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Introduction.

Erdös and Zaremba showed in [START_REF] Erdös | The arithmetical function d|n log d d[END_REF] the following result concerning the arithmetical function

Φ(n) = d|n log d d , (1.1) lim sup n→∞ Φ(n) (log log n) 2 = e γ ,
where γ is Euler's constant. This function appears in the study of good lattice points in numerical integration, see Zaremba [START_REF] Zaremba | Good lattice points modulo composite numbers[END_REF]. The proof is based on the identity In this case a formula similar to (1.3) no longer holds, the "log-linearity" being lost due to the extra factor h(n). The study of this function requires a new approach. We study in this work the case h(n) = log log n, that is the function

Φ(n) =
Ψ(n) = d|n (log d)(log log d) d . (1.5)
We extend Erdős-Zaremba's result for this function, as well as for the functions where Ω(d) denotes as usual the total number of prime factors of d counting multiplicity. These functions are linked to Ψ. Throughout, log log x (resp. log log log x) equals 1 if 0 ≤ x ≤ e e (resp. 0 ≤ x ≤ e e e ), and equals log log x (resp. log log log x) in the usual sense if x > e e (resp. x > e e e ).

One verifies using standard arguments that

(1.6) lim sup n→∞ Φ 1 (n) (log log n) 2 (log log log n) ≥ e γ , lim sup n→∞ Ψ(n) (log log n) 2 (log log log n) ≥ e γ ,
and in fact that

(1.7) lim sup n→∞ Φ 1 (n) (log log n) 2 (log log log n) = e γ .
By the observation made after (1.3), the corresponding extension of this result to Ψ(n) is technically more delicate. It follows from (1.1) that (1.8) lim sup

n→∞ Ψ(n) (log log n) 3 ≤ e γ .
The question thus arises whether the exponent of log log n in (1.8) can be replaced by 2 + ε, with ε > 0 small.

We answer this question affirmatively by establishing the following precise result, which is the main result of this paper. 

lim sup n→∞ Ψ(n) (log log n) 2 (log log log n) = e γ .
An application of this result is given in Section 5. The upper bound is obtained, via the inequality Ψ(n) ≤ Φ 1 (n) + Φ 2 (n), (1.9) as a combination of an estimate of Φ 1 (n) and the following estimate of Φ 2 (n). Recall that Davenport's function w(n) is defined by w(n) = p|n log p p . According to Theorem 4 in [START_REF] Davenport | On a generalization of Euler's function φ(n)[END_REF] we have, (1.10) lim sup n→∞ w(n) log log n = 1.

Let also ω(n) be the number of prime divisors of n counted without multiplicity.

Theorem 1.2. For all odd numbers n we have,

Φ 2 (n) ≤ C (log log log ω(n))(log ω(n))w(n).
where C is an absolute constant.

Here and elsewhere C (resp. C(η)) denotes some positive absolute constant (resp. some positive constant depending only of a parameter η).

The approach used for proving Theorem 1.2 can be adapted with no difficulty to other arithmetical functions of similar type.

Before continuing we mention some other existing extensions, due to Sitaramaiah and Subbarao in [START_REF] Sitaramaiah | The maximal order of certain arithmetic functions[END_REF][START_REF] Sitaramaiah | Maximal order of certain sums of powers of the logarithmic function, The Riemann zeta function and related themes[END_REF]. For instance, the case when log d is replaced by a non-negative additive function g (ie. S(n) = d|n g(d) d ) is studied in [START_REF] Sitaramaiah | Maximal order of certain sums of powers of the logarithmic function, The Riemann zeta function and related themes[END_REF]. In our case we note that g(d) = (log d)(log log d) (see (1.4)), which is obviously not additive. It is proved that if T (d) is one of the three arithmetical functions ω where c T = 1 in the two first cases, and c T = log 2 in the third case. See also Remark 2.3. A basis of their proof lies in the observation that S(n)/σ -1 (n) is additive. Further it is proved in [START_REF] Sitaramaiah | The maximal order of certain arithmetic functions[END_REF] that for each positive integer k,

(1.12) lim sup n→∞ S k (n) (log log n) k+1 = c k e γ , (S k (n) = d|n (log d) k d )
where c k is a positive explicit constant. The proof is elegant and based on the derivation formula

S k (n) = (-1) k f (k) (1)
, where f (u) = σ -u (n) and f (k) is the k-th derivative of f , which is specific to these sums.

The paper is organized as follows. Sections 2 and 3 form the main part of the paper, and consist of the proof of Theorem 1.2, which is long and technical and involves the building of a binary tree (subsection 2.2.1). The proof of Theorem 1.1 is given in section 3. Section 4 contains complementary results and the proofs of (1.6), (1.7). Section 5 concerns the afore mentioned application of Theorem 1.1. Additional remarks and results are given in Section 6.

2. Proof of Theorem 1.2.

We use a chaining argument. We make throughout the convention 0 log 0 = 0.

Let n = p α1 1 . . . p αr r be an odd number. We will use repeatedly the fact that

r min i=1 p i ≥ 3. (2.1)
We note that 

µ i + µ r . (2.3)
The sub-sums in (2.3) will be estimated by using a recursion argument.

We first explain its principle and examine the structure of the sum Φ 2 (r, n), anticipating somehow the calculations. The last sum αr µr=0 µr log pr p µr r log r-1

i=1 µ i + µ r is of type αr µ=0 αµ log(A + µ) e -αµ , α = log p r , A = r-1 i=1 µ i .
It is easy to observe with (2.6) that the bound obtained in Lemma 2.2, will induce on the sum in µ r-1 a logarithmic factor log h + r-2 i=1 µ i + µ r-1 where h is a positive integer, and so one. More precisely, 

∞ µ=0 αµ log(A + µ) e -αµ ≤ α log(A + 1) e -α + 2α log(A + 2) e -2α + 3α log(A + 3) + 3 log(A + 3) + 1 α log(A + 3) + 1 α + 1 α 2 (A + 3) e -3α .
µ i + h + 1 p r-1 log( r-2 i=1 µ i + h + 1) + log r-2 i=1 µ i + h + 1 log p r-1 + 1 (log p r-1 ) 2 ( r-2 i=1 µ i + h + 1)
.

By recursing once more, this allows one to bound again Φ 2 (r, n). The remainding sums will after be all of same type. The factor log r-1 i=1 µ i + h induces on the sum of order (r -2) a factor log r-2 i=1 µ i + h + 1 . The whole matter thus consists with understanding how the new coefficients are generated, and in particular to check whether a coefficient of order 1 + ε will not produce by iteration a coefficient of order (1 + ε) r . A recurrence inequality established in Lemma 2.6 will allow one to control their magnitude efficiently.

