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Abstract. We extend the notion of content based image retrieval to
patch retrieval where the goal is to find the similar patches to a query
patch in a large image. Naive searching for similar patches by sequentially
computing and comparing descriptors of sliding windows takes a lot of
time in a large image. We propose a novel method to compute descriptors
for all sliding windows independent from number of patches. We rely
on tree representation of the image and exploit the histogram nature
of pattern spectra to compute all the required descriptors in parallel.
Computation time of the proposed method depends only on the number
of tree nodes and is free from query selection. Experimental results show
the effectiveness of the proposed method to reduce the computation time
and its potential for object detection in large images.

Keywords: content based image retrieval · patch retrieval · tree repre-
sentation · pattern spectra · large satellite images.

1 Introduction

Content based image retrieval (CBIR) is the problem of finding images in a
database that are similar to a query image [10]. This is generally done by two
main components. The first step is feature extraction that computes discrim-
inating descriptors for the images. Therefore, each image is represented by a
descriptor. The second step is to find the similarities between the images by cal-
culating the distances between their descriptors. Then, the dataset images are
ranked based on their distances to the query image and the most similar images
are retrieved.

Current datasets for image retrieval consist of the cropped images with spe-
cific content for each image and the task of CBIR is to find the similar images.
However, in some applications such as remote sensing we have a patch in a large
satellite image and we need to find similar patches in the same image or other
images (Figure 1). CBIR can be trivially adapted to this problem by dividing
the large image into small patches and extracting a descriptor for each image
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patch. Then, distances between patches can be computed to find the most sim-
ilar patches to the query patch. This approach is time consuming and is not
applicable in real time retrieval system for very large images.

In order to address this problem, we propose in this paper a patch retrieval
system to quickly compute descriptors for all the patches in an image. As far as
we know, it is the first work that tries to find the similar patches in a large image.
We rely on Pattern Spectra (PS) based on tree representation of the image [12].
It is a histogram-like morphological descriptor for images. We introduce fast-PS
descriptor as an approximation of PS that is computed for all image patches in
parallel. Therefore, the computation time will be independent from the number
of patches which is important for processing large images.

Fig. 1: Patch retrieval: User selects a query patch from an image and the goal is
to find similar patches in the same or other images.

This paper is organized as follows. Section 2 reviews previous works on image
retrieval, tree representation of the image and pattern spectra. We explain our
proposed method in Section 4 and present experimental results in Section 5.
Section 6 concludes the paper.

2 Related works

2.1 Image Retrieval

CBIR is a challenging task to find the images in a database that are similar to a
query image [10]. The general framework consists of two main steps as it is shown
in Figure 2. First, a discriminant feature vector is extracted from each image.
Second, these descriptors are used to compute the distance of each dataset image
to the query image. The dataset images are sorted according to their distances
to the query image and we expect to see the similar images at the beginning of
the ranked list.

Various types of feature vectors are proposed in literature based on color or
texture of the image such as Gabor Filter [9], LBP (Local Binary Pattern) [8],
SIFT (Scale-Invariant Feature Transform) [13], MSER (Maximally Stable Ex-
tremal Regions) [16] and recently deep CNN features [4]. An ideal feature vector
must be rotation/translation/scale-invariant and robust to changes in illumi-
nation. Descriptor computation is the bottleneck in image retrieval. Therefore,
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Fig. 2: General framework of content based image retrieval. The images in the
database are sorted based on their distances to a query image. (The images are
selected from Merced dataset [15] only for illustration. )

practical image retrieval systems pre-compute image descriptors and store them
along the original images.

Distance between two feature vectors can be simply computed using their
Euclidean distance. However, in many cases the feature vectors are high dimen-
sional and different dimensions have different importance. An efficient solution
is to learn a weighting matrix to emphasize the important dimensions [7]. On the
other hand, some distance metrics are specially designed to compare histograms.
Since pattern spectra is a histogram-like feature vector, we use the well-known
χ2 distance to compare them. The χ2 distance of two histograms x and y tries
to reduce the effect of large bins:

X 2px, yq “
ÿ

i

pxi ´ yiq
2

pxi ` yiq
(1)

Previous works on image retrieval mainly try to compare two whole images
[5]. To the best of our knowledge, it is the first time that the concept of CBIR
is extended to find similar patches in a large image as depicted in Figure 1.
We assume that the user selects a query patch with arbitrary size. Therefore,
the query patch size is not known and the descriptors cannot be computed in
advance. A closely related field of study exists in literature for patch matching
[1]. However, the solutions to this problem cannot meet our requirements since
patch matching is generally applied between two similar scenes such as stereo
images. Therefore, those methods exploit similarity between images to restrict
the possible locations of matching patches and expedite the search, while we do
not impose that the images have similar content and therefore we cannot use
such methods.

