, ρ0,sv

)
L2(qT )

+
(
ρ0,s(∂ty −∆y), ρ0,s(∂ty −∆y)

)
L2(QT )

,

A0,s is a Hilbert space. Let us also consider the linear manifold8

As := {(y, v) : ρs y ∈ L2(QT ), ρ0,sv ∈ L2(qT ), ρ0,s(∂ty −∆y) ∈ L2(QT ), y(· , 0) = u0 in Ω, y = 0 on ΣT }.

We endow As with the same scalar product. If (y, v) ∈ As, then y ∈ C0([0, T ];L2(Ω)). Moreover, the9

property ρsy ∈ L2(QT ) implies that y(· , T ) = 0 so that the null controllability requirement is incorporated10

in the spaces A0,s and As. For any fixed s ≥ 0, we consider the following non-convex extremal problem:11

inf
(y,v)∈A0,s

Es(y, v), Es(y, v) :=
1

2

∥∥ρ0,s

(
∂ty −∆y + f(y)− v 1ω

)∥∥2

L2(QT )
. (37)

We check that ρ0,sf(y) ∈ L2(QT ) for any (y, f) ∈ As, so that Es is well-defined. Assuming slightly stronger12

assumption on f than in Theorem 7, a strong convergent approximation of a controlled pair is obtained:13

Theorem 8. [60, Theorem 4.3] Let T > 0 be given. Let d = 1. Assume that (31) admits at least one solution

y?, globally defined in [0, T ] and bounded in QT associated with v? ∈ L2(ρ0,s, qT ) and s large enough. Assume

that f ∈ C1(R) satisfies (Hp) from some p ∈ [0, 1] (introduced in page 5) and the growth condition

(H′1) ∃α > 0, s.t. |f ′(r)| ≤ (α+ β? ln(1 + |r|))3/2, ∀r ∈ R

for some β? = β?(y?) > 0 small enough. Then, for any u0 ∈ H1
0 (Ω) and any starting (y0, v0) ∈ As, the

sequence (yk, vk)k∈N ∈ As defined as follows:{
(y0, v0) ∈ As, (yk+1, vk+1) = (yk, vk)− λk(Y 1

k , V
1
k ), k ≥ 0,

λk = argminλ∈[0,1]Es
(
(yk, vk)− λ(Y 1

k , V
1
k )
)
,

(38)

where (Y 1
k , F

1
k ) ∈ A0,s is the minimal controlled pair solution (with respect to the cost J , see (30) ) of{

∂tY
1
k −∆Y 1

k + f ′(yk)Y 1
k = V 1

k 1ω + ∂tyk −∆yk + f(yk)− vk1ω in QT ,

Y 1
k = 0 on ΣT , Y 1

k (· , 0) = 0 in Ω,
(39)

converges strongly to a controlled pair for (31) satisfying (33). Moreover, after a finite number of iterations,

the convergence is of order at least 1 + p.

14

The hypothesis on f are stronger here than in Theorem 7: it should be noted however that the function15

f(r) = a+ br + βr ln(1 + |r|)3/2, a, b ∈ R which is somehow the limit case in (H4) satisfies (H′1) and (H1).16
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On the other hand, Theorem 8 devoted to the one dimensional case is constructive, contrary to Theorem 7.1

A similar construction is performed in a multi-dimensional case with d ≤ 3 in [57] assuming that f is globally2

Lipschitz. The minimizing sequence for Es constructed in [57, 60] are related to the operator ΛN : A → A3

defined by y = ΛN (z) controlled solution of4 {
∂ty −∆y + f ′(z)y = v1ω + f ′(z)z − f(z) in QT

y = 0 on ΣT , y(·, 0) = u0 in Ω
, (40)

through the control v of minimal L2(ρ0(s), qT ) norm. The analysis in [60] makes use of global L2 Carleman5

estimates as initially introduced in this context in [41]. The arguments used in the proof take their roots in6

the works [58, 59], concerned with the approximation of the solution to Navier-Stokes-like problems through7

least-square methods; see also [61, 71], inspired in the seminal contribution [11].8

We also emphasize that the L2(QT ) norm in Es indicates that we are looking for regular weak solutions9

to the parabolic equation (31). We refer to [57], devoted to the case f ′ ∈ L∞(R) and d ≤ 3, where the10

L2(0, T ;H−1(Ω)) norm is considered leading to weaker solutions.11

The analysis in [60] indicates that the parameter s plays a crucial role: a large value of this parameter12

ensures convergence properties. This is the also the case in the following section where a different method13

based on a simpler linearization is discussed.14

3.3.2 Influence of the parameter s on a simpler linearization15

The following extension is proved in [32] based on simpler linearization.16

Theorem 9. [32, Theorem 8] Let T > 0 be given. Let d ≤ 5 and u0 ∈ L∞(Ω). Assume that f is locally