2.1. Preparation. Some technical lemmas will be needed.

Lemma 2.1. (i) Let ϕ 1 (x) = x log(A + x) e -αx , ϕ 2 (x) = log(A + x) e -αx . Then ϕ 1 (x) is non-increasing on [3, ∞) if A ≥ 1 and α ≥ log 2. Further, ϕ 2 (x) is non-increasing on [1, ∞), if A ≥ 1 and α ≥ 1.
(ii) Assume that A ≥ 1 and α ≥ log 2. For any integer m ≥ 1,

α ∞ m x log(A + x) e -αx dx ≤ 1 α 2 (A + m) e -αm + 1 α e -αm + 1 α log(A + m) e -αm +m(log A + m)e -αm . (2.4) (iii) Assume that A ≥ 1 and α ≥ 1. Then, ∞ 1 log(A + x) e -αx dx ≤ log(A + 1) α e -α + 1 α 2 (A + 1) e -α . (2.5) Proof. (i) We have ϕ 1 (x) = log(A+x) e -αx + x
A+x e -αx -αx log(A+x) e -αx . By assumption and since

ϕ 1 (x) ≤ 0 ⇔ 1 x + 1 (A+x) log(A+x) ≤ α, we get 1 x + 1 (A + x) log(A + x) ≤ 1 3 + 1 8 log 2 ≤ 1 3 + 1 5 < log 2 ≤ α. Similarly ϕ 2 (x) = 1 A+x e -αx -α log(A + x) e -αx . As ϕ 2 (x) ≤ 0 ⇔ (A + x) log(A + x) ≥ 1 α , we also get (A + x) log(A + x) ≥ 2 log 2 > 1 ≥ 1 α .
(ii) We deduce from (i) that

(2.6) αx log(A + x) e -αx = log(A + x) e -αx + x A + x e -αx -x(log A + x)e -αx .
By integrating,

α ∞ m x log(A + x) e -αx dx = ∞ m x log(A + x) e -αx dx + ∞ m x A + x e -αx dx +m(log A + m)e -αm . Similarly α ∞ m log(A + x) e -αx dx = ∞ m 1 A + x e -αx dx + log(A + m) e -αm .
By combining we get,

α ∞ m x log(A + x) e -αx dx = 1 α ∞ m 1 A + x e -αx dx + ∞ m x A + x e -αx dx + 1 α log(A + m) e -αm + m(log A + m)e -αm .
Therefore,

α ∞ m x log(A + x) e -αx dx ≤ 1 α 2 (A + m) e -αm + 1 α e -αm + 1 α log(A + m) e -αm +m(log A + m)e -αm .
(iii) We deduce from (i) that

N 1 log(A + x) e -αx dx = 1 α N 1 1 (A + x) e -αx dx - 1 α log(A + 1) e -α -log(A + N ) e -αN .
As 

1 α N 1 1 A+x e -αx dx ≤ 1 α 2 (A+1) e -α ,
µ i + h + + 1 (1 + ( s-1 i=1 µ i + 2))(log p s ) 2 p s .
In particular,

∞ µs=0 log s-1 i=1 µ i + h p µs s ≤ 1 + 1 p s 1 + 1 log p s + 1 3(log p s ) 2 log s-1 i=1 µ i + h + . Proof. As ∞ µ=0 log(A + µ) e -αµ = log A + log(A + 1) e -α + ∞ µ=2 log(A + µ) e -αµ ≤ log A + log(A + 1) e -α + ∞ 1 log(A + x) e -αx dx we deduce from Lemma 2.1-(iii), (2.7) ∞ µ=0 log(A + µ) e -αµ ≤ log A + e -α log(A + 1) + log(A + 1) α + 1 α 2 (A + 1)
.

Consequently,

∞ µs=0 log s i=1 µ i + h p µs s ≤ log s-1 i=1 µ i + h + 1 p s 1 + 1 log p s log s-1 i=1 µ i + h + + 1 (1 + ( s-1 i=1 µ i + 2))(log p s ) 2 p s .
Finally,

∞ µs=0 log s-1 i=1 µ i + h p µs s ≤ 1 + 1 p s 1 + 1 log p s + 1 3(log p s ) 2 log s-1 i=1 µ i + h + . Corollary 2.4. Assume that condition (2.1) is satisfied. (i) If r-1 i=1 µ i ≥ 1, then αr µr=0 µ r log p r p µr r log r-1 i=1 µ i + µ r ≤ log p r p r log r-1 i=1 µ i + 1 + 2 log p r p 2 r log r-1 i=1 µ i + 2 + 1 p 3 r 3 log p r + 3 + 1 log p r log r-1 i=1 µ i + 3 + 1 p 3 r log p r 1 + 1 ( r-1 i=1 µ i + 3) log p r . Further, αr µr=0 µ r log p r p µr r log r-1 i=1 µ i + µ r ≤ 5 log p r p r log r-1 i=1 µ i + 3 . (ii) If r-1 i=1 µ i = 0, then αr µr=0 µ r log p r p µr r log r-1 i=1 µ i + µ r ≤ 18 log p r p r .
Proof. (i) The first inequality follows from Lemma 2.2 with the choice α = log p r and A = r-1 i=1 µ i , noting that by assumption (2.1), α > 1. As p r ≥ 3, it is also immediate that

αr µr=0 µ r log p r p µr r log r-1 i=1 µ i + µ r ≤ 3 log p r p r + log p r 9p r 3 + 3 log p r + 1 (log p r ) 2 log r-1 i=1 µ i + 3 + 1 9p r log p r 1 + 1 4 log p r ≤ 5 log p r p r log r-1 i=1 µ i + 3 . (ii) If r-1 i=1 µ i = 0, the sums relative to µ i , 1 ≤ i ≤ r -1, do not contribute. Further, αr µr=0 µ r log p r p µr r log r-1 i=1 µ i + µ r = αr µr=2 µ r log p r p µr r log µ r = αr-1 µ=1 (µ + 1) log p r p µ+1 r log(µ + 1) ≤ 1 p r ∞ µ=1 µ log p r p µ r log(µ + 1) + ∞ µ=1 log p r p µ r log(µ + 1) .
Lemma 2.2 applied with A = 1 and α = log p r gives the bound

∞ µ=1 µ log p r p µ r log(µ + 1) ≤ (log 2) log p r p r + 2(log 3) log p r p 2 r + 1 p 3 r (6 log 2)(log p r ) +6 log 2 + 2 log 2 (log p r ) + 1 (log p r ) + 1 4(log p r ) 2 ≤ 8 log p r p r + 1 p 3 r .
Next estimate (2.7) applied with A = 1 and α = log p r , further gives,

∞ µ=1 log p r p µ r log(µ + 1) ≤ 1 p r log 2 + log 2 log p r + 1 2(log p r ) 2 ≤ 2 p r .
Whence, αr µr=0 µr log pr p µr r log r-1 i=1 µ i + µ r ≤ 18 log pr pr .

