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Smooth Copula-based Generalized Extreme Value model and
Spatial Interpolation for Extreme Rainfall in Central Eastern

Canada
BY

Fatima Palacios-Rodriguez1, Elena Di Bernardino2, Melina
Mailhot3

Abstract

This paper proposes a smooth copula-based Generalized Extreme Value (GEV) model to
map and predict extreme rainfall in Central Eastern Canada. The considered data contains
a large portion of missing values, and one observes several non-concomitant record periods
at different stations. The proposed two-steps approach combines GEV parameters’ smooth
functions in space through the use of spatial covariates and a flexible hierarchical copula-based
model to take into account dependence between the recording stations. The hierarchical copula
structure is detected via a clustering algorithm implemented with an adapted version of the
copula-based dissimilarity measure recently introduced in the literature. Finally, we compare
the classical GEV parameter interpolation approaches with the proposed smooth copula-based
GEV modeling approach.

Keywords: Copula-based Clustering, Extreme Value Theory, Hydrology, Spatial Interpola-
tion, Missing values, Non-concomitant record periods.

1 Introduction

Heavy rainfall can have disastrous consequences on health of financial systems and well-being of
communities, buildings, infrastructures, transportation systems and public safety. In practice, the
interest is, amongst others, from a national safety, risk management and insurance perspectives.
For researchers, as Extreme Value Theory (EVT, see, e.g., Beirlant et al. (2004), de Haan and
Ferreira (2006)) is an area with great recent innovative results, precipitation levels are very inter-
esting. Throughout the years, flood events became important, both from practical and theoretical
perspectives. For example, in Canada, it is recent that insurance companies offer flood protections.
Before 2013, homeowners would rely on the Disaster Financial Assistance program offered by the
federal, provincial and territorial governments. Now, insurance products are available, and several
resources are dedicated to improving flood mapping and mitigation efforts. Statistical models are
now adapted with today’s knowledge on extreme events, in order to assess risks depending on
precipitation appropriately. In other words, it is desirable to set aside safety capital according to
a random variable evaluated as precisely as possible in terms of distribution, measurements and
variability.
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Extensive literature exists on the spatial mapping or spatial interpolation of extreme rainfall and
the approaches are essentially divided in two groups. The first one is mainly composed of spacial
interpolation techniques to estimate precipitation quantities from marginal extreme value distri-
butions in order to provide return level maps. This classical approach is frequently used, e.g. in
Begueŕıa and Vicente-Serrano (2006), Cooley et al. (2007) and Kohnová et al. (2009). A compar-
ison of different traditional interpolation methods (inverse distance weighting, nearest neighbor
and kriging) for mapping extreme precipitation in central Slovakia can be found in Szolgay et al.
(2009). Similar study is performed in Blanchet and Lehning (2010), or in Das et al. (2020), for
mapping snow depth return levels. In Hwang et al. (2012), a two step procedure is proposed where
a regression and hydrological models are used to interpolate precipitation. Pointwise return levels,
in the Cévennes-Vivarais region (southern part of France), based on nearest neighbor estimators,
are obtained in Gardes and Girard (2010).

The second group in the extreme return level maps literature is based on the direct estimation of
the spatial extremal distribution. Spatial extreme distributions have received a lot of attention
in recent years and they represent a well-founded approach which are theoretically preferred to
any interpolation method. Several techniques have been developed for the direct estimation of
spatial extreme distributions, which involve, among others, extreme-value copulas (see e.g., Joe
(1994) and Saad et al. (2015)), max-stable processes (see e.g., Smith (1990), Schlather (2002),
Padoan et al. (2010), Davison et al. (2012), Reich and Shaby (2012), Ribatet et al. (2012), Huser
et al. (2019)) and Bayesian hierarchical models (see e.g., Johannesson et al. (2021)). Notice that
the property of max-stablity is classically included in several papers on spatial interpolation of
extremes (see e.g., Blanchet and Davison (2011), for extreme snow depth models). An extreme
rainfall model assuming regional dependence is proposed in Yoon et al. (2015) and random fields
approaches are presented in Sang and Gelfand (2009) and Sang and Gelfand (2010).

This article focuses on constructing the spatial mapping of maximum precipitation, using the
EVT framework for 24h duration rainfall annual maxima in Central Eastern Canada. Despite
the fact that several authors have brought efforts in order to provide spatial extreme models for
precipitation, the considered dataset used in this article presents at least two interesting aspects
which need to be addressed carefully.

In this paper, we first focus on modeling extreme rainfall for 116 recording stations located in
the province of Quebec, Nova Scotia, New Foundland, New Brunswick and Prince Edward Island.
This is a vast region, with a small proportion (116 stations for more than 1,000,000 km2) of
recording stations compared to Lehmann et al. (2016), for example, where 872 and 1348 stations
are available on a 156,000 and 580,000 km2 regions, respectively, and literature is quite scarce
for this specific area. Note that the size of the meteorological stations network in Canada is a
major well-known issue already raised by the Canadian Standards Association. Khedhaouiria
et al. (2020) consider another Canadian dataset which focusses on a southern Canadian region.

Even given the scarce aspect of the dataset, the obtained results show a robust performance with
the considered smooth Generalized Extreme Value (GEV) distribution fitting methods. The same
dataset has been analyzed in Perreault et al. (2022) where a Bayesian hierarchical interpolation
model is proposed with the spatial effect modeled via Gaussian Markov random fields (see, e.g.,
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Rue and Held (2005)). Results of Section 4 can be compared with those of Perreault et al. (2019).

Also, we consider a dataset which presents several missing values and non-concomitant record
periods at different stations. The interested reader is referred to Figure 21 (see Appendix E)
for a graphical illustration of this crucial point. It implies that when one aims to model the
joint behaviour of the extreme rainfall at a specific station, the estimated marginal distribution
uses the complete series for a given station, but the copula function representing the dependence
(see, e.g., Nelsen (1999)) is only based on the time period where all series were recorded simul-
taneously. Here, we are facing the problem of estimating parametric multivariate models when
unequal amounts of data are available on each variable (see e.g., Patton (2006)). To cope with
this situation, we consider the hybrid copula model (see e.g., Segers (2015)). This model is an
extension of the classical empirical copula, obtained by combining an estimator of a multivariate
cumulative distribution with estimators of the marginal cumulative distributions. Note that, in
the missing data framework, the considered marginal estimators are not necessarily equal to the
margins obtained through the joint estimator.

The main contribution of the present work is the proposed spatial smooth GEV model, mixing
response surfaces for the GEV parameters’ models, with a flexible joint dependence framework
via a hierarchical copula, taking into account the spatio-temporal dependence structure between
the recording stations. The proposed model for the return level maps estimation is based on
several inference steps, in order to deal with the challenges of the data, concisely described in the
following. The interested reader is referred to Section 2 for the data description and Section 3.4
for the associated detailed algorithms.

First, in order to handle the dependence between stations, we estimate our adapted version of
the copula-based dissimilarity measure recently proposed in Disegna et al. (2017) (see Equation
(14)). For each couple of stations, this measure is based on a convex combination between the
spatial distance and the copula behaviour. Pseudo-observations for the copula are built by using
the point-wise GEV quantiles with parameters estimated via the L−moment method. Then, on
these pseudo-observations series of different lengths and non-concomitant years, we consistently
estimate the dissimilarity by using the hybrid empirical copula (see Algorithm 1).
Second, we build a hierarchical copula model via a PAM clustering algorithm based on the esti-
mated dissimilarity, considering the spatial dependence between stations (see Algorithm 2).
Finally we include the GEV smooth surface parameters’ with polynomial regression and spline
models and we maximize the obtained hierarchical loglikelihood (see Equations (9)- (10)). Con-
sidered covariates included in the considered polynomial/spline models are presented in Table 1.
The resulting smooth functions for the GEV parameters are used to provide the estimated return
level maps via Equation (3).

Furthermore we propose an analysis, comparing classical spatial interpolation of individual GEV
distributions: polynomial and spline-based regression models, inverse distance weighted and uni-
versal kriging models. This comparison is crucial to show the difference between practical com-
monly implemented routines and the approach proposed in this paper, using recently introduced
tools, in terms of obtained return level maps (see Figure 8).
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The article is organized as follows. Section 2 presents the considered precipitation dataset. In
Section 3, return level maps are obtained through smooth spatial GEV models by using our
clustering hierarchical copula-based model with associated copula-based dissimilarity measure.
Obtained results on considered rainfall data are presented in Section 4. Conclusion and per-
spectives are discussed in Section 5. Appendix A is devoted to illustrate, via simulation studies,
the performance of the proposed dissimilarity measure and associated clustering algorithm. In
Appendix B we provide a more comprehensive simulation study to evaluate the estimation per-
formance for the final return level maps and compare it to alternative methods (the Gaussian
latent model in Zhang et al. (2020) and the hierarchical max-stable model in Reich and Shaby
(2012)). In Appendix C we build return level maps via classical spatial interpolation methods of
individual GEV distributions. Further details on L-moments for GEV parameters are postponed
in Appendix D. Finally additional information are provided in Appendix E.

