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Abstract This paper proposes a smooth copula-based Generalized Extreme Value (GEV) model to
map and predict extreme rainfall in central eastern Canada. Furthermore, we provide a comparison with
different classical interpolation-based approaches. The considered data represents a station network
particularly spatially sparse. Furthermore, one observes several missing values and non-concomitant
record periods at different stations. We compare the classical GEV parameter interpolation approaches
with our smooth GEV modeling approach, in which the parameters are modeled as smooth functions in
space through the use of spatial covariates and by using copula-clustering techniques recently introduced
in the literature.

Keywords Copula-based Clustering · Dependence Models · Extreme Value Theory · Hydrology ·
Spatial Interpolation

1 Introduction

Motivation. Heavy rainfall can have disastrous consequences on health and well-being of communities,
buildings, infrastructures, transportation systems and public safety. In practice, the interest is, amongst
others, from a national safety, risk management and insurance perspectives. For researchers, as Extreme
Value Theory (EVT) is an area with great recent innovative results, precipitation levels are very in-
teresting. Throughout the years, flood events became important, both from practical and theoretical
perspectives. For example, in Canada, it is recent that insurance companies offer flood protections. Be-
fore 2013, homeowners would rely on the Disaster Financial Assistance program offered by the federal,
provincial and territorial governments. Now, insurance products are available, and several resources are
dedicated to improving flood mapping and mitigation efforts. Models are now adapted with today’s
knowledge on extreme events, in order to assess risks depending on precipitation appropriately. In other
words, it is desirable to set aside safety capital according to a well-evaluated risk.

Extensive literature exists on the spatial mapping or spatial interpolation of extreme rainfall and the
approaches are essentially divided in two groups. The first one is mainly composed of techniques to
spatially interpolate the station estimates from marginal Generalised Extreme Value distributions in
order to provided return level maps. This classical approach is frequently used, e.g. in Begueŕıa and
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Vicente-Serrano (2006), Kohnová et al. (2009) and Li et al. (2010). A comparison of different naive
interpolation methods (inverse distance weighting, nearest neighbor and kriging) for mapping extreme
precipitation in central Slovakia can be found in Szolgay et al. (2009). Similar study is performed in
Blanchet and Lehning (2010), or in Das et al. (2020), for mapping snow depth return levels. In Hwang
et al. (2012), a two step procedure is proposed where a regression and hydrological models are used
to interpolate precipitation. Pointwise return levels, in the Cévennes-Vivarais region (southern part of
France), based on nearest neighbor estimators, are obtained in Gardes and Girard (2010). A spatial
model is proposed in Yoon et al. (2015), assuming no spatial dependency between the stations.

The second group in the extreme return level maps literature is based on the direct estimation of the
spatial extremal distribution, without requiring any interpolation, (see e.g., Wi et al. (2016) and Lomba
and Alves (2020)). Spatial extreme distributions have received a lot of attention in recent years and
they represent a well-founded approach which are theoretically preferred to any interpolation method.
A bayesian procedure is presented in Perreault et al. (1999), for eastern Canada and US data, and
Asong et al. (2015) deals with the Canadian Prairie region. Several techniques have been developed
for the direct estimation of spatial extreme distributions, which involve, among others, extreme-value
copulas (see e.g., Joe (1994) and Saad et al. (2015)), max-stable processes (see e.g., Schlather (2002),
Padoan et al. (2010)) and Bayesian hierarchical models (see e.g., Cooley et al. (2007)). Notice that the
property of max-stablity is classically included in several papers on spatial interpolation of extremes
(see e.g., Blanchet and Davison (2011), for extreme snow depth models).
This article focuses on constructing the spatial mapping of maximum precipitation, using the EVT
framework for 24h duration rainfall annual maxima in Central Eastern Canada. Despite the fact that
several authors have brought efforts in order to provide spatial extreme models for precipitation, the
considered dataset used in this article presents at least two interesting aspects which need to be ad-
dressed carefully.

Challenging characteristics of the considered dataset. Firstly, we focus here on modeling extreme rain-
fall for 116 recording stations located in the province of Quebec, Nova Scotia, New Foundland, New
Brunswick and Prince Edward Island. This is a vast region, with a small proportion of recording stations
and literature is quite scarce for this specific area. Notice that the size of the meteorological stations
network in Canada is a major well-known issue already raised by the Canadian Standards Association.
Khedhaouiria et al. (2020) consider another Canadian dataset which is more concentrated in a southern
Canadian region.
Even given the scarce aspect of the dataset, the obtained results will show a robust performance in
the case of considered smooth Generalized Extreme Value (GEV) distribution fitting methods. Notice
that the same dataset has been recently analyzed in Perreault et al. (2019) where an interpolation
Bayesian hierarchical model is proposed with the spatial effect modeled via Gaussian Markov random
fields. Then, our results can be compared with those obtained in Perreault et al. (2019) as suggested
in Section 5.

Secondly, the considered dataset presents several missing values and non-concomitant record periods
of different stations. The interested reader is referred to Figure 1 for a graphical illustration of this
crucial point. It implies that when one aims to model the joint behaviour of the extreme rainfall in
the considered area, the estimated marginal distribution uses the complete series for that station, but
the copula function representing the dependence (see, e.g., Nelsen (1999)) is only based on the time
period where all series were recorded simultaneously. Here, we are facing the problem of estimating
parametric multivariate models when unequal amounts of data are available on each variable (see
e.g., Patton (2006)). To overcome this issue, we consider the hybrid copula, i.e., the extension of the
empirical copula obtained by combining an estimator of a multivariate cumulative distribution function
with estimators of the marginal cumulative distribution functions for marginal estimators that are not
necessarily equal to the margins of the joint estimator (see e.g., Segers (2015)).