Lipschitz-continuous and satisfies (H′1) for β? small enough. There exist s and R large enough such that,

for any y0 ∈ CR(s) := {y ∈ L∞(QT ) : ‖y‖L∞(QT ) ≤ R, ‖ρ0,sy‖L2(QT ) ≤ R1/2}, the sequence (yk)k∈N given by{
∂tyk −∆yk = vk1ω − f(yk−1) in QT ,

yk = 0 on ΣT , yk(· , 0) = u0 in Ω,
(41)

where vk ∈ L2(ρ0,s, qT ) is such that (yk, vk) minimizes J (see (30)), remain in CR(s) and converge strongly

to a controlled solution for (31).

17

To prove this result, we proceed as follows:18

• First, we introduce, for each ŷ ∈ L2(ρ0,s, QT ) ∩ L∞(QT ), the following corresponding linear null19

controllability problem: find v such that the solution to20 {
∂ty −∆y = v1ω − f(ŷ), in QT ,

y = 0, on ΣT , y(· , 0) = u0, in Ω
(42)

satisfies y(· , T ) = 0.21

• Then, we consider the mapping Λs that associates to each ŷ the solution to (42) with the control v1ω22

furnished by Theorem 6 (for A ≡ 0 and F = −f(ŷ)) and prove that for s large enough, the operator23

Λs is a contraction.24

3.4 Numerical approximation of exact controls for the heat equation25

Approximations of null controls for the linear heat equation is a delicate issue: we mention the seminal26

work [16] dealing with the control of minimal L2-norm which is very oscillatory near the final time t = T27

and therefore difficult to construct and implement for real life applications (see also [52, 74] where this is28

discussed at length). On the other hand, as discussed in [36, 37], introduction of Carleman weights in the cost29

18



functional J leads - within the control-then-discretize strategy - to a robust method and strong convergent1

approximations with respect to the discretization parameter. Precisely, in view of Theorem 6, one have to2

approximate the solution p ∈ P of the second order in time and fourth order in space variational formulation3

(26). A conformal parametrized approximation, say Ph of P , leads to the finite dimensional problem : find4

ph ∈ Ph solution of5

(ph, ph)P =

∫
QT

Fph +

∫
Ω

u0ph(0) ∀ph ∈ Ph. (43)

If the family (Ph)h>0 is dense in P , Cea type lemma implies the convergence ‖ph−p‖P → 0 as h→ 0. From

ph, an approximation of the controlled state is then given by (yh, vh) := (ρ−2
s L?ph,−s3ρ−2

0,sph 1ω). In order

to solve (43), it is very convenient to preliminary perform the change of variable

m = ρ−1
0,sp, z = ρ−1

s L?p

so that z = ρ−1
s L?(ρ0,sm) and y = ρ−1

s z and then replace the formulation (43) by the equivalent and6

well-posed following mixed formulation: find (z,m, η) ∈ L2(QT )× ρ−1
0,sP × L2(QT ) solution of7 

∫
QT

zz + s3

∫
qT

mm+

∫
QT

(T − t)1/2η
(
z − ρ−1

s L?(ρ0,sm)
)

= −
∫
QT

ρ0,sFm+

∫
Ω

ρ0,s(0)u0m(0), ∀(m, z) ∈ ρ−1
s P × L2(QT ),∫

QT

(T − t)1/2η
(
z − ρ−1

s L?(ρ0,sm)
)

= 0, ∀η ∈ L2(QT ).

(44)

ηk stands as a Lagrange multiplier for the constraint z − ρ−1
s L?(ρ0,sm) = 0 in QT . For every m ∈ ρ−1

s P , we

check that

−ρ−1
s L?(ρ0,sm) = (g1(θ, ϕ) + g2(θ, ϕ))m+ θ−3/2(∂tm+ ∆m) + g3(θ, ϕ) · ∇m

with8 {
g1(θ, ϕ) := ρ−1

s ∂tρ0,s = ∂t(θ
−3/2) + θ−3/2s(∂tϕ),

g2(θ, ϕ) := θ−3/2(s∆ϕ+ s2(∇ϕ)2), g3(θ, ϕ) := ρ−1
s ∇ρ0,s = θ−3/2s∇ϕ.