2 Considered Center Eastern Canada dataset

We consider rainfall data measured in millimeters (mm), adjusted for snow/ice, registered in 116
stations in Center Eastern Canada for a duration of 24h. The stations are managed by Envi-
ronment and Climate Change Canada (ECCC) and verify the quality standards imposed by the
World Meteorological Organization. Annual maxima precipitation for a 24-hour duration are
recorded from 1914 to 2017. Each station possesses precipitation measures for a minimum of 16
years in the specified time range. A specific characteristic of the considered rainfall dataset is
the shortage of the recorded data, as depicted in Figure 21, illustrating the proportion of missing
data and concomitant observations across years. The elevation of the studied area covers a wide
range given between 5m and 672m above sea level. These annual maxima are publicly available
at climate.weather.gc.ca/prods_servs/engineering_e.html.

We introduce the following mathematical notation, which will be used in the following for the
description of the considered models. Let xi =

(
x(i,1), . . . , x(i,T )

)
be the annual rainfall maxima

time series of the ith station, for i ∈ I := {1, . . . , n}, observed for T years. Then, our rainfall data
can be represented as a (n × T )−matrix, X = (xi)i=1,...,n, where n = 116 (number of stations)
and T = 104 (length of the considered whole time window).
The spatial location of the considered stations is shown in Figure 1. Remark that all maps in this
paper have been obtained with package leaftet in R.

Figure 1: Locations of considered 116 stations in Central Eastern Canada. The latitude coordi-
nates vary in the range [43.71, 50.24] and the longitude ones in [−79.23,−54.57].

4

climate.weather.gc.ca/prods_servs/engineering_e.html


As suggested by Figure 21, we introduce the indicator variable

Iit =

{
1, if x(i,t) is observed,

0, otherwise.
(1)

Furthermore, we denote by If (resp. Iv) the non-empty set of indices of stations used for the fitting
(resp. validation) procedure. Let nf = card (If ) and nv = card (Iv). Obviously, If ∩ Iv = ∅
and nf + nv = n. Here, we consider nf = 95 and nv = 21. Note that the arbitrary choice
of the nv validation stations can be influent in the final performance of the proposed models.
For this reason, in order to test the robustness of the investigated models, we decide to choose
randomly 200 combinations of nf = 95 and nv = 21 stations to perform our study. One of the 200
considered random combinations between fitting and validation stations is displayed in Figure 2.
The sensibility of the considered statistical routines with respect to the choice of combinations of
nf and nv stations is investigated in Appendix E.

Figure 2: Spatial locations of one of the 200 considered combinations between fitting stations If
(blue points) and validation stations Iv (red points) with nf = 95 and nv = 21.

In the following we first consider spatial smooth GEV models to derive return level maps for
every location s ∈ S, where S represents the overall surface being interpolated. The involved
parameters are modeled via smooth functions in space by including some significant covariates
of the models (see Section 3). Then, we compare the obtained results with classical spatial
interpolation methods of individual GEV distributions (see Appendix C) based on the L-moments
estimators (see Appendix D).

3 Return level maps via spatially smooth copula-based GEV
model

In this section, we describe the components of the spatial smooth GEV model. We detail the
GEV model used, the polynomial and spline models and the copula model used for the GEV
parameters, which takes into account the peculiarity of the dataset presented in Section 2.

3.1 Univariate EVT via block maxima approach

Since X is defined by annual maxima of precipitation, we focus on the EVT block-maxima ap-
proach (see, e.g., Coles (2001) and Ferreira and de Haan (2015)). Let x(i,t) be the annual maxima
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at the ith station for year t. Then, we write x(i,t) = maxj{zj(i,t)}, where zj(i,t) represents the
precipitation at the ith station the jth day of the considered year t. EVT requires independence
or short-range dependence (Leadbetter et al. (1983)) and we do observe through an additional
analysis, near-independence in our precipitation time-series for every considered year and station.
Therefore, we can model x(i,t) by means of a GEV distribution with parameters Λ = (µ, ξ, σ), i.e.,

G(x; Λ) =

{
exp

{
−
[
1 + ξ

(x−µ
σ

)]−1/ξ
}
, 1 + ξ

(x−µ
σ

)
> 0,

0, otherwise.
(2)

The shape parameter ξ ∈ R describing the tail behaviour of the distribution is called the extreme
value index, µ ∈ R is the location parameter and σ > 0 the scale parameter. Now, we introduce
the return level for the GEV distribution. The return level q(p; Λ) associated with the return
period 1/p (0 < p ≤ 1) is the (1−p)th quantile of the GEV distribution in (2), i.e., it is expected
to be exceeded on average once every 1/p years:

q(p; Λ) =

{
µ− σ

ξ [1− {− ln(1− p)}−ξ], ξ ̸= 0,

µ− σ ln{− ln(1− p)}, ξ = 0.
(3)

In the following, we consider three classical geographical coordinates as covariates: longitude,
latitude and elevation, which are obtained using a digital elevation model. Furthermore, in our
analysis, we include the 75% quantile precipitation over the 34-year period 1981-2014 of the
Canadian Regional Climate Model (CRCM5) driven by the ERA-Interim reanalysis (see, e.g., Dee
et al. (2011)). From CRM5, variables are available on a regular lattice covering the northeastern
part of North America through 90000 grid cells, each of which corresponds to an area of 12× 12
km2 in size. We consider the coordinates of the centers of these cells and we attribute to each
station in Figure 1 the 75% quantile precipitation value of the spatially nearest center-cell. More
information on this climate reconstruction can be found, for instance, in Bresson et al. (2017).

3.2 Smooth models for GEV parameters

In this section, we consider the estimation of a spatial smooth GEV distribution with the joint
use of all stations. We aim to model the GEV parameters Λ(s) for s ∈ S from the data as smooth
functions in space. Let ζ be one of three GEV parameters (either µ, ξ or ln(σ)) and ζ̃ be the
associated interpolated value. Consider the following general regression model associated to the
function F

ζ(s) = F (y(1)s , , . . . , y(r)s ) + ϵs, (4)

where y
(j)
s , for j ∈ {1, . . . , r} are covariates and ϵs is an error term. It is assumed that ϵs are inde-

pendent and identically distributed by a normal distribution with mean 0 and constant variance.
In what follows, the GEV parameter ζ at location s is modeled by (4) without the stochastic
(Gaussian) contribution represented by ϵs. To corroborate the constant variance hypothesis, we
provide a spatial map of ϵ̂s to check if in our specific dataset there exists some spatial pattern.
The interested reader is referred to Figure 22 in Appendix E.

Polynomial regression model We consider F in Equation (4) as linear with respect to each

covariate. In the present study, we consider covariates y
(j)
s , for j ∈ {1, . . . , r}, as polynomials of
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longitude, latitude, altitude and 75% quantile precipitation with a maximum polynomial degree
of 3 and we take all possible combinations between these covariates with a maximum polynomial
interaction degree of 3. This provides a commonly used polynomial regression model for our
predictive analysis, i.e., the interpolated value at location s is written as

ζ̃(s) = β̃0 + β̃1 y
(1)
s + . . .+ β̃r y

(r)
s , (5)

with the previously described covariates y
(j)
s and where β̃0, . . . , β̃r are the classical least square

estimates of regression parameters (see, e.g., Rencher and Christensen (2012)). A simplified sim-
ilar framework is considered in Padoan et al. (2010) where the parameters are modeled by linear
regression using latitude, longitude and elevation as covariates.

Spline-based regression model In order to generalize Equation (5), we can model the relation
between the covariates with a smooth non-linear function F in (4). To avoid having to deal with
the estimation of a large number of parameters, we consider here a partial linearity by the following
generalized additive model:

ζ(s) = β0 + β1y
(1)
s + . . .+ βqy

(q)
s + F (y(q+1)

s , . . . , y(r)s ) + ϵs, (6)

where ϵs is an error term and F is a penalized spline with radial basis functions (see, e.g., Marx
and Eilers (1998)). Therefore, the interpolated value at location s is given by

ζ̃(s) = β̃0 + β̃1y
(1)
s + . . .+ β̃qy

(q)
s + F̃ (y(q+1)

s , . . . , y(r)s ), (7)

where F̃ is the estimated penalized spline in Equation (6) obtained by minimizing the sum of
squared errors subject to constraints on its parameters, to avoid over-fitting (see, e.g., Section 3
in Ruppert et al. (2003)). Here we take into consideration covariate models provided by polynomial
regression as in (5) or spline-based regression as in (7) with longitude, latitude, altitude and 75%
quantile precipitation as covariates. Table 1 gathers the considered covariate models for GEV
parameters.

Table 1: Considered GEV covariate parameter models from polynomial Regression in (5) (PR
model) and spline-based regression in (7) (spline model). The considered covariate are the three
geographical coordinates (long, lat, alt), the 75% quantile precipitation (75% quantile prec) and
the µ parameter.

