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Abstract
The identification of condition-specific gene sets from transcriptomic experiments is important to
reveal regulatory and signaling mechanisms associated with a given cellular response. Statistical
approaches using only expression data allow the identification of genes whose expression is most
altered between different conditions. However, a phenotype is rarely a direct consequence of the
activity  of  a  single gene,  but  rather  reflects  the  interplay of  several  genes  to  carry out  certain
molecular processes. Many methods have been proposed to analyze the activity of genes in light of
our knowledge of their molecular interactions. However, existing methods have many limitations
that make them of limited use to biologists: they detect modules that are too large, too small, or they
require the users to specify a priori the size of the modules they are looking for.

We propose  AMINE (Active  Module  Identification  through  Network  Embedding),  an  efficient
method for the identification of active modules. Experiments carried out on artificial data sets show
that the results obtained are more reliable than many available methods. Moreover, the size of the
modules to be identified is not a fixed parameter of the method and does not need to be specified;
rather, it adjusts according to the size of the modules to be found. The applications carried out on
real  datasets  show  that  the  method  enables  to  find  important  genes  already  highlighted  by
approaches  solely  based  on gene  variations,  but  also  to  identify  new groups  of  genes  of  high
interest.  In  addition,  AMINE  method  can  be  used  as  a  web  service  on  your  own  data
(http://amine.i3s.unice.fr).

http://amine.i3s.unice.fr/
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Introduction
Current high-throughput technologies are now capable of reliably quantifying, at the scale of an
entire  organism,  the  molecular  changes  that  arise  in  response  to  diseases  or  environmental
disturbances. In order to extract from this pool of data the genes most related to the process under
study (and therefore of most interest  to the biologist),  statistical  methods are  generally used to
associate genes with numerical values reflecting the extent of their variation. In most studies, the
genes considered of most interest are the ones whose relative differences in expression, or fold
changes, are the largest. Unfortunately, the raw fold change is unreliable because it does not take
into  account  the  uncertainty  inherent  in  gene  expression  measurements.  To  overcome  this
uncertainty,  existing  methods  calculate  a  p-value  to  reflect  the  statistical  significance  of  the
variation.

Selecting the genes of interest on the basis of fold changes, p-values or a combination of both
makes it possible to compile a list of genes whose expression varies most significantly. However,
this procedure fails to identify genes whose combined action is essential in the process under study
but whose individual scores are too low.

Though, as pinpointed by Rapaport et al. (2007), "a small but coherent difference in the expression
of  all  the genes  in  a  pathway should  be more significant  than a  larger  difference  occurring in
unrelated genes". Arising from this observation, many methods have been proposed to analyze gene
activity  in  the  light  of  our  knowledge about  their  molecular  interactions.  These  pertinent  sub-
network are named "context-dependent active subnetworks" (He et al., 2017), "functional module"
(Beisser et al., 2010), "maximal scoring subgraph" (Dittrich et al., 2008) or "altered subnetworks"
(Reyna  et  al.,  2018).  The  underlying  idea  is  to  identify  a  pertinent  module  of  genes  by
simultaneously taking into account two criteria: one based on a measurement of genes activity and
the other one reflecting the proximity between the genes in the module. One of the challenges is to
define an appropriate scoring strategy based on these two criteria.

Nguyen  et al. (2019) classified main computational methods for solving the active subnetworks
identification problem in six categories: (i) greedy algorithms, (ii) random walk algorithms, (iii)
diffusion emulation models, (iv) evolutionary algorithms, (v) maximal clique1 identification and (vi)
clustering based methods. First two methods are simple and rapid but are highly dependent to the
starting point of the algorithm that does not guarantee to reach global optima. Conversely, methods
(iii) and (iv) are able to find global optima (in accordance with the scoring system used) or an
approximation of it at the prize of a computational burden. Methods (v) do not fully answer the
initial issue as it is probably not true that each gene involved in a biological process interacts with
all  the  others.  Finally,  methods (vi)  offers  the advantage of  being  based on existing clustering
algorithms, but these rely on a distance between objects that must be determined. Moreover, most of
the clustering algorithms require to determine a priori the number of clusters to build, which is
challenging.  The  commonality  between  all  these  methods  is  that  their  effectiveness  is  very
dependent of the network topology. Unfortunately, it is known that molecular interaction networks
are noisy and incomplete (De Las Rivas and Fontanillo, 2010). In recent years, network embedding
(Cui  et al.,  2018) has proven to be a powerful network analysis approach by generating a very
informative and compact vector representation for each vertex v in the network. The approach was
initially considered as part of dimensionality reduction techniques (reducing for example a |v|×|v|
adjacency matrix  into a  |v|× m matrix  where  m≪|v|).  This dimensionality  reduction allows to
reduce noise and map nodes in a vector space in which distances between nodes  accurately reflect
their  proximity  in  the  original  network.  One of  the  most  representative  technique  for  network
embedding is Node2vec (Grover and Leskovec, 2016).

1 a clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are 
connected (Seidman and Foster, 1978).



Recent advances on deep learning has led to a plethora of methods based on deep neural networks
for  learning  graph  representations,  methods  that  are  often  inspired  by  the  learning  of  word
embedding  (Mikolov  et  al.,  2013).  Works  on  word  embedding  can  be  seen  as  learning  linear
sequences (word sequences). It has been shown that the resulting compact vector representations are
capable of capturing rich semantic information about natural language. Processing graph structures
is much more complicated. A popular approach is to convert a complex graph structure with a rich
topology into a set of linear structures and then use a word embedding method to calculate the
vector representation of each node.

As mentioned above, the identification of active modules requires the simultaneous consideration of
two criteria. In existing methods, measurements of gene activity and their network proximity are
either  combined  to  form  a  single  metric  or  optimized  simultaneously  using  multiobjective
algorithms (Corrêa  et  al.,  2019).  When working on embedded networks,  the proximity facet  is
embedded in the vector space. It is then possible to focus on the detection of subspaces containing
genes  that  have  a  high  activity.  Following  this  line,  we  propose  AMINE  (Active  Module
Identification  through  Network  Embedding),  a  new  and  efficient  method  for  active  module
detection based on Node2vec (Grover and Leskovec, 2016). Our method uses a greedy approach to
build increasingly large clusters of nodes based on the similarity of their encoding vectors and to
evaluate them according to a metric taking into account the activity of the contained nodes.