2.2 Evaluation metric

When we calculate and sort the distances between the image patches and the
query patch, ideally we expect to see all the relevant images (true positives or tp)



4 B. Mirmahboub et al.

at the beginning of the retrieved list. However, since the descriptors and distance
metric are not perfect, we also see irrelevant images (false positives or fp) in the
list and even some of the relevant images are not retrieved (false negatives or
fn). Mean Average Precision (mAP) is a measure to evaluate the performance
of a retrieval system [11]. It shows how well the relevant images are ranked in
the retrieved list and it is calculated based on precision and recall.

Precision is defined as the ratio of relevant retrieved images to all retrieved
images or tp{ptp` fpq and it is computed for each rank position in the retrieved
list. In the example of Figure 2 if baseball field is the relevant class, the precisions
for first seven ranks will be t 11 ,

1
2 ,

2
3 ,

2
4 ,

2
5 ,

3
6 ,

3
7u. Recall is defined as the ratio of

retrieved relevant images to all relevant images in the dataset or tp{ptp ` fnq.
Assume that there are four relevant baseball fields in Figure 2 and that three of
them are retrieved in the first seven ranks. Then, the recalls for these ranks will
be t 14 ,

1
4 ,

2
4 ,

2
4 ,

2
4 ,

3
4 ,

3
4u. Average Precision (AP) is the area under precision-recall

curve. Practically, it is the average of precisions at the positions of relevant
retrieved images (where the recall is changed). In the above example AP is
calculated as 1

3 p
1
1 `

2
3 `

3
6 q “

13
18 . Finally, mAP is simply the mean value of all

APs for different queries.

3 Theoretical background

3.1 Tree Representation

Usual image representation by a matrix of pixels gray levels does not include
spatial relations between image components. In contrast, hierarchical image rep-
resentation shows an image with a tree structure that considers spatial relations
[3]. Each node in this tree structure represents a connected component in the
original image. Each pair of components in the image are either disjoint or one of
them is a subset of the other one making a child-parent relationship. The leaves
of the tree consist of the smallest components while the tree root represents the
entire image. Such a hierarchical structure lets us quickly process the image in
different scales. Depending on how to define the image components, various tree
types can be built including max-tree, min-tree, Tree-of-Shapes, α-tree, ω-tree
and Binary Partition Tree [3].

Figure 3 shows a simple gray scale image on the left with its max-tree repre-
sentation in middle. Max-tree is built using the connected components of upper
level sets of the image [6] that is defined as:

Hmax “ tCpLkq|vmin ď k ď vmaxu (2)

where k is a threshold that is selected between minimum gray level vmin and
maximum gray level vmax. Level set Lk is an image that is obtained by threshold-
ing the original image with k. It only contains all the components with intensity
values equal or greater than k and CpLkq is the set of those components. There-
fore, Hmax is the set of all connected components in different levels.
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Each circle in Figure 3 represents a node in the tree structure and the cor-
responding connected component in the image is shown beside it. Also the gray
level k is written next to each tree node. The leaves of the max-tree consists of
the brightest image components or local maxima while the tree root represents
the whole image.

Fig. 3: Computation of pattern spectra using area attribute of a max-tree nodes.
Tree nodes are shown by circles in the tree structure. The number inside each
circle shows the node area and the number next to it represents the node altitude.
Each tree node contributes to a histogram bin by its area multiplied by the gray
level difference with its parent.

3.2 Pattern Spectra

Tree representation is an efficient structure to process the image at multliple
scales. Pattern Spectra is a morphological image descriptor that can be computed
using the tree representation [12]. It is a histogram-like feature vector that shows
the distribution of components in an image. After building the tree structure,
various geometrical or statistical attributes can be computed for each tree node
and PS shows the frequencies of those attributes in the image. In the example
of Figure 3, area attribute for each node is written in the relevant circle in the
tree structure and PS is shown on the right of the figure. In this example, PS
consists of five bins for the area attribute and each tree node contributes to one
relevant bin. Each node contributes by its volume which is defined as the node
area multiplied by the difference between node gray level and its parent gray
level. Contributions of all nodes to the relevant PS bin are summed and the
final descriptor will be r8, 14, 0, 0, 48s. Generally, bin j of pattern spectra PS is
computed based on tree representation of the image as:

PSj “
ÿ

@i,ApciqPrbj´1,bjr

apciq
ˇ

ˇkpciq ´ k
`

ppciq
˘
ˇ

ˇ (3)
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where apciq, kpciq and ppciq represent the area, the gray level and the parent of the
component ci respectively. Therefore, the area of each component is weighted
by the grey level difference with its parent. Apciq denotes an attribute of the
component ci. All the components that their Apciq attributes are located in an
interval between bj´1 and bj contribute to bin j of the PS. The histogram bin
edges tb0, ..., bmaxu of the desired attribute can be divided linearly or logarithmic.
In the above example, the attribute Apciq is defined as the area of the component
ci and it is distributed linearly between 0 and 50 producing a size pattern spectra.
However, it can be any other type of attribute such as compactness value that
produces shape pattern spectra.

Pattern spectra describes the probability of presence of a component with a
certain size or shape in the image. It gives an estimation for the amount of details
that is removed from the image after filtering its components. PS is a translation
and scale invariant image descriptor that can be used for image classification
and retrieval. PS is also rotation invariant if it is computed based on rotation
invariant attributes. Several node attributes may be used to compute a multi-
dimensional PS. The number of bins for each attribute is a parameter that should
be selected for each dimension. Two dimensional PS based on elongation and
entropy was used in [2] for satellite image retrieval. The authors also proposed
local pattern spectra that computes PS in overlapped patches in different scales
of the image. The final image descriptor is the aggregation of all computed PS.

4 Proposed Method

In conventional image retrieval, similar images to a query image are selected
according to the distances between their descriptors. In this paper, we aim to
extend that concept to patch retrieval where we look for some patches in the
dataset that are similar to a query patch. The similar patches can be found in
the same image of the query patch or in other images as shown in the example
of Figure 1.

The naive method is to divide each image to a regular grid of patches with the
same size of the query patch. Then, a sliding window is used and the similarity
of each window with the query patch is computed. The computation time of this
approach is proportional to the number of sliding windows that is too much for
a large image. Notice that the size (and so the number) of the sliding windows
depends on the user selected query patch. Therefore, it is not possible to compute
and store the descriptors of the sliding windows in advance. In this section, we
exploit the tree representation of the image and introduce the notion of fast
pattern spectra descriptor to reduce the searching time. Finally the computation
time is related to the number of tree nodes instead of number of the sliding
windows.

4.1 Sub-Pattern Spectra

As explained in Section 3.1, pattern spectra is a histogram-like image descriptor
that represents the distribution of connected components in the image. Each
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image component contributes to one of the histogram bins and all image com-
ponents build the whole histogram. Since a small patch in the image contains a
subset of image components, we expect that it contributes to only a few number
of histogram bins. This intuition is shown in Figure 4 where all the image com-
ponents make the full histogram and the components in the small patch make
a sparse histogram called here “sub-pattern spectra”. We also notice that each
image patch consists of a subset of nodes in the tree structure of the whole image
and this subset of nodes does not necessarily form a single integrated sub-tree
structure.

Fig. 4: (Left) Pattern spectra is a histogram-like distribution of image compo-
nents. (Right) The components of each image patch contribute to a few numbers
of histogram bins creating a sub-pattern spectra.

Having all related sub-pattern spectra computed, we can calculate the dis-
tance between the query patch and the sliding windows in the image to find
the similar windows as depicted in Figure 5. The straightforward approach to
compute sub-pattern spectra for each image patch is to directly compute pat-
tern spectra on each window that are called here “local pattern spectra”. Two
issues arise from this approach. First, the components in the patch are not the
same components in the whole image, because some of the image components
are partially located in the sliding window and create new local components
(Figure 6 Top). Second, there are many sliding windows in a large image and
directly computing a pattern spectra for each of them will be time consuming.
We address these problems by introducing “fast pattern spectra” in next section.

Fig. 5: Similarity of a query patch with a sliding window is computed based on
the distance between their sub-pattern spectra.

4.2 Fast Pattern Spectra

Our motivation in this paper is to avoid directly computing a descriptor for each
image patch. For this purpose we rely on the histogram nature of pattern spectra
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and propose an indirect approach to compute the histogram in each patch. In this
case, sub-pattern spectra consists of a subset of tree nodes in the whole image.
Each node in the tree structure comes with some information such as center and
bounding box of the corresponding component in the image. Therefore, when
we select a patch from the image, we know which tree nodes are located inside
it. We use these nodes to create our sub-pattern spectra and refer to it as fast
pattern spectra (Figure 6 Bottom).