µ and ξ parameters ln(σ) parameter

Considered models Considered covariates Considered covariates

PR model
• (long, lat, alt) • (long, lat, alt)

• (long, lat, alt, 75% quantile prec) • (long, lat, alt, 75% quantile prec)

• (long, lat, alt, µ parameter)

Spline model
• (long, lat, alt) • (long, lat, alt)

• (long, lat, alt, 75% quantile prec) • (long, lat, alt, 75% quantile prec)

• (long, lat, alt, µ parameter)
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As mentioned above, polynomial regression models in Table 1 are polynomials of considered
covariates with a maximum degree of 3. We take here all possible degree combinations (see details
in Algorithm 5) and we select the best linear regression model with the help of AIC (see Akaike
(1974)). Furthermore for the proposed spline-based regression model in Table 1 we consider 10000
combinations of 15 knots among nf = 95 fitting stations and we select the best spline model via
the generalized cross-validation (GCV) score (see details in Algorithm 6).
Table 1 allows us to limit the number of possible smooth GEV parameter models by considering
a total of 4(models of µ)×4(models of ξ)×6(models of ln(σ))= 96 models combinations.

In Section 3.3 below, we integrate the response surfaces for modeling the GEV parameters gath-
ered in Table 1 (see also Equations (5) and (7)) to a flexible joint dependence framework via a
hierarchical copula-based model. Although the assumption of spatial independence between the
stations is very unlikely in real life, it can be found in several papers and can provide satisfying
results if we fix all our interest in marginal distributions (see for instance Blanchet and Lehning
(2010)). Nevertheless, the aim of Section 3.3 will be to relax in a tractable way this hypothesis
to build a more realistic spatial dependent setting.

3.3 Log-likelihood for the hierarchical copula-based model

In order to estimate the parameter models β̃j of the GEV presented in Table 1, we apply a
log-likelihood approach which requires the joint distribution of annual maximum precipitation of
the considered fitting stations If . To this end, we focus here on multivariate hierarchical copula
models; models that are able to capture different dependencies between and within different groups
of random variables via dependence copula functions. One such class of models is based on nested
Archimedean copulas (see e.g., Hofert and Pham (2013)). A (partially) nested Archimedean
copula C with two nesting levels and K child copulas (or groups), is given by

C(u) = C0(C1(u1), . . . , CK (uK)), u = (u1, . . . ,uK)t, (8)

where K denotes the dimension of C0 (i.e., the number of clusters) and each copula Ck is
Archimedean with a completely monotone generator ψk, for k ∈ {0, . . . ,K} (see, e.g., Nelsen
(1999)). In the following, for the sake of simplicity, we consider C0 as the independentK−dimensional
copula, i.e., C0(v1, . . . , vK) =

∏K
i=1 vi, with vi ∈ [0, 1].

Definition (Hierarchical copula log-likelihood). Denote by Gi

(
·; Λ(si)

)
, the GEV distribution in

(2) with GEV smooth surface parameters Λ(si) as Equations (5) and (7) associated to the ith
station and gi

(
·; Λ(si)

)
its density, for i ∈ If . Let Iit as in (1). Also, let k ∈ {1, . . . ,K} and

Ik = {i(k)1 , . . . , i
(k)
dk

}, where dk = card(Ik), be the set of station indices belonging to the kth cluster,

such that ∪K
k=1Ik = If and Ik ∩ Ik′ = ∅, ∀ k ̸= k′. Denote by cθk , the Archimedean copula density

for the kth cluster in the nested model in (8). Let

L⊥(Λ) :=
∑
i∈If

T∑
t=1

s.t.Iit=1

ln
{
g(x(i,t); Λ(si))

}
. (9)
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Then, we introduce the log-likelihood associated to the hierarchical copula model in (8)

LC(Λ) =
K∑
k=1

T∑
t=1

s.t. I
i
(k)
1

t =...=I
i
(k)
dk

t =1

ln
{
cθk

(
G

i
(k)
1

(
x
(i

(k)
1 , t)

; Λ(s
i
(k)
1

)
)
, . . . , G

i
(k)
dk

(
x
(i

(k)
dk

, t)
; Λ(s

i
(k)
dk

)
))}

+ L⊥(Λ).

(10)

Obviously, in the spatial independence setting LC(Λ) in (10) reduces to L⊥(Λ) in (9). This spatial
independent smooth GEV model L⊥(Λ) in (9) was previously proposed and discussed by Blanchet
and Lehning (2010).

3.4 Adapted copula-based clustering method

Partitioning Around Medoids (PAM) is a well recognized technique to create clusters with a good
partitioning using medoids for a given number of clusters K (see, e.g., Kaufman and Rousseeuw
(1987) and Kaufman and Rousseeuw (1990), Chapter 2). The PAM algorithm is based on the
search for K representative objects or medoids among the observations of the dataset. After
finding a set of K medoids, clusters are constructed by assigning each observation to the nearest
medoid. Next, each selected medoid object xk and each non-medoid data point xi are swapped
and the objective function is computed. The objective function used is the sum of an appropriate
dissimilarity measure dik(xi, xk) computed between the time series of the ith station and the time
series of the kth medoid (Reynolds et al. (2006), Schubert and Rousseeuw (2019)). The objective
is to improve the quality of the clustering by exchanging selected objects (medoids) and non-
selected objects. If the objective function can be reduced by interchanging a selected object with
an unselected object, then the swap is carried out. This is continued until the objective function
can no longer be decreased.

In the following we will run the PAM algorithm by using an adapted version of the copula-based
dissimilarity measure recently introduced by Disegna et al. (2017) to detect clusters between spa-
tially near and dependent stations. Using the latitude and longitude covariates, we can construct
additional information on stations, constituted of an (nf×nf ) data matrix S, whose generic entry
sij can be interpreted as the spatial distance between the ith and jth stations and

s̃ij = sij/( max
i,j=1,...,nf

sij), (11)

the normalised spatial distance between the ith and jth stations.
Notice that the large proportion of missing values of our (n × T )-data matrix X requires some
crucial adaptation of classical clustering copula methods. To this end, we now introduce the
notion of the bivariate hybrid empirical copula (see e.g., Segers (2015)).

Definition (Hybrid empirical copula). Let i and j be fixed, with i, j ∈ {1, . . . , nf}. Consider the
2 × T matrix composed of (x(i,t), x(j,t))

⊤
{t=1,...,T}, where ⊤ represents the transpose operator. In

each column, one or both entries may be missing. Formally, our observations consist of a sample
of independent, identically distributed quadruples

(Iit , I
j
t , I

i
tx(i,t), I

j
t x(j,t)), for t ∈ {1, . . . , T},
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with Iit as in (1). Let Λ̂i
LM the L-moments estimators of the GEV parameters relative of the ith

station (see Appendix D for further details). Then, the hybrid empirical copula is defined

Ĉij(u, v) = Ĥ
(
q(u, Λ̂i

LM ), q(v, Λ̂j
LM )

)
, for (u, v) ∈ [0, 1]2, (12)

where q(·) is as in (3) and

ĤT (x, y) =

∑T
t=1 1{x(i,t) ≤ x, x(j,t) ≤ y, Iit = Ijt = 1}∑T

t=1 1{ Iit = Ijt = 1}
. (13)

The hybrid empirical copula in (12)-(13) is similar to the classical empirical copula process, but
now the asymptotic variances and covariances are to be multiplied by the reciprocals of the
observation probabilities P[Iit = 1], P[Iji = 1] and P[Iit = Ijt = 1]. Details are given in Segers
(2015). Then, the adapted empirical version of the copula-based dissimilarity measure in Disegna
et al. (2017) can be defined as follows.

Definition (Empirical hybrid copula-based dissimilarity measure). We define the dissimilarity
measure

d̂ij = f(∥ β(M − Ĉij) + s̃ij (1− β)(M −W ) ∥), (14)

where

• s̃ij is the normalised spatial distance in (11);

• M is the Fréchet upper-bound copula, i.e., M(u, v) = min(u, v);

• W is the Fréchet lower-bound copula, i.e., W (u, v) = max(u+ v − 1, 0);

• β ∈ [0, 1] is the tuning parameter which reflects the prior belief of the decision maker about
the desired influence of the spatial component on the clustering procedure;

• Ĉij is the hybrid copula defined as (12)-(13);

• ∥ · ∥ is a suitable norm in the copula space and f is an increasing and continuous real-valued
function with f(0) = 0.

Note that the considered copula-based dissimilarity measure in (14) can be formalised as a suit-
able function of the hybrid empirical copula Ĉij (expressing the dependence between the ith and
jth stations) and the spatial information sij . The weight of this convex combination is expressed
by the magnitude of the β parameter. It seems that this choice f(·) = exp(·) − 1 is the most
convenient to highlight small differences among dissimilarity values, but clearly other functions f
could be used provided that f is increasing with f(0) = 0.

In Algorithm 1, we detail the first part of the proposed inference procedure, i.e., the estimation
of the dissimilarity measure d̂ij in (14) for our dataset.

- First, we build the pseudo-observations of our spatio-temporal rainfall maxima, using the
point-wise GEV quantiles with parameters estimated via L−moments (see steps 1-2 in Al-
gorithm 1 and Appendix D).