Contributions of the present work. The contributions of this article are twofold. (i) We propose a smooth
GEV model, mixing sophisticated response surfaces for the GEV parameters’ models, with a flexible
joint dependence framework via a hierarchical copula-based model, which takes into account dependence



Smooth Copula-based GEV model and Spatial Interpolation for Sparse Extreme Rainfall 3

1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Stations

Years

Fig. 1 White cells represent missing data and black ones observed extreme rainfall registered in 116 stations in Center
Eastern Canada from 1914 to 2017.

structure between the recording stations. The hierarchical copula structure is detected via a clustering
algorithm implemented with an adapted version of the copula-based dissimilarity measure recently
proposed in Disegna et al. (2017). The considered dissimilarity measure is consistently estimated by
using the previously discussed hybrid copula. (ii) We propose an analysis, comparing classical spatial
interpolation of individual GEV distributions: polynomial and spline-based regression models, inverse
distance weighted and universal kriging models. This comparison is crucial to show the difference
between practical commonly implemented routines and the sophisticated approach proposed in this
paper, in terms of obtained return level maps (see Figures 9-10).

Outline of the paper. The article is organized as follows. Section 2 presents the considered precipitation
dataset. In Section 3, return level maps are obtained through smooth spatial GEV models by using
our clustering hierarchical copula-based model with associated copula-based dissimilarity measure. In
Section 4 we build return level maps via classical spatial interpolation methods of individual GEV
distributions. Section 5 is devoted to evaluating the performance of the proposed methods. Some details
on L-moments for GEV parameters are postponed in Appendix A.
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2 Considered Center Eastern Canada dataset

We consider rainfall data measured in millimeters (mm), adjusted for snow/ice, registered in 116 sta-
tions in Center Eastern Canada for a duration of 24h. The stations are managed by Environment and
Climate Change Canada (ECCC) and verify the quality standards imposed by the World Meteorologi-
cal Organization. Annual maxima precipitation for a 24-hour duration are recorded from 1914 to 2017.
Each station possesses precipitation measures for a minimum of 16 years in the specified time range. A
specific characteristic of the considered rainfall dataset is the sparsity of the recorded data, as depicted
in Figure 1, illustrating the proportion of missing data and concomitant observations across years. The
elevation of the studied area covers a wide range given between 5m and 672m above sea level. These an-
nual maxima are publicly available at climate.weather.gc.ca/prods_servs/engineering_e.html.

We introduce the following mathematical notation, crucial in the following for the description of the
considered models. Let xi =

(
x(i,1), . . . , x(i,T )

)
be the annual rainfall maxima time series of the ith

station, for i ∈ I := {1, . . . , n}, observed for T years. Then, our rainfall data can be represented as a
sparse (n × T )−matrix, X (refer to left panel of Figure 2), where n = 116 (the number of stations)
and T = 104 (the length of the considered whole time window). The spatial location of the considered
stations is shown in Figure 2 (right panel)1.

X =



x(1,1) . . . x(1,t) . . . x(1,T )

...
...

...
...

...
x(i,1) . . . x(i,t) . . . x(i,T )

...
...

...
...

...
x(n,1) . . . x(n,t) . . . x(n,T )



Fig. 2 Left: Considered data (n× T )−matrix. Right: Locations of considered 116 stations in Central Eastern Canada.

As suggested by Figure 1, we introduce the indicator variable

Iit =

{
1, if x(i,t) is observed,
0, otherwise.

(1)

Furthermore, we denote by If (resp. Iv) the non-empty set of indexes of stations used for the fitting
(resp. validation) procedure. Let nf = card (If ) and nv = card (Iv). Obviously, If ∩ Iv = ∅ and
nf + nv = n. In the present paper, we consider nf = 95 and nv = 21. Notice that the arbitrary choice
of the nv validation stations can be influent in the final performance of the proposed models. For this
reason, in order to test the robustness of the investigated models, we decide to choose randomly 200
combinations of nf = 95 and nv = 21 stations to perform our study. One of the 200 considered random
combinations between fitting and validation stations is displayed in Figure 3.

In the following we will first consider spatial smooth GEV models to derive return level maps for every
location s ∈ S, where S represents the overall surface being interpolated. The involved parameters
are modeled via smooth functions in space by including some significant covariates of the models
(see Section 3). Then, we compare the obtained results with classical spatial interpolation methods of
individual GEV distributions based on the L-moments estimators (see Section 4 and Appendix A).

1 Remark that all maps in this paper have been obtained with package leaftet in R.

climate.weather.gc.ca/prods_servs/engineering_e.html
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Fig. 3 Spatial locations of one of the 200 considered combinations between fitting stations If (blue points) and validation
stations Iv (red points) with nf = 95 and nv = 21.

3 Return level maps through spatially smooth copula-based GEV model

3.1 Univariate EVT via block maxima approach

Since X is defined by annual maxima of precipitation, we focus on the EVT block-maxima approach
(see, e.g., Coles (2001) and Ferreira and de Haan (2015)). Let x(i,t) be the annual maxima at the

ith station for year t. Then, we write x(i,t) = maxj{zj(i,t)}, where zj(i,t) represents the precipitation

at the ith station the jth day of the considered year t. EVT requires independence or short-range
dependence (Leadbetter et al. (1983)). We observe through an additional analysis, near-independence
in our precipitation time-series for every considered year and station. Therefore, we can model x(i,t) by
means of a GEV distribution with parameters Λ = (µ, ξ, σ), i.e.,

G(x;Λ) =

{
exp

{
−
[
1 + ξ

(
x−µ
σ

)]−1/ξ
}
, 1 + ξ

(
x−µ
σ

)
> 0,

0, otherwise.
(2)

The shape parameter ξ ∈ R describing the tail behaviour of the distribution is called the extreme
value index, µ ∈ R is the location parameter and σ > 0 the scale parameter. Now, we introduce the
return level for the GEV distribution. The return level q(p;Λ) associated with the return period 1/p
(0 < p ≤ 1) is the (1− p)th quantile of the GEV distribution in (2), i.e., it is expected to be exceeded
on average once every 1/p years:

q(p;Λ) =

{
µ− σ

ξ [1− {− log(1− p)}−ξ], ξ 6= 0,

µ− σ log{− log(1− p)}, ξ = 0.
(3)

Considered covariates. In the following, we consider three classical geographical coordinates as covari-
ates: longitude, latitude and elevation, which are obtained using a digital elevation model. Furthermore,
in our analysis, we include the mean precipitation averaged over the 34-year period 1981-2014 of the
Canadian Regional Climate Model (CRCM5) driven by the Era-Interim reanalysis. In Figure 4 a graphi-
cal representation for this covariate for the considered area is available. More information on this climate
reconstruction can be found, for instance, in Bresson et al. (2017). This variable is available on a reg-
ular lattice covering the northeastern part of North America through 90000 grid cells, each of which
corresponds to an area of 12× 12 km2 in size.

