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Approximation of exact controls for semilinear wave and heat

equations through space-time methods

Arnaud Münch∗

Abstract

We consider from the algorithmic and numerical viewpoints the exact controllability problems for

linear and semilinear heat and wave equations. We notably report on some recent iterative approaches

yielding to strongly convergent approximations of controlled solutions for semilinear equations. From

the numerical perspective, we focus on the control-then-discretize strategy where the optimality system

associated with each problem is solved within a space-time framework leading to strong convergence

approximations with respect to the parameters of discretization. The role of global Carleman type

estimates is emphasized in the robustness of the approaches. Numerical experiments in the one and two

dimensional case illustrate the results of convergence.

AMS Classifications: 35K58, 93B05, 93E24.

Keywords: Control of PDEs, Exact controllability, Numerical approximation, Space-time discretization.

1 Introduction

Approximation of null controllability problems for partial differential equations is a delicate issue. In contrast

with optimal control problems, the occurrence of a terminal constraint for the state of the equation makes the

analysis non trivial, both at the theoretical but also at the numerical level. Thus, it is by now well-know since

the pionnering works of Glowinski in the eighties that the use of standard numerical schemes for hyperbolic

equations may leads to divergent sequences of control as the discretization parameter goes to zero. This is

due to spurious discrete high frequencies generated by the finite dimensional approximation. Similarly, for

parabolic equations, the regularization phenomenon makes the approximation of controls badly conditioned

and leads to highly oscillating behaviors. On the other hand, exact controllability results for semi-linear

equations, since the pionnering works of Zuazua in the nineties, are usually based on non constructive fixed

point arguments and therefore do not lead to method of approximations.

We focus here on the approximation of null distributed controls for semi-linear wave and heat equation.

We first review some recent techniques that lead to robust numerical solution of null controllability

problems associated with linear wave and heat equations. The methods are characterized by the fact that

we reduce or approximate in finite dimension in space and time simultaneously. This is made possible by

introducing an appropriate reformulation as an equation in a space of functions depending on the spatial and

time variables which is then discretized and solved. In particular, we do not employ usual time-marching

method for the evolution equations. The well-posedness of these reformulations relies on so-called generalized

observability inequalities, also refereed to as global Carleman estimates. The methods developed here to solve

the optimality system associated with each controllability problem fall into the emergent strategy “control-

then-discretize”. In contrast with the classical reverse strategy ”discretize-then-control”, we emphasize that

it leads to robust and strong convergent approximation with respect to the parameters of discretization. It

is also notably very appropriate for mesh adaptivity.
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We also design, both for the wave and the heat case, a least-squares algorithm yielding sequences con-

verging strongly and at least linearly to a controlled solution for the semilinear equation. Each element of the

sequence is solution of a linearized controllability problem and therefore can be approximated numerically

though a robust space-time formulation.

We illustrate our results with several numerical experiments performed with the software Freefem++

(see [47]).

Notations In the sequel, Ω is a bounded domain of Rd (d ≥ 1) with C1,1 boundary and ω ⊂⊂ Ω is a

non-empty open set. For any T > 0, we set QT := Ω× (0, T ), qT := ω × (0, T ) and ΣT := ∂Ω× (0, T ). The

variable y is used for the state of the equation while the control is defined in term of the variable v. Last, f

is the function defining the nonlinearity of the equation.

2 The case of the wave equation

This section is devoted to the linear and semilinear wave equation. We first recall some classical controllability

results for the linear and semilinear equation (section 2.1 and section 2.2). Then, we explain how one may

construct a sequence (yk, vk)k∈N converging strongly to a controlled pair for the semilinear equation, based

on a suitable linearization (section 2.3). In section 2.4, we discuss some methods of numerical approximation

and we conclude with some numerical experiments in Section 2.5. We mainly focus on distributed controls

although similar results are available for boundary controls.

2.1 Controllability results for the linear wave equation

The linear wave equation, completed with Dirichlet and initial conditions, reads as follows:{
∂tty −∆y +Ay = v1ω + F, in QT ,

y = 0 on ΣT , (y(· , 0), ∂ty(· , 0)) = (u0, u1), in Ω.
(1)

Here, y is the state and v ∈ L2(qT ) is the control. We assume that the initial data (u0, u1) belongs

to V := H1
0 (Ω) × L2(Ω), F ∈ L2(QT ) and A ∈ L∞(0, T ;Ld(Ω)). Under these assumptions, (1) possesses a

unique weak solution in C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).

The exact controllability problem for (1) in time T is formulated as follows:

given (u0, u1), (z0, z1) ∈ V , find a control v ∈ L2(qT ) such that the weak solution to (1)

satisfies (y(· , T ), ∂ty(· , T )) = (z0, z1).

In other terms, through the action on the open subset ω of Ω, we want to steer the solution from the

state (u0, u1) to the state (z0, z1). In view of the linearity of the system (1), it is equivalent to reach the

zero target, i.e. take (z0, z1) = (0, 0) leading the so-called null controllability problem.

Using multiplier techniques, this controllability problem was solved in the eighties in [62] in the case

A ≡ 0, later generalized in [40] as follows.

Theorem 1. For any x0 ∈ Rd\Ω, let Γ0 := {x ∈ ∂Ω : (x − x0) · ν(x) > 0} and let Oε(Γ0) := {y ∈ Rd :

dist (y,Γ0) ≤ ε} for any ε > 0. Assume

(H0) T > 2 maxx∈Ω |x− x0| and ω ⊆ Oε(Γ0) ∩ Ω for some ε > 0.

Then (1) is exactly controllable in time T .

In Theorem 1, Γ0 is the usual star-shaped part of Ω introduced in [62]. Recall that, using microlocal

analysis, C. Bardos, G. Lebeau and J. Rauch proved in [6] that, in the class of C∞ domains, controllability
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holds if and only if (ω, T ) satisfies the following geometric control condition: “every ray of geometric optics

that propagates in Ω and is reflected on Γ enters ω at a time t < T”.

Using duality arguments, Theorem 1 can be deduced from an observability estimate for the adjoint

system. Thus, let us recall the following result, proved in [76] (see also [40, Theorem 2.2]):

Proposition 1. Assume that (H0) holds. For any A ∈ L∞(0, T ;Ld(Ω)) and any (φ0, φ1) ∈H := L2(Ω)×
H−1(Ω), the weak solution φ to{

∂ttφ−∆φ+Aφ = 0, in QT ,

φ = 0 on ΣT , (φ(· , 0), ∂tφ(· , 0)) = (φ0, φ1) in Ω,
(2)

satisfies the observability inequality, for some C > 0 only depending on Ω and T .

‖(φ0, φ1)‖H ≤ Ce
C‖A‖2

L∞(0,T ;Ld(Ω))‖φ‖L2(qT ). (3)

The inequality (3) is refereed as an observability inequality as the knowledge of φ on the subset qT of QT
allows to observe the full system. Among all admissible controls, we usually consider, for practical purpose,

the control of minimal L2(qT ) norm which is unique and depends continuously on the data as follows.

Proposition 2. Let A ∈ L∞(0, T ;Ld(Ω)), B ∈ L2(QT ) and (u0, u1), (z0, z1) ∈ V be given. Assume that

(H0) holds. Then the minimal L2(qT ) norm control together with the corresponding controlled weak solution

satisfy the estimate, for some constant C > 0 only depending on Ω and T

‖v‖L2(qT ) + ‖(y, ∂ty)‖L∞(0,T ;V ) ≤ C
(
‖B‖2 + ‖(u0, u1)‖V + ‖(z0, z1)‖V

)
e
C‖A‖2

L∞(0,T ;Ld(Ω)) . (4)

2.2 Controllability results for a semilinear wave equation

We consider now the following system for the semilinear wave equation:{
∂tty −∆y + f(y) = v1ω, in QT ,

y = 0, on ΣT , (y(· , 0), ∂ty(· , 0)) = (u0, u1) in Ω.
(5)

Here, f : R → R is a C1 function such that |f(r)| ≤ C(1 + |r|) ln(2 + |r|) for all r ∈ R and some

C > 0. There exists a unique global weak solution to (5) in C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) (see [18]).

Furthermore, imposing an adequate growth condition on f at infinity, the exact controllability problem has

been solved in [40]:

Theorem 2. Let x0, Γ0 and Oε(Γ0) be as in Theorem 1. Assume that (H0) holds. If f satisfies

(H1) lim sup|r|→∞
|f(r)|

|r| ln1/2 |r| = 0,

then (5) is exactly controllable in time T .