On artificially generated datasets, the effectiveness of the method compares well with several recent
algorithms.  On real  datasets,  AMINE allows  to  complement  the  results  obtained with  classical
approaches by identifying new groups of genes of great interest.

Results
Evaluation of AMINE on artificial data generated by Robinson   et al.   (2017)  

Many studies dealing with the identification of active modules have tested their methods on datasets
generated by themselves and which are, at times, difficult to reproduce. Robinson et al. (2017) are
among the few to give access to all materials used to test the MRF method they proposed. These
materials contain the graph itself, the p-values associated with the nodes and the modules to be
identified. It gives us the opportunity to apply our method on exactly the same data.

The simulated experiment used to evaluate the MRF method (Robinson et al., 2017) consists of a
set of 1000 scale free graphs, each containing 1000 vertices associated with values simulated from a
standard uniform distribution. In this dataset, there are three modules to discover (the hit modules),
each  containing  10 vertices.  To simulate  the  fact  that  the  vertices  belonging to  these  modules
represent  differentially  expressed  genes,  and  are  therefore  associated  with  low p-values,  these
vertices are assigned simulated values  from a truncated Gaussian distribution with mean 0 and
standard deviation equals to  10− 6. Robinson et al. (2017) compared their MRF method to NePhe
(Wang et al., 2009), Knode (Cornish and Markowetz, 2014) and BioNet (Beisser et al., 2010) and
report  that MRF gives the best  performance in term of recall.  Since it  is  known that  there are
exactly 30 true hits in the dataset, the authors rate the different methods by considering only the
proportion of true hits in each hit list of size 30.

We ran AMINE on these data to detect the three most significant modules. Since our method does
not consider the size of expected modules as an input parameter, it can identify modules of various
sizes. When considering only the recall criterion (proportion of hit nodes identified) as Robinson et
al. did, AMINE is disadvantaged when it identifies small modules and favored when it identifies
large  modules.  In  order  to  have  a  fair  comparison  between  AMINE and  MRF,  we  apply  the
following rule: if the number of genes belonging to the three identified modules is greater than 30,
then only 30 genes randomly chosen are considered. In the case where the three identified modules
contain  less  than  30 genes,  the  recall  obtained  by our  method  is  underestimated.  Despite  this
disadvantage,  the  predictions  made  by  AMINE  obtained  a  slightly  better  recall  than  the  one
obtained by MRF (Fig. 1A, last boxplot ; the detail of the evaluation performed by Robinson et al.



can be  found in  Fig.  7  of  their  article  (Robinson  et  al.,  2017)).  The  recall  without  truncation
(number of true positive divided by the number of hit nodes), the precision (number of true positive
divided by the number of nodes identified)  and the F1 score (harmonic mean of precision and
recall) were also plotted on the same figure. The median value of the F1 score is 0.76 while the
minimum and maximum values are 0.31 and 0.94 respectively. The total number of genes in the
three identified modules  range from 18 to 46 with a median of 28 (Fig.  1B).  This  means that
AMINE is able to identify modules close to the ground truth (although slightly smaller) without the
need to specify their size a priori.

Validation of the method on artificial dense networks

It has already been shown that simulating a biological network is a very difficult task (Pavlopoulos
et al., 2011). However, we found that generating artificial graphs using Barabasi-Albert model of
preferential attachment (Barabási and Albert, 1999), as performed in different studies (for example,
the articles of Cornish and Markowetz (2014) and Robinson et al. (2017)) is too far from a real
interaction graph for the results to be extrapolated (see supplementary Fig. S1 for an example of
such sparse graph).

Using an extended version of the Barabási-Albert  model of preferential  attachment (Albert  and
Barabási, 2000), we generated several artificial networks with topologies relatively close to real
interaction networks and one hit module to discover with size of 10 or 20 nodes (see materials and
methods for details relative to the generation of dense networks and supplementary Fig. S2 for an
example  of  a  generated  dense  network).  The  performance  of  AMINE was  compared  with  the
methods COSINE (Ma et al., 2011), BioNet (Beisser et al., 2010), GiGA (Breitling et al., 2004) and
a baseline consisting in simply picking the genes with the lowest p-values. The results are shown in
Fig. 2 for networks comprising 1000  vertices and modules of size 10 and in Fig. 3 for networks
with 1000 vertices and modules of size 20.

We can observe that identifying module on denser network is a process much more complicated as
the median F1 score drops from 0.76 on a sparse graph to values just above 0.5, depending of the
size of the module. The scores of the other methods are much lower in the case of modules of size
10 ; some even score lower than the baseline. In the case of COSINE and BioNet, these poor results
come with the prediction of large modules whose size exceeds 100 genes (Fig. 2B and Fig. 3B). For
modules of size 20, the F1 scores of GiGA and AMINE are very close (Fig. 3B). However, it should
be  noted  that  GiGA uses  a  parameter  that  determines  the  maximum size  of  the  module  to  be
identified.  In  our  experiment,  we have  set  the  maximum size  to  the  size  of  the  module  to  be
identified, which, of course, helps the procedure. As shown in Fig. 2C and Fig. 3C, for GiGA, the
size of the identified modules is always below the maximum. For AMINE, without any indication
on the size of the modules being searched, we can see that the method predicts modules with a
median size close to the ground truth size. This is a significant advantage of our method since
biologists do not know in advance the size of the modules they are looking for.

Scalability of the method

To test to what extent our method is able to scale to larger networks, we applied it to an artificial
network of 10,000 vertices, that was generated using the same parameters previously defined. The
processing time increases from 1 minute for a dense network of 1,000 nodes to 30 minutes for a
dense network of 10,000 nodes. This processing time is acceptable as real biological networks are
close to this size.

The distribution of the F1 scores obtained by AMINE as well as the distribution of the size of the
identified modules are shown in supplementary Fig. S3-S4. For modules of size 10, the median F1
is in agreement with that obtained on networks of size 1,000. The overall performance is however
less good because it is penalized by the fact that, in many cases, the module is completely missed
(which explains why the second quartile starts at zero in the leftmost boxplot of supplementary Fig.
S3). This can be explained by the fact that, as the number of nodes in the network increases, the



number of non hit nodes that are associated with a random value higher than the values associated
with hit genes increases. So, the probability that random modules score higher than the hit module
increases too. This effect is less important for modules of size 20, for which the method works as
well  as  for  networks  of  1,000 nodes.  Regarding sizes,  they are still  close  to  the  ground truth,
although there is a greater spread of values for modules of size 20.