- Second, we estimate the dissimilarity measure on these pseudo-observations via the hybrid
copula presented in (12)-(13) (see steps 3-7 in Algorithm 1).
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Algorithm 1 Proposed implementation of a copula-based dissimilarity measure

(Step 1) Estimate Λ̂i
LM = (µ̂iLM , σ̂

i
LM , ξ̂

i
LM ), i.e., the L-moments estimators of the GEV

parameters relative of the ith station.

(Step 2) From Equations (2)-(3), estimate the inverse of the marginal parametric estimator of
the GEV distribution of the daily annual maxima of the i–th station, i.e., q(·, Λ̂i

LM ) and build
the pseudo-observations for each station.

(Step 3) Fix β ∈ [0, 1];

(Step 4) Evaluate s̃ij as in (11).

(Step 5) Choose the Crámer-von Mises L2 norm in (14) and f(·) = exp(·)− 1.

(Step 6) Evaluate ncf =
∑T

t=1 1{Iit = Ijt = 1}, i.e., the number of identical observations in

(x(i,t), x(j,t))
⊤
{t=1,...,T}.

(Step 7) Fix a threshold value n.

if ncf ≥ n, using (12)-(13) and (Step 2), evaluate d̂ij as in (14) on the pseudo-
observations.

if ncf < n, the i–th and j–th stations are assumed to be independent.

if ncf = 0, instead of the dissimilarity measure d̂ij , we only consider f(s̃ij), i.e., f applied
on the normalised spatial distance between the ith and jth stations.

The associated R code can be found in dissimilaritymeasure.R file in the supplementary
material CodeR folder.

In Algorithm 2, we detail the second part of the proposed inference procedure, i.e., the maximiza-
tion of the hierarchical log-likelihood LC(Λ) in Equations (9)-(10) in terms of the GEV smooth
surface parameters as in (5) and (7).

- For a fixed number of clusters K and β in (14) we provide the spatial clustering of stations,
using the PAM algorithm (steps 1-3 in Algorithm 2).

- Then, we estimate the Archimedean copula density via the canonical maximum likelihood
on the clustered pseudo-observations (see steps 4-5 in Algorithm 2).

- Finally, we maximize the hierarchical loglikelihood (see (9)- (10)) in terms of the GEV
smooth surface parameters’ via polynomial regression and spline models with the covariates
presented in Table 1 (see step 6 in Algorithm 2).

A crucial step in the proposed construction is the optimal selection of parameters (K,β) (see step
7 in Algorithm 2). To this aim we introduce in Table 2 several well-known normalised scores, used
in the following as selection criteria. The normalization is motivated by the spatial heterogeneity
in extreme precipitation in our large region of interest. We measure via these scores the quality of
the goodness-of-fit of the quantiles of the interpolated GEV parameters versus the observed ones.

Let z
(1)
si , . . . , z

(m)
si , . . . , z

(M)
si denote the M = 30 empirical quantiles at location si, where the mth

value z
(m)
si is associated to a probability pm = m−1/2

M , for m = 1, . . . ,M . Also, q̃pm,si denotes the

11



Algorithm 2 Proposed implementation for smooth copula-based GEV method

(Step 1) Choose several values for K (i.e., the number of clusters) and β.

(Step 2) For the input parameter β, estimate the copula-based dissimilarity measure d̂ij via
Algorithm 1.

(Step 3) Provide the clustering of stations by running the PAM algorithm for K clusters with
d̂ij from (Step 2).

(Step 4) Estimate the Archimedean copula density c
θ̂k

via canonical maximum likelihood on

the pseudo-observations for k ∈ {1, . . . ,K}.
(Step 5) Select the best one in terms of the AIC criterion for each cluster with k ∈ {1, . . . ,K}.
(Step 6) Let c

θ̂k
for k ∈ {1, . . . ,K} as in (Step 5). Let define the marginal GEV smooth

surfaces µ(s), ξ(s) and ln(σ(s)) as in Equations (5) and (7) with covariate models gathered
in Table 1. Maximize the log-likelihood LC(Λ) in Equation (10) with respect to the vector of
parameters β̃ in Equations (5) and (7).

(Step 7) Select (K∗, β∗) to minimize normalised scores in Table 2.

The associated R code can be found in smoothDEPENDENCEmodel.R file (resp.
smoothINDEPENDENCEmodel.R file for the independence setting of Equation (9)) in the
supplementary material CodeR folder.

(1 − pm) quantile of the interpolated GEV distribution at location si, obtained by Equation (3)
replacing Λ by the interpolated values Λ̃ with p = pm.

Table 2: Considered normalised scores. Here M = 30, ñ = nf for the fitting stations analysis and
ñ = nv for the validation one.

Normalised Root Mean Squared Error NRMSE =

√
1

ñM

∑ñ
i=1

∑M
m=1

(
z
(m)
si

−q̃pm,si

)2

1
ñM

∑ñ
i=1

∑M
m=1 z

(m)
si

Normalised Mean Absolute Error NMAE =
∑ñ

i=1

∑M
m=1 |z

(m)
si

−q̃pm,si |∑ñ
i=1

∑M
m=1 |z

(m)
si

|

Normalised Maximum Prediction Error NMPE =
maxi∈{1,...,ñ } maxm∈{1,...,M} |z

(m)
si

−q̃pm,si |
maxi∈{1,...,ñ } maxm∈{1,...,M} |z(m)

si
|

The output of Algorithm 1 and Algorithm 2 is a vector β̃∗, obtained via the score measures detailed
in Table 2, of parameters β̃j for the smooth functions in space of GEV parameters in Equations
(5) and (7). Notice that, the choice of the hierarchical dependence copula model in Equation
(10) directly impacts the obtained vector β̃∗. Finally, by using β̃∗, we can easily construct the
associated precipitation return level maps (see Figure 8). In Appendix A we investigate the
performance of Algorithm 1 (steps 3-7) and Algorithm 2 (steps 1-3) in several simulated data-set.
Appendix B is devoted to a simulation study to evaluate our inference procedure for the final
return level maps and compare it to alternative methods.
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4 Results on considered Central Eastern Canada data-set

Behaviour of Algorithm 1 and Algorithm 2

In this section, we illustrate the behaviour of Algorithm 1 and Algorithm 2 on the Central Eastern
Canada data-set previously displayed in Figure 2. We run our estimation with n = 10 (see step
7 of Algorithm 1). The output of Algorithm 1 and Algorithm 2 for several values of β and K is
gathered in Figure 3 in terms of the normalised maximum prediction error in Table 2.

Figure 3: Normalised MPE versusK (numbers of clusters) as in Table 2 for β ∈ {0.2, 0.35, 0.6, 0.9}.
We consider GEV covariate parameter models with three geographical coordinates (long, lat, alt)
and 75% quantile covariates (see Table 1).

By step 7 in Algorithm 2, this permits to select K∗ = 24 and β∗ = 0.35. We underline that
we analysed Algorithm 1 and Algorithm 2 for a large range of possible values for β. In Figure
3 we only display some representative small, intermediate and large values of β for the sake of
readability.

In Figure 4, we display the obtained absolute value of the logarithm scale of d̂ij in (14) with
β∗ = 0.35. In addition, in Figure 5, we fix 3 fitting stations (black dots) and we display the
obtained d̂ij in (14) with β∗ = 0.35 of these stations with respect to all others fitting stations.
Unsurprisingly, one can observe that the estimated dissimilarity measure takes the smallest val-
ues in the geographical neighborhood of the considered fixed station. Moreover, the dissimilarity
measure does not consider only spatial distance between stations but also the copula dependence
structure between involved time-series (β∗ = 0.35 in the convex combination in (14)).

Finally, we display some results from steps 4 and 5 in Algorithm 2 for 3 among K∗ = 24 obtained
clusters (see Figure 6). We fitted different classical Archimedean copulas (Gumbel, Joe, Clayton,
Frank) for each cluster and we provided the selection model in terms of the AIC criterion. Obtained
Archimedean copulas for each cluster are Clayton with θ̂ = 0.55 (first panel) and Gumbel with
θ̂ = 1.396 (second panel). Remark that the considered Archimedean families describe three
different situations in terms of tail properties: asymptotic independence in the lower and upper
tails (Frank copula), asymptotic dependence in the lower tails (Clayton copula), and asymptotic
dependence in the upper tails (Gumbel and Joe copulas).
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Figure 4: Absolute value of dissimilarity measure in (14) in logarithm scale, i.e., abs(ln(d̂ij)), with
β∗ = 0.35 for each pair of fitting stations (see blue stations in Figure 2).

Figure 5: Absolute value of dissimilarity measure in (14) in logarithm scale, i.e., abs(ln(d̂ij)), with
β∗ = 0.35 for three fixed stations (black dots) with respect to the others fitting stations.
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Figure 6: Illustration for two obtained clusters. Centroid stations are presented by dark-red dots,
element stations in each cluster by orange ones. Obtained Archimedean copulas for each cluster
are Clayton with θ̂ = 0.55 (first panel) and Gumbel with θ̂ = 1.396 (second panel).