Theorem 2 extends to the multi-dimensional case the result of [78] devoted to the one-dimensional case

under the condition lim sup|r|→∞
|f(r)|
|r| ln2 |r| = 0, later relaxed in [13] (following [31]) and [65]. The exact

controllability for subcritical nonlinearities is obtained in [27] under the sign condition rf(r) ≥ 0 for all

r ∈ R. This last assumption has been weakened in [50] to an asymptotic sign condition leading to a semi-

global controllability result, in the sense that the final data (z0, z1) must be prescribed in a precise subset

of V . In this respect, let us also mention [26], where a positive boundary controllability result is proved in

the one-dimensional case for a specific class of initial and final data and T large enough by a quasi-static

deformation approach.
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The proof of Theorem 2 given in [40] is based on a fixed-point argument introduced in [77, 78] and the

a priori estimate (4) for the linearized wave equation with a potential. More precisely, it is shown that the

operator K : L∞(0, T ;Ld(Ω)) 7→ L∞(0, T ;Ld(Ω)), where yξ := K(ξ) is the solution to the linear problem
∂ttyξ −∆yξ + yξ f̂(ξ) = −f(0) + vξ1ω, in QT ,

yξ = 0, on ΣT ,

(yξ(· , 0), ∂tyξ(· , 0)) = (u0, u1), in Ω,

f̂(r) :=


f(r)− f(0)

r
r 6= 0,

f ′(0) r = 0

, (6)

and fξ is the minimal L2(qT ) norm control for which (yξ(· , T ), yξ,t(· , T )) = (z0, z1) (chosen as in [61]), has a

fixed-point. The existence is obtained by using Leray-Schauder’s Theorem (in particular, under the growth

assumption (H1), it is shown that there exists a constant M = M(‖u0, u1‖V , ‖z0, z1‖V ) such that K maps

the ball BL∞(0,T ;Ld(Ω))(0;M) into itself.

2.3 Construction of a convergent sequence of state-control pairs for the semi-

linear system (5): a least-squares approach

We now discuss the explicit construction of a sequence (vk)k∈N that converges strongly to an exact control

for (5). The controllability of nonlinear PDEs has attracted a large number of works in the last decades

(see [24]). However, few are concerned with the computation of exact controls and the explicit construction

of convergent approximations remains a challenge.

A first idea that comes to mind is to consider the Picard iterates (yk)k∈N associated with the operator

K, defined by yk+1 = K(yk) for k ≥ 0, starting from some y0 ∈ L∞(0, T ;Ld(Ω)). The resulting sequence

of controls (vk)k∈N fulfills the following property: vk+1 ∈ L2(qT ) is the control of minimal L2(qT ) norm for

which the associated solution to{
∂ttyk+1 −∆yk+1 + yk+1 f̂(yk) = −f(0) + vk+11ω, in QT ,

yk+1 = 0, on ΣT , (yk+1(· , 0), ∂tyk+1(· , 0)) = (y0, y1), in Ω
(7)

satisfies (yk+1(· , T ), ∂tyk+1(· , T )) = (z0, z1). Such a strategy fails frequently, since the operator K is not in

general a contraction, even if f is globally Lipschitz-continuous. We refer to [7] for a numerical evidence of

the lack of convergence (see also [35] in a similar parabolic context).

A second idea is to use a method of the Newton kind to find a zero of the C1 mapping F̃ : Y 7→ W ,

defined by

F̃ (y, v) :=

(
∂tty −∆y + f(y)− v1ω, y(· , 0)− u0, ∂ty(· , 0)− u1, y(· , T )− z0, ∂ty(· , T )− z1

)
(8)

for some appropriates Hilbert spaces Y and W . Thus, starting from (y0, f0) ∈ Y , for each k ≥ 0 we set

(yk+1, vk+1) = (yk, vk)− (Yk, Vk) where Vk is the control of minimal L2(qT ) norm such that the solution to{
∂ttYk −∆Yk + f ′(yk)Yk = Vk 1ω + ∂ttyk −∆yk + f(yk)− vk1ω, in QT ,

Yk = 0 on ΣT , Yk(· , 0) = u0 − yk(· , 0), ∂tYk(· , 0) = u1 − ∂tyk(· , 0) in Ω
(9)

satisfies Yk(· , T ) = −yk(· , T ) and ∂tYk(· , T ) = −∂tyk(· , T ). This makes appear an operator KN with

yk+1 = KN (yk), involving the derivative of f . As is well-known, the resulting sequence may fail to converge

if the initial guess (y0, v0) is not close enough to a zero of F (see [35], where divergence is observed numerically

for large data).

Given any initial data (u0, u1) ∈ V , under assumptions on f that are slightly stronger than (H1), we can

design an algorithm providing a sequence (yk, vk)k∈N that converges to a controlled pair. Moreover, after

a finite number of iterates, the convergence is super-linear. This is achieved by introducing a least-squares

functional that measures how much a pair (y, v) is close to a controlled solution for (5) and, then, determining

a particular convergent minimizing sequence. Following [7, 71], we define the Hilbert space

H = {(y, f) ∈ L2(QT )× L2(qT ) : y ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), ∂tty −∆y ∈ L2(QT )},
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which is endowed with the scalar product

((y, v), (y, f))H = (y, y)L2(QT ) +
(
(y(· , 0), ∂ty(· , 0)), (y(· , 0), ∂ty(· , 0))

)
V

+ (∂tty −∆y, ∂tty −∆y)L2(QT ) + (v, v)L2(qT ).

We then define the non-empty linear manifold

A = {(y, f) ∈ H : (y(· , 0), ∂ty(· , 0)) = (u0, u1), (y(· , T ), ∂ty(· , T )) = (z0, z1)}

and the associated space

A0 = {(y, f) ∈ H : (y(· , 0), ∂ty(· , 0)) = (0, 0), (y(· , T ), ∂ty(· , T )) = (0, 0)}

and consider the following non-convex extremal problem of the least-squares kind

inf
(y,v)∈A

E(y, v), E(y, v) :=
1

2

∥∥∂tty −∆y + f(y)− v 1ω
∥∥2

L2(QT )
. (10)

The functional E is well-defined in A. In fact, there exists C > 0 such that E(y, v) ≤ C(1 + ‖(y, v)‖3H)

for all (y, v) ∈ A.

Main properties of the functional E The functional E is differentiable over A. Moreover, it is shown

in [7] the following inequality.

Proposition 3. Assume that (H0) holds. There exists C = C(ω,Ω, T ) > 0 such that for any (y, f) ∈ A,

√
E(y, v) ≤ C

(
1 + ‖f ′(y)‖L∞(0,T ;L3(Ω))

)
e
C‖f ′(y)‖2

L∞(0,T ;Ld(Ω))‖E′(y, v)‖A′0 . (11)

Consequently, any critical point (y, v) ∈ A of E such that ‖f ′(y)‖L∞(0,T ;L3(Ω)) is finite is a zero for E,

i.e. a solution to the controllability problem and any sequence (yk, vk)k>0 satisfying ‖E′(yk, vk)‖A′0 → 0 as

k →∞ for which ‖f ′(yk)‖L∞(0,T ;L3(Ω)) is uniformly bounded is such that E(yk, vk)→ 0 as k →∞.

This property does not imply the convexity of the functional E (and a fortiori the strict convexity of E,

which actually cannot hold in view of the possible multiple zeros for E). However, it shows that a minimizing

sequence for E cannot be stuck in a local minimum. In order to construct a minimizing sequence for E, we

formally look, for any (y, v) ∈ A, for a pair (Y 1, V 1) ∈ A0 solving the following linear wave equation{
∂ttY

1 −∆Y 1 + f ′(y) · Y 1 = V 11ω +
(
∂tty −∆y + f(y)− v 1ω

)
, in QT ,

Y 1 = 0 on ΣT , (Y 1(· , 0), ∂tY
1(· , 0)) = (0, 0), in Ω.

(12)

Since (Y 1, V 1) belongs to A0, V 1 is a null control for Y 1. Among all the controls of this linear equation, we

select the control of minimal L2(qT ) norm. In the sequel, we call the corresponding solution (Y 1, V 1) ∈ A0

the solution of minimal control norm. Then the derivative of E at (y, v) ∈ A in the direction (Y 1, V 1)

satisfies E′(y, v) · (Y 1, V 1) = 2E(y, v) which allows to define a minimizing sequence for E.

Given f ∈ C1(R) and p ∈ [0, 1], we introduce the following hypothesis:

(Hp) [f ′]p := sup
a,b∈R
a 6=b

|f ′(a)− f ′(b)|
|a− b|p

< +∞.