Validation using a real gene expression dataset

In order to test the ability of AMINE to identify relevant biological functions, we downloaded from
Gene Expression Omnibus a dataset relative to a study aimed at characterizing processes and genes
associated to  metastatic  spreading in  pancreatic  ductal  adenocarcinoma (PDAC). With a 5-year
survival that has not significantly evolved for 30 years despite progresses in anticancer therapies
(<6%), PDAC is a cancer with one of the bleakest prognoses of the most fatal cancers. In the study
of Chiou et al. (2017), the authors compared two populations of primary PDAC cells according to
the expression of HMGA2, a gene associated to a high metastatic potency and poor outcome in
several cancers, including PDAC.  Gene expression AMINE profiling was carried out from six pairs
of  HMGA2+/HMGA2-  cell  populations,  each  pair  originating  from  PDAC  primary  tumors
spontaneously generated in a genetically engineered PDAC mice model (PKC mice).  The profiling
generated 193 statically relevant modules (with associated p-values < 0.05) and we decided to focus
on the five ones figuring at the top of the list to verify whether they were relevant to metastatic
process  in  PDAC  from  an  ontological  point  of  view.  The  functions  and  signaling  pathways
associated to these five modules were explored using STRING database (Szklarczyk et al., 2019)
and are shown in Table 1 and Fig. 4.

Extra cellular Matrix (ECM) organization and ECM cell interaction

A hallmark of PDAC is a pronounced collagen-rich fibrotic extracellular matrix (ECM) produced
by fibroblasts  and cancer  cells,  known as  the desmoplastic  reaction.  The neoplastic  epithelium
exists  within a dense stroma,  which is  recognized as a critical  mediator  of disease progression
through direct effects of ECM on cancer cells (Hosein et al., 2020). Interestingly, three out of the
five modules generated by AMINE were associated to ECM matrix organization (module 1 and 4)
and cell interaction with ECM (module 3). Module 1 was more specifically linked to collagen fibril
organization, one of the major constituent of PDAC ECM. Indeed, Collagen contributes to tumor
cell aggressiveness, metastatic process and chemoresistance (Shields et al., 2012; Hessmann et al.,
2020).  Interestingly,  Module  3  brings  together  genes  involved  in  the  regulation  of  cancer  cell
interaction with ECM through focal adhesion kinases and PI3K/AKT pathways (Fig. 4 and Table 1).
Based on the available literature, these processes have been strongly involved in the aggressiveness
of PDAC cell and the development of metastasis (Jiang et al., 2016; Jiang et al., 2020).

Response to Hypoxia

Extensive desmoplasia and hypo vascularization within PDAC results in significant intra-tumoral
hypoxia  (low  oxygen)  that  contributes  to  its  aggressiveness,  therapeutic  resistance,  and  high
mortality (Hollinshead et al., 2020; Koong et al., 2000). Functional enrichment of modules 2 and 5
raised hypoxia-triggered functions,  i.e.  VEGF- and HIF-1-dependent  pathways.  These pathways
drive angiogenesis, metabolism adaptation of cancer cell to hypoxia (Warburgh effect), cell cycle
inhibition, enhanced migration and metastatic progression (Table 1 and Fig. 4). These results are in
good agreement with the literature on PDAC; for example, these pathways are over-represented in
genome-wide transcriptome profiling from ex-vivo human PDAC (Ghaderi et al., 2020; Shah et al.,
2020).  More  interestingly,  hypoxia-,  VEGF-  and  HIF-1-associated  pathways  were  repressed  in
PDAC  cells  in  which  BLIMP1,  one  of  the  most  overexpressed  gene  in  HMGA2+  cell
subpopulation, was silenced (Chiou et al., 2017). 

Altogether, these results validate our methods since non-oriented analysis of genes deregulated in
pro-metastatic PDAC cells by AMINE retrieves gene modules involved in highly relevant functions
in the context of the disease.



In vitro functional validation of Blimp1-associated module in human PDAC cells

Blimp1 is one of the most overexpressed gene in pro-metastatic HMGA2+ PDAC cells (Chiou et
al.,  2017).  In  their  study,  Chiou  et  al. analyzed the consequences  of  Blimp1 silencing in  mice
PDAC cells to unveil its function in disease progression. Based on  in silico,  in vitro and  in vivo
experiments, the authors concluded that Blimp1 acts as a driver of the metastatic ability of PDAC
cells. In particular, they found that Blimp1 is a Hypoxia/Hif-regulated gene in human and murine
PDAC which is in a good agreement with functions recovered in modules 2 and 5 raised by AMINE
processing (Table 1 and Fig. 4). Surprisingly, Blimp1 was not included in these modules, but was
indeed detected in a module of 4 genes (module number 169 with a p-value of 0.044; Fig. 5A).
Functional enrichment of this module unveiled functions associated to immune response, including
regulation inflammation, interleukin production and Th17 cell differentiation (Table 2 and Fig. 5A).
Interestingly, it is known that neoantigen expression in pancreatic ductal adenocarcinoma (PDAC)
results in exacerbation of an inflammatory microenvironment that drives disease progression and
metastasis (Hegde  et al., 2020). It was therefore tempting to validate this result using a series of
functional experiments. In this perspective, we first explored a RNA-Seq experiment performed by
Chiou  et  al. revealing  deregulated  genes  in  Blimp1-silenced  PDAC cells  compared  to  control
(Chiou et al., 2017). AMINE profiling of genes negatively regulated by Blimp1 silencing revealed
345 modules with associated p-values < 0.05. Among the ten best modules, we found that modules
2  (p-value  <  1.01e-11)  and  9  (p-value  <  2.83e-8)  were  associated  to  cytokine  production  and
inflammatory process (Table 3 and Fig. 5B) after functional enrichment. Next, in order to confirm
the putative involvement  of  Blimp1 in epithelial  cancer  cell  inflammatory process in  vitro,  we
silenced BLIMP1 in MIA PaCa-2 cells, a human PDAC cell line, using siRNA silencing, (Fig. 6A),
and explored how it modified the profile of cytokine secretion using a cytokine profiling array.
Indeed, we found that Blimp1 repression triggered the production of IL-18Bpa and angiogenin, two
anti-inflammatory  factors  (Lee  et  al.,  2014)  and  reduced  the  secretion  IL-6,  a  major  pro-
inflammatory interleukin (Tanaka et al., 2014) (Fig. 6B).