Remark 2.5. As log

s i=1 µ i + h ≤ log Ω(n) + 3 , one can deduce from Corollary 2.4-(ii) that Φ 2 (r, n) ≤ 18 log p r p r log(Ω(n) + 3) r i=1 1 1 -p -1 i .
So that by the observation made at the beginning of section 2,

Φ 2 (n) ≤ 18 log(Ω(n) + 3) r j=1 log p j p j r i=1 1 1 -p -1 i .
By combining this with the bound for Φ 1 (n) established in Lemma 4.1, next using inequality (1.9), gives

Ψ(n) ≤ r j=1 1 1 -p -1 j r i=1 (log p i ) log log p i p i -1 + 18 r i=1 log p i p i log(Ω(n) + 3)) , (2.8) recalling that r = ω(n). Whence by invoking Proposition 4.3, noticing that ω(n) ≤ Ω(n) ≤ log 2 n, Ψ(n) ≤ e γ (1 + o(1))(log log n) 2 log log log n + 18w(n) .
The finer estimate of Ψ(n) will be derived from a more precise study of the coefficients of Ψ(r, n). This is the object of the next sub-section.

2.2. Estimates of Φ 2 (r, n). We define successively

                         µ = (µ 1 , . . . , µ r ), (µ 1 , . . . , µ r ) ∈ r i=1 [0, α i ] ∩ N , p µ (s) = p -µ1 1 . . . p -µs s , 1 ≤ s ≤ r, Π s = α1 µ1=0 . . . αs µs=0 p µ (s) = s =1 1 -p -α -1 1 -p s-1 .
(2.9) Next,

Φ s (h) = α1 µ1=0 . . . αs µs=0 p µ (s) log s i=1 µ i + h , 1 ≤ s ≤ r -1.
We also set

           c 1 = 1, c 2 = 2 pr , c 3 = 1 p 2 r 3 + 3 log pr + 1 (log pr) 2 , c 4 = 1 p 3 r log pr 1 + 1 3 log pr c 0 = log pr pr , c = 3 i=1 c i , b s = 1 ps 1 + 1 log ps , β s = 1 2ps(log ps) 2 .
(2.10) 2.2.1. Recurrence inequality. We deduce from the first part of Lemma 2.3 that

Φ s (h) = α1 µ1=0 . . . αs-1 µs-1=0 p µ (s -1) αs µs=0 p -µs s log s i=1 µ i + h ≤ α1 µ1=0 . . . αs-1 µs-1=0 p µ (s -1) ∞ µs=0 p -µs s log s i=1 µ i + h ≤ α1 µ1=0 . . . αs-1 µs-1=0 p µ (s -1) log s-1 i=1 µ i + h + 1 p s 1 + 1 log p s log s-1 i=1 µ i + h + 1 + 1 (1 + ( s-1 i=1 µ i + 2))(log p s ) 2 p s ≤ Φ s-1 (h) + 1 p s 1 + 1 log p s Φ s-1 (h + 1) + 1 2(log p s ) 2 p s Π s-1 .
Whence with the previous notation, Lemma 2.6. Under assumption (2.1), we have for s = 2, . . . , r -1,

Φ s (h) ≤ Φ s-1 (h) + b s Φ s-1 (h + 1) + β s Π s-1 .
Now by using estimate (i) of Corollary 2.4 and the notation introduced, we have, under assumption (2.1), if r-1

i=1 µ i ≥ 1, αr µr=0 µ r log p r p µr r log r-1 i=1 µ i + µ r ≤ log p r p r log r-1 i=1 µ i + 1 + 2 log p r p 2 r log r-1 i=1 µ i + 2 + 1 p 3 r 3 log p r + 3 + 1 log p r log r-1 i=1 µ i + 3 + 1 p 3 r log p r 1 + 1 ( r-1 i=1 µ i + 3) log p r ≤ c 0 c 1 log r-1 i=1 µ i + 1 + c 0 c 2 log r-1 i=1 µ i + 2 + c 0 c 3 log r-1 i=1 µ i + 3 + c 4 = c 0 3 h=1 c i log r-1 i=1 µ i + h + c 4 , (2.11) since 1 p 3 r log pr 1 + 1 ( r-1 i=1 µi+3) log pr ≤ c 4 . Therefore, under assumption (2.1), if r-1 i=1 µ i ≥ 1, Φ 2 (r, n) ≤ c 0 3 h=1 c h Φ r-1 (h) (1) +c 4 Π r-1 . (2.12) Indeed, Φ 2 (r, n) = α1 µ1=0 . . . αr-1 µr-1=0 1 p µ1 1 . . . p µr-1 r-1 αr µr=0 µ r log p r p µr r log r-1 i=1 µ i + µ r ≤ α1 µ1=0 . . . αr-1 µr-1=0 1 p µ1 1 . . . p µr-1 r-1 c 0 3 h=1 c i log r-1 i=1 µ i + h + c 4 = c 0 3 h=1 c h Φ r-1 (h) (1) 
+c 4 Π r-1 .
By applying the recurrence inequality with s = r -1 to Φ r-1 (h), one gets

Φ 2 (r, n) ≤ c 0 3 h=1 c h Φ r-2 (h) (1) 
+ b r-1 Φ r-2 (h + 1) (2) 
+ c 0 cβ r-1 Π r-2 + c 4 Π r-1 .
By applying this time the recurrence inequality to Φ r-2 (h), one also gets

Φ 2 (r, n) ≤ c 0 3 h=1 c h Φ r-3 (h) (1) 
+c 0 3 h=1 c h b r-2 Φ r-3 (h + 1) (3) 
+c 0 cb r-2 Π r-3 +c 0 3 h=1 c h b r-1 Φ r-3 (h + 1) (2) +c 0 3 h=1 c h b r-1 b r-2 Φ r-3 (h + 2) (4) +c 0 cb r-1 β r-2 Π r-3 +c 0 cβ r-1 Π r-2 + c 4 Π r-1 .
One easily verifies (see expressions underlined by [START_REF] Berkes | On series of dilated functions[END_REF]) that the coefficient of Φ r-1 (h) is the same as the one of Φ r-2 (h) and Φ r-3 (h). So is also the case for Φ r-2 (h + 1), see expressions underlined by [START_REF] Davenport | On a generalization of Euler's function φ(n)[END_REF]. New expressions underlined by ( 3), ( 4) and linked to Φ r-3 (h+1), Φ r-3 (h+2) appear.

Each new coefficient is kept until the end of the iteration process generated by the recurrence inequality of Lemma 2.6.

We also verify, when applying this inequality, that we pass from a majoration expressed by Φ r-1 (h), Π r-1 , uniquely, to a majoration expressed by Φ r-2 (in h or h + 1) and Π r-2 , Π r-1 uniquely.

This rule is general, and one verifies that when iterating this recurrence relation, we obtain at each step a bound depending on Φ r-d and the products Π r-d , Π r-d+1 , . . . , Π r-1 only.

Binary tree : The shift of length h or h + 1 generates a binary tree whose branches are at each division (steps corresponding to the preceding iterations), either stationary :

Φ r-d (h) → Φ r-d-1 (h), or creating new coefficients : Φ r-d (h) → Φ r-d-1 (h + 1)
. One can represent this by the diagram below drawn from Lemma 2.6.