Given any p ∈ [0, 1], we set

β?(p) :=

√
p

2C(2p+ 1)
(13)

where C > 0 (only depending on Ω and T ) is the constant appearing in Proposition 2. The following result

from [7] provides a constructive way to approximate a control for the nonlinear wave equation (5).
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Theorem 3. Assume that (ω, T ) satisfies (H0). Also, assume that f ′ satisfies (Hp) for some p ∈ [0, 1] and

(H2) There exists α ≥ 0 and β ∈ [0, β?(p)) such that |f ′(r)| ≤ α+ β ln1/2(1 + |r|) for every r in R

if p ∈ (0, 1] and

(H3)
√

2C‖f ′‖∞eC‖f
′‖2∞|Ω|

2/d

< 1

if p = 0. Then, for any initial and final data (u0, u1) and (z0, z1) in V and any starting (y0, v0) ∈ A, the

sequence (yk, vk)k∈N defined by
(y0, v0) ∈ A,
(yk+1, vk+1) = (yk, vk)− λk(Y 1

k , V
1
k ), k ∈ N,

λk = argminλ∈[0,1]E
(
(yk, vk)− λ(Y 1

k , V
1
k )
)
,

(14)

where (Y 1
k , V

1
k ) ∈ A0 is the solution of minimal control norm of{

∂ttY
1
k −∆Y 1

k + f ′(yk) · Y 1
k = V 1

k 1ω + (∂ttyk −∆yk + f(yk)− vk1ω) in QT ,

Y 1
k = 0 on ΣT , (Y 1

k (· , 0), ∂tY
1
k (· , 0)) = (0, 0), in Ω

(15)

strongly converges to a pair (y, v) ∈ A satisfying (5) and the condition (y(· , T ), ∂ty(· , T )) = (z0, z1), for all

(u0, u1), (z0, z1) ∈ V . Moreover, the convergence is at least linear and at least of order p + 1 after a finite

number of iterations.

Theorem 2 was established in [40] by a nonconstructive Leray-Schauder fixed-point argument. In turn,

Theorem 3 provides a new proof of the exact controllability of semilinear multi-dimensional wave equations

which is moreover constructive, with an algorithm that converges unconditionally at least with order p+ 1.

Remark 1. The asymptotic condition (H2) on f ′ is slightly stronger than the assumption (H1) made

in [40]: this is due to our linearization of (5), which concerns f ′, while the linearization (38) in [40] involves

r → (f(r)− f(0))/r. There exist cases covered by Theorem 2 but not by Theorem 3. Note however that the

particular example f(r) = a+ br+ cr ln1/2(1 + |r|) with a, b ∈ R and c > 0 small enough (which is somehow

the limit case in Theorem 2) satisfies (H2) as well as (Hp) for any p ∈ [0, 1].

Remark 2. Defining F : A → L2(QT ) by F (y, v) := (∂tty−∆y+f(y)−v 1ω), we have E(y, v) = 1
2‖F (y, v)‖22

and we observe that, for λk = 1, the algorithm (14) coincides with the Newton algorithm associated with

the mapping F (see (9)). This explains the super-linear convergence property in Theorem 3, in particular

the quadratic convergence when p = 1. The optimization of the parameter λk leads to a global convergence

property of the algorithm and leads to the so-called damped Newton method applied to F . For this method,

global convergence is usually achieved with linear order under general assumptions (see for instance [28,

Theorem 8.7]). As far as we know, the analysis of damped type Newton methods for PDEs has deserved

very few attention in the literature. To this respect, we mention [58, 74] in the context of fluids mechanics.

2.4 Numerical approximation of exact controls for the wave equation

We now discuss the approximation of exact controls for the wave equation. According to the previous section

and Theorem 3, a convergent numerical approximation of controls for the linear wave equation allows to

construct a convergent numerical approximation of controls in the semi-linear case as well. We therefore

focus on the linear situation.

For simplicity, we assume that the target (z0, z1) vanishes and look for an approximation of the control

of minimal L2-norm solution of

inf
v∈C(u0,u1,T )

J(v), J(v) := ‖v‖2L2(qT )
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where C(u0, u1, T ) denotes the non empty convex set of controls. Applying the Fenchel-Rockafellar duality

theory, the control of minimal L2(qT ) norm can be expressed by v = φ1ω, where φ solves (2) with initial

data (φ0, φ1) ∈H and (φ0, φ1) solves the following extremal problem

inf
(φ0,φ1)∈H

J?(φ0, φ1), J?(φ0, φ1) :=
1

2

∫
qT

|φ|2+

∫
QT

Fφ+〈φ1, u0〉H−1(Ω),H1
0 (Ω)−〈φ0, u1〉L2(Ω). (16)

Here, J? is the so-called conjugate functional associated with J(v). The observability inequality (3) for

the variable φ leads to the well-posedness of this extremal problem. Compared with the initial minimisation

of J over exact null controls for (1), this equivalent problem does not make appear any terminal constraint

and therefore can be solved through an iterative descent method: the conjugate gradient algorithm is usually

employed (we refer to [44]) since the so-called HUM operator related to J? is coercive.

However, at the finite dimensional level (induced by the numerical approximation in time and space),

(2) can not be in general solved exactly: in other words, Lφ is not exactly zero what makes irrelevant the

observability inequality (3). At least, two possibilities appear in order to bypass this difficulty. The first

one is to first reformulated the controllability problem at the finite dimensional level leading to so-called

discretize-then-control strategy.

The discretize-then-control strategy A possible strategy is to first discretize (5) and then determine a

discrete control of minimal L2(qT ) norm by minimizing the associated discrete functional J?h , where h stands

for the discretization parameter. This has been the subject of numerous works and extended to many others

PDEs, starting from the seminal contribution of Glowinski and Lions [44]. The experiments performed in [44]

in the two-dimensional setting reveals that the convergence of the approach is very sensitive to the chosen

approximation. Thus, if standard time marching methods based on centered approximation is used coupled

with standard finite element approximations, the associated observability constant may not be uniformly

bounded with respect to h, leading to a divergence of the discrete family of controls (vh)h>0 as h tends

to zero. In practice, the conjugate gradient algorithm fails to converge as the discretization becomes finer.

As conjectured in [44] and later analyzed (see [79] for a review), this is due to spurious high frequencies

discrete modes which are not exactly controllable uniformly in h. This pathology can easily be avoided in

practice by adding to the conjugate functional a regularized Tikhonov parameter, but this leads to so called

approximate controls, solving the control problem only up to a small remainder term:

‖yh(·, T ), ∂tyh(·, T )‖H1
0 (Ω)×L2(Ω) ≤ O(hα), ∀h > 0

where the real α is related to the order of the numerical scheme. This is sufficient for the applications but

not completely satisfactory from an theoretical viewpoint. That is why several cures aiming to filter out the

high frequencies have been proposed and analyzed, mainly for simple geometries (1d interval, unit square

in 2d, etc) with finite differences schemes. The simplest, but artificial, approach is to eliminate the highest

eigenmodes of a discrete approximation of the initial condition as discussed in one space dimension in [66],

and extended in [63]. We mention spectral methods initially developed [8] then used in [55]. We also mention

so called bi-grid method (based on the projection of the discrete gradient of J? on a coarse grid) proposed in

[45] and analyzed in [64, 49] leading to convergence results. One may also design more elaborated discrete

schemes avoiding spurious modes: we mention [43] based on a mixed reformulation of the wave equation

analyzed later with finite difference schemes in [16, 17, 3] at the semi-discrete level and then extended in [68]

to a full space-time discrete setting, leading to strong convergent results. For instance, in [68], the following

scheme

D∆t(y∆t,∆x
)−D∆x(y∆t,∆x

) +
1

4
(∆2

t −∆2
x)D∆x(D∆t(y∆t,∆x

)) = 0

is proved to be uniformly controllable with respect to the discretization h = (∆t,∆x) as it leads to a discrete

family of controls converging strongly to a control for the wave equation as soon as the controllability T is

large enough such that T > 2 max(1,∆2
t/∆

2
x) (see [68, Theorem 2.8]). Here, Dη(z) stands for the standard

7



operator

Dη(z)(x) =
z(x+ η)− 2z(x) + z(x− η)

η2
, ∀x ∈ R, ∀η > 0

usually associated with the centered approximation of order two of the second derivative of any function

smooth function z.

The above previous works, notably reviewed in [79, 34], fall within an approach that can be called

“discretize then control” as they aim to control exactly to zero a finite dimensional approximation of the

wave equation. A relaxed controllability approach is analyzed in [12] using a stabilized finite element method

in space and leading for smooth two and three dimensional geometries to a strong convergent approximations

(we refer to [12, Theorem 2.1]). The controllability requirement is imposed via appropriate penalty terms.

We also mention [73] based on the Russel’s stabilization implies control principle, extended in [23] and [46, 2]

for least-squares based method.

The control-then-discretize strategy A second strategy allowing to bypass the issue of approximating

the constraint Lφ = 0 is somehow to relax it by keeping the variable φ as the main variable into a space-time

formulation. This leads to a “control-then-discretize” procedure, where the optimality system associated with

problem (16) mixing the boundary condition in time and space and involving the primal and adjoint state

is discretized within a priori a space-time approximation. The well-posedness of such system is achieved by

using so called global or generalized observability inequalities (usually refereed to global Carleman inequality

for parabolic situation).

To this purpose, we keep φ as the main variable and introduce the Hilbert space

Φ :=
{
φ ∈ L2(QT );φ ∈ C([0, T ];L2(QT )) ∩ C1([0, T ];H−1(Ω), Lφ ∈ L2(0, T ;H−1(Ω))

}
,

endowed with the inner product < φ, φ >Φ=< φ, φ >L2(qT ) + < Lφ,Lφ >L2(0,T ;H−1(Ω)),L2(0,T ;H−1(Ω))).