Quality of predictions and comparison with other methods

By using the specific parameters selection presented in the previous section, we provide in Table
3 the normalised error measures for the three geographical coordinates (long, lat, alt) and the
75% quantile precipitation (75% quantile prec) covariate parameter models (see Table 1). Fur-
thermore in Table 4, we compare the performance of the proposed method with some classical
techniques of spatial interpolation of individual GEV distributions. The interested reader is re-
ferred to Appendix C for a short overview of these methods. In Appendix E we also calculate the
corresponding scores for 200 combinations of fitting and validation stations in order to test the
sensibility of the considered statistical routines with respect to the choice of combinations of nf
and nv stations.

Table 3: Normalised goodness-of-fit scores from Table 2 for fitting and validation stations displayed
in Figure 2 by using the smooth copula-based GEV model proposed in Section 3, for K∗ = 24 and
β∗ = 0.35. We consider here the three geographical coordinates and the 75% quantile precipitation
as GEV covariate parameter models.

Considered covariates
Fitting stations Validation stations

NRMSE NMAE NMPE NRMSE NMAE NMPE

(long, lat, alt, 75% quantile prec) 0.13 0.08 0.45 0.11 0.08 0.24

Finally we compare in Table 5 the performance of the spatial surfaces for GEV parameters con-
structed by the latent variable model for Gaussian Process-based simulation response surface
modeling in Zhang et al. (2020) and the hierarchical max-stable spatial model in Reich and Shaby
(2012). Notice that a preliminary madogram extremal coefficient estimation associated to our
rainfall data clearly shows spatial dependence. The latent Gaussian model and the hierarchical
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Table 4: Normalised goodness-of-fit scores from Table 2 for 95 fitting and 21 validation stations
displayed in Figure 2 by using classical techniques of spatial interpolation of individual GEV
distributions described in Appendix C. We consider here the three geographical coordinates and
the 75% quantile precipitation as GEV covariate parameter models.

Fitting stations Validation stations

NRMSE NMAE NMPE NRMSE NMAE NMPE

1. IDW 0.06 0.04 0.17 0.12 0.09 0.24

2. Polynomial regression 0.11 0.07 0.32 0.14 0.10 0.38

3. Spline 0.12 0.08 0.40 0.10 0.07 0.24

4. Kriging 0.06 0.04 0.17 0.12 0.09 0.25

max-stable one are implemented by using R functions LVGP fit and hkevp.fit in R packages LVGP
and hkevp, respectively (see Table 5). The training inference is based on the considered nf = 95
fitting stations and the testing results are evaluated on the nv = 21 validation stations (see Figure
2). The R code associated to Table 5 can be found in the scoreslatentmaxstable.R file in the
supplementary material CodeR folder.

Table 5: Normalised goodness-of-fit scores from Table 2 for 21 validation stations displayed in
Figure 2 by using the Gaussian latent model in Zhang et al. (2020) and the hierarchical max-stable
model in Reich and Shaby (2012). We consider here the three geographical coordinates and the
75% quantile precipitation as GEV covariate parameter models.

Validation stations

NRMSE NMAE NMPE

1. Latent model 0.47 0.37 0.85

2. Hierarchical max-stable spatial model 0.52 0.43 0.83

In Tables 3-5, we illustrated the goodness-of-fit in a global spatial sense. With respect the classical
techniques, we can observe in Table 4 that our proposed method provides similar goodness-of-fit
as polynomial regression and spline. Furthermore, our method presents a better global perfor-
mance in comparison with the Gaussian latent model in Zhang et al. (2020) and the hierarchical
max-stable model in Reich and Shaby (2012) (see Table 5).

Having a detailed look at the goodness-of-fit for individual station is also interesting. In Figure
7 we show the QQ-plots for two fitting stations (first row) and two validation ones (second row)
with spline interpolation method detailed in Algorithm 6 (see Appendix C) (orange points) and
proposed smooth copula model (green stars). We also display the latent Gaussian model (blue
stars) and the hierarchical max-stable model (red stars) prediction results (Figure 7, second row).
The three geographical coordinates and the 75% quantile precipitation are used here as GEV
covariate parameter models. By observing Figure 7, our smooth copula-based GEV model seems
perform as well as the spline one for instance in station 61 and slightly better in stations 3 and 107
et 55, in particular for extreme quantiles. The extremal fitting of our method performs slightly
better than to the latent Gaussian model (blue stars) and the hierarchical max-stable model (red
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stars) in stations 55 and 61.
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Figure 7: QQ-plots for two fitting stations (first row) and two validation ones (second row) by
using spline interpolation method in Algorithm 6 (orange points), proposed smooth copula model
(green stars), the latent Gaussian model (blue stars), the hierarchical max-stable model (red
stars). The three geographical coordinates and the 75% quantile precipitation are used here as
GEV covariate parameter models. The coordinates of station 3 are (47.983,−66.333), of station
107 (48.516,−72.266), of station 55 (45.600,−70.866) and of station 61 (45.500, -73.583).

Due to the limited data-set, a crucial point in our analysis is to quantify estimation uncertainty.
Firstly we focus on the uncertainty in Algorithm 1. In our copula-based model, from Algorithm
1 (steps 1-2 and 7), it is possible to quantify the uncertainty given by central limit theorems
of L-moments (see, e.g., Hosking and Wallis (1997) and Section 3.6.1 in de Haan and Ferreira
(2006)) and from asymptotic results of hybrid copula (see, e.g., Segers (2015) and Boulin et al.
(2022)). Delta method and continuous-mapping techniques provide the final confidence intervals.
As previously remarked by Blanchet and Lehning (2010) in the case of the simplified independent
smooth GEV model L⊥(Λ) in (9), this additional information regarding model uncertainty is an
important advantage. For more details the interested reader is referred to Section 6.2 in Blanchet
and Lehning (2010).

Secondly in Algorithm 2 (steps 5-6), we have to additionally consider the uncertainty propagated
through the classical MLE estimation of the hierarchical Archimedean copula model. The inter-
ested reader is referred also to Johannesson et al. (2021) where the propagation of uncertainty in
a recent two-steps inference approach is analysed.
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Obtained precipitation return level maps

Associated return level maps obtained via for IDW, kriging, spline and smooth copula-based
GEV models in Tables 3-5 are spatially displayed in Figure 8. One can appreciate a global similar
behavior for the IDW (first row, left panel), kriging (first row, right panel) and spline (second
row, left panel) methods. Conversely, a slight different return level map can be observed for the
smooth copula-based GEV method (fourth panels), due to the considered local spatial (s̃ij) and

copula dependencies (Ĉij) in (14). As already remarked locally in Figure 7, for stations 55 and
61, in Figure 8 we can appreciated the global ability of the smooth copula-based GEV to model
the spatial dependence for eventually high return levels in comparison with other techniques.
Furthermore, remark that this smooth return level maps can be computed from the fitted model
without any further interpolation. Finally, one can compare return levels in Figure 8 with the
map recently obtained in Perreault et al. (2019) for the same Central Eastern Canada rainfall
dataset, where the spatial effect is modeled via Gaussian Markov random fields. Indeed, the 24h
duration 20-years precipitation return level map in Perreault et al. (2019) shows a very similar
behavior of smooth copula-based one (left column, fourth row in Figure 8).

5 Conclusion

The statistical methodology presented in this paper, based on a hybrid hierarchical smooth GEV
copula model, can be useful to infer on any location in the area of study. It takes into account
the spatio-temporal structure, using the distance between dependent clusters, by means of a dis-
similarity measure designed to handle missing data. Note that other papers tackle the problem
of missing data, using hierarchical max-stable process construction such as in Reich and Shaby
(2012) or conditioning of a latent process in the context of extremes, such as in Zhang et al. (2021).

Advanced approaches for estimating the GEV parameter surfaces have recently been introduced
in the literature, such as the Max-and-Smooth approach of Johannesson et al. (2021) for flood
frequency data or the approach of Sass et al. (2021) based on the spatial GEV by introducing
fused lasso and fused ridge penalty for parameter regularization. The hybrid hierarchical smooth
GEV copula model allows the direct mapping of quantiles by dealing simultaneously with the
non-concomitant record periods between recording stations.

An interesting future extension of the proposed method is the quantification of the impact of the
portion of missing values and non-concomitant record periods at different stations on the final
performance of Algorithm 1 et Algorithm 2. This crucial point can be explored via the study of
the variance of the empirical hybrid copula-based dissimilarity measure d̂ij in (14). Some useful
preliminary results on this issue are provided by Segers (2015) and recently by Boulin et al. (2022).
Then a comparison on the ability to handle missingness would be an interesting future work.
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18



Figure 8: Obtained 20-years (left column) and 40-years (right column) precipitation return level
maps in mm in Central Eastern Canada. Models: IDW (first row), kriging (second row), spline
(third row), smooth copula-based GEV (fourth row), latent variable model for Gaussian Process-
based simulation response surface modeling (fifth row) and hierarchical max-stablespatial model
(sixth row).
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Boulin, A., Di Bernardino, E., Laloë, T., and Toulemonde, G. (2022). Non-parametric estimator of
a multivariate madogram for missing-data and extreme value framework. Journal of Multivariate
Analysis, 192.