↓ shift +1, new coefficients ↓ Φ s (h) ≤ Φ s-1 (h) + b s Φ s-1 (h + 1) + β s Π s-1 . ↑ stationarity ↑ Figure 1.
Before continuing, we recall that by (2.7),

αs µ=0 log(A + µ) e -αµ ≤ log A + e -α log(A + 1) + log(A + 1) α + 1 α 2 (A + 1)
.

Thus Φ 1 (v) ≤ ∞ µ1=0 p µ (1) log v i=1 µ i + 1 = ∞ µ1=0 log(v + µ) p µ 1 ≤ log v + 1 p 1 log(v + 1) + log(v + 1) log p 1 + 1 v(log p 1 ) 2 (v ≥ 1).
Hence,

Φ 1 (h) ≤ C log h.
One easily verifies that the d-tuples formed with the b i have all Φ r-x (h + d) as factor. The terms having Φ r-• (h + •) as factor are forming the sum

c 0 r-1 d=1 1≤i1<...<i d <r b i1 . . . b i d Φ 1 (h + d), (2.13)
once the iteration process achieved, that is after having applied (r -1) times the recurrence inequality of Lemma 2.6.

This sum can thus be bounded from above by (recalling that h = 1, 2 or 3)

c 0 r-1 d=1 (log d) 1≤i1<...<i d <r b i1 . . . b i d .
But, for all positive integers a 1 , . . . , a r and 1 ≤ d ≤ r, we have, As moreover,

b i = 1 p i 1 + 1 log p i+1 ≤ 1 p(i) + 1 p(i) log p(i) ,
one has by means of (4.2),

r i=1 b i ≤ r i=1 1 i log i + 1 i(log i) 2 ≤ log log r + C. Thus r-1 d=1 (log d) 1≤i1<...<i d <r b i1 . . . b i d ≤ C r-1 d=1 (log d) d! (log log r + C) d .
On the one hand,

log d≤1+ε+log log log r (log d) d! (log log r + C) d ≤ 1 + ε + log log log r d>1 (log log r + C) d d! ≤ C 1 + ε + log log log r log r.
On the other, utilizing the classical estimate

d ! ≥ C √ d d d e -d , one has log d>1+ε+log log log r (log d) d! (log log r) d ≤ log d>1+ε+log log log r (log d) √ d e -d(log d-1-log log log r) ≤ d>1 (log d) √ d e -εd < ∞.
One thus deduces, concerning the sum in (2.13) that,

(2.14) c 0 r-1 d=1 1≤i1<...<i d <r b i1 . . . b i d Φ 1 (h + d) ≤ C log p r p r 1 + log log log r log r; 2.3.
Coefficients related to Π s . By applying the recurrence inequality (Lemma 2.6), one successively generates

c 4 Π r-1 c 4 Π r-1 + c 0 cβ r-1 Π r-2 c 4 Π r-1 + c 0 cβ r-1 Π r-2 + c 0 cβ r-2 1 + b r-1 b r-2 Π r-3 c 4 Π r-1 + c 0 cβ r-1 Π r-2 + c 0 cβ r-2 1 + b r-1 b r-2 Π r-3 + c 0 cβ r-3 1 + b r-2 + b r-1 + b r-1 b r-2 Π r-4 . Coefficients : Π r-1 : c 4 Π r-2 : c 0 cβ r-1 Π r-3 : c 0 cβ r-2 (1 + b r-1 ) Π r-4 : c 0 cβ r-3 (1 + b r-2 + b r-1 + b r-1 b r-2 ).
It is easy to check that the coefficients Π r-x are exactly those of Φ r-x+1 (.) affected with the factor c 0 cβ r-x+1 . The products form the sum

c 0 c r-2 d=0 β r-d 1 + 1≤i1<...<i d <r b r-i1 . . . b r-i d Π r-d-1 . (2.15)
By (4.2), one has

β j = 1 2p j (log p j ) 2 ≤ 1 2p(j)(log p(j)) 2 ≤ 1 2j(log j) 3 , if j ≥ 2, (2.16)
Moreover, (4.2) and (4.6) imply that

Π j = j =1 1 1 -1 p ≤ j =1 1 1 -1 p( ) ≤ p≤j(log j+log log j) 1 1 -1 p ≤ C(log j) .
We now note that by definition of Π j , we also have

Π j ≤ max ≤5 p≤p( ) 1 1 -1 p = C 0 .
We deduce that

Π j ≤ C(log j), if j ≥ 2.
(2.17)

Consequently, (2.17) and (2.16) imply that

β j+1 Π j ≤ C j(log j) 2 , if j ≥ 2.
(2.18)

This implies that the sum in (2.15) can be bounded as follows:

c 0 c r-2 d=0 β r-d 1 + 1≤i1<...<i d <r b r-i1 . . . b r-i d Π r-d-1 ≤ c 0 c r-2 i=1 1 + b r-i • r-2 d=0 β r-d Π r-d-1 = c 0 c r-1 j=2 1 + b j • r-2 d=0 β r-d Π r-d-1 ≤ c 0 c C r-1 j=2 1 + b j • r-2 d=0 1 (r -d) log(r -d) 2 ≤ c 0 c C r-1 j=2 1 + b j • ∞ δ=2 1 δ(log δ) 2 ≤ c 0 c C r-1 j=2 1 + b j . (2.19) We recall that p≤x 1 p ≤ log log x + C.
See for instance [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF], inequality (3.20). Thus, As a result, by taking account of the observation made at the beginning of section 2, we obtain By combining (2.22) with the upper estimate Φ 1 (n) established at Lemma 4.1 and using inequality (1.9), we arrive at

r i=1 1 + b i ≤ C log r. (2.20) Now estimate (2.20) implies that c 0 c r-2 d=0 β r-d 1 + 1≤i1<...<i d <r b r-i1 . . . b r-i d Π r-d-1 ≤ c 0 c C log r ≤ C log p r p r log r. ( 2 
(2.24) Ψ(n) ≤ r j=1 1 1 -p -1 j r i=1 (log p i ) log log p i p i -1 + C (log log log r)(log r)w(n),
recalling that p j ≥ 3 by assumption (2.1).

3. Proof of Theorem 1.1.

First we prove inequality (1.9). We recall the convention 0 log 0 = 0. Inequality (1.9) is an immediate consequence of the following convexity lemma.

Lemma 3.1. For any integers µ i ≥ 0, p j ≥ 2, we have

r i=1 µ i log p i log r i=1 µ i log p i ≤ r i=1 µ i log p i log log p i + r i=1 µ i log p i log r i=1 µ i .
Proof. We may restrict to the case r i=1 µ i ≥ 1, since otherwise the inequality is trivial. Let M = r i=1 µ i and write that r i=1

µ i log p i log r i=1 µ i log p i = M r i=1 µ i M log p i log r i=1 µ i M log p i + r i=1 µ i M log p i (log M ) .
By using convexity of ψ(x) = x log x on R + , we get The odd case (i.e. condition (2.1) is satisfied) is obtained by combining (2.22) with Corollary 4.2 and utilizing inequality (1.9). Since r ≤ log n, by taking account of estimate of w(n) given in (1.10), we get

Ψ(n) ≤ e γ (1 + o(1))(log log n) 2 (log log log n) + C (log log log log n)(log log n) 2 = e γ (1 + o(1))(log log n) 2 (log log log n). (3.1)
To pass from the odd case to the general case is not easy. This step will necessitate an extra analysis of some other properties of Ψ(n).