Recall that Lφ stands for Lφ := ∂ttφ−∆φ+Aφ. We also introduce the subspace W := {φ ∈ Φ, Lφ = 0} and

remark that (16) is equivalent to the extremal problem minφ∈W J?(φ) (using that φ is uniquely determined

from (φ0, φ1) ∈ L2(Ω) ×H−1(Ω)). Since φ is now the main variable, we may address the linear constraint

Lφ = 0 through a Lagrange multiplier λ ∈M := L2(0, T ;H1
0 (Ω)), leading to the following equivalent saddle

point problem for any augmentation parameter r ≥ 0

sup
λ∈L2(0,T,H1

0 (Ω))

inf
φ∈Φ
Lr(φ, λ), Lr(φ, λ) :=J?(φ)+

∫ T

0

〈λ, Lφ〉H1
0 (Ω),H−1(Ω)+

r

2
‖Lφ‖2L2(0,T ;H−1(Ω)) (17)

and the following mixed formulation: for any r ≥ 0, find (φ, λ) ∈ Φ× L2(0, T ;H1
0 (Ω)) such that{

ar(φ, φ) + b(λ, φ) = l(φ), ∀φ ∈ Φ,

b(λ, φ) = 0, ∀λ ∈ L2(H1
0 (Ω)),

(18)

with 
ar : Φ× Φ→ R, ar(φ, φ) :=

∫
qT

φφ+

∫
QT

Fφ+ r < Lφ,Lφ >L2(0,T ;H−1(Ω),L2(0,T ;H−1(Ω))),

b :M× Φ→ R, b(λ, φ) :=

∫ T

0

< λ,Lφ >H1
0 (Ω),H−1(Ω),

l : Φ→ R, l(φ) :=< φ1, u0 >H−1(Ω),H1
0 (Ω) − < φ0, u1 >L2(Ω) .

(19)

It turns out that the Lagrange multiplier coincides with the controlled solution of the wave equation.

Theorem 4. [15] Assume that (H0) holds.

1. The mixed problem (19) is well-posed and its unique solution (φ, λ) is the unique saddle-point of the

Lagrangian L.

2. The optimal φ is the minimizer of J? over Φ, while the optimal multiplier λ is the state of the controlled

wave equation (1) in the weak sense (associated with the control φ1ω).

8



The fundamental tool used to prove the well-posedness and notably the continuity of the linear form l is

the following generalized observability inequality:

‖φ(· , 0, ), ∂tφ(· , 0)‖2H ≤ C(Ω, T, ‖A‖L∞(0,T ;Ld(Ω)))

(
‖φ‖L2(qT ) + ‖Lφ‖L2(0,T ;H−1(Ω))

)
∀φ ∈ Φ, (20)

which can be easily deduced from (3) using the linearity of the equation (we refer for instance to [15]).

This allows to relax the constraint Lφ = 0, which is rarely satisfied at the finite dimensional level. With

respect to (3), the main interest of (20) is that it remains true for any finite dimensional subspace Φh ⊂ Φ

parametrized with h > 0 (with a constant independent of h). In other words, there is no need to prove any

uniform property for some discrete observability constant.

The well-posedness of (19) is based on two properties (that should be preserved at the finite dimensional

level):

(i) The coercivity of the bilinear form a over the kernel Ker (b) = {φ ∈ Φ, b(λ, φ) = 0, ∀λ ∈M} of b and

(ii) The inf-sup property for b:

∃δ > 0 s.t. inf
λ∈M

sup
φ∈Φ

b(λ, φ)

‖λ‖M‖φ‖Φ
≥ δ.

Let T = {Th, h > 0} be family of regular triangulations of the space-time domain QT such that QT =

∪K∈ThK. The family is indexed by h = maxK∈τh |K|. The coercivity property of the bilinear form a remains

true over Φh × Φh for any finite dimensional subspace Φh ⊂ Φ as soon as the augmentation parameter r is

strictly positive.

On the other hand, a discrete inf-sup property, uniformly with respect to the parameter h, is in general

more delicate to obtain as it depends strongly on the discrete spaces Mh and Φh used. For instance, if we

define Mh = {ph ∈ C(QT ); (ph)|K ∈ P1(K),∀K ∈ Th} where Pk(K) denotes the space of polynomials of

degree 1 and Φh = {ph ∈ C1(QT ); (ph)|K ∈ HCT (K),∀K ∈ Th} where HCT denotes the Hsieh-Clough-

Tocher composite finite element (see [21]), we numerically observe (by the inf-sup test, see [20]) that a discrete

inf-sup property hold true when the parameter r is of order of h2. This leads in practice to a convergent

approximation of the control of minimal L2(qT ) norm. Remark that a C1 element is used in order to ensure

that Lφh belongs to L2(QT ) for any φh ∈ Φh. The theoretical study of the behavior with respect to h of

infλ∈Mh
supφ∈Φh

b(λ,φ)
‖λ‖M‖φ‖Φ is in general a difficult question. This is a fortiori true here since the constraint

Lφ ∈ L2(QT ) implies second derivates in time and space and involves C1 finite element. Hopefully, one may

avoid it by stabilizing the mixed formulation with respect to the variable λ (see the seminal work [5]): this

consists in adding to the Lagrangian some terms so as to get a coercivity property for the variable λ as well;

this is notably employed in [67] devoted to the approximation of boundary control for the wave equation,

preliminary reformulated as a first order system. This reformulation as first order system requires, within

a conformal approximation, only C0 finite element (but need to be stabilized whatever be the value of the

augmentation parameter).

Stabilization technics may also be employed in the context of non-conformal approximations. In this

respect, let us introduce V qh = {ph ∈ C(QT ); (ph)|K ∈ Pq(K),∀K ∈ Th} and consider the discrete Lagrangian

Lh : V ph × V
q
h → R, given by

Lh(φh, λh) := J?(φh) +
h2

2
‖Lφh‖2L2(QT ) +

h

2

∑
K∈Th

∫
∂K

[[∂νφh]]2 + h−1

∫
ΣT

φ2
h

+

∫
QT

(−∂tφh∂tλh +∇φh∇λh)− h

2

∑
K∈Th

∫
∂K

[[∂νλh]]2 − h2

2
‖Lλh − φh1ω‖2L2(QT ) − h

−1

∫
ΣT

λ2
h,

where [[∂νφh]] denotes the jump of the normal derivative of φh across the internal edges of the triangulation.

The terms h2‖Lφh‖L2(QT ) and −h2‖Lλh−φh1ω‖2L2(QT ) play a symmetric role. Both vanish at the contin-

uous level. On the other hand, the jump terms somehow aim to control the regularity of the approximation.
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The discrete Lagrangian Lh admits a unique saddle-point. The well-posedness is based on a variant of the

generalized observability inequality (20), where the L2(0, T ;H−1(Ω)) norm of Lφ is replaced by the H−1(QT )

norm. Moreover, if the saddle-point (λ, φ) of Lr is smooth enough, then the following approximation result

holds true (we refer to [11, section 2] and also [10] in the closed context of data assimilation problems):

Theorem 5 ([11]). Assume that (H0) holds. Let p, q ≥ 1 and h > 0. Let (λh, φh) ∈ V ph × V
q
h be the saddle

point of Lh and assume that the saddle point (λ, φ) of Lr belongs to Hp+1(QT ) ×Hq+1(QT ). Then, there

exists a positive constant C independent of h such that

‖χ(φ− φh)‖L2(QT ) ≤ C(hp‖u‖Hp+1(QT ) + hq‖φ‖Hq+1(QT )), (21)

where χ is a cut-off function of the form χ(x, t) = χ0(x)χ1(t), with χ0 ∈ C∞0 (ω), χ1 ∈ C∞0 (0, T ).

The regularity assumption on the optimal pair (λ, φ) notably holds true if the initial data (u0, u1) to

be controlled are smooth and satisfy compatibility conditions at ∂Ω × {0} (we refer to [33]). Numerical

illustrations are given in the next section.

To end this brief review on the control-then-discretize approach, we emphasize that, in order to avoid

the delicate issue of the inf-sup condition, we can alternatively consider a cost that involves both the control

f and the state y. Note that the minimizer of the functional (y, f) 7→ J(y, f) := ‖y‖2L2(QT ) + ‖f‖2L2(qT ) is

given by y = −Lφ, v = φ 1ω, where φ ∈ Φ solves

ar=1(φ, φ) =< ∂tφ(· , 0), u0 >H−1(Ω),H1
0 (Ω) − < φ(· , 0), u1 >L2(Ω), ∀φ ∈ Φ, (22)

a well-posed problem in view of the generalized inequality (20). If a conformal and dense finite element

approximation space Φh ⊂ Φ is employed, Cea’s Lemma yields ar=1(φh − φ, φh − φ) → 0 as h → 0 and a

strong convergent approximation φh1ω of a control for (1) is obtained.

Once φh is computed from the fourth-order in time and space elliptic problem (22), an approximation of

the controlled solution is defined by yh := −Lφh. We refer to [22] where this method is fully analyzed for

the one-dimensional wave equation with C1(QT ) coefficients.