Altogether, these results further validate AMINE as valuable method to detect relevant functional
modules from large experimental datasets, and unveil a new function of Blimp1 in PDAC-related
inflammatory process.

Discussion
This paper proposes a new method for identifying gene modules that are activated as a result of a
state shift caused by a biological experiment. Our method, called AMINE, uses as inputs, on the one
hand, the ultimate result of any RNA-Seq analysis pipeline which is the differential expression of
genes, and on the other hand, a network modeling the interactions between genes. Regarding the
second point, the version of our method that is executable (at the address http://amine.i3s.unice.fr/)
makes  use  of  the  protein  interaction  data  provided  by  the  STRING  database  for  four  model
organisms: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens and Mus musculus.
Thus, a user only needs to provide the differential gene expression data generated by the pipeline of
his choice. From a very simple interface (supplementary Fig. S5), he only has to specify the name
of  the  organism  analyzed,  the  file  on  which  the  data  are  located  and  the  Id of  the  columns
containing the genes' names, the p-values and optionally the fold changes to be able to launch the
process. The address of the page containing the results is e-mailed to the user when the processing
is completed. On the result page, the most significant modules are listed, however, all the modules
found can be downloaded as an Excel document consisting of two sheets. The first sheet, named
"list of modules" contains the list of all modules found. The results are presented in 4 columns
containing the module number, the list of genes in the module, the s score of the module and the
associated p-value. The second sheet, named "genes to modules", is composed of two columns: the
first one contains the name of a gene and the second one, the module to which it belongs.



Despite the large number of methods developed over the last 20 years, AMINE identifies, with a
higher  accuracy  than  its  competitors,  modules  created  computationally  on  datasets  intended  to
mimic the topology of biological networks. Extrapolating these results to a measure of accuracy on
real datasets is very difficult. There is no method to ensure that good predictions on artificial data
translate into good predictions on real datasets. However, we have made a special effort to ensure
that  our  simulations  are  close to  real  datasets.  The networks  we generate,  with  the  parameters
presented in this article, are closer to a real interaction network than the networks used by some
competing methods.

However,  these efforts  run up against  reality.  Indeed,  it  is  known that the interaction networks
stored in public databases are both incomplete and contain erroneous interactions. In their study,
Von  Mering  et  al. (2002)  estimate  that,  for  Saccharomyces  cerevisiae,  the  protein-protein
interaction  data  (PPI)  reported  in  public  databases  account  for  only  one  third  of  existing
interactions. This observation leads us to believe that methods based very precisely on the topology
of  networks  are  not  to  their  advantage.  We  think  first  of  all  of  the  methods  based  on  the
identification of cliques. Their performance is more than questionable if we consider that a large
part of the interactions between proteins are unknown. If we consider that the missing interactions
are randomly distributed on the graph, we can estimate that all the paths on the graph are impacted
in the same way and thus that the methods based on random walks could be the least affected.
Intuitively, we can indeed argue that, in a graph on which a certain proportion of the edges have
been randomly deleted, if, from a source node A, random walks allow on average to reach node B
before node C, then, on the complete graph, node B will probably always be closer to node A than
node C. The other problem with methods based on graph traversals is that PPI networks are "small-
world" networks, meaning that the neighbors of a given node are likely to be neighbors of each
other, and most nodes can be reached from every other node by a small number of hops. Thus, any
method that relies on graph traversals will find that a large portion of the network is close to any
typical node (Cao et al., 2013).

Based  on  these  considerations,  we  argue  that  network  embedding methods  can  provide  the
backbone of a more reliable method by estimating distances between nodes that take into account
the entire topology of the graph and, moreover,  are little affected by the proportion of missing
edges.  Our  method  works  on  an  embedding  of  an  interaction  network  by  adopting  a  greedy
algorithm and an active subnetwork relevance measure defined in other papers (Ideker et al., 2002).
The great advantage of our method is that it does not require any parameterization; it is not even
necessary to indicate the number of modules to be identified or the size of the modules.

We have checked that our method performs well on artificial datasets and compares favorably with
existing methods that are the current state of the art. We then processed a real dataset from a study
focused on PDAC, on which AMINE retrieved  modules associated with functions involved  in
PDAC metastatic process.  Moreover,  we highlighted functions that could not be detected using
traditional approaches consisting in analyzing only the most differentially expressed genes. Our
studies  show  that  AMINE  can  identify  modules  corresponding  to  functions  not  revealed  by
traditional approaches. Indeed, we found that Blimp1, one of the most up-regulated gene in highly
metastatic cells, participated in the regulation of pro-inflammatory process, a result confirmed by in
vitro by the silencing of Blimp1 in human PDAC cells. However, we stress that our method is not
an alternative to methods based on the identification of the most differentially expressed genes, but
rather a complement to these approaches.

Materials and Methods
The method AMINE predicts  active modules  from data consisting of  a background knowledge
about  gene  interactions  and  measurements  representing,  in  the  specific  context  of  a  given
experiment, indicators of the involvement of genes in the studied process. This concept of gene-
involvement is materialized by a p-value which quantifies, for each gene, the statistical significance
of its variation (Fig. 7A).



Data about gene interactions and gene variations are merged to generate an attributed gene network
in which genes are annotated with a numeric attribute representing the extent of their variation (Fig.
7B). Mathematically, the dataset is represented as an attributed graph G= (V , E , λ ) consisting of a
set  of  vertices  V  (also  called  node,  that  symbolize  the  genes),  a  set  of  edges
E ⊆ {(u , v ) ∈V 2 ∨u ≠ v } and a value function λ ( v ) :V → R which associates a value p ∈R to each
vertex v∈ V . An induced subgraph of G is a subset S of the vertices of G together with those edges
of  G with both endpoints  in  S.  Many active  module  detection algorithms focus  on identifying
induced subgraphs whose values associated with their nodes stand out from the values associated
with  the  other  nodes  of  the  graph.  We  hypothesize  that  focusing  heavily  on  the  detection  of
connected sets of genes may not be optimal, given the fact that the interactions between genes
described in the databases are still largely incomplete. For this, we adopt a definition of a module
that is closer to the one used in cluster analysis: object that are grouped together (in a module) are
more similar to each other than to those in other groups. The notion of similarity encompasses a
component  taking  into  account  the  distance  on  the  graph  between  the  vertices  belonging  to  a
module and a significant nearness between the values associated to these vertices.

