Implementing and Evaluating Multi-Resource Scheduling in Slurm

Chapter 1

Project Overview

The exponential growth in computing power has enabled High Performance Computing(HPC) Systems to attack problems that are much larger and more complex. One example would be Data-Intensive applications. To meet intense I/O demand for these applications, Burst buffers are often employed in production systems. This heterogeneity forces HPC Schedulers which are mainly CPU Centric to consider multiple resources like Burst Buffers, network bandwidth in order to make optimized decisions for efficient performance [START_REF] Fan | Trade-Off Between Prediction Accuracy and Underestimation Rate in Job Runtime Estimates[END_REF][START_REF] Qiao | Joint Effects of Application Communication Pattern, Job Placement and Network Routing on Fat-Tree Systems[END_REF][START_REF] Qiao | Preliminary Interference Study About Job Placement and Routing Algorithms in the Fat-Tree Topology for HPC Applications[END_REF][START_REF] Fan | Exploiting Multi-Resource Scheduling for HPC[END_REF][START_REF] Yu | System-wide Trade-off Modeling of Performance, Power, and Resilience on Petascale Systems[END_REF].

In this Project, we consider Slurm, a well-known Scheduler in HPC Systems and incorporate multi-resource scheduling scheme. This is done by formulating the scheduling problem into a Multi-Objective optimisation problem and solving it using a multi-objective genetic algorithm [START_REF] Fan | Scheduling beyond cpus for hpc[END_REF]. Existing Slurm Scheduler supports Burst-Buffer Scheduling and allocates jobs from the waiting queue until either CPU or burst buffer is exhausted. This approach has a limited efficiency as the depletion of one resource can prevent the queued jobs from allocation and thus causing the under-utilisation of the other resources [START_REF] Fan | Job Scheduling in High Performance Computing[END_REF][START_REF] Li | The Effect of System Utilization on Application Performance Variability[END_REF][START_REF] Allcock | Experience and Practice of Batch Scheduling on Leadership Supercomputers at Argonne[END_REF]. As such, we implement a plugin called BBSched which when configured allows Slurm to perform multi-resource scheduling. The implementation is tested using Slurm Simulator [START_REF] Simakov | Slurm simulator github[END_REF].

This Project has been performed for a period of 12 weeks starting from January 14 2019 -April 26 2019 under the supervision of Dr.Zhiling Lan and her doctoral student Yuping Fan. The status of the project and any clarifications were discussed during the weekly meetings which are held every Thursday from 2:00 -2:30 PM. Besides for every two weeks,a Biweekly report has been submitted which summarises the work done in the past two weeks and the goal for the next two weeks. The reports can be viewed from the webpage at http://www.cs.iit.edu/ ~lan/moo.html.

Week

Project Tasks

Understanding Slurm

The main Objective of this project is to implement multi-resource scheduling scheme (named as "BBSched") in Slurm. For this, the first task was to understand Slurm. This is done by reading the Slurm design from [START_REF] Jette | Slurm design[END_REF] and going through the tutorials which have been delivered by the Slurm Programmers at various conferences and can be viewable at [START_REF] Jette | Slurm video tutorials[END_REF]. These tutorials and the design manual gave a good insight of Slurm by describing what Slurm is and what it is not; it's architecture which includes detailed description of Slurmd, Slurmctld, Command Line Utilities, Plugins, Communication layer and Security model; the design of Slurm Control daemon, it's subsystems: Node manager,Partition manager and Job manager, it's configuration and fault tolerance; the design Slurmd daemon; the working of each of the following command line utilites: scancel, scontrol, squeue, sinfo and srun; and the Job Initiation design.