It is also interesting to point out that the control-then-discretize approaches is notably well-suited for

mesh adaptivity. We mention a growing interest for space-time (finite element) methods of approximation

for the wave equation, initially advocated in [48] and more recently in [53], [1], [30], [29], [75].

In the next section, we provide some numerical illustrations of this space-time approximation.

2.5 Numerical illustrations

In order to illustrate the previous sections, we briefly discuss two numerical experiments.

The first one is devoted to the approximations of boundary controls for the wave equation in the one-

dimensional case (see [11, 10] for more details). For simplicity, we take A ≡ 0 and F ≡ 0 in (1). We consider

a stiff situation with discontinuous initial conditions: (u0, u1) = (4x1(0,1/2), 0) for x ∈ Ω := (0, 1). The

corresponding control of minimal L2(Γ) norm with Γ = 1× (0, T = 2) is given by v(t) = 2(1− t)1(1/2,3/2)(t)

leading to ‖v‖L2(0,T ) = 1/
√

3. The corresponding controlled solution is explicitly known:

y(x, t) =


4x 0 ≤ x+ t < 1

2 ,

2(x− t) − 1
2 < t− x < 1

2 , x+ t ≥ 1
2 ,

0 elsewhere,

(23)

leading to ‖y‖L2(QT ) = 1/
√

3. Observe that ‖y‖L2(QT ) = ‖v‖L2(0,T ).

The initial condition of the corresponding adjoint solution is (φ0, φ1) = (0,−2x 1(0,1/2)(x)) ∈ H1(Ω) ×
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H0(Ω), which gives:

φ(x, t) =



−2xt 0 ≤ x+ t < 1
2 , x ≥ 0, t ≥ 0,

(x−t)2

2 − 1
8

1
2 ≤ x+ t < 3

2 , − 1
2 < x− t < 1

2 ,

2(x− 1)(1− t) 3
2 ≤ x+ t, − 1

2 < x− t,
− (x+t−2)2

2 + 1
8

3
2 < x+ t < 5

2 , − 3
2 < x− t ≤ − 1

2 ,

2x(2− t) x− t ≤ − 3
2 .

(24)

In particular, we check that ∂xφ(x, t)|x=1 = 2(1− t) 1(1/2,3/2)(t) = v(t).

Both φ and y develop singularities (where y and ∇φ are discontinuous). Figure 1 depicts the evolution

of ‖∂νφh(1, ·) − v‖L2(0,T )/‖v‖L2(0,T ) with respect to the discretization parameter h, leading to a rate of

convergence close to 1/2. Let us also emphasize that the space-time discretization formulation is very well

appropriated for mesh adaptivity. Using the P 1
h × P 2

h approximation, Figure 3-left (resp. right) depicts

the mesh obtained after seven adaptative refinements based on the local values of gradient of the variable

φh (resp. λh). Starting with a coarse mesh composed of 288 triangles and 166 vertices, the final mesh is

composed with 13068 triangles and 6700 vertices.

10-2 10-1

10-1

100

Figure 1: Relative error on the approximation of the

boundary control ‖∂νφh(1, ·) − v‖L2(0,T )/‖v‖L2(0,T )

with respect to h for different approximations.
Figure 2: Control domain ω ⊂ Ω = (0, 1)2 (black

zone).

The second experiment illustrates Theorem 3 devoted to a semi-linear situation in the two dimensional

case for which Ω = (0, 1)2 (we refer to [7] for more details). The controllability time is equal to T = 3 and

the control domain ω is depicted in Figure 2. Moreover, for any real constant cf , we consider the nonlinear

function f(r) = −cf r ln1/2(2 + |r|), for all r ∈ R. Note that f satisfies (Hp) for p = 1 and (H2) for |cf |
small enough.

Remark that the unfavorable situation (for which the norm of the uncontrolled corresponding solution

grows) corresponds to strictly positives values of cf . As for the initial and final conditions, we take (u0, u1) ≡
(100 sin(πx1) sin(πx2), 0) and (z0, z1) ≡ (0, 0), respectively. The minimization of J?h is performed with the

Polak-Ribiere conjugate gradient algorithm. We employ a regular triangulation with fineness ∆x = 1/64

and a time step equal to ∆t = ∆x/3, in order to satisfy the CFL condition arising from the explicit scheme

with respect to the time variable.

Table 1, Figures 4 and 5 show the results obtained for cf = 10. The convergence is observed after 4

iterations. The optimal steps λk are very close to one. The main difference with lower values of cf (for

instance cf = 5) is the behavior of the uncontrolled solution, which grows exponentially with respect to the

11



x

t

x

t

Figure 3: Locally refine spacetime meshes with respect to φh (Left) and λh (Right).

time variable, as shown in Figure 4. As expected, this large value of cf induces a large gap between the

nonlinear and the linear controls.

We observe that the nonlinear control v? – the limit of the sequence (vk)k∈N – acts stronger from

the beginning, precisely in order to compensate the initial exponential growth of the solution outside the

set ω. We also observe that the control reduces the oscillations of the corresponding controlled solution (in

comparison with the solution to the linear equation). The effect of the nonlinear control on the system is

measured through the relative error ET := ‖(y,∂ty)(· ,T ;v?)‖V
‖(y,∂ty)(· ,T ;0)‖V where y(· , T, v?) (resp. y(· , T, 0)) is the solution

at time T of (5) with control equal to v = v? (resp. v = 0). We obtain ET ≈ 5.83 × 10−5. Larger values

of cf such |cf | > 40 yields to first values of the sequence {λk}k∈N far from one (as observed in [59] for the

solution of the Navier-Stokes system with large values of the Reynolds number).

]iterate k
√

2E(yk, vk)
‖yk−yk−1‖L2(QT )

‖yk−1‖L2(QT )

‖vk−vk−1‖L2
χ(qT )

‖vk−1‖L2
χ(qT )

‖yk‖L2(QT ) ‖vk‖L2
χ(qT ) λk

0 7.44× 102 – – 38.116 732.22 1

1 1.63× 102 1.79× 100 9.30× 10−1 58.691 667.602 1

2 1.62× 100 8.42× 10−2 1.41× 10−1 60.781 642.643 1

3 1.97× 10−3 1.21× 10−3 4.66× 10−3 60.745 643.784 1

4 5.11× 10−10 6.43× 10−7 2.63× 10−6 60.745 643.785 –

Table 1: cf = 10; Norms of (yk, vk) with respect to k defined by the algorithm (42).
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Figure 4: cg = 10 – Evolution of ‖y4(· , t)‖L2(Ω) ( ),

‖y0(· , t)‖L2(Ω) ( ) and ‖y(· , t; 0)‖L2(Ω) ( ) w.r.t. t.

Figure 5: cg = 10 – Evolution of ‖v4(· , t)‖L2
χ(ω) ( ),

and ‖v0(· , t)‖L2
χ(ω) ( ) w.r.t. t.

3 The heat equation

In this section, we consider the heat equation, both in linear and semilinear regime and highlight that space-

time approaches also lead to robust numerical approximation of exact controls. The approach is similar

with the notable exception that it involves singular in time Carleman weights, in the framework proposed

by Fursikov and Imanuvilov in [41]. This third section follows the same outline than the previous one.

3.1 Controllability results for the linear heat equation

As a preliminary step for a semilinear situation, we recall some controllability results for the linear heat equa-

tion with potential A ∈ L∞(QT ) and right hand side B ∈ L2(ρ0,s, QT ) for a precise weight ρ0,s parametrized

by s ∈ R?+, that is defined in the sequel. More precisely, we are interested in the existence of a control f

such that the solution z of {
∂tz −∆z +Az = v1ω +B in QT ,

z = 0 on ΣT , z(· , 0) = z0 in Ω
(25)

satisfies

z(· , T ) = 0 in Ω. (26)

We follow the usual strategy of [41] to construct a solution of the null controllability problem, using

Carleman type estimates. Instead of using the classical estimates of [41], we use the one in [4] for which it

is easier to deal with non zero initial data as the weight function does not blow up as t→ 0. For any s ≥ 0,

we consider the weight functions ρs = ρs(x, t), ρ0,s = ρ0,s(x, t) and ρ1,s = ρ1,s(x, t) which are continuous,

strictly positive and belong to L∞(QT−δ) for any δ > 0. Precisely, we use the weights introduced in [4]:

ρ0,s = ξ−3/2ρs, ρ1,s = ξ−1ρs, ρ2,s = ξ−1/2ρs, ρ3,s = ξ1/2ρs where ρs and ξ are defined, for all s ≥ 1

and λ ≥ 1, as follows:

ρs(x, t) = exp
(
sϕ(x, t)

)
, ξ(x, t) = θ(t) exp(λψ̂(x)), (27)

with θ ∈ C2([0, T )) such that θ(0) = 1 and θ(t) = (T − t)−1 for all t ∈ [T − T1, T ] with 0 < T1 < min( 1
4 ,

3T
8 )

and ϕ ∈ C1([0, T )) is defined by ϕ(x, t) = θ(t)
(
λ exp(12λ)− exp(λψ̂(x))