We first exclude the trivial case when n is a pure power of 2, since Ψ(2 k ) ≤ C uniformly over k, and C is a finite constant. Now if 2 divides n, writing n = 2 v m, 2 |m, we have

Ψ(n) = d|n (log d)(log log d) d = v k=0 δ|m (log(2 k δ))(log log(2 k δ)) 2 k δ ..
As the function x → (log x)(log log x)

x decreases on [x 0 , ∞) for some positive real x 0 , we can write

v k=0 (log(2 k δ))(log log(2 k δ)) 2 k δ ≤ k0-1 k=0 (log(2 k δ))(log log(2 k δ)) 2 k δ + v k=k0+1 (log(2 k δ))(log log(2 k δ)) 2 k δ ≤ k0-1 k=0 (log(2 k δ))(log log(2 k δ)) 2 k δ + ∞ 2 k 0 δ (log u)(log log u) u 2 du,
where k 0 is depending on x 0 only. Moreover 

(log u)(log log u) u ≥ - (log u)(log log u) u 2 . Thus v k=0 (log(2 k δ))(log log(2 k δ)) 2 k δ ≤ k0-1 k=0 (log(2 k δ))(log log(2 k δ)) 2 k δ + (log(2 k0 δ))(log log(2 k0 δ)) 2 k0 δ , whence Ψ(n) ≤ k0 k=0 δ|m (log(2 k δ))(log log(2 k δ)) 2 k δ . (3.2) Let m = p b1 1 . . . p bµ µ . We have by (2.8) Ψ(m) ≤ µ j=1 1 1 -p -1 j µ i=1 (log p i ) log log p i p i -1 + C (log log log µ)(log µ)w(m) ≤ µ j=2 1 1 -p(j) -1 µ i=1 (log p(i)) log log p(i) p(i) -1 + C (log log log µ)(log µ)w(m) = 1 2 µ j=1 1 1 -p(j) -1 µ i=1 (log p(i)) log log p(i) p(i) -1 + C (
for m large. Now let ψ(2 k m) = δ|m (log(2 k δ))(log log(2 k δ)) δ , 1 ≤ k ≤ k 0 .
If n is not a pure power of 2, then its odd component m tends to infinity with n. Thus with (3.2), 

Ψ(n) log log n) 2 (log log log n) ≤ k0 k=0 1 2 k δ|m (log(2 k δ))(log log(2 k δ)) δ (log log m) 2 (log log log m) . (3.4) But (log(2 k δ))(log log(2 k δ)) δ = (k(log 2))(log log(2 k δ)) + (log δ)(log log(2 k δ) δ ≤ k 0 (log 2) log k 0 (log 2) + log δ δ + (log δ)(log log(2 k0 δ) δ . ( 3 
(log δ) δ +2 Ψ(m) (log log m) 2 (log log log m) ≤ 2 log(k 0 log 2 + e) σ -1 (m) (log log m)(log log log m) +2 Ψ(m) (log log m) 2 (log log log m) ≤ C(k 0 ) log log log m + 2 e γ 2 (1 + 2ε) (log log m) 2 (log log log m) (log log m) 2 (log log log m) ≤ C(k 0 ) log log log m + e γ (1 + 2ε) , (3.8)
for m large, where we used estimate (3.3).

Plugging estimates (3.7) and (3.8) into (3.4) finally leads, in view of (3.5), to

Ψ(n) (log log n) 2 (log log log n) ≤ C log log log m + e γ (1 + 2ε) (3.9)
for m large, where C depends on k 0 only. As ε can be arbitrary small, we finally obtain In this section we prove complementary estimates Φ 1 , Φ 2 and Ψ, notably estimates (1.6) and (1.7) 4.1. Upper estimates. Lemma 4.1. We have the following estimate,

Φ 1 (n) ≤ r j=1 1 1 -p -1 j r i=1 (log p i ) log log p i p i -1 .
Proof. We have

Φ 1 (n) = α1 µ1=0
. . . 

j i = 1 (p i -1)(1 -p -1 i ) , we obtain Φ 1 (n) ≤ r i=1 r j=1 j =i 1 -p -αj -1 j 1 -p -1 j . (log p i ) log log p i (p i -1)(1 -p -1 i ) ≤ r j=1 1 1 -p -1 j r i=1 (log p i ) log log p i p i -1 .
Corollary 4.2. We have the following estimate,

lim sup n→∞ Φ 1 (n) (log log n) 2 (log log log n) ≤ e γ .
Proof. Let p(j) denote the j-th consecutive prime number, and recall that ([8, (3.12-13)],

p(i) ≥ max(i log i, 2), i ≥ 1, p(i) ≤ i(log i + log log i), i ≥ 6. (4.2) Let ε > 0 and an integer r 0 ≥ 4. If r ≤ r 0 , then r i=1 (log p i ) log log p i p i -1 ≤ δ r 0 , δ = sup p≥3 (log p) log log p p -1 < ∞ . (4.3) If r > r 0 , then r i=r0+1 (log p i ) log log p i p i -1 ≤ max i>r0 p(i) p(i) -1 r i=r0+1 (log p(i)) log log p(i) p(i) ≤ max i>r0 p(i) p(i) -1 r i=r0+1 (log(i log i)) log log(i log i) i log i
We choose r 0 = r 0 (ε) so that log r 0 ≥ 1/ε and the preceding expression is bounded from above by

(1 + ε) r i=r0+1 log log i i
We thus have

r i=r0+1 (log p i ) log log p i p i -1 ≤ (1 + ε) r r0 log log t t dt ≤ (1 + ε)(log r)(log log r). (4.4)
Consequently, for some r(ε),

r i=1 (log p i ) log log p i p i -1 ≤ (1 + ε)(log r)(log log r), r ≥ r(ε). (4.5)
By using Mertens' estimate

p≤x 1 1 -1 p = e γ log x + O(1)
x ≥ 2, (

we further have

(4.7) r =1 1 1 -1 p ≤ r =1 1 1 -1 p( ) ≤ p≤r(log r+log log r) 1 1 -1 p ≤ e γ (log r) + C , if r ≥ 6,
and so for any r ≥ 1, modifying C if necessary. As r = ω(n) and 2 ω(n) ≤ n, we consequently have,

Φ 1 (n) ≤ e γ (1 + Cε) 2 (log log n) 2 (log log log n), if r > r 0 . If r ≤ r 0 , we have Φ 1 (n) ≤ δe γ (1 + ε) (log r 0 ) + C := C(ε). Whence, Φ 1 (n) ≤ e γ (1 + ε) 2 (log log n) 2 (log log log n) + C(ε).
As ε can be arbitrary small, the result follows.