3.2 Smooth models for GEV parameters

In this section, we consider the estimation of a spatially smooth GEV distribution with the joint use of
all stations. We aim to model the GEV parameters Λ(s) for s ∈ S from the data as smooth functions
in space. Let ζ be one of three GEV parameters and ζ̃ be the associated interpolated value.
Let consider the following general regression model associated to the function F

ζ(s) = F (y(1)
s , , . . . , y(r)

s ) + εs, (4)
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Fig. 4 Mean precipitation at every 12 × 12 km2 grid cell of the Canadian Regional Climate Model driven by the
Era-Interim reanalysis, averaged over the 34-year period 1981-2014.

where εs is an error term satisfying the ordinary least squares hypothesis. In what follows, the GEV
parameter ζ (either µ, ξ or σ) at location s is modeled by (4) without the stochastic (Gaussian)
contribution represented by εs.

Polynomial regression model. Firstly, we consider F in Equation (4) as linear with respect to each

covariate. In the present study, we consider covariates y
(j)
s , for j ∈ {1, . . . , r}, as polynomials of longi-

tude, latitude, altitude and mean precipitation with a maximum polynomial degree of 3 and we take
all possible combinations between these covariates with a maximum polynomial interaction degree of
3. This provides a commonly used polynomial regression model for our predictive analysis, i.e., the
interpolated value at location s is written as

ζ̃(s) = β̃0 + β̃1 y
(1)
s + . . .+ β̃r y

(r)
s , (5)

with the previously described covariates y
(j)
s and where β̃0, . . . , β̃r are the classical least square estimates

of regression parameters (see, e.g., Rencher and Christensen (2012)).

Spline-based regression model. In order to generalize Equation (5), we can model the relation between
the covariates with a smooth non-linear function F in (4). To avoid having to deal with the estimation of
a large number of parameters, we consider here a partial linearity by the following generalized additive
model:

ζ(s) = β0 + β1y
(1)
s + . . .+ βqy

(q)
s + F (y(q+1)

s , . . . , y(r)
s ) + εs, (6)

where εs is an error term and F is a penalized spline (see Marx and Eilers (1998)). Therefore, the
interpolated value at location s is given by

ζ̃(s) = β̃0 + β̃1y
(1)
s + . . .+ β̃qy

(q)
s + F̃ (y(q+1)

s , . . . , y(r)
s ), (7)

where F̃ is the estimated penalized spline in Equation (6) obtained by minimizing the sum of squared
errors subject to constraints on its parameters, to avoid over-fitting (see, e.g., Section 3 in Ruppert
et al. (2003)). A simplified similar framework is considered for instance in Padoan et al. (2010) where
F is a linear regression model using only latitude and elevation as covariates. Conversely, here we
take into consideration more complex covariate models provided by polynomial regression as in (5) or
spline-based regression as in (7) with longitude, latitude, altitude and mean precipitation as covariates.
In order to limit the number of possible smooth GEV parameter models, we select here a total of 96
possible models, gathered in Table 1.

In Section 3.3 below, we mix the sophisticated response surfaces for modeling the GEV parameters
gathered in Table 1 to a flexible joint dependence framework via a hierarchical copula-based model.
Although the assumption of spatial independence between the stations is very unlikely in real life, it
can be found in several papers and can provide satisfying results if we fix all our interest in marginal
distributions. Nevertheless, the aim of Section 3.3 will be to relax in a tractable way this hypothesis to
build a more realistic dependent setting.
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Models for µ and ξ Models for σ

Chosen model Covariates Chosen model Covariates

Best polynomial regression model 3 geographical coordinates Best polynomial regression model 3 geographical coordinates

Best polynomial regression model 3 geographical coordinates and mean precipitation Best polynomial regression model 3 geographical coordinates and mean precipitation

Best polynomial regression model 3 geographical coordinates and µ parameter

i.e. 2 polynomial regression models for µ and for ξ i.e. 3 polynomial regression models for σ

Best spline-based regression model 3 geographical coordinates Best spline-based regression model 3 geographical coordinates

Best spline-based regression model 3 geographical coordinates and mean precipitation Best spline-based regression model 3 geographical coordinates and mean precipitation

Best spline-based regression model 3 geographical coordinates and µ parameter

i.e. 2 spline-based regression models for µ and for ξ i.e. 3 spline-based regression models for σ

Table 1 Selected GEV parameter models from Equations (5) and (7) with related considered covariates.

3.3 Log-likelihood for the hierarchical copula-based model

In order to estimate the parameter models of the GEV presented in Table 1, we apply a log-likelihood
approach which requires the joint distribution of annual maximum precipitation of the considered fitting
stations If . To this end, we focus here in multivariate hierarchical copula models, that is, models that
are able to capture different dependencies between and within different groups of random variables via
dependence copula functions. One such class of models is based on nested Archimedean copulas (see
e.g., Hofert and Pham (2013)). A (partially) nested Archimedean copula C with two nesting levels and
K child copulas (or groups), is given by

C(u) = C0(C1(u1), . . . , CK (uK)), u = (u1, . . . ,uK)t, (8)

where K denotes the dimension of C0 (i.e., the number of clusters) and each copula Ck is Archimedean
with a completely monotone generator ψk, for k ∈ {0, . . . ,K} (see, e.g., Nelsen (1999)). In the fol-
lowing, for the sake of simplicity, we consider C0 as the independent K−dimensional copula, i.e.,
C0(v1, . . . , vK) =

∏K
i=1 vi, with vi ∈ [0, 1].