This deep understanding of Slurm and its plugins helped in knowing that the multiresource scheduling scheme needs to be incorporated as a new scheduling plugin so as to keep the existing functionality undisturbed and configure the new scheduling scheme only when it is required by the system administrator. As such, the programmer guide and plugin implementation details of Slurm are read from [START_REF] Schedmd | Slurm programmer guide[END_REF] and [START_REF] Schedmd | Slurm plugin guide[END_REF]. Further, the Slurm code from github [START_REF] Schedmd | Slurm github[END_REF] has been analysed by installing it in the local machine. Specifically, the prevailing scheduling plugins namely sched/builtin and sched/backfill have been explored so as to know how the slurm control daemon (precisely the Job Manager) communicates with the scheduling plugins. Besides, various Slurm scheduling design papers [START_REF] Fan | Deep Reinforcement Agent for Scheduling in HPC[END_REF] [17] [START_REF] Fan | DRAS-CQSim: A Reinforcement Learning based Framework for HPC Cluster Scheduling[END_REF] [19] [START_REF] Fan | ROME: A Multi-Resource Job Scheduling Framework for Exascale HPC System[END_REF] have been examined.

Understanding Slurm Simulator

Time accelerated simulation of workloads is needed to verify the implementation of Multiresource scheduling in Slurm. As such, an Open source Slurm Simulator based on [START_REF] Jokanovic | Evaluating slurm simulator with real-machine slurm and vice versa[END_REF], [START_REF] Simakov | Slurm simulator: Improving slurm scheduler performance on large hpc systems by utilization of multiple controllers and node sharing[END_REF] and [START_REF] Simakov | A Slurm Simulator: Implementation and Parametric Analysis[END_REF] is used in this project. As, it is important to understand the work flow of the simulator before using it, the aforementioned papers have been read. Further, the code of the simulator from the github [START_REF] Simakov | Slurm simulator github[END_REF] has been analysed line by line to get a clear overview of its working.

Design of Multi-resource Scheduling in Slurm

The design of Multi-resource Scheduling in Slurm is shown in the figure below. Since, the simulator uses the Slurm Code for scheduling, the change in configuration automatically reflects to the Simulator and as such no specific design changes are needed in Simulator.

Implementation of BBSched in Slurm

The implementation of the new plugin "BBSched" is done and tested on docker container running on a virtual machine on Lightning Server of IIT. The IP Address of lightning server is 216.47.142.240 and virtual machine is 192.168.122.99. Inside the docker container, all the modified changes related to Slurm and Slurm Container are present in /home/slurm folder. The Step by Step manual written as a part of Appendix would give more details on Installation. Here, we specify only the implementation part.

Adding BBSched Plugin to Slurm

The Slurm related code is present in /home/slurm/slurm sim ws/slurm simulator and slurm simulator code is present in /home/slurm/slurm sim ws/slurm sim tools. Inorder to add the new plugin to Slurm code, a new directory called bbsched is created and added to Makefile.am both of which are located at /src/plugins/sched. Inside bbsched folder, four files are added namely bbsched.c, bbsched.h, bbsched wrapper.c and Makefile.am. Once all the files have been added, ./autogen.sh is run on the Slurm's top level directory so as to update the existing Makefile.in files and create the new Makefile.in file for the bbsched plugin. Besides, configure.ac is modified to identify the new Makefile to be built at Slurm configure time. Precisely the following line: src/plugins/sched/bbsched/Makefile is added to configure.ac inorder for the plugin to be built at Slurm Configure time.

Coding for Multi-resource Scheduling in Slurm

Here, the functionality added in each file of the new plugin: src/plugins/sched/bbsched is described.

• bbsched wrapper.c :

This file has the functions which are mandatory for Scheduler plugins and directly follows the Slurm Scheduler Plugin Api documentation [START_REF] Schedmd | Slurm scheduler api plugin[END_REF]. It includes: 1. Entry point function init() where the global initialisation is placed. This includes creation of threads specific to the bbsched plugin, acquiring locks and code specific to simulation mode like running the bbsched plugin from main simulation loop. 2. fini() function which releases the acquired mutexes, stops the plugin agent and suspends the execution of the bbsched thread.

3. slurm sched p reconfig function which rereads the configuration files in case on any changes. 4. All the other functions which have no specific implementation have been stubbed.