The following lemma is nothing but the upper bound part of (1.1). We omit the proof. Moreover,

lim sup n→∞ 1 (log log n)(log ω(n)) d|n log d d ≤ e γ .
4.2. Lower estimates. We recall that the smallest prime divisor of an integer n is noted by

P -(n). Lemma 4.4. Let n = p α1 1 . . . p αr r , r ≥ 1, α i ≥ 1. Then, Φ 1 (n) ≥ 1 - 1 P -(n) r j=1 1 + p -1 j r i=1 log p i log log p i p i Proof. By (4.1), Φ 1 (n) = r i=1 r j=1 j =i 1 -p -αj -1 j 1 -p -1 j αi µi=0 µ i log p i log log p i p µi i ≥ r i=1 r j=1 j =i 1 -p -αj -1 j 1 -p -1 j log p i log log p i p i ≥ r j=1 1 + p -1 j r i=1 (1 -p -1 i ) log p i log log p i p i . Thus Φ 1 (n) ≥ 1 - 1 P -(n) r j=1 1 + p -1 j r i=1 log p i log log p i p i .
We easily deduce from Lemma 4.1 and Lemma 4.4 the following corollary.

Corollary 4.5. Let n = p α1 1 . . . p αr r , r ≥ 1, α i ≥ 1. Then, 1 - 1 P -(n) r j=1 1 + p -1 j ≤ Φ 1 (n) r i=1 (log pi)(log log pi) pi ≤ 2 r j=1 1 1 -p -1 j .
Proposition 4.6. We have the following estimates

a) lim sup n→∞ 1 (log log n) d|n (log d) d ≥ e γ b) lim sup n→∞ Φ 1 (n) (log log n) 2 (log log log n) ≥ e γ , c) lim sup n→∞ Ψ(n) (log log n) 2 (log log log n) ≥ e γ .
Proof. Case a) is Erdős-Zaremba's lower bound of function Φ(n). Since it is used in the proof of b) and c), we provide a detailed proof for the sake of completeness. a) Let n j = p<e j p j . Recall that p(i) ≥ max(i log i, 2) if i ≥ 1. Let r(j) be the integer defined by the condition p(r(j)) < e j < p(r(j) + 1).

By using (1.2) and following Gronwall's proof [START_REF] Gronwall | Some asymptotic expressions in the theory of numbers[END_REF], we have,

d|nj log d d = r(j) i=1 r(j) =1 =i 1 -p( ) -j-1 1 -p( ) -1 j µ=0 µ log p(i) p(i) µ ≥ 1 ζ(j + 1) r(j) =1 1 1 -p( ) -1 r(j) i=1 (1 -p(i) -1 ) log p(i) p(i) 1 + 1 p(i) + . . . + 1 p(i) j-1 = 1 ζ(j + 1) r(j) =1 1 1 -p( ) -1 r(j) i=1 log p(i) p(i) 1 -p(i) -j .
Recall that ϑ(x) = p≤x log p is Chebycheff's function and that ϑ(x) ≥ (1 -ε(x))x, x ≥ 2, where ε(x) → 0 as x tends to infinity. Thus, log n j = jϑ(e j ) = je j (1 + o(1)), and thus log log n j = j(1 + o(1)).

On the one hand, by (4.6), (4.8)

r(j) =1 1 -p( ) -1 = p<e j 1 -p -1 = e -γ j 1 + O( 1 j ) .
And on the other, by Mertens' estimate b) Let σ -1 (n) = d|n , d≥3 1/d. Let also X be a discrete random variable equal to log d if d|n and d ≥ 3, with probability 1/(dσ -1 (n)). By using convexity of the function x log x on [1, ∞), we get

E X log X = d|n d≥3 (log d)(log log d) dσ -1 (n) ≥ (E X) log (E X) = d|n d≥3 (log d) dσ -1 (n) log d|n d≥3 (log d) dσ -1 (n) ≥ d|n d≥1 (log d) dσ -1 (n) -C log d|n d≥1 (log d) d -C -log σ -1 (n) .
Whence d|n d≥3

(log d)(log log d) d ≥ d|n d≥1 (log d) d -Cσ -1 (n) log d|n d≥1 (log d) d -C -log σ -1 (n)
Letting n = n j , we deduce from (4.10) that 1))e γ (log log n j ) 2 log log log n j .

Ψ(n) ≥ d|n d≥3 (log d)(log log d) d ≥ (1 + o(1))e γ (log log n j ) 2 -C log log n j × log (1 + o(1))e γ (log log n j ) 2 -C -log C log log n j ≥ (1 + o(
Consequently,

lim sup n→∞ Ψ(n) (log log n) 2 log log log n ≥ e γ . c) We have Φ 1 (n j ) = r(j) i=1 r(j) =1 =i 1 -p( ) -j-1 1 -p( ) -1 j µ=0 µ(log p(i))(log log p(i)) p(i) µ ≥ 1 ζ(j + 1) r(j) =1 1 1 -p( ) -1 × r(j) i=1 (1 -p(i) -1 ) (log p(i))(log log p(i)) p(i) 1 + 1 p(i) + . . . + 1 p(i) j-1 ≥ 1 ζ(j + 1) (e γ j) 1 + O( 1 j ) r(j) i=1 (log p(i))(log log p(i)) p(i) 1 -p(i) -j .
by (4.8). Let 0 < ε < 1. By using (4.9), we also have for all j large enough, e εj ≤p<e j (log p) p

≥ (1 + o(1))(1 -ε)j log(εj) 1 + O(1/j) ≥ (1 + o(1))(1 -ε)(log log n j ) log(ε log log n j ) .
As log(ε log log n j ) ∼ log log log n j , j → ∞, we have

lim sup j→∞ Φ 1 (n j ) (log log n j ) 2 (log log log n j ) ≥ e γ (1 -ε).
As ε can be arbitrarily small, this proves (c).

Lemma 4.7. We have the following estimate 5. An application.

Φ 2 (n) ≥ (log 2) P -(n) P -(n) + 1 r i=1
We deduce from Theorem 1.1 the following result.

Theorem 5.1. Let η > 1. There exists a constant C(η) depending on η only, such that for any finite set K of distinct integers, and any sequence of reals {c k , k ∈ K}, we have

k, ∈K c k c (k, ) 2 k ≤ C(η) ν∈K c 2 ν (log log log n) η Ψ(ν). (5.1) Further, k, ∈K c k c (k, ) 2 k ≤ C(η) ν∈K c 2 ν (log log ν) 2 (log log log ν) 1+η . (5.2)
This much improves Theorem 2.5 in [START_REF] Weber | An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function[END_REF] where a specific question related to Gál's inequality was investigated, see [START_REF] Weber | An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function[END_REF] for details. The interest of inequality (5.1), is naturally that the bound obtained tightly depends on the arithmetical structure of the support K of the coefficient sequence, while being close to the optimal order of magnitude (log log ν) 2 .

Theorem 5.1 is obtained as a combination of Theorem 1.1 with a slightly more general and sharper formulation of Theorem 2.5 in [START_REF] Weber | An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function[END_REF].