)
with ψ̂ = ψ̃ + 6, where ψ̃ ∈ C1(Ω)

satisfies ψ̃ ∈ (0, 1) in Ω, ψ̃ = 0 on ∂Ω and |∇ψ̃(x)| > 0 in Ω\ω. We emphasize that the weights blow up

as t→ T− but not at t = 0 and ρ0,s(x, t) = ξ−3/2(x, t)ρs(x, t) ≥ e3/2s for all (x, t) ∈ QT .
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3.1.1 Carleman estimates

The controllability property for the linear system (25) is a consequence of the following Carleman estimate,

written to simplify in the one dimensional case :

Lemma 1. Let P0 := {q ∈ C2(QT ) : q = 0 on ΣT }. There exist λ0 ≥ 1 and s0 ≥ 1 such for all λ ≥ λ0

and for all s ≥ max(‖A‖2/3L∞(QT ), s0), the following Carleman estimate holds∫
Ω

ρ−2
s (0)|∂xp(0)|2 + s2λ3e14λ

∫
Ω

ρ−2
s (0)|p(0)|2 + sλ2

∫
QT

ρ−2
2,s|∂xp|2 + s3λ4

∫
QT

ρ−2
0,s|p|2

≤ C
∫
QT

ρ−2
s | − ∂tp− ∂xxp+Ap|2 + Cs3λ4

∫
qT

ρ−2
0,s|p|2, ∀p ∈ P0.

(28)

This estimate is easily deduced from the one obtained in [4, Theorem 2.5] devoted to the case A ≡ 0. In the

sequel we assume that λ = λ0 and denote by C any constant depending only on Ω, ω, λ0 and T . We then

define and check that the bilinear form

(p, q)P :=

∫
QT

ρ−2
s L?ApL

?
Aq + s3λ4

0

∫
qT

ρ−2
0,sp q

where L?Aq := −∂tq − ∂xxq + Aq for all q ∈ P0 is a scalar product on P0 (see [36]). The completion P of

P0 for the norm ‖ · ‖P associated with this scalar product is a Hilbert space. By density arguments, (28)

remains true for all p ∈ P , that is, for λ = λ0,∫
Ω

ρ−2
s (0)|∂xp(0)|2 + s2λ3

0e
14λ0

∫
Ω

ρ−2
s (0)|p(0)|2 + sλ2

0

∫
QT

ρ−2
2,s|∂xp|2 + s3λ4

0

∫
QT

ρ−2
0,s|p|2 ≤ C‖p‖2P (29)

for all s ≥ max(‖A‖2/3L∞(QT ), s0). This inequality leads to the following result.

Lemma 2. Let s ≥ max(‖A‖2/3L∞(QT ), s0). There exists a unique solution p ∈ P of

(p, q)P =

∫
Ω

z0q(0) +

∫
QT

Bq, ∀q ∈ P. (30)

This solution satisfies the following estimate (with c := ‖ϕ(·, 0)‖L∞(Ω))

‖p‖P ≤ Cs−3/2
(
‖ρ0,sB‖L2(QT ) + ecs‖z0‖L2(Ω)

)
. (31)

3.1.2 Application to controllability

Following closely [41], the previous lemma implies a controllability result for the linear system 25.

Theorem 6. Assume A ∈ L∞(QT ), s ≥ max(‖A‖2/3L∞(QT ), s0), B ∈ L2(ρ0,s, QT ) and z0 ∈ L2(Ω). Let p the

solution of (30). Then, the pair (z, v) defined by

z = ρ−2
s L?Ap and v = −s3λ4

0ρ
−2
0,sp|qT (32)

is a controlled pair and satisfies the following estimates

‖ρs z‖L2(QT ) + s−3/2λ−2
0 ‖ρ0,s v‖L2(qT ) ≤ Cs−3/2

(
‖ρ0,sB‖L2(QT ) + ecs‖z0‖L2(Ω)

)
(33)

with c := ‖ϕ(·, 0)‖L∞(Ω)
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We refer to [38] for an estimate of the null control of minimal L2(qT ) norm (corresponding to ρ0 ≡ 1 and

ρ = 0) in the case B ≡ 0. Thus, the resolution of (30) leads in practice to a control for the linear problem.

Moreover, following [41], it is not difficult to check that the functions z and v defined in (32) can also be

characterized as the unique minimizer of the functional J defined as

J(z, v) =
s3λ4

0

2

∫
QT

ρ2
s|z|2 +

1

2

∫
qT

ρ2
0,s|v|2 (34)

over the set
{

(z, v) : ρsz ∈ L2(QT ), ρ0,sv ∈ L2(qT ), (z, v1ω) solves (25)-(26) in the transposition sense
}
.

Before to discuss the numerical approximation of controls, we explain in the next section, how we can

construct, using the estimate of Theorem (6), convergence sequence of controlled pair in semilinear situation.

3.2 Controllability results for the semilinear heat equation

We now consider the null controllability problem for the following system for the semilinear heat equation:{
∂ty −∆y + f(y) = v1ω in QT

y = 0 on ΣT , y(·, 0) = u0 in Ω
, (35)

with u0 ∈ L2(Ω), v ∈ L2(QT ) and f : R 7→ R. Recall that if f is locally Lipschitz-continuous and satisfies the

condition |f ′(r)| ≤ C(1+|r|4+d) for all r ∈ R, then (35) possesses exactly one local in time solution. Moreover,

in accordance with the results in [19, Section 5], under the growth condition |f(r)| ≤ C(1 + |r| ln(1 + |r|))
for all r ∈ R and some C > 0, the solutions to (35) are globally defined in [0, T ] and one has

y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). (36)

Without the above growth condition, the solutions to (35) can blow up before t = T ; in general, the blow-up

time depends on f and the size of ‖u0‖L2(Ω). We refer to [52] and to [42, Section 2 and Section 5] for a

survey on this issue.

System (35) is said to be exactly controllable to trajectories at time T if, for any u0 ∈ L2(Ω) and

any globally defined bounded trajectory y? ∈ C0([0, T ];L2(Ω)) (corresponding to data u?0 ∈ L2(Ω) and

f? ∈ L2(qT )), there exist controls f ∈ L2(qT ) and associated states y that are again globally defined in [0, T ]

and satisfy (36) and

y(x, T ) = y?(x, T ), x ∈ Ω. (37)

As for the wave equation, the uniform controllability strongly depends on the properties of the nonlinear

function g. Assuming a growth condition on the nonlinearity g at infinity, this problem has been solved by

Fernández-Cara and Zuazua in [39]:

Theorem 7. Let T > 0 be given. Assume that (35) admits at least one solution y?, globally defined in [0, T ]

and bounded in QT . Assume that f : R 7→ R is C1 and satisfies |f ′(r)| ≤ C(1 + |r|4+d) for every r ∈ R. If

(H4) lim sup
|r|→∞

|f(r)|
|r| ln3/2 |r|

= 0,

then (35) is exactly controllable to y? in time T .

Therefore, if |f(r)| does not grow at infinity faster than |r| lnp(1 + |r|) for some p < 3/2, then (35) is

controllable. On the contrary, if f is too “super-linear” at infinity (specifically if p > 2), then for some

initial data the control cannot compensate the blow-up phenomenon occurring in Ω\ω (see [39, Theorem

1.1]). The problem remains open when f behaves at infinity like |r| lnp(1 + |r|) with 3/2 ≤ p ≤ 2. In [54],

Le Balc’h has proved the uniform controllability for p ≤ 2 assuming that T is large enough and imposing

sign conditions on f , notably that f(r) > 0 for r > 0 or f(r) < 0 for r < 0 (a condition not satisfied

15



for f(r) = −r lnp(1 + |r|). Another interesting reference is [25], where a positive boundary controllability

result is proved for a specific class of initial and final data and T large enough.

Theorem 7 is deduced in [39] from a null controllability result corresponding to the null trajectory, i.e.

y? ≡ 0 corresponding to v? ≡ 0, u?0 ≡ 0 and assuming f(0) = 0. The proof of given in [39] is based on a fixed-

point method, initially introduced in [78] for a one-dimensional wave equation. Precisely, it is shown that

the operator Λ : L∞(QT ) 7→ L∞(QT ), where y := Λ(z) is a null controlled solution of the linear boundary

value problem {
∂ty −∆y + y f̃(z) = v1ω in QT

y = 0 on ΣT , y(· , 0) = u0 in Ω
f̃(r) :=

{
f(r)/r r 6= 0

f ′(0) r = 0
(38)

maps a closed ball B(0;M) ⊂ L∞(QT ) into itself, for some M > 0. Then, Kakutani’s Theorem provides

the existence of at least one fixed-point for the operator Λ, which is also a controlled solution for (35). The

control of minimal L∞(qT ) norm is considered in [39] leading to controlled solution in L∞(QT ).