• bbsched.c

This file has the function which implements Multi-resource scheduling. Inorder to implement the code, the base paper [START_REF] Fan | Scheduling beyond cpus for hpc[END_REF] has been thoroughly read. Besides, CQSim [START_REF] Fan | Application Checkpoint and Power Study on Large Scale Systems[END_REF] [26] [27] [START_REF] Yang | Integrating dynamic pricing of electricity into energy aware scheduling for hpc systems[END_REF] has been installed and the Multi-Objective Optimisation (MOO) Scheduler in CQSim has been examined so as to code Slurm in a Similar way. As such the following functions are implemented: 1. run genetic algorithm function: This is the entry point of the Multi-objective optimization algorithm. It is called by the sort job queue function to update the priority ordering of the jobs in the waiting queue. The basic functionality includes, considering the jobs only pertaining to the window size and performing population initialization, parent selection, crossover, mutation and survivor selection. This process is done for around 500 iterations (generations) and the population after the last generation is returned.

2. init population function: This function generates a random binary value for each of the jobs in the window. So, For example if the number of jobs in window is 5 and random ordering is 10110, it implies that 1,3 and 4 jobs are selected; 2 and 4 are not.

We then check if this ordering of jobs is actually feasible. This is done by computing CPU Utilisation(described in detail in compute fitness value function). All the feasible orderings of jobs are returned at the last, the size of which is equal to the population size considered.

3. parent selection function: This function returns two randomly selected orderings from the populations initialised above. 4. crossover function: This function uses the parent list generated above and swaps the ordering at random position.It then checks for the feasibility of the swapped ordering and returns the feasible list as result. 5. mutation function: This function is used to introduce diversity so that the algorithm would not be trapped in the local optima. Specifically, it looks over all the orderings in the feasible population and flips the binary value at a random position. It them checks for the feasible orderings in the flipped list and returns them. 6. survivor selection function: This function returns the best among the recently generated orderings and separates them into two sets. Pareto Solutions in Set1 and rest in Set2. A solution is chosen as a Pareto solution, if improving one of its objectives would deteriorate at least one other objective [START_REF] Fan | Scheduling beyond cpus for hpc[END_REF]. If the set1 has less number of orderings than the population size considered, all the orderings in set1 are returned and the best among set2 are appended. 7. compute fitness value function: For each of the job orderings, this function takes into account the jobs which have a binary value of 1 (implies those that are selected) and sums up the number of nodes required by each of the jobs. It then looks for the total number of nodes using assoc mgr functions and also gets the currently allocated nodes. Then utilisation is computed as (total nodes -available nodes + required nodes)/total nodes. Here available nodes = total nodes -allocated nodes and required nodes is the sum of number of nodes required by each of the jobs in the ordering. 8. sort job queue function: This function takes the waiting list of Jobs updated each time by the Job Manager of Slurm and calls the run genetic algorithm function described above. It then takes the best among the orderings returns and the jobs which have binary value of 1 are added to the queue.

• bbsched.h This is a header file for the bbsched plugin

• Makefile.am This is written using the existing Makefile.am of sched/builtin as a model. It basically specifies the top source directory of Slurm and the files inside the current directory which need to be built at compile time.

Further, slight modifications are made to /src/slurmctld/simulator.c file to accomodate for bbsched plugin. These modifications include calling the plugin from Simulator main loop for job scheduling and including bbsched output in the log file. Further, bbsched job scheduling statistics are added to /src/slrumctld/slurmctld.h and debug flags to /slurm/slurm.h.in.

Chapter 3

Results

Here, Slurm is configured such that it manages 10 compute nodes and 5 users with 2 accounts. The Job trace consisting of 500 jobs is generated using a R Script and is similar to the log from Theta machine.

Experiment 1

Here, SchedulerType is configured as sched/bbsched in slurm.conf present in /home/slurm/slurm sim ws/sim/m folder. The simulation time for 500 Jobs was 23 seconds.

• Average Job Slow down: Between 5-7 Seconds

• CPU Utilisation -70-77%

Experiment 2

Here, SchedulerType is configured as sched/builtin in slurm.conf. The simulation time for 500 Jobs was 15 Seconds.