Theorem 5.2. Let η > 1. Then, for any real s such that 0 < s ≤ 1, for any sequence of reals {c k , k ∈ K}, we have

k, ∈K c k c (k, ) 2s k s s ≤ C(η) ν∈K c 2 ν (log log log ν) η δ|ν (log δ)(log log δ) δ 2s-1 . (5.3)
The constant C(η) depends on η only.

Remark 5.3. From Theorem 2.5-(i) in [START_REF] Weber | An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function[END_REF], follows that for every s

> 1/2, k, ∈K c k c (k, ) 2s k s s ≤ ζ(2s) inf 0<ε≤2s-1 1 + ε ε ν∈K c 2 ν σ 1+ε-2s ( 
ν), (5.4) σ u (ν) being the sum of u-th powers of divisors of ν, for any real u. As δ|ν (log δ)(log log δ) δ 2s-1 δ|ν 1 δ 2s-1-ε = σ 1+ε-2s (k), estimate (5.3) is much better than the one given (5.4).

Proof of Theorem 5.2. The proof is similar to that of Theorem 2.5 in [START_REF] Weber | An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function[END_REF] and shorter. Let ε > 0 and let J ε denote the generalized Euler function. We recall that

J ε (n) = d|n d ε µ( n d ). (5.5)
We extend the sequence {c k , k ∈ K} to all N by putting c k = 0 if k / ∈ K. By Möbius' formula, we have n ε = d|n J ε (d). By using Cauchy-Schwarz's inequality, we successively obtain

L := n k, =1 c k c (k, ) 2s k s s = k, ∈K c k c k s s d∈F (K) J 2s (d)1 d|k 1 d| (k = ud, = vd) ≤ u,v∈F (K) 1 u s v s d∈F (K) J 2s (d) d 2s c ud c vd ≤ u,v∈F (K) 1 u s v s d∈F (K) J 2s (d) d 2s c 2 ud 1/2 d∈F (K) J 2s (d) d 2s c 2 vd 1/2 = u∈F (K) 1 u s d∈F (K) J 2s (d) d 2s c 2 ud 1/2 2 ≤ u∈F (K) 1 u s ψ(u) ν∈K c 2 ν ν 2s u∈F (K) u|ν J 2s ν u u s ψ(u) , (5.6)
where ψ(u) > 0 is a non-decreasing function on R + . We then choose

ψ(u) = u -s ψ 1 (u) t|u t(log t)(log log t), ψ 1 (u) = (log log log u) η .
Hence,

L ≤ u∈F (K) 1 ψ 1 (u) t|u t(log t)(log log t) ν∈K c 2 ν ν 2s u∈F (K) u|ν J 2s ν u ψ 1 (u) t|u t(log t)(log log t) ≤ u∈F (K) 1 ψ 1 (u) t|u t(log t)(log log t) ν∈K c 2 ν ψ 1 (ν) ν 2s u∈F (K) u|ν J 2s ν u t|u t(log t)(log log t) .
As ν ∈ K, we can write where in the last inequality we used the fact that d|n µ(d) equals 1 or 0 according to n = 1 or n > 1.

Consequently,

L ≤ u∈F (K) 1 ψ 1 (u) t|u t(log t)(log log t) ν∈K c 2 ν ψ 1 (ν) ν 2s d|ν d 2s ( ν d )(log( ν d ))(log log( ν d )) = u∈F (K) 1 ψ 1 (u) t|u t(log t)(log log t) ν∈K c 2 ν ψ 1 (ν) δ|ν 1 δ 2s δ(log δ)(log log δ) .
From the trivial estimate t|u t(log t)(log log t) ≥ u(log u)(log log u), it follows that which is (5.2), and thus proves Theorem 5.1.

n k, =1 c k c (k, ) 2s k s s ≤ u≥1 1 u(log u)(log log u)(log log log u) η × ν∈K c 2 ν (log log log ν) η δ|ν (log δ)(log log δ) δ 2s-1 = C(η) ν∈K c 2 
6. Concluding Remarks.

The proof of Theorem 1.2 can be adapted with no difficulty to similar arithmetical functions, for instance with powers of log log d, but not to the functions S k (n), k ≥ 1, which specifically depend on a derivation formula, see after (1.12). We remark that a simple convexity argument shows that lim sup n→∞ S k (n) (log log n) 1+k ≥ e γ . (6.1) Let indeed X be a discrete random variable equal to log d if d|n, with probability 1/(dσ -1 (n)).

Then,

E X k = d|n (log d) k dσ -1 (n) ≥ (E X) k = d|n log d dσ -1 (n) k .
Whence,

S k (n) = d|n (log d) k d ≥ σ -1 (n) 1-k d|n log d d k .
As σ -1 (n) ≤ (1 + o( 1))e γ log log n, by using (4.10) we deduce that S k (n j ) ≥ (1 + o( 1))e (1-k)γ (log log n j ) 1-k e γ (log log n j ) 2 ) k = (1 + o( 1))e γ (log log n j ) 1+k .

Moreover for integers n having sufficiently spaced prime divisors, this lower bound is optimal. More precisely, there exists a constant C(k) depending on k only, such that for any integer n = r i=1 p αi i satisfying the condition r i=1 1 pi-1 < 2 1-k , one has

S k (n) ≤ C(k)(log log n) k σ -1 (n). (6.2)
As σ -1 (n) ≤ C log log n, it follows that S k (n) ≤ C(η)(log log n) 1+η .

We conclude with some remarks concerning Davenport's function w(n). At first, if p 1 , . . . , p r are the r first consecutive prime numbers and n = p 1 . . . p r , then w(n) ∼ log ω(n). Next, the obvious bound w(n) log log log n holds true when the prime divisors of n are large, for instance when for a given positive number B, these prime divisors, write them p 1 , . . . , p r , satisfy More generally, one can establish the following result. Let {p i , i ≥ 1} be an increasing sequence of prime numbers enjoying the following property Numbers of the form n = p 1 . . . p ν with p 1 . . . p i-1 ≤ p i , 2 ≤ i ≤ ν, ν = 1, 2, . . . appear as extremal numbers in some divisors questions, see Erdős and Hall [START_REF] Erdös | On some unconventional problems on the divisors of integers[END_REF]. Lemma 6.1. Let {p i , i ≥ 1} be an increasing sequence of prime numbers satisfying condition (6.4). There exists a constant C, such that if p 1 ≥ C, then for any integer n = p α1 1 . . . p αr r such that α i ≥ 1 for each i, we have w(n) ≤ log log log n.

Proof. We use the following inequality. Let 0 < θ < 1. There exists a number h θ such that for any h ≥ h θ and any H such that e 

µ

  i log p i .(1.3) Let h(n) be non-decreasing on integers, h(n) = o(log n), and consider the slightly larger functionΦ h (n) = d|n (log d) h(d) d . (1.4) 

Φ 1 (Φ 2

 12 i (log p i )(log log p i ) p µ1 1 . . . p µr r (n) = d|n (log d) log Ω(d) d ,

  (d) d , Ω(d) d , log τ (d) d , then (1.11) lim sup n→∞ d|n T (d) (log log n)(log log log n) = c T e γ ,

Φ 2 ( 2 )

 22 As there is no order relation on the sequence p 1 , . . . , p r , it suffices to study the sum Φ 2 (r, n) :=

( 2

 2 .23) Φ 2 (n) ≤ C (log log log r)(log r) r i=1 log p i p i = C (log log log r)(log r)w(n) .