Scoring of a subgraph

Let  pi= λ ( v i ) be the associated p-value of vertex  vi. We aggregate the p-values associated to the
nodes of a subgraph with Stouffer's Z method; the same strategy used by Ideker et al. (2002). If we
let z ( v i )=Φ−1

(1 − λ ( v i )), where Φ is the standard normal cumulative distribution function, then, the

aggregate z-score  za (G' ) for an induced subgraph  G ' ⊆G composed of  k  vertices, is computed
with:

za (G' )=
1

√k
∑

v i ∈G'

z (v i )

In order to get a subnetwork which has higher aggregation z-score compared with a random set of
vertices, we define, still following the same methodology as Ideker et al. (2002), a corrected score
s (G' ) of a subgraph G ' with:

s (G' )=
za (G ' ) − μk

σ k

where the mean  μk  and standard deviation  σ k are computed based on a Monte-Carlo approach,
taking 10,000 rounds of randomly sampling a connected subgraph of k  vertices from V . From s (G' )

, we can easily compute the probability of observing in G, a subnetwork of the same size as G ' with
a corrected score at least as extreme as the one observed. This is given by the the one-sided p-value:
pvalue (G ' )=1− Φ ( s (G' ) ).

Network embedding

A network embedding method is a function ψ :V → Rm that associate to each vertex v of the graph a
vector d  of size m. Node2vec (Grover and Leskovec, 2016) uses a biased random walk procedure
which  efficiently  generates  diverse  neighborhoods  of  a  given  node.  Node  contexts  are  then
processed with the word2vec method (Mikolov  et al., 2013b). Node2Vec uses two parameters to
control  the  walks.  Intuitively,  these  parameters  control  how  the  walk  explores  and  leaves  the
neighborhood  of  starting  nodes.  They  allow  a  tuning  between  outward  exploration  and  local
walking.

However,  in  our  case  study,  it  may  indeed  be  interesting,  instead  of  using  biases  that  only
considered the topology of the network, to use the data associated to nodes, i.e. the value of p. The
idea is to bias the walk so that, when the walker is located on a node, transitions to nodes with
similar values of p (Fig. 7C) are favored. As p represents a p-value, the walker will be encouraged
to favor visits of correlated and anti-correlated genes. We have conducted many experiments by
replacing the parameters proposed by Mikolov  et al. (2013) with our suggested use of similarity



between nodes or by combining the different ways to bias the walk. It turns out, in the end, that
using only the bias based on the similarity of p-values gives the best results. The bias we introduced
allows to control the walk by assigning a transition t  from a node i to a node j proportional to:

t i , j=1−|pi− p j|

Other parameters tuning the Node2Vec method are summarized in Table 4.

Algorithm

The cohesion measurement of a set of nodes on the graph can be determined on the embedded space
using the cosine distance cos between the vectors representing the nodes. We use this property to
identify, the most similar nodes to a given node vi (represented as similar function in the algorithm
summarized in Fig. 8). Thanks to a greedy approach, we collect, from each node, clusters  M i of
increasing size evaluated using the s score previously defined. Our strategy is to expand the cluster
as long as the s score increases (lines 8-10 of the algorithm). This allows to overcome the known
drawback of the s score which is that high scores obtained by small sub-networks can be overtaken
by random scores obtained in large networks (Nikolayeva et al., 2018). In practice, as we are very
strict on the stopping condition, the clusters obtained are quite small (usually 5 nodes at most). At
the end of this phase, we obtain a list of clusters, each one centered on a node, with each cluster
being assigned a corresponding s score (Fig. 7D). The cluster centered on vertex vi is thus denoted
M i with  M i⊆ V  and vi ∈ M i.

The next phase of the method consists in combining the different clusters while ensuring that new
merged clusters  remain  spatially  cohesive  (Fig.  7E).  We say  that  two clusters  M i and  M j are
spatially cohesive when M i∩ M j≠ ∅. Starting from the module with the higher score (line 14 of the
algorithm), the process consists in evaluating all possible clusters formed by M i∪℘ ( M j / j ≠i ) using
the s score, with ℘ ( M i ) denoting the powerset of M i and keeping the modules with the highest  s
scores (lines 15-20). The workflow of the AMINE method is presented in Fig. 7 and Fig. 8.

Generation of realistic interaction network

We use an extended version of the Barabasi-Albert model of preferential attachment (Albert and
Barabási,  2000),  to generate  several  artificial  networks  by  varying  the  parameters  p and  q
controlling  the  probabilities  to  add  and  remove  edges  respectively  as  well  as  the  parameter
specifying the number of initial nodes. Our results suggest that using 3 initial nodes with parameters
p and  q set  to  0.09 and 0.70 respectively allows to  generate  random network with topologies
relatively close to real interaction networks (Table 5).

1000 graphs were generated using these parameters (an example of this kind of graph is given in
supplementary Fig. S2). The strategy to specify the value of nodes is exactly the same at the one of
Robinson et al. (2017). In order to be able to do a comparison with other methods, we generated
only one module of designated hits. As AMINE is dedicated to the identification of relatively small
modules (in order to focus on really relevant genes that can be investigated by biologists), we have
targeted our tests on the identification of small modules of size 10 and 20.

Cell culture

The PDAC cell line, MIA PaCa-2, was obtained from Richard Tomasini CRCM, Marseille, France
and culture in DMEM (Gibco™, Life Technologies Limited, Paiseley, UK) supplemented with 10%
FBS, and penicillin/streptomycin. Cells were maintained at 37° C in a humidified atmosphere (5%
CO2). Cells were tested routinely for Mycoplasma contamination.

siRNA transfection

siRNAs (Sigma-Aldrich)  were  used  for  BLIMP 1 silencing.  Non-targeting  (si-Ctrl:  SIC001)  or
BLIMP 1-targeting  siRNAs  (si-Blimp  1-1:  5’CUUGGAAGAUCUGACCCGA3’;  si-Blimp  1-2:
5’CCUUUCAAAUGUCAGACUU3’ were transfected in MIA PaCa-2 cells using Lipofectamine®



RNAiMAX  (Invitrogen,  Life  technologies  Corp.,  Carlsbad,  California,  USA)  following  the
manufacturer’s instructions. The final siRNA concentration was 30 nM. The medium was changed 8
h after transfection and the efficiency of the transfection was assessed by western blot after 72h.