Definition 1 (Hierarchical copula log-likelihood) Denote by Gi
(
·; Λ(si)

)
, the GEV distribution

in (2) with GEV smooth surface parameters Λ(si) as in Table 1 associated to the ith station and

gi
(
·; Λ(si)

)
its density, for i ∈ If . Let Iit as in (1). Also, let k ∈ {1, . . . ,K} and Ik = {i(k)

1 , . . . , i
(k)
dk
},

where dk = card(Ik), be the set of station indices belonging to the kth cluster, such that ∪Kk=1Ik = If
and Ik ∩ Ik′ = ∅, ∀ k 6= k′. Denote by cθk , the Archimedean copula density for the kth cluster related to
model in (8). Let

L⊥(Λ) :=
∑
i∈If

T∑
t=1

s.t.Iit=1

ln
{
g(x(i,t);Λ(si))

}
. (9)

Then, we introduce the log-likelihood associated to the hierarchical copula model in (8)

LC(Λ) =

K∑
k=1

T∑
t=1

s.t. I
i
(k)
1

t =...=I
i
(k)
dk

t =1

ln
{
cθk
(
G
i
(k)
1

(
x

(i
(k)
1 , t)

; Λ(s
i
(k)
1

)
)
, . . . , G

i
(k)
dk

(
x

(i
(k)
dk
, t)

; Λ(s
i
(k)
dk

)
))}

+ L⊥(µ, ξ, σ).

(10)

Obviously, in the independence setting LC(Λ) in (10) reduces to L⊥(Λ) in (9).
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3.4 Adapted copula-based clustering method

Partitioning Around Medoids (PAM) is a well recognized technique to create clusters with a good
partitioning using medoids for a given number of clusters K (see, e.g., Kaufman and Rousseeuw (1987)
and Kaufman and Rousseeuw (1990), Chapter 2). The PAM algorithm is based on the search for K
representative objects or medoids among the observations of the dataset. After finding a set of K
medoids, clusters are constructed by assigning each observation to the nearest medoid. Next, each se-
lected medoid object xk and each non-medoid data point xi are swapped and the objective function is
computed. The objective function used is the sum of an appropriate dissimilarity measure dik(xi, xk)
computed between the time series of the ith station and the time series of the kth medoid (Reynolds
et al. (2006), Schubert and Rousseeuw (2019)). The objective is to improve the quality of the clustering
by exchanging selected objects (medoids) and non-selected objects. If the objective function can be
reduced by interchanging a selected object with an unselected object, then the swap is carried out.
This is continued until the objective function can no longer be decreased.

In the following we will run the PAM algorithm by using an adapted version of the copula-based dissim-
ilarity measure recently introduced by Disegna et al. (2017) to detect clusters between spatially near
and dependent stations.

Using the latitude and longitude covariates, we can construct additional information on stations, con-
stituted of an (nf×nf ) data matrix S, whose generic entry sij can be interpreted as the spatial distance
between the ith and jth stations and

s̃ij = sij/( max
i,j=1,...,nf

sij), (11)

the normalised spatial distance between the ith and jth stations.
Notice that the sparse behaviour of our (n × T )-data matrix X requires some crucial adaptation of
classical clustering copula methods. To this end, we now introduce the notion of the bivariate hybrid
empirical copula (see e.g., Segers (2015)).

Definition 2 (Hybrid empirical copula) Let i and j be fixed, with i, j ∈ {1, . . . , nf}. Consider
the 2 × T matrix composed of (x(i,t), x(j,t))

>
{t=1,...,T}, where > represents the transpose operator. In

each column, one or both entries may be missing. Formally, our observations consist of a sample of
independent, identically distributed quadruples

(Iit , I
j
t , I

i
tx(i,t), I

j
t x(j,t)), for t ∈ {1, . . . , T}.

Then, the hybrid empirical copula is defined

Ĉij(u, v) = Ĥ
(
G←(u, Λ̂iLM ), G←(v, Λ̂jLM )

)
, for (u, v) ∈ [0, 1]2, (12)

where

ĤT (x, y) =

∑T
t=1 1{x(i,t) ≤ x, x(j,t) ≤ y, Iit = Ijt = 1}∑T

t=1 1{ Iit = Ijt = 1}
. (13)

The hybrid empirical copula in (12)-(13) is similar to the classical empirical copula process, but now
the asymptotic variances and covariances are to be multiplied by the reciprocals of the observation
probabilities P[Iit = 1], P[Iji = 1] and P[Iit = Ijt = 1]. Details are given in Segers (2015).
Then, the adapted empirical version of the copula-based dissimilarity measure in Disegna et al. (2017)
can be defined as follows.

Definition 3 (Empirical copula-based dissimilarity measure) Let define

d̂ij = f(‖ β(M − Ĉij) + s̃ij (1− β)(M −W ) ‖), (14)

where

• s̃ij is the normalised spatial distance in (11);



Smooth Copula-based GEV model and Spatial Interpolation for Sparse Extreme Rainfall 9

• M is the Fréchet upper-bound copula, i.e., M(u, v) = min(u, v);
• W is the Fréchet lower-bound copula, i.e., W (u, v) = max(u+ v − 1, 0);
• β ∈ [0, 1] is the tuning parameter which reflects the prior belief of the decision maker about the

desired influence of the spatial component on the clustering procedure;
• Ĉij is the hybrid copula defined as (12)-(13);
• ‖ · ‖ is a suitable norm in the copula space and f is an increasing and continuous real-valued

function with f(0) = 0.

Notice that the considered copula-based dissimilarity measure in (14) can be formalised as a suit-

able function of the hybrid empirical copula Ĉij (expressing the dependence between the ith and jth
stations) and the spatial information sij . The weight of this convex combination is expressed by the
magnitude of the β parameter. In Algorithm 1, we detail the steps to estimate the copula-based dis-
similarity measure d̂ij in (14) for our sparse dataset.

In Figure 5, we display the absolute value of the logarithm scale for the dissimilarity measure d̂ij in (14)
obtained via Algorithm 1 with β = 0.2 for fitting stations of one of the 200 combinations of the fitting
stations (the same displayed in Figure 3). In addition, in Figure 6, we fix three fitting stations (black
dots) and we display the estimated dissimilarity measure in (14) of these stations with respect to all
others fitting stations in the considered combination. Unsurprisingly, one can observe that the estimated
dissimilarity measure takes the smallest values in the geographical neighborhood of the considered fixed
station. Moreover, the dissimilarity measure does not consider only spatial distance but also the copula
dependence structure between involved stations.

