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Abstract. We consider a matching system where items arrive one by one at each node of a
compatibility network according to Poisson processes and depart from it as soon as they
are matched to a compatible item. The matching policy considered is a generalized max-
weight policy where decisions can be noisy. Additionally, some of the nodes may have
impatience, that is, leave the system before being matched. Using specific properties of
the max-weight policy, we construct a simple quadratic Lyapunov function. This
allows us to establish stability results, to prove exponential convergence speed toward
the stationary measure, and to give explicit bounds for the stationary mean of the larg-
est queue size in the system. We finally illustrate some of these results using simula-
tions on toy examples.
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1. Introduction
The so-called bipartite stochastic matching model was introduced in Caldentey et al. (2009) (see also Adan and
Weiss (2012) and Adan et al. (2017)) as a variant of skill-based service systems. In this model, two infinite ordered
sequences (a sequence of servers and a sequence of customers) are considered, and customer/server are matched
in first come, first served order, that is, from left to right, according to compatibilities that are prescribed by a
given bipartite graph. In the so-called extended bipartite matching model (Bušić et al. 2013), customer/server cou-
ples enter the system at each time point. A matching occurs when an arriving customer (respectively, server)
finds a compatible server (respectively, customer) present in the system, in which case both leave the system
instantaneously. Otherwise, items remain in the system waiting for compatible arrivals (in particular, there are
no service times). The field of applications of such models is very wide, from housing to job applications, from
transplant protocols to blood banks, peer-to-peer systems to dating websites, ride sharing, and so on. The mathe-
matical settings of such models are the following: there is a set C of customer classes and a set S of server classes,
and a bipartite graph on the bipartition C

⋃
S indicates the compatibilities: a customer class c ∈ C and a server

class s ∈ S are compatible if and only if there is an edge between nodes c and s in the compatibility graph. Cus-
tomer/server couples enter the system in discrete time (or are read one by one from left to right, in the prior
models), and the classes of the couples in the order of arrivals (respectively, read from left to right) are independ-
ent and identically distributed (i.i.d.) from a measure µ on C × S. In Caldentey et al. (2009), Adan and Weiss
(2012), and Adan et al. (2017), it is assumed that µ :� µC ⊗µS on C × S; that is, the class of the incoming customer
and server are independent of one another, whereas this assumption is relaxed in Bušić et al. (2013). In case of
multiple compatibilities, it is the role of the matching policy to determine what match is performed. In Adan et al.
(2017), it is shown that, under a natural stability condition, the stationary probability of the system under first
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come, first served has a remarkable product form. Interestingly, this result can then be adapted to various skill-
based queueing models as well and in particular those applying (various declinations of) the so-called first come
first matched (FCFM)-assign the longest idling server (ALIS) service discipline (Adan and Weiss 2014). For vari-
ous extensions of bipartite matching models, see also Adan et al. (2018). In Bušić et al. (2013), the stability condi-
tion in Adan et al. (2017) is shown to be also sufficient for the stability of extended bipartite models ruled by the
“match the longest” policy, consisting of always matching incoming items to the compatible class having the lon-
gest queue. In Moyal et al. (2018), a coupling from the past result is obtained, showing the existence of a unique
bi-infinite matching in various cases of extended bipartite matching models and for a broader class of matching
policies than FCFM, thereby generalizing various results of Adan et al. (2017).

In many practical systems, it is often more realistic to assume that arrivals are simple instead of pairwise.
Moreover, the bipartition of the compatibility graph into classes of servers and customers only suits applications
in which this bipartition is natural (donor/receiver, house/applicant, job/applicant, etc.). However, in many
cases, the context requires that the compatibility graph take a general (i.e., not necessarily bipartite) form. For
instance, in dating websites, it is a priori not possible to split items into two sets of classes with no possible
matches within those sets. Similarly, in kidney exchange programs, intraincompatible donor/receiver couples
enter the system looking for a compatible couple to perform a crossed transplant. Then, it is convenient to repre-
sent donor/receiver couples as single items, and compatibility between couples means that a kidney exchange
can be performed between the two couples (the donor of the first couple can give to the receiver of the second,
and the donor of the second can give to the receiver of the first). In particular, if one considers blood types as a
primary compatibility criterion, the compatibility graph between couples is naturally nonbipartite. Motivated by
such applications, among others, Mairesse and Moyal (2016) proposed a generalization of the previous matching
models, termed general stochastic matching model, in which items enter one by one, and the compatibility graph G
is general. For a given compatibility graph G and a given matching policy Φ, the stability region STAB(G,Φ) of this
system is defined as the set of those measures µ deciding the class of the incoming items, such that the Markov
chain describing the evolution of the system is positive recurrent. Mairesse and Moyal (2016) identified a univer-
sal necessary condition for stability, that is, a set NCOND(G) that includes STAB(G,Φ) for any matching policy Φ
and any graph G. Following Bušić et al. (2013), Mairesse and Moyal (2016) also showed that match the longest is
maximal stable; that is, it has a maximal stability region, as the two sets NCOND(G) and STAB(G,Φ) coincide. Moyal
and Perry (2017) then showed that, aside for a particular class of graphs, the random class-uniform policy (choos-
ing the match in a compatible class of the incoming item, uniformly at random among those having a nonempty
queue) is never maximal stable and that priority policies are in general not maximal stable. Then, Moyal et al.
(2020) showed that the policy first come, first matched is maximal stable and that, similarly to Adan et al. (2017),
the stationary probability of the system can be written in a product form. Various extensions of the general sto-
chastic matching model can also be found in Büke and Chen (2015, 2017) regarding systems with bipartite com-
plete compatibility graphs but in which each match can be enacted with a nominal probability, and in Rahmé
and Moyal (2019) to stochastic matching systems on hypergraphs, thereby matching items by groups of two or
more. In a recent line of study, stochastic matching models have also been studied from the point of view of sto-
chastic optimization (Gurvich and Ward 2014, Bušić and Meyn 2016, Nazari and Stolyar 2019). In particular, the
max-weight policy introduced in Tassiulas and Ephremides (1992) is a natural policy allowing a natural tradeoff
between efficiency and stability.