We observe that g2 is singular like (T − t)−1/2 for t ≥ T −T1 and therefore introduce the function (T − t)1/2
9

in (44). The equivalent formulation (44) instead of (43) allows, first to eliminate the exponential singularity10

of the coefficients for t close to T and second to obtain simultaneously the control and the controlled11

solution. We refer to [36, 37] where experiments are discussed in detail and emphasize the robustness of12

the approximation. We also refer to [72] for some numerical evidences of the robustness of the method with13

respect to the parameter h associated with the cost J(v) = ‖ρ0,sv‖2L2(qT ).14

3.5 Numerical illustrations15

We illustrate the convergence stated in Theorem 9 by computing the sequence (yk, vk)k∈IN? solution of16

(41) and minimizing for each k the functional Js defined in (30) with s large enough. We consider the17

one dimensional setting with Ω = (0, 1). We take T = 1/2 and consider data for which the uncontrolled18

solution of (31) blows up before T . Moreover, in order to reduce the decay of the solution of (31) when19

f ≡ 0, we replace the term −∆y in (31) by −ν∆y with ν = 10−1. We consider the nonlinear even function20

f(r) = cf
(
α+ β ln(1 + |r|)

)3/2
r with α = β = 1 and cf < 0. As for the initial condition to be controlled, we21

consider u0(x) = cu0
sin(πx) parametrized by cu0

> 0. We use a mesh composed of 29132 vertices and 1480722

triangles corresponding to h ≈ 1.17 × 10−2. The sequence (yk, vk)k∈N is initialized with the state-control23

pair (y0, v0) corresponding to the controlled trajectory of the linear heat equation with initial datum u0 and24

zero source term) and is computed until the following criterion is satisfied
‖ρ0,s(yk+1−yk)‖L2(QT )

‖ρ0,syk‖L2(QT )
≤ 10−6. We25

shall denote by k? the lowest integer k for which it holds true.26
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For ω = (0.2, 0.8), cu0 = 10 and cf = −5, Figure 7-left depicts the evolution of the relative error1

‖ρ0,s(yk+1−yk)‖L2(QT )

‖ρ0,syk‖L2(QT )
with respect to the parameter of iteration k for s ∈ {1, 2, 3, 4}. In agreement with the2

theoretical results, the convergence is observed for s large enough, here s ≥ 2. Moreover, the rate increases3

with s: the convergence is observed after k? iterations equal to 48, 17, 13 for s = 2, 3 and 4 respectively.4

Figure 7-right depicts the ratio
‖ρ0,s(Λs(yk)−Λs(yk−1))‖L2(QT )

‖ρ0,s(yk−yk)‖L2(QT )
highlighting the lack of contracting property of5

Λs for s = 1. Figure 8 depicts the evolution of the L2(Ω) norm of the control and corresponding controlled6

solution with respect to the time variable for s = 2, 3, 4. In view of the behavior of the weights, large values7

of s concentrate the action of the control close to the initial time and leads to large L∞(qT ) norm of the8

control (see Table 2). Figure 9 and Figure 10 depict the control and corresponding controlled solution in QT9

for these values of s.10
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Figure 7:
‖ρ0,s(yk+1−yk)‖L2(QT )

‖ρ0,syk‖L2(QT )
(Left) and

‖ρ0,s(yk+1−yk)‖L2(QT )

‖ρ0,s(yk−yk−1)‖L2(QT )
(Right) w.r.t. k for s ∈ {1, 2, 3, 4}.
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Figure 8: ‖vk?(·, t)‖L2(Ω) and ‖yk?(·, t)‖L2(Ω) w.r.t. t ∈ [0, T ] for cu0
= 10, cf = −5 and s ∈ {2, 3, 4}.
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Figure 9: The control vk? in QT for cu0 = 10, cf = −5 and s ∈ {2, 3, 4}.

Figure 10: The controlled solution yk? in QT for cu0
= 10, cf = −5 and s ∈ {2, 3, 4}.

s ‖yk?‖L2(QT ) ‖ρsyk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0,svk?‖L2(qT ) ‖vk?‖L∞(qT ) k?

2 2.43 80.50 58.24 208.52 297.56 48

3 1.415 86.53 51.30 463.69 414.93 17

4 1.108 173.17 52.83 1366.08 605.20 13

5 0.931 429.07 57.04 4328.61 889.05 11

Table 2: cu0
= 10 ; cf = −5; Norms of (yk? , vk?) w.r.t. s.

Table 3 provides some norms of the solution for s = 3 with respect to the fineness h of the triangular mesh1

used and highlights the stability of the approximation. The large degree equal to 3 of the approximation2

space induced by the composite finite element HCT makes the convergence fast with respect to h. We also3

observe that the number of iterations to reach the convergence of the sequence (yk)k≥0 is independent of h.4

h ‖yk?‖L2(QT ) ‖ρsyk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0,svk?‖L2(qT ) ‖vk?‖L∞(qT ) k?