Algorithm 1 Proposed implementation of a copula-based dissimilarity measure for sparse data

(Step 1) Estimate Λ̂iLM = (µ̂iLM , σ̂
i
LM , ξ̂

i
LM ), i.e., the L-moments estimators of the GEV parameters

relative of the ith station (see Appendix A for further details).

(Step 2) From Equations (2)-(3), estimate the inverse of the marginal parametric estimator of the

GEV distribution of the daily annual maxima of the ith station, i.e., G←(·, Λ̂iLM ).

(Step 3) Fix β ∈ [0, 1];

(Step 4) Evaluate s̃ij as in (11).

(Step 5) Choose the Crámer-von Mises norm in (14) and f(·) = exp(·)− 1.

(Step 6) Evaluate ncf =
∑T
t=1 1{Iit = Ijt = 1}, i.e., the number of common observations in

(x(i,t), x(j,t))
>
{t=1,...,T}.

(Step 7) Fix a threshold value n. In the present work n = 10.

if ncf ≥ n, using (12)-(13) and (Step 2), evaluate d̂ij as in (14)

if ncf < n, the ith and jth stations are assumed to be independent.

if ncf = 0, instead of the dissimilarity measure d̂ij , we only consider f(s̃ij), i.e., f applied on the
normalised spatial distance between the ith and jth stations.

The associated R code can be found in dissimilaritymeasure.R file in the supplementary material
CodeR folder.

Finally, in Algorithm 2, we describe how Algorithm 1 can be used to maximize the hierarchical copula
log-likelihood LC(Λ) in Equations (9)-(10).

To conclude this section we propose in Figure 7 an illustration of several obtained clusters of the
(partially) nested Archimedean copula model in Equation 8 by choosing β = 0.2. We fitted different
classical Archimedean copulas (Gumbel, Joe, Clayton, Frank) for each cluster and we provided the
selection model in terms of the AIC criterion (Akaike (1974)). Obtained Archimedean copulas for each



10 Fatima Palacios-Rodriguez et al.

Fig. 5 Absolute value of dissimilarity measure in logarithm scale abs(ln(d̂ij)) for the combination of fitting stations
displayed in Figure 3. Here we consider β = 0.2.

Fig. 6 Absolute value of dissimilarity measure in logarithm scale abs(ln(d̂ij)) for three fixed stations (black dots) with
respect to the others fitting stations. Here we consider β = 0.2. We consider as fitting stations the combination displayed
in Figure 3.

Algorithm 2 Proposed implementation for smooth copula-based GEV method

(Step 1) Choose several values for K (i.e., the number of clusters) and β.

(Step 2) For these input parameters (K,β), estimate the copula-based dissimilarity measure d̂ij via
Algorithm 1.

(Step 3) Provide the clustering of stations by running the PAM algorithm with d̂ij from (Step 2).

(Step 4) Select optimal (K∗, β∗) in (Step 1) with respect to the classical Average Silhouette Width
(ASW) criterion.

(Step 5) Estimate the best Archimedean copula density cθ̂k in terms of the AIC criterion for each

cluster with k ∈ {1, . . . ,K∗}.
(Step 6) Using cθ̂k from (Step 5) and marginal GEV parameter models from Table 1 maximize the

log-likelihood LC(Λ) in Equations (9)-(10).

The associated R code can be found in smoothDEPENDENCEmodel.R file (resp.
smoothINDEPENDENCEmodel.R file for the independence setting of Equation (9)) in the sup-
plementary material CodeR folder.

cluster are Gumbel with θ̂ = 1.656 (left panel), Clayton with θ̂ = 0.595 (center panel) and Joe with

θ̂ = 1.119 (right panel).
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Fig. 7 Illustration for several obtained clusters. Centroid stations are presented by dark-red dots, element stations in
each cluster by orange ones. Obtained Archimedean copulas for each cluster are Gumbel with θ̂ = 1.656 (left panel),

Clayton with θ̂ = 0.595 (center panel) and Joe with θ̂ = 1.119 (right panel).

4 Return level maps through classical spatial interpolation of individual GEV
distribution

In the following, we will be interested in presenting naive interpolation routines used in practice to
estimate return levels for every location s ∈ S by interpolating individual GEV distributions.
For that purpose, we present in this section several exact and inexact techniques to derive the spa-
tial interpolators ξ̃(s), µ̃(s) and σ̃(s) all based on the L-moments estimators ξ̂LM , µ̂LM and σ̂LM in
Appendix A and by considering covariates previously introduced in Table 1.
Let ζ̂ := ζ̂LM be the L-moments estimator (either ξ̂LM , µ̂LM or σ̂LM ) used in the interpolation (see
Appendix A). In the rest of this section, for sake of simplicity we will drop the LM notation.

4.1 Exact interpolation techniques

Inverse distance weighted (IDW). The inverse distance weighted method provides an exact interpola-

tion, i.e., the interpolated value ζ̃(si) at station si is equal to the estimated value ζ̂i used in the inter-
polation. The IDW method is widely known as the basic one in the interpolation literature (Burrough
(1986)). This method is based in the assumption that all the points on the earths surface are inter-
dependent on the basis of distance. IDW technique provides satisfactory results when the number of
points in the considered area is large and the points are uniformly distributed. However, it presents
certain weaknesses (for details, the reader is referred to Achilleos (2011)). This interpolation technique
implies that the influence of surrounding stations is reduced by large distances. In addition, distances
are attenuated by weighting factors. Let us denote di, for i = 1, . . . , nf , the distance between the in-
terpolating location si and the interpolated location s. Then, the interpolated value at location s is
defined by

ζ̃(s) =

∑nf

i=1
ζ̂i
di∑nf

i=1
1
di

.