Western blotting

Cells  were  lysed  in  RIPA buffer  supplemented  with  Complete  Protease  Inhibitor  Cocktail  and
PhosSTOP Phosphatase  Inhibitor  Cocktail  (Roche  Diagnostics  GmbH,  Mannheim,  Germany).
Lysate  were centrifuged at  12 000 rpm for  15 min at  4°C and then protein concentration was
quantified using Bradford assay. Protein lysate were subject to SDS-PAGE and transferred onto a
PVDF membrane.  Membranes were blocked with 5% low fat milk in Tris-buffer saline –tween
(TBS-T) for 1 hour.  Membrane were incubated in Blimp 1 antibody (Cell  Signaling,  diluted at
1:1000) overnight.  Membrane were washed in TBS-T followed by incubation with Horseradish
peroxidase-conjugated secondary antibody for 1 hour at room temperature (Sigma-Aldrich). Signal
was then visualized using ECL reagent (Immobilon® Western, Millipore, Burlington, MA, USA)
and chemoluminescence detection system (fusion FX7 Edge; Vilber, Marne-la-Vallée, France).

Human Cytokine Array

For the cytokine assay, the Proteome Profiler™ Human XL Cytokine Array Kit (R&D Systems,
Minneapolis,  MN, USA) was used.  The array was carried out using 500µl of cell  supernatants
obtained by incubating MIA PaCa-2 in DMEM 0% FBS, 48h after siRNA (si-Ctrl or si-Blimp 1-2)
transfection, following the manufacturer’s instructions. For analysis of cytokine arrays, the intensity
of each spot was measured using ImageJ software. Background was removed from all values, and
they were normalized to the positive control spots.

References
Albert, R., & Barabási, A. L. (2000). Topology of evolving networks: local events and universality.
Physical review letters, 85(24), 5234.

Barabási,  A.  L.,  &  Albert,  R.  (1999).  Emergence  of  scaling  in  random  networks.  Science,
286(5439), 509-512.

Beisser, D., Klau, G. W., Dandekar, T., Müller, T., & Dittrich, M. T. (2010). BioNet: an R-Package
for the functional analysis of biological networks. Bioinformatics, 26(8), 1129-1130.

Breitling, R., Amtmann, A., & Herzyk, P. (2004). Graph-based iterative Group Analysis enhances
microarray interpretation. BMC bioinformatics, 5(1), 1-10.

Cao, M., Zhang, H., Park, J., Daniels, N. M., Crovella, M. E., Cowen, L. J., & Hescott, B. (2013).
Going the distance for protein function prediction: a new distance metric for protein interaction
networks. PloS one, 8(10), e76339.

Cornish, A. J., & Markowetz, F. (2014). SANTA: quantifying the functional content of molecular
networks. PLoS computational biology, 10(9), e1003808.

Corrêa, L., Pallez, D., Tichit, L., Soriani, O., & Pasquier, C. (2019, December). Population-based
meta-heuristic  for  active  modules  identification.  In  Proceedings  of  the  Tenth  International
Conference on Computational Systems-Biology and Bioinformatics (pp. 1-8).

Chiou, S. H., Risca, V. I., Wang, G. X., Yang, D., Grüner, B. M., Kathiria, A. S., ... & Winslow, M.
M.  (2017).  BLIMP1  induces  transient  metastatic  heterogeneity  in  pancreatic  cancer.  Cancer
discovery, 7(10), 1184-1199.

Cui, P., Wang, X., Pei, J., & Zhu, W. (2018). A survey on network embedding. IEEE Transactions
on Knowledge and Data Engineering, 31(5), 833-852.

De Las Rivas, J., & Fontanillo, C. (2010). Protein–protein interactions essentials: key concepts to
building and analyzing interactome networks. PLoS computational biology, 6(6), e1000807.



Dittrich,  M.  T.,  Klau,  G.  W.,  Rosenwald,  A.,  Dandekar,  T.,  &  Müller,  T.  (2008).  Identifying
functional  modules  in  protein–protein  interaction  networks:  an  integrated  exact  approach.
Bioinformatics, 24(13), i223-i231.

Ghaderi, M., Moro, C. F., Elduayen, S. P., Hultin, E., Verbeke, C. S., Björnstedt, M., & Dillner, J.
(2020).  Genome-wide  transcriptome  profiling  of  ex-vivo  precision-cut  slices  from  human
pancreatic ductal adenocarcinoma. Scientific Reports, 10(1), 1-8.

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data
mining (pp. 855-864).

He, H., Lin, D., Zhang, J., Wang, Y. P., & Deng, H. W. (2017). Comparison of statistical methods
for subnetwork detection in the integration of gene expression and protein interaction network.
BMC bioinformatics, 18(1), 1-6.

Hegde, S., Krisnawan, V. E., Herzog, B. H., Zuo, C., Breden, M. A., Knolhoff, B. L., ... & DeNardo,
D.  G.  (2020).  Dendritic  cell  paucity  leads  to  dysfunctional  immune  surveillance  in  pancreatic
cancer. Cancer Cell, 37(3), 289-307.

Hessmann, E., Buchholz, S. M., Demir, I. E., Singh, S. K., Gress, T. M., Ellenrieder, V., & Neesse,
A. (2020). Microenvironmental determinants of pancreatic cancer. Physiological reviews, 100(4),
1707-1751.

Hollinshead, K. E., Parker, S. J., Eapen, V. V., Encarnacion-Rosado, J., Sohn, A., Oncu, T., ... &
Kimmelman,  A.  C.  (2020).  Respiratory  supercomplexes  promote  mitochondrial  efficiency  and
growth in severely hypoxic pancreatic cancer. Cell reports, 33(1), 108231

Hosein,  A.  N.,  Brekken,  R.  A.,  & Maitra,  A.  (2020).  Pancreatic  cancer  stroma:  an  update  on
therapeutic targeting strategies. Nature Reviews Gastroenterology & Hepatology, 17(8), 487-505.