Bresson, E., Laprise, R., Paquin, D., Thériault, J., and de Eĺıa, R. (2017). Evaluating the ability
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Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés. un test non
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A Simulation studies for d̂ij and associated clustering algorithm

In this section we illustrate the performance of Algorithm 1 and Algorithm 2 in several simulated
datasets. In this study, we focus on the complete data setting, i.e., without missing data. In
this case, Equation (13) is then equal to the classical empirical distribution function (see, e.g.,
Rüschendorf (1976), Deheuvels (1979)). We reproduce here 3 possible scenarios: a situation
characterized by spatial well distinguished clusters (Model M1), by spatial overlapping clusters
(Model M2) and by a balance between Model M1 and Model M2 (Model M3).

We generate K = 5 clusters for models in Models M1 and M2 and K = 10 in Model M3.
From Definition 3.3, recall that Ik is the set of station indices belonging to the kth cluster with
dk = card(Ik), the size of kth cluster. Furthermore here ∪K

k=1Ik = 80 stations and Ik ∩ Ik′ = ∅,
∀ k ̸= k′. Denote by Cθk the dk-dimensional Archimedean copula with dependence parameter θk
for the kth cluster related to model in (8).

To generate the kth cluster and the associated dependent time-series of pseudo-observations of
length T = 40, we implement the simulation procedure gathered in the following Algorithm 3.

Algorithm 3 Simulation procedure for spatial clusters and dependent time-series

(Step 1) For each k ∈ {1, . . . ,K}, consider dk the size of the kth cluster.

(Step 2) The two spatial coordinates mk of kth centroid are simulated uniformly in a consider
spatial domain.

(Step 3) Define Σk the variance-covariance matrix relative to the kth cluster.

(Step 4) The two spatial coordinates of station ski associated to the centroid mk are generated
via bivariate gaussian vector, i.e., ski ∼ N2(mk,Σk), for i ∈ {1, . . . , dk}.
(Step 5) Generate time-series of pseudo-observations from Cθk (the dk-dimensional
Archimedean copula associated to the kth cluster) of length T = 40.

Model M1: predominant spatial information In this first study, we implement Algorithm
3 by considering clearly spatially separated cluster locations (see Figure 9).
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Figure 9: Random generation of Model M1, with a predominant spatial dissimilarity between
clusters. Here K = 5. The cluster dimensions are d1 = d2 = 20, d3 = 30, d4 = d5 = 5.
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Furthermore, we generate the time-series of pseudo-observations by using the following copula
models:

Cluster label Archimedean copula θk dk Locations color in Figure 9

1 Frank 2 20 red

2 Gumbel 5 20 green

3 Gumbel 1.5 30 orange

4 Independent − 5 blue

5 Frank 12 5 magenta

In this setting, we expect a small weight β in the convex combination in the proposed empirical
copula-based dissimilarity measure in (14). This is exactly what we observe in Figure 10. Left
column of Figure 10 displays the ASW criterion in our PAM algorithm with dissimilarity in (14)
for β = 0.01 (first row) and β = 0.25 (second row). For more details about definition and
interpretation of Average Silhouette Width (ASW) criterion in PAM algorithm, the reader is
directed to Chapter 2 in Kaufman and Rousseeuw (1990). For each β, the associated cluster
labeling of stations is represented in the right column of Figure 10. In particular, the PAM
algorithm with β = 0.01 perfectly identifies K = 5 clusters and the correct cluster labeling of all
80 stations.
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Figure 10: Model M1 with true clusters spatial distribution as in Figure 9. Left column: ASW
criterion for two values of β in (14). The true value K = 5 is displayed in dashed vertical line.
Right column: associated cluster labeling of the considered 80 stations.

As expected, when β increases the 1st and 4th clusters (red and blue points, respectively) are
merged into an unique cluster (see the second row of Figure 10). Indeed in this case, the im-
portance of time-series dependence, increases in the convex combination. Roughly speaking,
time-series exhibiting similar dependence structures, in particular in extremes, i.e., Frank copula
with parameter 2 and independent copula, are clustered together.

26



Model M2: predominant dependence information In this second study, we implement
Algorithm 3 by considering spatially overlapping clusters (see Figure 11). Furthermore, we gener-
ate the time-series of pseudo-observations by using the same dk-dimensional Archimedean copulas
Cθk as for the previous table of Model M1.
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Figure 11: Random generation of Model M2 with spatially overlapping clusters. Here K = 5.
The cluster dimensions are d1 = d2 = 20, d3 = 30, d4 = d5 = 5.
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Figure 12: Model M2 with true clusters spatial distribution as in Figure 11. Left column: ASW
criterion for several values of β in Equation (14). The true value K = 5 is displayed in dashed
vertical line. Right column: associated cluster labeling of the considered 80 stations.
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Conversely to the previous Model M1, we expect here β ≈ 1 in Equation (14) in order to build
clusters exclusively via the dependence structure criterion. Figure 12 displays the ASW criterion
for β ∈ {0.75, 0.95, 0.99} (left column) and the corresponding cluster labeling of stations (right
column). In particular, the PAM algorithm with β = 0.99 is able to identify K = 5 clusters and
the correct cluster labeling of 90% of stations with respect to the true distribution in Figure 11.

Model M3: a balance between spatial and dependence information In this last study,
we implement Algorithm 3 by considering a mixture between spatial and dependence information
(see Figure 13).
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Figure 13: Random generation of Model M3 with a mixture between spatial and dependence
information. Here K = 10. The cluster dimensions are dk = 8, for 1 ≤ k ≤ K.

Furthermore, we generate the time-series of pseudo-observations by using the following copula
models:

Cluster label Archimedean copula θk dk Locations color in Figure 13

1 Frank 2 8 red

2 Gumbel 5 8 green

3 Gumbel 1.5 8 orange

4 Independent − 8 blue

5 Frank 12 8 magenta

6 Joe 2 8 pink

7 Clayton 10 8 black

8 Clayton 2 8 forestgreen

9 Joe 4 8 purple

10 Joe 5 8 gray

For small values of β only 6 clusters are identified essentially by using the spatial proximity
(see first row of Figure 14). By increasing β new clusters appear. In particular with β = 0.25
the algorithm is able to identify two very different copula-structures: Joe copula (purple points)
and Frank one (magenta points). The value β = 0.5 allows us to correctly identify the number
of clusters (K = 10) and the correct cluster labeling of 79 stations with respect to the true
distribution in Figure 13 (i.e., 98.75% of stations). If β becomes too large the algorithm produces
uncorrected clusters labeling (see third row in Figure 14) or artificial small clusters (see fourth
and fifth rows in Figure 14).
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Figure 14: Model M3 with true clusters spatial distribution as in Figure 13. Left column: ASW
criterion for several values of β in Equation (14). The true value K = 10 is displayed in dashed
vertical line. Right column: associated cluster labeling of the considered 80 stations.
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B Simulation studies for the estimation of the final return level
maps

In order to evaluate the performance of the proposed spatial smooth GEV copula-model for the
final return level maps, a simulation study is presented in this section. As in Appendix A, we
take into account the complete data setting, i.e., without missing data. Firstly, we construct the
true simulated dataset where the dependent structure between stations and the spatial surfaces
of GEV parameters are known. To this end, we start with the construction of the hierarchical
copula model in (8) with K = 7 clusters of 116 stations located as in Figure 15.

Figure 15: Simulated clusters via the hierarchical copula model in (8) for the 116 stations.

Then, we generate time-series of pseudo-observations of length T = 60 from the dk-dimensional
Archimedean copulas Cθk as described in Table 6.

Table 6: Generated dk-dimensional Archimedean copulas for spatial clusters in Figure 15 and
associated estimated ones (last two columns).

Cluster label Color in Figure 15 true copula Cθk dk θk estimated copula Cθ̂k
θ̂k

1 red Joe 6 4 Joe 4.15

2 blue Frank 5 5 Frank 5.58

3 yellow Gumbel 24 2 Frank 3.83

4 black Frank 41 1 Frank 1.16

5 magenta Joe 11 3 Joe 3.27

6 orange Gumbel 22 3 Gumbel 3.03

7 green Joe 7 2.5 Joe 2.47

Furthermore, we generate the GEV parameters surfaces by simulated realizations of Gaussian ran-
dom fields and we get the simulated dataset by applying the GEV quantile in (3) to the previous
time-series pseudo-observations of the previous hierarchical copula model. Using this procedure,
we simulate flexible spatial surfaces for GEV parameters with nested copula spatial dependence
structure. Then, we can easily calculate the true return level maps associated to these GEV
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surface parameters (see Figure 18, first panel).

Now, we implement Algorithm 1 and Algorithm 2 (Steps 1-3) for different values of β and K.
Particularly, we take K ∈ {1, . . . , 7} and β ∈ {0.7, 0.8, 0.9, 0.99}. In Figure 16, we present the
classical ASW criterion of PAM method from Algorithm 2 (Step 3). We observe in Figure 16 that
the maximum ASW value is reached for K∗ = 7 and β∗ = 0.7. Notice that this choice of K and
β parameters allow us to a correct cluster covering of 100% of stations with respect to the true
cluster model in Figure 15.