We consider IDW with gradient correction (Nalder and Wein (1998)) in order to take into account

the dependence between parameters and covariates. Let y
(1)
s , , . . . , y

(r)
s denote r covariates recorded for

each station s, the interpolated value at location s is defined by

ζ̃(s) =

∑nf

i=1

ζ̂i+β1(y(1)
s −y

(1)
si

)+...+βr(y(r)
s −y

(r)
si

)

||ls−lsi ||∑nf

i=1
1

||ls−lsi ||
, (15)

where ls is the two-dimensional coordinate (longitude, latitude) of the location s, the parameters
β1, . . . , βr correspond to the values that minimize the cross-validation score

nf∑
i=1

(ζ̂i − ζ̃−i(si))2, (16)

with ζ̃−i(si) the interpolated ζ at si when this station is not considered in Equation (15). Detailed
steps are provided in Algorithm 3.
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Algorithm 3 Proposed implementation for IDW method

(Step 1) Consider altitude and mean precipitation covariates, denoted (y
(1)
s , y

(2)
s ) = (as, m̄s) at a

given station with two-dimensional coordinate ls.

(Step 2) Equation (15) can be written as

ζ̃(s) =

∑nf

i=1
ζ̂i+βa(as−asi )+βm̄(m̄s−m̄si

)

||ls−lsi ||∑nf

i=1
1

||ls−lsi ||
.

(Step 3) Estimate parameters βa and βm̄ by minimizing the cross-validation score in (16).

Universal Kriging. The main principle of kriging is to compute the best linear unbiased estimator
of ζ(s) by the calculation of a weighted average of the known values of ζ in the neighborhood of s.
The most general case, universal kriging, was set out in Matheron (1969). Unlike the simple kriging,
the expectation of random function model ζ(s) is allowed to vary spatially. In universal kriging, it is
assumed that

E[ζ(s)] = β(s) ≡
r∑
j=0

βjfj (s), (17)

where fj are known functions and the βj , j = 0, 1, . . . , r, are unknown coefficients. Usually, f0(s) = 1,
∀s, which guarantees that the constant-mean case is included in the model. The model for universal
kriging is given by

ζ(s) = β(s) +G(s), (18)

whereG(s) is a zero-mean Gaussian process which defines the spatial dependence. In order to predict ζ in
Equation (18), we need to estimate the βj parameters with j = 0, 1, . . . , r and, the variogram associated
to G(s) (see Chapters 5 and 6 in Diggle and Ribeiro (2007)). The mean square error predictor of ζ(s)
is defined by

ζ̃(s) = β̃(s) +

nf∑
i=1

λi(s)
(
ζ̂i − β̃(s)

)
,

where β̃(s) =
∑r
j=0 β̂jfj(s) with β̂j denoting the estimator of βj in Equation (17), j = 0, . . . , r,

and λi(s), i = 1, . . . , nf , the prediction weights (see Section 3.4. in Chilès and Delfiner (2009)). If
the variogram of G(s) is supposed to be continuous at the origin, the nugget effect (i.e., microscale
variations) is not considered. In the above case, kriging is an exact interpolation technique (see Section
3.2.1 in Cressie (1993)). One of the most applied version of universal kriging is when functions fj(s),
j = 1, . . . , r are considered as explanatory variables. That is, if we assume that β(s) in Equation (17)

is explained by r covariates, y
(1)
s , , . . . , y

(r)
s , then Equation (18) can be written as

ζ(s) = β0 +

r∑
j=1

βjy
(j)
s +G(s). (19)

Detailed steps are gathered in Algorithm 4. The R code associated to Algorithm 3 and Algorithm 4
can be found in the classicalinterpolationtechniques.R file in the supplementary material CodeR
folder.

4.2 Inexact interpolation techniques

Let consider polynomial and spline-based regression models presented in Section 3.2. Since the error
term εs, techniques from Equation (4) do not provide exact interpolations. Firstly, Algorithm 5 presents
steps for the implementation of the proposed polynomial regression method. Secondly Algorithm 6
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Algorithm 4 Proposed implementation for Universal Kriging method

(Step 1) Consider β(s) in (17) as a first order polynomial on the two-dimensional coordinates ls,
with mean and altitude covariates.

(Step 2) Assume that the variogram of G in (19) is continuous at the origin.

(Step 3) Estimate the variogram of G via maximum likelihood method for several covariance func-
tions. We consider exponential, spherical, circular, cubic, Matérn and Gneiting covariance functions.

(Step 4) Choose the covariance function associated to the best fitting in terms of the AIC criterion.

Algorithm 5 Proposed implementation for polynomial regression method

(Step 1) Consider covariates as polynomials of longitude, latitude, altitude and mean precipitation
with a maximum degree of 3.

(Step 2) Take all possible combinations between covariates built in Step 1 with a maximum inter-
action degree of 3.

(Step 3) Choose the combination in Equation (5) associated to the best model by AIC criterion.

Algorithm 6 Proposed implementation for spline-based regression method

(Step 1) Using (7), we fix the interpolated value at location s as

ζ̃(s) = β̃0 + β̃1as + β̃2m̄s + F̃ (ls).

(Step 2) Fix 10000 combinations of 15 knots among nf = 95 fitting stations.

(Step 3) Select the best model associated to the combination of 15 knots that provides the lowest
value of generalized cross-validation (GCV) score (see, e.g., Section 4.2.3 in Wood (2017)).

gathers steps for the proposed spline-based regression method. In the present study, the spline is a
function of the coordinates and altitude and mean precipitation covariates are considered linearly.

The R code associated to Algorithm 5 and Algorithm 6 to can be found in
classicalinterpolationtechniques.R file in the supplementary material CodeR folder.

5 Quality of predictions

In order to evaluate the quality of the proposed models, we introduce several measures to measure the
accuracy of the several fits. Particularly, we are interested in the quality of the interpolated distribu-
tions. To this end, we study the difference between accuracy measures for 95 fitting stations and 21
validation stations. A consistent way to measure the quality is to compare the goodness-of-fit of the

quantiles of the interpolated GEV parameters versus the observed ones. Let z
(1)
si , . . . , z

(m)
si , . . . , z

(M)
si

denote the M = 30 empirical quantiles at location si, where the mth value z
(m)
si is associated to a prob-

ability pm = m−1/2
M . Also, q̃pm,si denotes the (1 − pm) quantile of the interpolated GEV distribution

at location si, obtained by Equation (3) replacing Λ by the interpolated values Λ̃ with p = pm. The
considered goodness-of-fit scores are gathered in Table 2.