Fig. 6: Sub-pattern spectra of a given patch can be computed in two different
ways. (Top) local pattern spectra: A small tree is built directly on the patch and
its pattern spectra is computed. The nodes of this small tree may be different
from the big tree of the whole image. (Bottom) fast pattern spectra: Tree repre-
sentation of the whole image is constructed and only the nodes that are located
inside the patch are selected to compute the histogram.

The proposed fast pattern spectra is an estimation of local pattern spectra.
Instead of computing PS on the patch separately, we use the tree representation
of the whole image to compute descriptors for all image patches. The compu-
tation time of the proposed descriptor is independent from the number of the
patches that is determined by user selection. Instead, the processing time de-
pends on the number of tree nodes that are fixed for each image.

Figure 7 shows the process of computing fast pattern spectra. We build a tree
representation of a given image and compute the desired attribute for its nodes.
According to Equation 3, pattern spectra is the sum of components volumes
which are computed by multiplying the nodes areas by their gray level differences
with their parents vpciq “ apciq

ˇ

ˇkpciq ´ k
`

ppciq
˘
ˇ

ˇ. We calculate the volumes of
all tree nodes and store them in a “tree table” along with nodes locations in the
original image. Then, we compute a full pattern spectra and use it to assign a
bin number to each tree node. The bin number is also stored in the tree table.
When a user selects a query patch, we divide the image into sliding windows
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based on that selection and create an empty histogram for each sliding window.
Therefore, we have a three dimensional matrix PSrx, y, bs spanned by image
locations and histogram bins. Each tree node ci contributes by its volume vpciq
to the histogram bin bpciq in a specific location pxpciq, ypciqq.

Fig. 7: Computation of fast pattern spectra consists of populating the local his-
tograms for sliding windows. The algorithm traverses the tree structure and adds
the contribution of each node to the corresponding histogram bin.

In order to compute fast pattern spectra, we traverse the tree table and
simply add the volume of each node to the corresponding histogram bin. It is
formulated in Equation 4 that is computed with complexity Opnq where n is
number of the tree nodes. In this way, we get the sub-pattern spectra for all
sliding windows of the image in one pass of the tree structure. We point out that
the tree table is pre-computed and fixed. Every time that the user selects a new
query patch, only Equation 4 needs to be evaluated again.

PSrpxpciq, ypciq, bpciqs += vpciq , i “ 1, ..., n (4)

5 Experimental Results

In this section, we experimented our proposed fast pattern spectra for the appli-
cation of patch retrieval on selected images and compare it with baseline local
pattern spectra. All the experiments were done using Python with Higra pack-
age [14] in Windows 7 64-bit Operating System running on a laptop with Intel®

Core™ i7 CPU @ 2 GHz and 8 GB RAM.

5.1 Dataset

The ideal dataset for patch retrieval, as we addressed in this paper, consists of
a large aerial image with annotations for various landmarks on it. The avail-
able datasets for content based image retrieval such as “UC Merced Land Use
Dataset” [15] are not suitable for this purpose since they consist of separate im-
age patches with different classes. As far as we know, there is no available dataset
with the desired annotations. Therefore, in order to conduct the reported exper-
iments, we selected two satellite RGB images and manually annotated them
with 6 classes including farm, forest, lake, airport, road and building as shown
in Figure 8. We used Figure 8(a) as query image where the user selects its query
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patches. Three user selected patches with different sizes and contents are marked
in this image. Figure 8(c) was used to search for the similar patches. Each image
patch may contain various pixel labels. We assigned the majority of pixel labels
inside each patch as its class.

(a) Query image (b) Query labels (c) Search image (d) Search labels

Fig. 8: Selected satellite images for experiments. (a) 617ˆ 647 RGB image that
user selects query patches from it. Three selected query patches are marked with
red rectangles. (b) Ground truth labels for query image pixels showing 6 different
classes. (c) 633ˆ 668 RGB image to search for similar patches (d) ground truth
labels for search image pixels.

5.2 Experiment Settings

We compare the proposed fast pattern (fast-PS) spectra with the baseline local
pattern spectra (local-PS). In both cases, the user selects an arbitrary patch
from the query image. Then, the search image is divided to regular overlapped
windows with the same size of the query patch and the stride of half size of
the query patch horizontally and vertically. In the case of baseline local-PS,
pattern spectra is computed independently on each search window. However, in
the proposed fast-PS approach, a big tree is built on the whole search image and
the pattern spectra is computed for all the search windows in parallel as detailed
in Section 4.2.

In these experiments, pattern spectra is computed based on the max-tree
structure that is built on the gray scale image. We use one dimensional pattern
spectra based on Apciq “ compactness attribute. The compactness of a tree
node is defined as its area divided by the square of its perimeter. We divided
nodes compactness linearly into 30 bins resulting to 30-dimensional descriptors
for image patches. The similarity between descriptors are computed using χ2

distance.