Ideker,  T.,  Ozier,  O.,  Schwikowski,  B.,  &  Siegel,  A.  F.  (2002).  Discovering  regulatory  and
signalling circuits in molecular interaction networks. Bioinformatics, 18(suppl_1), S233-S240.

Jiang, H., Hegde, S., Knolhoff, B. L., Zhu, Y., Herndon, J. M., Meyer, M. A., ... & DeNardo, D. G.
(2016).  Targeting  focal  adhesion  kinase  renders  pancreatic  cancers  responsive  to  checkpoint
immunotherapy. Nature medicine, 22(8), 851-860.

Jiang, H., Liu, X., Knolhoff, B. L., Hegde, S., Lee, K. B., Jiang, H., ... & DeNardo, D. G. (2020).
Development of resistance to FAK inhibition in pancreatic cancer is linked to stromal depletion.
Gut, 69(1), 122-132.

Koong, A. C., Mehta, V. K., Le, Q. T., Fisher, G. A., Terris, D. J., Brown, J. M., ... & Vierra, M.
(2000).  Pancreatic  tumors  show  high  levels  of  hypoxia.  International  Journal  of  Radiation
Oncology* Biology* Physics, 48(4), 919-922.

Lee, S. H., Kim, K. W., Min, K. M., Kim, K. W., Chang, S. I., & Kim, J. C. (2014). Angiogenin
reduces  immune  inflammation  via  inhibition  of  TANK-binding  kinase  1  expression  in  human
corneal fibroblast cells. Mediators of inflammation, 2014.

Ma,  H.,  Schadt,  E.  E.,  Kaplan,  L.  M.,  & Zhao,  H.  (2011).  COSINE:  COndition-SpecIfic  sub-
NEtwork identification using a global optimization method. Bioinformatics, 27(9), 1290-1298.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations
of words and phrases and their  compositionality.  In Advances  in neural  information processing
systems (pp. 3111-3119).

Mikolov,  T.,  Chen,  K.,  Corrado,  G.,  &  Dean,  J.  (2013b).  Efficient  estimation  of  word
representations in vector space. arXiv preprint arXiv:1301.3781.

Nguyen, H., Shrestha, S., Tran, D., Shafi, A., Draghici, S., & Nguyen, T. (2019). A comprehensive
survey of tools and software for active subnetwork identification. Frontiers in genetics, 10, 155.



Nikolayeva,  I.,  Pla,  O.  G.,  &  Schwikowski,  B.  (2018).  Network  module  identification—A
widespread theoretical bias and best practices. Methods, 132, 19-25.

Pavlopoulos,  G.  A.,  Secrier,  M.,  Moschopoulos,  C.  N.,  Soldatos,  T.  G.,  Kossida,  S.,  Aerts,  J.,
Schneider, R., & Bagos, P. G. (2011). Using graph theory to analyze biological networks. BioData
mining, 4(1), 1-27.

Rapaport,  F.,  Zinovyev,  A.,  Dutreix,  M.,  Barillot,  E.,  &  Vert,  J.  P.  (2007).  Classification  of
microarray data using gene networks. BMC bioinformatics, 8(1), 1-15.

Reyna,  M.  A.,  Leiserson,  M.  D.,  &  Raphael,  B.  J.  (2018).  Hierarchical  HotNet:  identifying
hierarchies of altered subnetworks. Bioinformatics, 34(17), i972-i980.

Robinson,  S.,  Nevalainen,  J.,  Pinna,  G.,  Campalans,  A.,  Radicella,  J.  P.,  & Guyon,  L.  (2017).
Incorporating  interaction  networks  into  the  determination  of  functionally  related  hit  genes  in
genomic experiments with Markov random fields. Bioinformatics, 33(14), i170-i179.

Seidman, S. B.,  & Foster,  B. L.  (1978). A graph‐theoretic generalization of the clique concept.
Journal of Mathematical sociology, 6(1), 139-154.

Shah, V. M., Sheppard, B. C., Sears, R. C., & Alani, A. W. (2020). Hypoxia: Friend or Foe for drug
delivery in Pancreatic Cancer. Cancer letters, 492, 63-70.

Shields, M. A., Dangi-Garimella, S., Redig, A. J., & Munshi, H. G. (2012). Biochemical role of the
collagen-rich  tumour  microenvironment  in  pancreatic  cancer  progression.  Biochemical  Journal,
441(2), 541-552.

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., ... & Mering, C. V.
(2019).  STRING v11: protein–protein association networks with increased coverage,  supporting
functional discovery in genome-wide experimental datasets. Nucleic acids research, 47(D1), D607-
D613.

Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease.
Cold Spring Harbor perspectives in biology, 6(10), a016295.

Von Mering, C., Krause, R., Snel, B., Cornell,  M., Oliver, S. G., Fields, S.,  & Bork, P. (2002).
Comparative assessment of large-scale data sets of protein–protein interactions. Nature, 417(6887),
399-403.

Wang, L., Tu, Z., & Sun, F. (2009). A network-based integrative approach to prioritize reliable hits
from multiple genome-wide RNAi screens in Drosophila. BMC genomics, 10(1), 1-18.



Acknowledgments
The authors are grateful to the OPAL infrastructure from Université Côte d’Azur and the Université
Côte d’Azur’s Center for High-Performance Computing for providing resources and support.

Funding
UCAJEDI Investments in the Future project managed by the National Research Agency (ANR)
under reference number ANR-15-IDEX-01

French National Research Agency (ANR) through the LABEX SIGNALIFE program (reference #
ANR-11-LABX-0028-01).

Author contributions
Conceptualization: CP, OS

Methodology: CP, DP, RRM, OS

Software: CP, VG, DP

Validation: CP, DP, RRM, OS

Investigation: CP, DP, RRM, OS

Resources: RRM, OS

Data Curation: CP, VG

Visualization: CP, VG, DP, RRM, OS

Supervision: CP, OS

Writing—original draft: CP, DP, RRM, OS

Writing—review & editing: CP, VG, DP, RRM, OS

Competing interests
Authors declare that they have no competing interests.

Data and materials availability
All data are available in the main text or the supplementary materials.



Figures and Tables

Fig. 1. Evaluation of AMINE on artificial data generated by Robinson et al. (2017).
(A) boxplots of the F1, recall  and precision measures.  The "trucated recall"  displays the recall
obtained by setting the maximum size of the 3 best identified modules to 30. (B) repartition of the
size of the identified modules.