From the GEV interpolated parameters through the different proposed techniques in Sections 3 and 4,
we calculate the corresponding scores gathered in Table 2 for 200 combinations of index sets If and
Iv, i.e., for 200 combinations of fitting and validation stations. The obtained boxplots are gathered in
Figure 8. Furthermore, the associated medians and standard deviations are displayed in Tables 3 and
4. In these tables, the smooth independent GEV model refers to Equation (9).
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Relative Mean Squared Error RMSE =

√
1

ñM

∑ñ
i=1

∑M
m=1

(
z
(m)
si − q̃pm,si

)2
Mean Absolute Error MAE = 1

ñM

∑ñ
i=1

∑M
m=1 |z

(m)
si − q̃pm,si |

Maximum Prediction Error MPE = maxi∈{1,...,ñ } maxm∈{1,...,M} |z
(m)
si − q̃pm,si |

Bias B = 1
ñM

∑ñ
i=1

∑M
m=1

(
z
(m)
si − q̃pm,si

)
Table 2 Considered goodness-of-fit scores. Here we consider M = 30, ñ = nf for the fitting stations analysis and ñ = nv

for the validation one.

Fig. 8 Boxplots of obtained scores from Table 2 for 200 combinations between fitting and validation stations for each
interpolation technique. Models with three geographical covariates are displayed in orange boxplots for fitting stations
and in sky-blue boxplots for validation ones. Models with the mean precipitation in addition to the three geographical
covariates are displayed in red boxplots for fitting stations and in dark -blue boxplots for validation ones.

In this analysis, we consider models with the three geographical covariates (see Table 3 and associ-
ated orange and sky-blue boxplots in Figure 8) and models where the mean precipitation covariate is
additionally taken into account (see Table 4 and associated red and dark-blue boxplots in Figure 8).
We also introduce the scores by considering the quantiles with pointwise L-moments estimators for the
GEV parameters in Appendix A, called Pointwise GEV in Table 3 and Figure 8. This means that, for
all methods validation stations, the scores correspond to the predictions except for the Pointwise GEV
scores which are fitting scores. Then, the Pointwise GEV scores can be interpreted as lower bounds of
the error that would result from a prediction. We refer the interested reader to Figure 12 of Appendix
A, for a pointwise return level map associated to these Pointwise GEV estimators. Obviously, since
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Fitting stations Validation stations

RMSE MAE MPE B RMSE MAE MPE B

1. Pointwise GEV 1.85 (0.04) 1.38 (0.02) 15.45 (1.18) 0.19 (0.01) 1.81 (0.18) 1.36 (0.11) 8.68 (3.74) 0.18 (0.05)

2. IDW 1.85 (0.04) 1.38 (0.02) 15.45 (1.18) 0.19 (0.01) 6.64 (1.01) 5.17 (0.79) 22.12 (4.44) 0.15 (1.51)

3. Polynomial regression 5.16 (0.18) 3.95 (0.15) 27.91 (3.01) 0.18 (0.01) 6.62 (2.42) 5.16 (1.24) 25.04 (12.79) 0.14 (1.64)

4. Spline 4.40 (0.16) 3.39 (0.13) 23.02 (2.74) 0.18 (0.01) 6.20 (4.51) 4.71 (1.55) 22.83 (22.83) 0.30 (1.93)

5. Kriging 1.85 (0.04) 1.38 (0.02) 15.45 (1.18) 0.19 (0.01) 6.06 (0.94) 4.67 (0.74) 20.90 (4.67) 0.27 (1.35)

Table 3 Median scores from Table 2 for 200 combinations between fitting and validation stations for each interpolation
technique. Associated standard deviations are displayed in brackets. We consider here the three geographical coordinates
as covariates.

Fitting stations Validation stations

RMSE MAE MPE B RMSE MAE MPE B

1. IDW 1.85 (0.04) 1.38 (0.02) 15.45 (1.18) 0.19 (0.01) 5.16 (0.57) 4.04 (0.48) 16.72 (4.06) 0.21 (1.13)

2. Polynomial regression 4.16 (0.13) 3.21 (0.12) 24.13 (2.81) 0.18 (0.01) 6.41 (2.08) 4.89 (1.19) 25.68 (11.13) 0.21 (1.52)

3. Spline 4.28 (0.14) 3.32 (0.12) 23.25 (3.08) 0.18 (0.01) 5.74 (3.67) 4.44 (1.27) 21.44 (19.75) 0.23 (1.67)

4. Kriging 1.85 (0.04) 1.38 (0.02) 15.45 (1.18) 0.19 (0.01) 5.39 (0.62) 4.16 (0.52) 19.63 (4.23) 0.11 (1.18)

5. Smooth independent GEV 4.41 (0.17) 3.41 (0.14) 22.69 (2.67) 0.24 (0.13) 6.22 (4.50) 4.73 (1.55) 23.03 (22.82) 0.36 (1.94)

Table 4 Median scores from Table 2 for 200 combinations between fitting and validation stations for each technique.
Associated standard deviations are displayed in brackets. We consider here the three geographical coordinates and the
mean precipitation as covariates.

IDW and kriging techniques provide exact interpolations, their results exactly correspond with the ones
from Pointwise GEV parameters estimation.

Table 3 suggests that when using only longitude, latitude and elevation as covariates, kriging performs
better, since almost all considered scores are lower. Spline and IDW perform similarly. The less per-
forming models seems to be the polynomial regression ones, both in terms of median values (see Table
3) and of sensitivity of the combinations between fitting and validation stations (see boxplots in Figure
8). Prediction seems to quickly deteriorate away from the fitting stations. Indeed, results for the combi-
natory validation stations (sky-blue and dark-blue boxplots in Figure 8) are relatively poor compared to
those for the fitting stations (orange and red ones). This considerations is true in particular for RMSE
and MAE scores. Conversely, performances seem to be more stable in terms of bias. Moreover due to the
small number of considered validation stations (nv = 21) and the discrepancy between nf and nv, the
variance of the sky-blue and dark-blue boxplots in Figure 8 is considerably large. In addition, we can
observe that the choice of fitting and validation stations produces a larger impact over the polynomial
regression techniques (see variability of boxplots for polynomial regression in Figure 8 for instance in
terms of MPE).