0.1562 1.47841 90.9285 51.4646 469.008 420.345 18

0.0760 1.46148 87.9869 51.2379 465.822 419.42 17

0.0441 1.45521 87.0578 51.0243 464.527 416.886 17

0.0208 1.45056 86.2678 51.0448 463.253 414.223 17

0.0117 1.45203 86.5628 51.1068 463.723 415.114 17

Table 3: cu0
= 10 ; cf = −5 ; s = 3; Norms of (yk? , vk?) w.r.t. h.
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4 Perspectives1

Within the approach control-then-discretize strategy, we have emphasized, both for the wave and heat equa-2

tion, the ability of variational space-time formulations to get robust finite dimensional approximation of3

exact controls. The space-time framework makes easier both the numerical analysis and the numerical4

implementation than classical methods within the approach discretize-then-control. Moreover, it is very ap-5

propriate for (space-time) mesh adaptivity, allowing a notable reduction of the computational cost. Then,6

we have defined strongly convergent sequences to control-state pairs for semilinear wave and heat equation.7

In both cases, the convergence is ensured assuming an asymptotic growth condition on the first derivative of8

the nonlinear function. Numerical experiments, within the space-time methods introduced in the first part,9

confirm the theoretical results. In both parts, the main tool is a parametrized global Carleman inequality10

allowing precise estimates of the state-control pair in term of the data. As emphasized for the heat equation11

in sections 3.3.1 and 3.3.2 an appropriate choice of the Carleman parameters guarantees contracting prop-12

erties for some fixed point application. This is also true for wave type equations; we refer to the recent work13

[8] where a constructive convergent sequence to boundary controls for semilinear wave equation is designed.14

Actually, since global Carleman inequalities are now available for many equations and systems, the methods15

presented here can very likely be extended to other situations involving notably nonlinearity with gradient16

terms and arising in fluid and solid mechanics. We mention the Burgers equation and the Navier-Stokes17

equation in incompressible regime which are now under investigation.18
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[40] Xiaoyu Fu, Jiongmin Yong, and Xu Zhang. Exact controllability for multidimensional semilinear hyperbolic11

equations. SIAM J. Control Optim., 46(5):1578–1614, 2007.12

[41] A. V. Fursikov and O. Yu. Imanuvilov. Controllability of evolution equations, volume 34 of Lecture Notes Series.13

Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.14

[42] Victor A. Galaktionov and Juan L. Vázquez. The problem of blow-up in nonlinear parabolic equations. volume 8,15

pages 399–433. 2002. Current developments in partial differential equations (Temuco, 1999).16

[43] R. Glowinski, W. Kinton, and M. F. Wheeler. A mixed finite element formulation for the boundary controllability17

of the wave equation. Internat. J. Numer. Methods Engrg., 27(3):623–635, 1989.18

[44] R. Glowinski and J.-L. Lions. Exact and approximate controllability for distributed parameter systems. In Acta19

numerica, 1995, Acta Numer., pages 159–333. Cambridge Univ. Press, Cambridge, 1995.20

[45] Roland Glowinski, Chin Hsien Li, and Jacques-Louis Lions. A numerical approach to the exact boundary21

controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Japan J. Appl.22

Math., 7(1):1–76, 1990.23

[46] Roland Glowinski, Jacques-Louis Lions, and Jiwen He. Exact and approximate controllability for distributed24

parameter systems, volume 117 of Encyclopedia of Mathematics and its Applications. Cambridge University25

Press, Cambridge, 2008. A numerical approach.26

[47] M. Gunzburger, L. S. Hou, and L. Ju. A numerical method for exact boundary controllability problems for the27

wave equation. Comput. Math. Appl., 51(5):721–750, 2006.28

[48] F. Hecht. New development in Freefem++. J. Numer. Math., 20(3-4):251–265, 2012.29

[49] Gregory M. Hulbert and Thomas J. R. Hughes. Space-time finite element methods for second-order hyperbolic30

equations. Comput. Methods Appl. Mech. Engrg., 84(3):327–348, 1990.31

[50] Liviu I. Ignat and Enrique Zuazua. Convergence of a two-grid algorithm for the control of the wave equation.32

J. Eur. Math. Soc. (JEMS), 11(2):351–391, 2009.33

[51] Romain Joly and Camille Laurent. A note on the semiglobal controllability of the semilinear wave equation.34

SIAM J. Control Optim., 52(1):439–450, 2014.35
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