µ i log p i log log p i . Thus r i=1 µ i log p i log r i=1 µ i log p i ≤ r i=1 µ i log p i log log p i + r i=1 µ i log p i log r i=1 µ i .

  

. 5 )

 5 Now we have the inequality: log log(a + x) ≤ log(b log x) where b ≥ (a + e) and a ≥ 1, which is valid for x ≥ e. Thus log k 0 (log 2) + log δ ≤ log(k 0 log 2 + e) + log log δ. log 2) log(k0(log 2)+log δ) δ (log log m) 2 (log log log m) log 2) log(k0 log 2+e)δ (log log m) 2 (log log log m) log 2) log log δ δ (log log m) 2 (log log log m) ≤ 2k 0 (log 2) log(k 0 log 2 + e) σ -1 (m) (log log m) 2 (log log log m) + 2k 0 (log 2) (log log m) 2 (log log log m) δ|m log log δ δ ≤ C(k 0 ) 1 log log m(log log log m) + σ -1 (m) (log log m)(log log log m) ≤C(k 0 ) log log log m → 0 as m tends to infinity.

  δ)(log log(2 k 0 δ) δ (log log m) 2 (log log log m) δ)(log(k 0 log 2 + e) + log log δ) δ(log log m) 2 (log log log m) ≤ log(k 0 log 2 + e) (log log m) 2 (log log log m)

  (log log n) 2 (log log log n) ≤ e γ . (3.10) This establishes Theorem 1.1.

4 .

 4 Complementary results.

αr µr=0 µ 1 (µ

 1 log p 1 )(log log p 1 ) + . . . + µ r (log p r )(log log p r ) p µ1 1 . . . p µr rThe i-th term of the numerator yields the sum i log p i log log p i p µi i .

µ i log p i log log p i pµ i log p i log log p i p

  

Lemma 4 . 3 .

 43 We have the following estimate,

  O(1) ≥ (1 + o(1)) log log n j . Thus d|nj log d d ≥ (1 + o(1))e γ (log log n j ) 2 j → ∞ , (4.10) since ζ(j + 1) → 1 as j → ∞.

(

  log p)(log log p) p ≥ e εj ≤p<e j (log p)(log log p) p ≥ (1 + o(1)) log(εj)

5 . 8 ) 2 ν

 582 ν (log log log ν) η δ|ν (log δ)(log log δ) δ 2s-1 . (Proof of Theorem 5.1. Letting s = 1 in Theorem 5.2 we get (5.1), next using Theorem 1(log log ν) 2 (log log log ν) 1+η , (5.9)

p 1 .

 1 . . p s ≤ p s+1 s = 1, 2, . . . .(6.4) 

  provided A ≥ 1, and α ≥ 1. Whence the bound,

	log p r p r + 1 log p r	log(A + 1) + log(A + 3) +	2 log p r p 2 r 1 log p r +	log(A + 2) + 1 (log p r ) 2 (A + 3) 1 p 3 r	.	3 log p r log(A + 3) + 3 log(A + 3)
	By reporting this bound in (2.3), we get sums of type
		α1 µ1=0	. . .	αr-1 µr-1=0	log	r-1 i=1 µ i + h r-1 1 . . . p p µ1 µr-1	h = 1, 2, 3,
	affected with new coefficients, this is displayed in (2.11). By using (2.7), the last sum is
	bounded by					
		r-2			
		log				
			i=1			

  letting N tend to infinity gives,

	Lemma 2.3. Under assumption (2.1) we have	
		∞ µs=0	log	s i=1 µ i + h p µs s	≤ log	s-1 i=1	µ i + h +	1 p s	1 +	1 log p s	log	s-1 i=1
			1	∞	log(A + x) e -αx dx ≤	log(A + 1) α	e -α +	1 α 2 (A + 1)	e -α .
	Lemma 2.2. Assume that A ≥ 1, and α ≥ 1. Then,
		∞								
			αµ log(A + µ) e -αµ ≤ α log(A + 1) e -α + 2α log(A + 2) e -2α
		µ=0								
				+ 3α log(A + 3) + 3 log(A + 3) +	1 α	log(A + 3) +	1 α	+	1 α 2 (A + 3)	e -3α .
	Proof. As									
		∞									
			αµ log(A + µ) e -αµ = α log(A + 1) e -α + 2α log(A + 2) e -2α
		µ=0									
												∞
							+3α log(A + 3) e -3α + α	µ log(A + µ) e -αµ ,
												µ=4
	by applying Lemma 2.1-(ii), we get					
	∞					∞					
	α	µ log(A + µ) e -αµ ≤ α	x log(A + x) e -αx dx
	µ=4					3					
					≤	1 α 2 (A + 3)	e -3α +	1 α	e -3α +	log(A + 3) α	e -3α + 3(log A + 3)e -3α .
	Whence,									
			∞								
			αµ log(A + µ) e -αµ ≤ α log(A + 1) e -α + 2α log(A + 2) e -2α
			µ=0								
			+ 3α log(A + 3) + 3 log(A + 3) +	1 α	log(A + 3) +	1 α	+	1 α 2 (A + 3)	e -3α .

θ

  (1-θ) log 2 ≤ H ≤ h, we have Indeed, note that log(1 + x) ≥ θx if 0 ≤ x ≤ (1 -θ)/θ. Let h θ be such that if h ≥ h θ , then h log h ≤ θ(log 2)e h . Thus ≤ log log log(p 1 . . . p r ) . (6.6)This is trivially true if r = 1 by the notation made in the Introduction, and since p ≥ 2. Assume that (6.6) is fulfilled for s = 1, . . . , r -1. Then, by the recurrence assumption,Put H = r-1 i=1 log p i , h = log p r .It suffices to show thatBut H ≤ h, by assumption(6.4). Choose C = e The searched inequality thus follows from (6.5).Let n = p α1 1 . . . p αr r , where α i ≥ 1 for each i. We have w(n) ≤ log log log(p 1 . . . p

	(6.5)					h ≤ e h log	log(H + h) log H	.
	h ≤ e h θ	log 2 log h	≤ e h θ	log 2 log H	≤ e h log 1 +	log 2 log H	= e h log	log 2H log H
	≤ e h log		log H + h log H	.
	We shall show by a recurrence on r that
					r	log p i	
					i=1	p i	
		r i=1	log p i p i		≤ log log log(p 1 . . . p r-1 ) +	log p r p r	.
	log p r p r	=	h e h ≤ log	log log	r i=1 log p i r-1 i=1 log p i	= log	log H + h log H	,

θ (1-θ) log 2 . Then H ≥ log p 1 ≥ e θ (1-θ) log 2 . r ) ≤ log log log n.
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