In Figure 8, it can be observed that the behaviour of models with three geographical covariates and mean
precipitation as covariates slightly improve models with only the three geographical covariates. Since
essentially all the considered scores decrease, the first 4 lines to Table 4 show the global improvement
compared to Table 3, when using additionally the mean precipitation as a covariate. All interpolation
methods have analogous performance and still universal kriging and IDW perform slightly better. Note
that in Table 4 (line 5), error measurements from the independent smooth GEV model, based on Equa-
tion (9), are quite high compared to those when a GEV is fitted to each station separately (first line of
Table 3). Notice that these errors cannot directly be compared since the individual GEV fitting uses
all available information at the validation stations for parameter estimation, while this information is
not used in the parameter estimation of the smooth GEV model.
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To illustrate the performance of the smooth copula-based GEV model proposed in Section 3, we now
consider the particular combination between fitting and validation stations previously displayed in Fig-
ure 3. For this combination, our error measures are gathered in Table 5. One can observe that the
quality in this last model (Table 5, line 7) remains globally more stable in the validation stations with
respect to the considered error measures, when other methods deteriorate quickly the quality of the
predictions. These results show a better performance of the considered smooth GEV distribution fitting,
in particular in this sparse station network situation.

Fitting stations Validation stations

RMSE MAE MPE B RMSE MAE MPE B

1. IDW 1.87 1.39 15.45 0.19 4.88 3.96 15.86 −1.29

2. Polynomial regression 4.10 3.22 24.18 0.18 6.02 4.60 19.04 −0.25

3. Spline 4.48 3.50 22.35 0.17 3.91 3.12 15.29 −0.84

4. Kriging 1.87 1.39 15.45 0.19 5.06 4.00 15.17 −1.42

5. Smooth independent GEV 4.69 3.60 22.43 0.18 4.28 3.27 15.30 −0.61

7. Smooth copula-based GEV 4.69 3.61 22.53 0.33 4.27 3.23 15.25 −0.44

Table 5 Goodness-of-fit scores from Table 2 for the combination between fitting and validation stations displayed in
Figure 3 for each technique. We consider here the three geographical coordinates and the mean precipitation as covariates.

Associated return level maps for IDW, Kriging, Spline and smooth copula-based GEV models in Table
5 are displayed in Figures 9-10.

Fig. 9 Obtained 20-years precipitation return level maps in mm in Central Eastern Canada. First row: IDW (left panel),
Kriging (right panel). Second row: Spline (left panel) and smooth copula-based GEV (right panel).

One can appreciate in Figures 9-10 a global similar behavior for the IDW (first row, left panel), kriging
(first row, right panel) and spline (second row, left panel) methods. Conversely, a slight different return
level map can be observed for the smooth copula-based GEV method (second row, right panel), due
to the considered local spatial and copula dependencies. Furthermore, remark that the smooth return
level maps can be computed from the fitted model without any further interpolation. Finally, one can
compare return levels in Figures 9-10 with the map recently obtained in Perreault et al. (2019) for
the same Central Eastern Canada rainfall dataset, where the spatial effect is modeled via Gaussian
Markov random fields. Indeed, the 24h duration 20-years precipitation return level map in Perreault
et al. (2019) shows a very similar behavior of smooth copula-based one (see second row, right panel in
Figure 9).
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Fig. 10 Obtained 40-years precipitation return level maps in mm in Central Eastern Canada. First row: IDW (left
panel), Kriging (right panel). Second row: Spline (left panel) and smooth copula-based GEV (right panel).
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A L-moments for GEV parameters

An illustration that L-moments are efficient in estimating parameters of a wide range of distributions
from small sample sizes is presented in Hosking and Wallis (1997). Since we have a small number
of observations for several stations (see Figure 1), we consider the L-moments estimators in order
to estimate the GEV parameters. The L-moments estimators for the GEV distribution parameters
Λ̂LM = (µ̂LM , ξ̂LM , σ̂LM ) in (2) are defined as

ξ̂LM = 7.8590c+ 2.9554c2, σ̂LM =
β̂0ξ̂LM

(1− 2−ξ̂LM )Γ (1 + ξ̂LM )
, µ̂LM = β̂0 −

σ̂LM

ξ̂LM
[1− Γ (1 + ξ̂LM )],

with c = 2/(3 + τ̂3) − log(2)/ log(3) and τ̂3 = 6β̂2−6β̂1+β̂0

2β̂1−β̂0
, where β̂r are suitable estimators of the

probability weighted moments of order r (see Hosking et al. (1985) for more details), for r = 0, 1, 2.

The return levels over each location are calculated by plugging the L-moments estimators above in
Equation (3). By considering the estimated return levels, the return level plots for 3 locations with
different altitudes are depicted in Figure 11. These panels represent q(p; Λ̂LM ) versus − ln (1− p) on a
logarithm scale, and provide the highest value expected to be exceeded once every r years for any return
period r on x−axis. From Equation (3), when ξ < 0, the return level plot is convex with asymptotic
limit as p→ 0 at µ− σ

ξ ; when ξ > 0, the plot is concave with not finite bound; when ξ = 0, the plot is
linear. In Figure 11 one can appreciate the quality of the fitting of GEV L-moments estimators to our
data.

Figure 12 shows the resulting pointwise 20-years and 40-years return levels for the considered 116
stations. Such a map is nevertheless difficult to interpret and can only give information for the few
locations where data are available. In practice, spatial return levels as in Figures 9-10, rather than
pointwise estimates as in Figure 12, would be of much higher value.
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Fig. 11 Locations of 3 selected stations and adequacy of fitted GEV model through the associated return level plots.

Fig. 12 Pointwise 20-years (left) and 40-years (right) precipitation return level map in mm for the considered 116
stations in Central Eastern Canada.
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