3.3 Construction of two sequences converging to a controlled pair for (35)

We now explain how we can design sequences (yk, vk)k∈IN converging to a controlled pair for (35). The

motivation, difficulties and ideas are very similar to the ones explained in Section 2.3 dedicated to the wave

equation. The arguments for the heat are however a bit more technical since singular Carleman weights

appear in the various estimates.

As for the wave equation, a natural strategy is to take advantage of the method used in [39, 54] and

consider, for any element y0 ∈ L∞(QT ), the Picard iterations defined by yk+1 = Λ(yk), k ≥ 0 associated

with the operator Λ. Numerical experiments reported in [35] exhibit the non convergence of the sequences

(yk)k∈N and (vk)k∈N for some initial conditions large enough. This phenomenon is related to the fact that

the operator Λ is in general not contracting, including the cases for which f̃ is globally Lipschitz.

In the one-dimensional case, a least-squares type approach, based on the minimization over Z := L2((T −
t)−1, QT ) of the functional R : Z → R+ defined by R(z) := ‖z − Λ(z)‖2Z has been introduced and analyzed

in [35]. Assuming u0 ∈ L∞(Ω), f̃ ∈ C1(R) and (f̃)′ ∈ L∞(R), it is proved that R ∈ C1(Z;R+) and that, for

some constant C > 0

(1− C‖(f̃)′‖L∞(R)‖u0‖∞)
√

2R(z) ≤ ‖R′(z)‖L2(QT ) ∀z ∈ L2(QT )

implying that if ‖f̃ ′‖∞‖u0‖∞ is small enough, then any critical point for R is a fixed point for Λ (see [35,

Proposition 3.2]). Under such smallness assumption on the data, numerical experiments reported in [35]

display the convergence of gradient based minimizing sequences for R and a better behavior than the ones

associated with the Picard iterates for Λ.

As is usual for nonlinear problems, we can employ a Newton type method to find a zero of the mapping

F̃ : Y 7→W defined by

F̃ (y, v) = (∂ty −∆y + f(y)− v1ω, y(· , 0)− u0) ∀(y, v) ∈ Y, (39)

where the Hilbert space Y and W are defined as follows

Y :=
{

(y, v) : ρsy ∈ L2(QT ), ρ0,s(∂ty −∆y) ∈ L2(QT ), y = 0 on ΣT , ρ0,sv ∈ L2(qT )
}

and W := L2(ρ0,s;QT ) × L2(Ω) for some appropriates weights. Here, L2(ρ0,s;QT ) stands for the space

{z : ρ0,sz ∈ L2(QT )}. It is shown in [35] that, if f ∈ C1(R) and f ′ ∈ L∞(R), then F̃ ∈ C1(Y ;W ).

This enables to derive the Newton iterative sequence. Thus, we first choose (y0, v0) in Y and then, for

each k ≥ 0, we set (yk+1, vk+1) = (yk, vk)− (Yk, Vk), where Vk is a null control for the system{
∂tYk −∆Yk + f ′(yk)Yk = Vk 1ω + ∂tyk −∆yk + f(yk)− vk1ω, in QT ,

Yk = 0 on ΣT , Yk(· , 0) = u0 − yk(· , 0) in Ω
(40)
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and Yk is the associated state. However, the numerical experiments in [35] exhibits the lack of convergence

of the Newton method for large initial conditions, for which the solution y is not close enough to the zero

trajectory.

3.3.1 A least-squares approach related to a Newton type linearisation

Let us introduce, for each s ≥ s0, the vector space

A0,s :={(y, v) : ρsy ∈ L2(QT ), ρ0,sv ∈ L2(qT ), ρ0,s(∂ty −∆y) ∈ L2(QT ), y(· , 0) = 0 in Ω, y = 0 on ΣT },

where ρs, ρ1,s and ρ0,s are defined in (27). Endowed with the scalar product(
(y, v), (y, v)

)
A0,s

:=
(
ρsy, ρsy

)
L2(QT )

+
(
ρ0,sv, ρ0,sv

)
L2(qT )

+
(
ρ0,s(∂ty −∆y), ρ0,s(∂ty −∆y)

)
L2(QT )

,

we see that A0,s becomes a Hilbert space. Let us also consider the linear manifold

As := {(y, v) : ρs y ∈ L2(QT ), ρ0,sv ∈ L2(qT ), ρ0,s(∂ty −∆y) ∈ L2(QT ), y(· , 0) = u0 in Ω, y = 0 on ΣT }.

We endow As with the same scalar product. Clearly, if (y, v) ∈ As, then y ∈ C0([0, T ];L2(Ω)). Since

ρsy ∈ L2(QT ), we also have y(· , T ) = 0. The null controllability requirement is therefore incorporated in the

spaces A0,s and As. For any fixed s ≥ 0, we can now consider the following non-convex extremal problem:

inf
(y,v)∈A0,s

Es(y, v), Es(y, v) :=
1

2

∥∥ρ0,s

(
∂ty −∆y + f(y)− v 1ω

)∥∥2

L2(QT )
. (41)

We check that ρ0,sf(y) ∈ L2(QT ) for any (y, f) ∈ As, so that Es is well-defined. Assuming slightly stronger

assumption on f than in Theorem 7, a strong convergent approximation of a controlled pair is obtained:

Theorem 8. [57] Let T > 0 be given. Let d = 1. Assume that (35) admits at least one solution y?, globally

defined in [0, T ] and bounded in QT associated with v? ∈ L2(ρ0,s, qT ) and s large enough. Assume that

f ∈ C1(R) satisfies the growth condition

(H′1) ∃α > 0, s.t. |f ′(r)| ≤ (α+ β? ln+ |r|)3/2, ∀r ∈ R

for some β? = β?(y?) > 0 small enough and

(Hp) ∃p ∈ [0, 1] such that sup a,b∈R
a 6=b

|f ′(a)−f ′(b)|
|a−b|p < +∞.

Then, for any u0 ∈ L2(Ω), the sequence (yk, vk)k∈N ∈ As defined as follows:{
(y0, f0) ∈ As, (yk+1, fk+1) = (yk, fk)− λk(Y 1

k , F
1
k ), k ≥ 0,

λk = argminλ∈[0,1]Es
(
(yk, fk)− λ(Y 1

k , F
1
k )
)
,

(42)

where (Y 1
k , F

1
k ) ∈ A0,s is the minimal controlled pair solution of{

∂tY
1
k −∆Y 1

k + g′(yk)Y 1
k = F 1

k 1ω + ∂tyk −∆yk + g(yk)− fk1ω in QT ,

Y 1
k = 0 on ΣT , Y 1

k (· , 0) = 0 in Ω,
(43)

associated with (yk, fk) ∈ As converging strongly to a controlled pair for (35) satisfying (37). Moreover,

after a finite number of iterations, the convergence is of order at least 1 + p.

The hypothesis on f are stronger here than in Theorem 7: it should be noted however that the function

f(r) = a+ br + βr ln(1 + |r|)3/2, a, b ∈ R which is somehow the limit case in (H4) satisfies (H′1) and (H1).

On the other hand, Theorem 8 devoted to the one dimensional case is constructive, contrary to Theorem 7.

A similar construction is performed in a multi-dimensional case with d ≤ 3 in [56] assuming that f is globally
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Lipschitz. The extension of Theorem 8 to the case d ≤ 3 can be obtained as well. The minimizing sequence

for Es constructed in [56, 57] are related to the operator ΛN : A → A defined by y = ΛN (z) controlled

solution of {
∂ty −∆y + f ′(z)y = v1ω + f ′(z)z − f(z) in QT

y = 0 on ΣT , y(·, 0) = u0 in Ω
, (44)

through the control v of minimal L2(ρ0(s), qT ) norm. The analysis in [57] makes use of global L2 Carleman

estimates as initially introduced in this context in [41]. The arguments used in the proof take their roots in

the works [58, 59], concerned with the approximation of the solution to Navier-Stokes-like problems through

least-square methods; see also [60, 69], inspired in the seminal contribution [9].

We also emphasize that the L2(QT ) norm in E indicates that we are looking for regular weak solutions

to the parabolic equation (35). We refer to [56], devoted to the case g′ ∈ L∞(R) and the multidimensional

case where the L2(0, T ;H−1(Ω)) is considered leading to weaker solutions.

It is very clear from the analysis that the parameter s plays a crucial role: a large value of this parameter

ensures convergence property. This is the also in the following section where a simpler method based on a

simpler linearization is discussed.

3.3.2 Influence of the parameter s and a simpler linearization

Precisely, the following extension is proved in [32] based on simpler linearization.

Theorem 9. Let T > 0 be given. Let d ≤ 5. Assume that f is locally Lipschitz-continuous and satisfies

(H′1) for β small enough. There exist s and R large enough such that, for any y0 ∈ CR(s) := {y ∈ L∞(QT ) :

‖y‖L∞(QT ) ≤ R, ‖ρ0,sy‖L2(QT ) ≤ R1/2}, the states yk given by{
∂tyk −∆yk = vk1ω − f(yk−1) in QT ,

yk = 0 on ΣT , yk(· , 0) = u0 in Ω,
(45)

where vk ∈ L2(ρ0,s, qT ) is such that (yk, vk) minimizes J , remain in CR(s) and converge strongly to a

controlled solution for (35).