Figure 16: ASW criterion for the true simulated dataset by considering K ∈ {1, . . . , 7} and
β ∈ {0.7, 0.8, 0.9, 0.99}.

By using this clustering, we estimated by canonical maximum likelihood, the spatial copulas model
and associated parameters θ̂k. Results are gathered in Table 6 (see Algorithm 2, Step 4).

In Table 7 we gathered the normalised scores in Table 2, evaluated by using the true generated
quantiles, for the nv = 21 validation stations (see Figure 2). The fitting procedure is implemented
on the nf = 95 stations. The three geographical coordinates and the 75% quantile precipitation
are used here as GEV covariate parameter models (see Table 1). These normalised scores are
evaluated as in Table 2 by using the true generated quantiles.
Firstly, as lower bounds, we present the scores obtained by replacing q̃pm,si by the L-moments
quantile estimators in Appendix D at level probability pm for each testing station si (see Pointwise
GEV row in Table 7). In the second line, we display the scores associated to the proposed smooth
copula-based model. The last two lines are devoted to two alternative methods (already present in
Section 4), i.e., the latent variable model for Gaussian Process-based simulation response surface
modeling in Zhang et al. (2020) and the hierarchical max-stable spatial model in Reich and Shaby
(2012), respectively. The performance on the 21 validation stations, evaluated via NRMSE, NMAE
and NMPE in Table 7, seems to be similar for the considered methods. However, if we focus on
the local behaviour, by analysing the individual QQ-plots for the validation stations in Figure 17,
the tail fitting is realised slightly better by smooth copula-based GEV model.
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Table 7: Normalised goodness-of-fit scores from Table 2 for 21 validation stations displayed in
Figure 2 by using the L-moments estimators, the smooth copula-based GEV model, the Gaussian
latent model in Zhang et al. (2020) and the hierarchical max-stable model in Reich and Shaby
(2012). We consider here the three geographical coordinates and the 75% quantile precipitation
as GEV covariate parameter models.

NRMSE NMAE NMPE

1. Pointwise GEV 0.07 0.04 0.12

2. Smooth copula-based model 0.28 0.14 0.64

3. Latent process 0.26 0.11 0.66

4. Hierarchical max-stable spatial model 0.37 0.22 0.71

Figure 17: QQ-plots for the five validation stations plotted in Figure 2 by using smooth copula-
based model (green stars), the latent Gaussian model (blue stars) and the hierarchical max-stable
model (red stars). The coordinates of station 1 are (47.900,−65.833), station 50 (45.283,−71.200),
station 58 (45.633,−71.367), station 60 (45.500,−73.617) and station 70 (46.250,−71.217).

Finally the global spatial return level maps displayed in Figure 18 provided by the smooth copula-
based GEV model (second row in Figure 18) reproduces in a more adequate way the true return
level map in the first row of Figure 18 with respect to the considered competitor methods.
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Figure 18: Obtained 20-years (left column) and 40-years (right column) precipitation return level
maps in mm. True return level map (first line), via smooth copula-based GEV model (second
line), via latent variable model for Gaussian Process-based simulation response surface modeling
(third row) and via hierarchical max-stable spatial model (fourth row).
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C Return level maps through classical spatial interpolation of
individual GEV distribution

In the following, we will be interested in presenting interpolation routines used in practice to
estimate return levels for every location s ∈ S by interpolating individual GEV distributions.
For that purpose, we present several exact and inexact techniques to derive the spatial interpolators
ξ̃(s), µ̃(s) and σ̃(s) all based on the L-moments estimators ξ̂LM , µ̂LM and σ̂LM in Appendix D
and by considering covariates previously introduced in Table 1. In this setting we say “exact
technique” when the interpolated value at station si is equal to the estimated value used in the
interpolation. Let ζ̂ := ζ̂LM be the L-moments estimator (either ξ̂LM , µ̂LM or σ̂LM ) used in the
interpolation (see Appendix D). In the rest of this section, for sake of simplicity we will drop the
LM notation.

Exact interpolation techniques

Inverse distance weighted (IDW) The IDW method is widely known as the basic one in
the interpolation literature (Burrough (1986)). This method relies on the assumption that all the
points on the earth’s surface are interdependent on the basis of distance. IDW technique provides
satisfactory results when the number of points in the considered area is large and the points are
uniformly distributed. However, it presents certain weaknesses (for details, the reader is referred to
Achilleos (2011)). This interpolation technique implies that the influence of surrounding stations
is reduced by large distances. In addition, distances are attenuated by weighting factors. Let us
denote di, for i = 1, . . . , nf , the distance between the interpolating location si and the interpolated
location s. Then, the interpolated value at location s is defined by

ζ̃(s) =

∑nf

i=1
ζ̂i
di∑nf

i=1
1
di

.

We consider IDW with gradient correction (Nalder and Wein (1998)) in order to take into account

the dependence between parameters and covariates. Let y
(1)
s , , . . . , y

(r)
s denote r covariates recorded

for each station s, the interpolated value at location s is defined by

ζ̃(s) =

∑nf

i=1
ζ̂i+β1(y

(1)
s −y

(1)
si

)+...+βr(y
(r)
s −y

(r)
si

)

||ls−lsi ||∑nf

i=1
1

||ls−lsi ||
, (15)

where ls is the two-dimensional coordinate (longitude, latitude) of the location s, the parameters
β1, . . . , βr correspond to the values that minimize the cross-validation score

nf∑
i=1

(ζ̂i − ζ̃−i(si))
2, (16)

with ζ̃−i(si) the interpolated ζ at si when this station is not considered in Equation (15). Detailed
steps are provided in Algorithm 3.
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Algorithm 3 Proposed implementation for IDW method

(Step 1) Consider altitude and 75% quantile precipitation covariates, denoted (y
(1)
s , y

(2)
s ) =

(as, qs) at a given station with two-dimensional coordinate ls.

(Step 2) Equation (15) can be written as

ζ̃(s) =

∑nf

i=1
ζ̂i+βa(as−asi )+βq(qs−qsi )

||ls−lsi ||∑nf

i=1
1

||ls−lsi ||
.

(Step 3) Estimate parameters βa and βq by minimizing the cross-validation score in (16).

Universal kriging The main principle of kriging is to compute the best linear unbiased estima-
tor of ζ(s) by the calculation of a weighted average of the known values of ζ in the neighborhood
of s. The most general case, universal kriging, was set out in Matheron (1969). Unlike the simple
kriging, the expectation of random function model ζ(s) is allowed to vary spatially. In universal
kriging, it is assumed that

E[ζ(s)] = β(s) ≡
r∑

j=0

βjfj (s), (17)

where fj are known functions and the βj , j = 0, 1, . . . , r, are unknown coefficients. Usually,
f0(s) = 1, ∀s, which guarantees that the constant-mean case is included in the model. The model
for universal kriging is given by

ζ(s) = β(s) +G(s), (18)

where G(s) is a zero-mean Gaussian process which defines the spatial dependence. In order to
predict ζ in Equation (18), we need to estimate the βj parameters with j = 0, 1, . . . , r and, the
variogram associated to G(s) (see Chapters 5 and 6 in Diggle and Ribeiro (2007)). The mean
square error predictor of ζ(s) is defined by

ζ̃(s) = β̃(s) +

nf∑
i=1

λi(s)
(
ζ̂i − β̃(s)

)
,

where β̃(s) =
∑r

j=0 β̂jfj(s) with β̂j denoting the estimator of βj in Equation (17), j = 0, . . . , r,
and λi(s), i = 1, . . . , nf , the prediction weights (see Section 3.4. in Chilès and Delfiner (2009)). If
the variogram of G(s) is supposed to be continuous at the origin, the nugget effect (i.e., microscale
variations) is not considered. In the above case, kriging is an exact interpolation technique (see
Section 3.2.1 in Cressie (1993)). One of the most applied version of universal kriging is when
functions fj(s), j = 1, . . . , r are considered as explanatory variables. That is, if we assume that

β(s) in Equation (17) is explained by r covariates, y
(1)
s , , . . . , y

(r)
s , then Equation (18) can be

written as

ζ(s) = β0 +
r∑

j=1

βjy
(j)
s +G(s). (19)
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Algorithm 4 Proposed implementation for universal kriging method

(Step 1) Consider β(s) in (17) as a first order polynomial on the two-dimensional coordinates
ls, with 75% quantile precipitation and altitude covariates.

(Step 2) Assume that the variogram of G in (19) is continuous at the origin.

(Step 3) Estimate the variogram of G via maximum likelihood method for several covariance
functions. We consider exponential, spherical, circular, cubic, Matérn and Gneiting covariance
functions.

(Step 4) Choose the covariance function associated to the best fitting in terms of the AIC
criterion.

Detailed steps are gathered in Algorithm 4. The R code associated to Algorithm 3 and Algorithm
4 can be found in the classicalinterpolationtechniques.R file in the supplementary material
CodeR folder.