Fig. 2. Results obtained for the identification of modules of size 10. Comparison of AMINE with
COSINE, BioNet and GiGA on a task consisting in identifying a module of size 10 on a dense
artificial network with 1000 vertices. The boxplots summarize the results obtained on 1000 different
networks. "Expr. value", that is used for baseline, consists in selecting the 10 genes with the lowest
pvalues.  (A) Boxplots  representing the distribution of  F1 scores.  (B) Boxplots  representing the
distibution of identified module sizes.  (C) Magnification of the distribution of module sizes for
GiGA and AMINE.



Fig. 3. Results obtained for the identification of modules of size 20. Comparison of AMINE with
COSINE, BioNet and GiGA on a task consisting in identifying a module of size 20 on a dense
artificial network with 1000 vertices. The boxplots summarize the results obtained on 1000 different
networks. "Expr. value", that is used for baseline, consists in selecting the 20 genes with the lowest
pvalues.  (A) Boxplots  representing the distribution of  F1 scores.  (B) Boxplots  representing the
distibution of identified module sizes.  (C) Magnification of the distribution of module sizes for
GiGA and AMINE.



Fig. 4. AMINE reveals modules associated to metastatic process in HMGA2 positive PDAC 
cells. The network was generated by STRING using the five first modules generated by AMINE 
from the list of deregulated genes in HMGA2+ PDAC cells available in Chiou et al., 2017.



Fig. 5. BLIMP1 is associated to immune response and inflammation in PDAC cells.
(A) BLIMP1-associated module generated by the profiling of genes deregulated in PDAC 
metastatic HMGA2 positive cell population. (B) Modules 2 and 9 generated by the profiling of 
genes down-regulated in BLIMP1-silenced PDAC cells. The networks were generated by STRING.



Fig. 6. BLIMP1 silencing modify the cytokine secretion profile in PDAC cells. 
(A) Immunoblots of Blimp 1 in MIA PaCa-2 cells transfected with a non-targeting siRNA (Si-Ctrl),
or with two different siRNA targeting Blimp-1 (Si-Blimp 1-1 and Si-Blimp 1-2). Data are 
representative of three independent experiments. (B) Soluble cytokine protein expression was 
assessed using cytokine arrays in si-Ctrl or si-Blimp 1 transfected MIA PaCa-2 (N=2; n = 4). 
Representative arrays are shown. On the left panel, values from densitometry quantification are 
shown as a fold change from the control.



Fig. 7. Workflow of the AMINE method. (A) Input data are composed of a table storing the
significance  of  the  expression  variation  of  genes  between  two  conditions  and  a  network
representing known gene interactions.  (B) Data about  gene interactions and gene variations are
merged to generate an attributed gene network. (C) Nodes belonging to the attributed gene network
are mapped to a low-dimensional space through the use of a biased Node2Vec method. (D) Sets of
genes that are both cohesive and differentially expressed are identified in the embedded space by
maximizing  both  the  s scores  of  the  nodes  and  the  cosine  distance  cos between  the  vectors
representing the nodes. (E) Redundancy in the content of modules is ruled out by combining sets of
nodes obtained in the previous step while ensuring that the result remains spatially cohesive.



Fig. 8. Algorithm of the method AMINE.



Module
number

P-value
of the

module
Function/Signaling pathway Accession Id

P -value of
annotation

1 2.24e-7
Collagen fibril organisation GO:0030199 4.48e-13
Extra cellular matrix organisation GO:0030198 4.48e-13

2 7.47e-6
HIF-1 signaling pathway mmu04066 6.43e-10
Central carbon metabolism in cancer mmu05230 1.17e-05

3 4.8e-5

cell adhesion GO:0007155 5.60e-06
ECM-receptor interaction mmu04512 1.54e-08
Focal adhesion mmu04510 2.40e-07
PI3K-Akt signaling pathway mmu04151 1.36e-06

4 6.07e-5
extracellular matrix structural constituent GO:0005201 1.82e-06
Extracellular matrix organization MMU-1474244 1.14e-06

5 6.17e-5

transmembrane receptor protein tyrosine 
kinase signaling pathway

GO:0007169 4.04e-16

regulation of cell migration GO:0030334 4.64e-07
regulation of peptidyl-tyrosine 
phosphorylation

GO:0050730 5.60e-07

angiogenesis GO:0001525

Table 1. Functions associated to the five best modules revealed by AMINE profiling of genes 
deregulated in PDAC metastatic HMGA2 positive cell population. Gene enrichment analyses 
were performed using data from the STRING database.

Module
number

P-value
of the

module
Function/Signaling pathway Accession Id

P -value of
annotation

169 0.044

regulation of interleukin-2 production GO:0032663 0.0129
regulation of alpha-beta T cell 
differentiation

GO:0046637 0.0129

Th17 cell differentiation mmu04659 0.00038

Table 2. Functions associated to the module embedding BLIMP1 revealed by AMINE 
profiling of genes deregulated in PDAC metastatic HMGA2 positive cell population. Gene 
enrichment analyses were performed using data from the STRING database.
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Module
number

Function / Signaling pathway Accession Id
P-value of
annotation

2 + 9
Inflammatory response GO:0006954 1.05e-12
cytokine activity GO:0005125 2.45e-12
immune system process GO:0002376 1.73e-12

Table 3. Functions associated to modules 2 and 9 resulting from AMINE profiling of genes 
down-regulated in PDAC cells silenced for Blimp1. The two modules were merged and subjected
to gene enrichment analyses using data from the STRING database.

Parameters Values

Number of walks 20

Walk length 100

Vector dimensions 128

Window size 5

epoch 10

Table 4. Parameters used for the Node2Vec method.

Metric Artificial dense network Real network

Number of vertices 5980 5980

Alpha coefficient 1.908 1.602

R square 0.876 0.924

Mean of neighbor connectivity 42.207 47.720

Table 5. Comparison of artificial and real biological network. Comparison of several metrics 
associated, on the one hand, an artificial dense network generated with the extended Barabasi-
Albert model using 3 initial nodes and setting parameters p and q to 0.09 and 0.7 respectively and, 
on the other hand, a subnetwork containing the same number of vertices extracted from the 
STRING database.

Supplementary Materials
Figs. S1 to S5. 
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