To prove this result, we proceed as follows:

• First, we introduce, for each ŷ ∈ L2(ρ0,s, QT ) ∩ C0(QT ), the following corresponding “linearized” null

controllability problem: Find f such that the solution to{
∂ty −∆y = v1ω − f(ŷ), in QT ,

y = 0, on ΣT , y(· , 0) = u0, in Ω
(46)

satisfies y(· , T ) = 0.

• Then, we consider the mapping Λs that associates to each ŷ the solution to (46) associated with the

control v1ω furnished by Theorem 6 (for A ≡ 0 and B = −f(ŷ)) and prove that for s large enough,

the operator Λs is a contraction.

3.4 Numerical approximation of exact controls for the heat equation

Approximations of null controls for the (linear) heat equation is a delicate issue: we mention the seminal

work [14] dealing with the control of minimal L2-norm which is very oscillatory near the final time t = T

and therefore difficult to construct and implement for real life applications (see also [51, 72] where this is

discussed at length). On the other hand, as discussed in [36, 37], introduction of Carleman weights in the cost

functional J leads to robust method and strong convergent approximations with respect to the discretization

parameter. Precisely, in view of Theorem 6, one have to approximated the solution p ∈ P of the second order
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in time and fourth order in space variational formulation (30). A conformal parametrized approximation,

say Ph of P , leads to the finite dimensional problem : find ph ∈ Ph solution of

(ph, ph)P =

∫
QT

Bph +

∫
Ω

u0ph(0) ∀ph ∈ Ph. (47)

If the family (Ph)h>0 is dense in P , then Cea’s lemma implies the convergence ‖ph − p‖P → 0 as h → 0.

From ph, an approximation of the controlled state is then given by (yh, vh) := (ρ−2
s L?ph,−s3ρ−2

0,sph 1ω). In

order to solve (47), it is very convenient to preliminary perform the change of variable

m = ρ−1
0,sp, z = ρ−1

s L?p

so that z = ρ−1
s L?(ρ0,sm) and y = ρ−1

s z and then replace the formulation (47) by the equivalent and

well-posed following mixed formulation: find (z,m, η) ∈ L2(QT )× ρ−1
0,sP × L2(QT ) solution of

∫
QT

zz + s3

∫
qT

mm+

∫
QT

(T − t)1/2η
(
z − ρ−1

s L?(ρ0,sm)
)

= −
∫
QT

ρ0,sBm+

∫
Ω

ρ0,s(0)u0m(0) ∀(m, z) ∈ ρ−1
s P × L2(QT ),∫

QT

(T − t)1/2η
(
z − ρ−1

s L?(ρ0,sm)
)

= 0, ∀η ∈ L2(QT ).

(48)

ηk stands as a Lagrange multiplier for the constraint z − ρ−1
s L?(ρ0,sm) = 0 in QT . We check the following

equality for every m ∈ ρ−1
s P

−ρ−1
s L?(ρ0,s) = (g1(θ, ϕ) + g2(θ, ϕ))m+ θ−3/2(∂tm+ ∆m) + g3(θ, ϕ) · ∇m

with {
g1(θ, ϕ) := ρ−1

s ∂tρ0,s = ∂t(θ
−3/2) + θ−3/2s(∂tϕ),

g2(θ, ϕ) := θ−3/2(s∆ϕ+ s2(∇ϕ)2), g3(θ, ϕ) := ρ−1
s ∇ρ0,s = θ−3/2s∇ϕ.

(49)

We observe that g2 is slightly singular like (T − t)−1/2 for t ≥ T − T1 and therefore introduce the function

(T − t)1/2 in (48). The equivalent formulation (48) instead of (47) allows, first to eliminate the singularity

of the coefficients for t close to T and second to obtain simultaneously the control and the controlled

solution. We refer to [36, 37] where experiments are discussed in details and emphasize the robustness of

the approximation. We also refer to [70] for some numerical evidences of the robustness of the method with

respect to the parameter h associated with the cost J(v) = ‖ρ0,sv‖2L2(qT ).

3.5 Numerical illustrations

We illustrate in this section the results of convergence in Theorem 9 by computing the sequence (yk, vk)k∈IN?

solution of (45) and minimizing for each k the functional Js defined in (34) with s large enough. We present

some numerical experiments in the one dimensional setting and Ω = (0, 1). We take T = 1/2 and consider

data for which the uncontrolled solution of (35) blows up before T . Moreover, in order to reduce the decay

of the solution of (35) when f ≡ 0, we replace the term −∆y in (35) by −ν∆y with ν = 10−1. We consider

the nonlinear even function f(r) = cf
(
α + β ln(1 + |r|)

)3/2
r with α = β = 1 and cf < 0. As for the

initial condition to be controlled, we consider u0(x) = cu0
sin(πx) parametrized by cu0

> 0. We use a

mesh composed of 29132 and 14807 triangles corresponding to h ≈ 1.17 × 10−2. The sequence (yk, vk)k∈N
is initialized with y−1 = 0 (so that f(y−1) ≡ 0 and the first iteration computed the control pair (y0, v0)

corresponding to the controlled trajectory of the linear heat equation with initial datum u0 and zero source

term) and is computed until the following criterion is satisfied
‖ρ0,s(yk+1−yk)‖L2(QT )

‖ρ0,syk‖L2(QT )
≤ 10−6. We shall denote

by k? the lowest integer k for which it holds true.
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For ω = (0.2, 0.8), cu0 = 10 and cf = −5, Figure 6-left depicts the evolution of the relative error
‖ρ0,s(yk+1−yk)‖L2(QT )

‖ρ0,syk‖L2(QT )
with respect to the parameter of iteration k for s ∈ {1, 2, 3, 4}. In agreement with the

theoretical part, the convergence is observed for s large enough, here s ≥ 2. Moreover, the rate increases

with s: the convergence is observed after k? iterations equal to 48, 17, 13 for s = 2, 3 and 4 respectively.

Figure 6-right depicts the ratio
‖ρ0,s(Λs(yk)−Λs(yk−1))‖L2(QT )

‖ρ0,s(yk−yk)‖L2(QT )
highlighting the lack of contracting property of

Λs for s = 1. Figure 7 depicts the evolution of the L2(Ω) norm of the control and corresponding controlled

solution with respect to the time variable for s = 2, 3, 4. As expected in view of the definition of the weights,

large values of s concentrate the action of the control close to the initial time and leads to large L∞(QT )

norm of the control (see Table 2). Figure 8 and Figure 9 depict the control and corresponding controlled

solution in QT for these values of s.
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Figure 6: Relative error
‖ρ0,s(yk+1−yk)‖L2(QT )

‖ρ0,syk‖L2(QT )
(Left) and

‖ρ0,s(yk+1−yk)‖L2(QT )

‖ρ0,s(yk−yk−1)‖L2(QT )
(Right) w.r.t. k for s ∈

{1, 2, 3, 4}.
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Figure 7: Evolution of ‖vk?(·, t)‖L2(Ω) and ‖yk?(·, t)‖L2(Ω) w.r.t. t ∈ [0, T ] for cu0 = 10, cf = −5 and

s ∈ {2, 3, 4}.

Table 3 provides some norms of the solution for s = 3 with respect to the fineness h of the triangular

mesh used and highlights the stability of the approximation. Actually, the high degree (equal to 3) of the

approximation induced by the composite finite element HCT makes the convergence of the approximation

quite fast with respect to h. We also observe that the number of iterations to reach the convergence of the

sequence (yk)k≥0 is independent of h.
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Figure 8: The control vk? in QT for cu0 = 10, cf = −5 and s ∈ {2, 3, 4}.

Figure 9: The controlled solution yk? in QT for cu0 = 10, cf = −5 and s ∈ {2, 3, 4}.
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s ‖yk?‖L2(QT ) ‖ρsyk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0,svk?‖L2(qT ) ‖vk?‖L∞(qT ) k?

2 2.43 80.50 58.24 208.52 297.56 48

3 1.415 86.53 51.30 463.69 414.93 17

4 1.108 173.17 52.83 1366.08 605.20 13

5 0.9307 429.07 57.04 4328.61 889.05 11

Table 2: cu0 = 10 ; cf = −5; Norms of (yk? , vk?) w.r.t. s.

h ‖yk?‖L2(QT ) ‖ρsyk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0,svk?‖L2(qT ) ‖vk?‖L∞(qT ) k?

0.156205 1.47841 90.9285 51.4646 469.008 420.345 18

0.0760345 1.46148 87.9869 51.2379 465.822 419.42 17

0.044171 1.45521 87.0578 51.0243 464.527 416.886 17

0.0208981 1.45056 86.2678 51.0448 463.253 414.223 17

0.0117201 1.45203 86.5628 51.1068 463.723 415.114 17

Table 3: cu0
= 10 ; cf = −5 ; s = 3; Norms of (yk? , vk?) w.r.t. h.
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