Inexact interpolation techniques

Let us consider polynomial and spline-based regression models presented in Section 3.2. Since the
error term ϵs, techniques from Equation (4) do not provide exact interpolations. First, Algorithm
5 presents steps for the implementation of the proposed polynomial regression method. Second
Algorithm 6 gathers steps for the proposed spline-based regression method. In the present study,
the spline is a function of the coordinates and altitude and 75% quantile precipitation covariates
are considered linearly.

Algorithm 5 Proposed implementation for polynomial regression method

(Step 1) Consider covariates as polynomials of longitude, latitude, altitude and 75% quantile
precipitation with a maximum degree of 3.

(Step 2) Take all possible combinations between covariates built in Step 1 with a maximum
interaction degree of 3.

(Step 3) Choose the combination in Equation (5) associated to the best model by AIC criterion.

Algorithm 6 Proposed implementation for spline-based regression method

(Step 1) Using (7), we fix the interpolated value at location s as

ζ̃(s) = β̃0 + β̃1as + β̃2qs + F̃ (ls).

(Step 2) Fix 10000 combinations of 15 knots among nf = 95 fitting stations.

(Step 3) Select the best model associated to the combination of 15 knots that provides the low-
est value of generalized cross-validation (GCV) score (see, e.g., Section 4.2.3 in Wood (2017)).

The R code associated to Algorithm 5 and Algorithm 6 to can be found in
classicalinterpolationtechniques.R file in the supplementary material CodeR folder.
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D L-moments for GEV parameters

An illustration that L-moments are efficient in estimating parameters of a wide range of distribu-
tions from small sample sizes is presented in Hosking and Wallis (1997). Since we have a small
number of observations for several stations (see Figure 21), we consider the L-moments estimators
in order to estimate the GEV parameters. The L-moments estimators for the GEV distribution
parameters Λ̂LM = (µ̂LM , ξ̂LM , σ̂LM ) in (2) are defined as

ξ̂LM = 7.8590c+ 2.9554c2, σ̂LM =
β̂0ξ̂LM

(1− 2−ξ̂LM )Γ(1 + ξ̂LM )
, µ̂LM = β̂0 −

σ̂LM

ξ̂LM
[1− Γ(1 + ξ̂LM )],

with c = 2/(3 + τ̂3) − ln(2)/ ln(3) and τ̂3 = 6β̂2−6β̂1+β̂0

2β̂1−β̂0
, where β̂r are suitable estimators of the

probability weighted moments of order r (see Hosking et al. (1985) for more details), for r = 0, 1, 2.
The return levels over each location are calculated by plugging the L-moments estimators above in
Equation (3). By considering the estimated return levels, the return level plots for 3 locations with
different altitudes are depicted in Figure 19. These panels represent q(p; Λ̂LM ) versus − ln (1− p)
on a logarithm scale, and provide the highest value expected to be exceeded once every r years
for any return period r on x−axis. From Equation (3), when ξ < 0, the return level plot is convex
with asymptotic limit as p → 0 at µ− σ

ξ ; when ξ > 0, the plot is concave with not finite bound;
when ξ = 0, the plot is linear. In Figure 19 one can appreciate the quality of the fitting of GEV
L-moments estimators to our data.

Figure 19: Locations of 3 selected stations and adequacy of fitted GEV model through the asso-
ciated return level plots.

Figure 20 shows the resulting pointwise 20-years, 30-years, 40-years and 100-years return levels
for the 116 stations considered. Such a map is nevertheless difficult to interpret and can only give
information for the few locations where data is available. In practice, spatial return levels as in
Figure 8, rather than pointwise estimates as in Figure 20, would be of much higher value.

37



Figure 20: From top to bottom: pointwise 20-years, 30-years, 40-years, and 100-years precipitation
return level map in mm for the considered 116 stations in Central Eastern Canada.
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Figure 21: White cells represent missing data and black ones observed extreme rainfall registered
in 116 stations in Center Eastern Canada from 1914 to 2017.
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Figure 22: From top to bottom: spatial map of ϵ̂s for polynomial regression model in (4) associated
to µ, to ξ and to ln(σ) for fitting stations in Figure 2 (blue stations).

The choice of combinations of fitting and validation stations

In the following we analyse the sensibility of the classical techniques of spatial interpolation of
individual GEV distributions explained in Section C with respect to the choice of combinations of
nf and nv stations. To this end, we calculate the corresponding scores gathered in Table 2 for 200
combinations of index sets If and Iv, i.e., for 200 combinations of fitting and validation stations.
Recall that the covariance function used for the kriging method is the one who provides the small-
est AIC criterion among exponential, spherical, circular, cubic, Matérn and Gneiting covariance
functions (see Algorithm 4). The obtained boxplots are gathered in Figure 23. Furthermore, the
associated median and standard deviation values are displayed in Tables 8 and 9.
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Table 8: Median scores from Table 2 for 200 combinations between fitting and validation stations
for each interpolation technique. Associated standard deviations are displayed in brackets. We
consider here the three geographical coordinates as covariates.

Fitting stations Validation stations

NRMSE NMAE NMPE NRMSE NMAE NMPE

1. Pointwise GEV 0.06 (0.0015) 0.04 (0.0006) 0.17 (0.0255) 0.06 (0.0068) 0.04 (0.0027) 0.18 (0.0384)

2. IDW 0.06 (0.0015) 0.04 (0.0006) 0.17 (0.0255) 0.47 (0.0427) 0.11 (0.0130) 0.29 (0.0861)

3. PR 0.13 (0.0049) 0.09 (0.0027) 0.41 (0.0599) 0.16 (0.0650) 0.11 (0.0239) 0.40 (0.4819)

4. Spline 0.12 (0.0053) 0.08 (0.0024) 0.38 (0.0589) 0.16 (0.0420) 0.11 (0.0169) 0.41 (0.2780)

5. Kriging 0.06 (0.0015) 0.04 (0.0006) 0.17 (0.0255) 0.14 (0.0197) 0.10 (0.0129) 0.27 (0.0898)

Table 9: Median scores from Table 2 for 200 combinations between fitting and validation stations
for each interpolation technique. The associated standard deviations are displayed in brackets. We
consider here the three geographical coordinates and the 75% quantile precipitation as covariates.

Fitting stations Validation stations

NRMSE NMAE NMPE NRMSE NMAE NMPE

1. IDW 0.06 (0.0015) 0.04 (0.0006) 0.17 (0.0255) 0.13 (0.0168) 0.09 (0.0084) 0.27 (0.0824)

2. PR 0.11 (0.0040) 0.07 (0.0023) 0.29 (0.0346) 0.18 (0.1185) 0.11 (0.0310) 0.56 (0.9791)

3. Spline 0.11 (0.0050) 0.08 (0.0022) 0.35 (0.0543) 0.15 (0.0407) 0.10 (0.0151) 0.40 (0.2892)

4. Kriging 0.06 (0.0015) 0.04 (0.0006) 0.17 (0.0255) 0.13 (0.0190) 0.09 (0.0097) 0.27 (0.0933)

In this analysis, we consider models with the three geographical covariates (see Table 8 and associ-
ated orange and sky-blue boxplots in Figure 23) and models where the 75% quantile precipitation
covariate is additionally taken into account (see Table 9 and the associated red and dark-blue
boxplots in Figure 23).
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Figure 23: Boxplots of the scores obtained from Table 2 for 200 combinations between fitting and
validation stations for each interpolation technique. Models with three geographical covariates
are displayed in orange boxplots for fitting stations and in sky-blue boxplots for validation ones.
Models with the 75% quantile precipitation in addition to the three geographical covariates are
displayed in red boxplots for fitting stations and in dark -blue boxplots for validation ones.

We also consider the scores in Table 2 obtained by replacing q̃pm,si by the L-moments quantile
estimators in Appendix D at level probability pm for each station si (see Pointwise GEV row in
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Table 8 and Figure 23). Then, the “Pointwise GEV” scores can be interpreted as lower bounds
of the error that would result from a prediction. We refer the interested reader to Figure 20
of Appendix D, for a pointwise return level map associated to these Pointwise GEV estimators.
Obviously, since IDW and considered kriging techniques provide exact interpolations, their results
exactly correspond with the ones from Pointwise GEV parameters estimation.

Table 8 suggests that when using only longitude, latitude and elevation as covariates, kriging
performs better, since almost all considered scores are lower. Spline and polynomial regression
perform similarly. However, the less performing models seems to be the polynomial regression
ones, both in terms of median values (see Table 8) and of sensitivity of the combinations between
fitting and validation stations (see boxplots in Figure 23). Prediction seems to quickly deteriorate
away from the fitting stations. Indeed, results for the combinatory validation stations (sky-
blue and dark-blue boxplots in Figure 23) are relatively poor compared to those for the fitting
stations (orange and red ones). This considerations is true in particular for NRMSE and NMAE
scores. Moreover due to the small number of considered validation stations (nv = 21) and the
discrepancy between nf and nv, the variance of the sky-blue and dark-blue boxplots in Figure 23
is considerably large. In Figure 23, it can be observed that the behaviour of models with three
geographical covariates and 75% quantile precipitation as covariates slightly improve models with
only the three geographical covariates.
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