• Average Job Slow down: Around 6 Seconds

• CPU Utilisation -73% Note: The results with builtin (FIFO) scheduling are not direct as the simulator doesn't seem to use the builtin plugin of the Slurm and it only schedules 50 jobs out of 500 jobs given as input. The above result is an extrapolated value.

Observations

Here, we are optimising a single resource, so the effect of the Multi Objective Optimisation algorithm doesn't seem much. But if we add more resources like Burst Buffer, the efficient utilisation of multiple resources would be seen.

Besides, the following is the graph that shows the Simulation time Vs Number of generations by BBSched Scheduler.

Conclusion

In this project, Slurm and Slurm Simulator have been deeply explored and their installation is done on Docker. Further, Multi-resource scheduling has been implemented in Slurm by adding a new plugin called BBSched to the Scheduler Plugins. The workload trace to test the implementation has been generated based on theta log and the results were examined for 500 Jobs. Since, the CPU optimisation is considered in this project pertaining to time limitations, the utilisation seems to be nearly same. The future work would involve fixing the issue with slurm simulator when scheduler type is builtin and to incorporate burst buffer management in Simulator so as test the Multi-resource scheduling. To brief the directory structure which is based on [START_REF] Simakov | Slurm simulator github[END_REF], the actual slurm code is present in slurm directory and the simulator source code is in slurm sim tools folder. All the compiled Slurm code is present in bld opt folder and as such if any change in slurm code is made, we need to run the command: " make -j install " in this folder. slurm opt folder has the command line utilities in bin folder and Slurm control daemon, Slurm DB daemon and Slurmd daemon runnable files in sbin folder.

Figure 2 . 1 :

 21 Figure 2.1: Design of Multi-Resource Scheduler in Slurm

Figure 3 . 1 :

 31 Figure 3.1: Simulation Time Vs No. of Generations

Figure A. 1 :

 1 Figure A.1: Directory Structure of Installation

Table 1 . 1 :

 11 Overview of the Work specified Biweekly.

	No.	Task
	1 and 2	Understanding Slurm and MOO Scheduler
	3 and 4	Installation of Slurm and Running Slurm Controller with Slurmd daemons
	5 and 6	Coding for the new Scheduler Plugin "BBSched"
	7 and 8	Understanding Slurm Simulator,installing it on Docker
	9 and 10	Integrating the plugin with Slurm Code and Slurm Simulator
	11 and 12 Generating the workload trace, debugging to fix errors and result Analysis

 Perform Simulation Modify Scheduler type as SchedulerType=sched/bbsched in slurm.conf present at /home/slurm/slurm sim ws Run: /home/slurm/slurm sim ws/slurm sim tools/src/run sim.py -e \ /home/slurm/slurm sim ws/sim/micro/baseline/etc -s \ /home/slurm/slurm sim ws/slurm opt -d Note : Results are present in /home/slurm/slurm sim ws/slurm sim tools/src/results folder. Trace is present at /home/slurm/slurm sim ws/slurm sim tools/tutorials/results/micro cluster/test.trace.