5.3 Results and Discussions

We selected three query patches with different sizes and contents as marked in
Figure 8(a) and retrieved similar patches from Figure 8(c). For each case, we
computed the average precision as explained in Section 2.2 using baseline and
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proposed methods. The average precision and computation time are reported in
Table 1. The second column of table shows the number of sliding windows in
the search image that depends on the size of the selected query patch. As we
expected, local-PS needs more computation time which depends on number of
sliding windows. However, the computation time of fast-PS is almost constant
since it depends only on the number of tree nodes. As we explained in Section
4.2, in proposed fast-PS we need to store a table of tree nodes attributes for
search image. Last column of Table 1 reports the required time to compute this
tree table. Notice that the tree table is independent from query patch. It is
computed only one time for each search image and is stored along the image.
The stored tree table can be used later for retrieval. Therefore, its computation
time does not affect the retrieval time. However, it adds an extra cost for the
storage. In our experiment the search image is 1.09 MB and the stored tree table
is 4.42 MB.

Table 1: Average precision and computation time for retrieval of three selected
query patches using local pattern spectra and fast pattern spectra.

Average Precision (%) Computation Time (seconds)

query size (pixels) total patches local-PS fast-PS local-PS fast-PS tree table

(a) 80 ˆ 80 210 30.83 38.89 3.91 1.97
2.86(b) 70 ˆ 90 221 41.03 46.92 4.12 1.98

(c) 90 ˆ 70 234 30.54 41.39 4.38 2.01

We basically proposed fast-PS (as its name suggests) as an approximation of
local pattern spectra that is computed quickly over sliding windows in a large
image. Table 1 shows that this novel descriptor actually works better than the
original local-PS for the application of patch retrieval. A possible reason can
be explained referring to Figure 6. When we crop a patch from a large image,
it contains additional components that do not exist in the original image and
may be irrelevant to its contents. In this case, fast-PS helps to rely on relevant
components from original image and achieves better results. Figure 9 shows the
precision-recall curves for three selected query patches. We observe that fast-PS
performs better than local-PS especially at first ranks.

6 Conclusion and Future Lines

We extended the problem of content-based image retrieval and introduced a new
application that we call patch retrieval where a user selects a query patch with
arbitrary size from a large image and we look for similar patches in the same
or other image. Available solutions from conventional image retrieval need to
divide the image into many sliding windows and compute an image descriptor
on each window separately. This approach takes a lot of time especially for
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(a) 80 ˆ 80 pixels (b) 70 ˆ 90 pixels (c) 90 ˆ 70 pixels

Fig. 9: Precision-recall curve and average precision (AP) for three selected query
patches with different sizes using baseline local-PS and proposed fast-PS.

large images. We relied on pattern spectra that is an image descriptor based on
tree representation of the image. We exploited the histogram nature of pattern
spectra and proposed fast pattern spectra. It is computed for all sliding windows
of the image in parallel and its processing time is independent from the number
of the sliding windows. Interestingly, it is not only faster than local pattern
spectra, but also achieves a higher average precision. However, the proposed
method comes with a cost that needs to store an extra structure along with the
original image. We showed that the fast pattern spectra is very promising on a
simple dataset. More experiments on larger datasets are necessary to explore its
full potential.

Our main goal in this work was to show the capability of fast-PS to offer
interactive search in a large image when the size of the query patch is not known
in advance. Although we found out that the average precision of fast-PS is higher
than local-PS, we recall that our objective is not to surpass previous descriptors
in term of accuracy. Rather, we relied on the histogram nature of pattern spectra
to propose a novel descriptor that is computed quickly on a large image while
achieving acceptable accuracy. We did not compare our proposed descriptor with
state-of-the-art descriptors such as deep features and left it for future work.
While other descriptors possibly lead to a higher accuracy, they cannot adapt to
our framework for parallel computation since they have to be computed locally in
each patch. We assume that the retrieval time is more important in a large-scale
dataset where our proposed method is more efficient.

There is a lot of rooms for improvement of the proposed method. We used a
max-tree structure and computed one dimensional pattern spectra based on the
compactness attribute. However, our method is not restricted to the tree types
and their attributes. We designed an efficient framework that can be realised with
various types of pattern spectra to find the best combination of tree structures
and attributes. Also, we simply calculated the distance between descriptors using
χ2. So, we did not rely on a learnt distance metric. We expect that learning a
weighting matrix to compute the distances will lead to a higher accuracy.
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