	3. Installing Dependencies: e. Installing Depending Packages of R 12.
	a. Install MySQL (Maria DB) command: yum -y install mariadb-server The following commands are to be run inside R. So in the command Prompt type 'R' 9. Create a top level directory for Simulation This takes to the R Workspace where in the following commands needs to be executed Command: install.packages("ggplot2") cd /home/slurm/slurm sim ws install.packages("gridExtra") mkdir -p /home/slurm/slurm sim ws/sim/micro install.packages("cowplot") yum -y install mariadb-devel install.packages("lubridate") 10. Copy existing Slurm configuration to Simulation Directory systemctl enable mariadb install.packages("rPython") Command: systemctl start mariadb install.packages("rstudioapi") cd /home/slurm/slurm sim ws mysql secure installation slurm sim tools/src/cp slurm conf dir.py -o -s slurm opt \
	Note : slurm sim tools/tutorials/micro cluster/etc sim/micro/baseline
	b. Install Python command: yum -y install epel-release If the install package command asks to select a domain, please select the one corre-11. Populate SlurmDB sponding to the country you are located at. This would give a faster download speed. Run Slurmdbd in foreground mode
	yum -y install python34 python34-libs python34-devel python34-numpy python34-scipy 4. Create a workspace in /home/slurm:
	python34-pip command: Commands:
	yum install python34-setuptools cd /home/slurm export SLURM CONF=/home/slurm/slurm sim ws/sim/micro/baseline/etc/slurm.conf
	sudo easy install-3.4 pip mkdir slurm sim ws
	pip3 install pymysql cd slurm sim ws Run :
	pip3 install pandas
	/home/slurm/slurm sim ws/slurm opt/sbin/slurmdbd 5. Copy the Slurm Simulator code from Virtual machine: Note : Command: If there is an error saying "Broken toolchain: cannot link a simple C program" then Command : cd slurm simulator use the following command to install gcc: sudo docker cp slurm simulator 〈containerid〉:/home/slurm/slurm sim ws/ In a separate terminal populate SlurmDB using Slurm sacctmgr utility:
	yum install python-devel export SLURM CONF=/home/slurm/slurm sim ws/sim/micro/baseline/etc/slurm.conf
	yum -y install gcc-c++ 6. Prepare Building directory
	Command: export SACCTMGR=/home/slurm/slurm sim ws/slurm opt/bin/sacctmgr
	Note : cd ..
	If there is an error related to installation of numpy packages while installing pandas. mkdir bld opt $SACCTMGR -i modify QOS set normal Priority=0
	Do the following: cd bld opt $SACCTMGR -i modify QOS Name=supporters Priority=100
	cd /usr/lib64/python3.4/site-packages $SACCTMGR -i add cluster Name=micro Fairshare=1 QOS=normal,supporters
	rm -rf numpy rm -rf 〈numpy-egg-info〉 $SACCTMGR -i add account name=account1 Fairshare=100 7. Run slurm simulator configure command Command: $SACCTMGR -i add account name=account2 Fairshare=100
	/home/slurm/slurm sim ws/slurm simulator/configure \
	c. Install R -prefix=/home/slurm/slurm sim ws/slurm opt \ $SACCTMGR -i add user name=user1 DefaultAccount=account1 MaxSubmitJobs=1000
	yum -y install wget -enable-simulator -enable-pam -without-munge -enable-front-end \ $SACCTMGR -i add user name=user2 DefaultAccount=account1 MaxSubmitJobs=1000
	yum -y install R R-Rcpp R-Rcpp-devel -with-mysql-config=/usr/bin -disable-debug CFLAGS="-g -O3 -D NDEBUG=1" $SACCTMGR -i add user name=user3 DefaultAccount=account1 MaxSubmitJobs=1000
	yum -y install texlive-* $SACCTMGR -i add user name=user4 DefaultAccount=account2 MaxSubmitJobs=1000
	d. Install R Studio $SACCTMGR -i add user name=user5 DefaultAccount=account2 MaxSubmitJobs=1000 Command to compile the Slurm code: make -j install $SACCTMGR -i modify user set qoslevel="normal,supporters"
	wget https://download2.rstudio.org/server/centos6/x86 64/rstudio-server-rhel-1.2.1335-
	x86 64.rpm unset SLURM CONF
	yum -y install rstudio-server-rhel-1.2.1335-x86 64.rpm 8. Copy Slurm Simulator Code Terminate the first Slurmdbd
	sudo docker cp slurm sim tools 〈containerid〉:/home/slurm/slurm sim ws/

Appendix A

Manual for Multi-resource Scheduling in Slurm

The following Steps for installation of Slurm and Slurm Simulator can be directly executed on Centos distribution of Linux. If not, docker needs to be installed. If Docker is used, the following steps need to be followed before the actual installation [START_REF] Simakov | Slurm simulator github[END_REF].