Here we consider a matching system where items arrive one by one at each node of a compatibility network
according to Poisson processes and depart from it as soon as they are matched to a compatible item. The match-
ing policy considered is a generalized max-weight policy where decisions can be subject to noise. Additionally,
some of the nodes may have impatience, that is, leave the system before being matched.

1.1. Motivation
In many applications, reneging of items needs to be taken into account: for instance, applicants may renege from
the systems, whereas jobs/houses/university spots may no longer be available. Similarly, in organ transplants,
patients may renege from the system because of death or change in their diagnosis, whereas organs have a short
life duration outside a body and need to be transplanted within a very short period of time—see a first approach
of such systems in Boxma et al. (2011).

The present work is dedicated to an extension of general stochastic matching models to the case where (i)
classes of items can be impatient, in that they renege from the system if they do not find a match within a given
(random) period of time, and (ii) the matching policy is of the max-weight class, with possible errors in the
assessment of the system state.

Jonckheere et al.: Stochastic Matching
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Specifically, we consider that the policy decisions may be subject to noise that can lead to errors in the estimate
of the queue lengths, which is necessary to implement matching policies of the max-weight type.

Indeed, as is well known from the vast literature on the load balancing of parallel service systems, implement-
ing policies that are sensitive to the queue sizes, such as the max-weight type policies considered in the present
paper, becomes algorithmically prohibitive as the number of queues grows large. Efficiently sorting the queue
sizes may easily lead to inaccuracies, entailing routing errors.

Specifically, in many practical cases the queue sizes of the various servers are not always known: they are either
estimated by the incoming customers (as in physical queues in supermarkets, for instance), or by a central dis-
patcher (e.g., in passport-checking stations). Likewise, information regarding the queues to each of the servers in
large web-server farms or call centers require constant communication between the job dispatchers and the serv-
ers, slowing down the response time. This information is thus not always available in real time (Lu et al. 2011),
and in such cases, it can then be preferable to estimate the queue sizes, based on past or partial information, for
instance. Observe that this source of inaccuracies is the main motivation for introducing “Power of d”–type poli-
cies to reduce the complexity of routing and the probability of errors by routing the requests only to a subset of
the available servers having a more tractable size (see Mitzenmacher (1996) and related references on this matter).

In the context of matching systems, in most of the aforementioned applications, the requests of the various
classes are physically gathered in different queues; that is, each node of the graph has its own buffer for storing
the corresponding items. In many cases, the size of the graph, that is, the number of classes, is large, leading to
routing problems that are similar to the context of parallel service systems. For instance, liver transplants are sub-
ject to compatibility constraints that lie far beyond the blood types of givers and receivers, namely, age, the
nature of the pathology of the patient (cancer or cirrhosis), and immunological criteria. This leads to an increase
of the number of classes of givers and receivers, and in turn, to an increase of the complexity of implementing
max-weight type policies and to the potentiality of allocation errors or inaccuracies.

To account for this difficulty, in the spirit of Moyal and Perry (2021) for parallel service systems, we introduce an
error parameter in the estimate of the queue sizes in the context of matching systems. In this context, it is then reason-
able to consider that these errors are independent of one another but follow distributions that may depend on the spe-
cificity of the considered nodes. For instance, an arriving item to node j chooses a match from the neighboring node i,
making an error of estimate of the queue length of node i, that may depend on i and j; see our later assumptions.

All in all, by “generalized max-weight policies,” we mean policies that are sensitive to the queue sizes, that
incorporate rewards to give specific weights to the various matchings, and that take into account the possibility
of errors in assessing the queue sizes of the various nodes of the graph.

1.2. Main Contributions
As we developed previously, the extension of the general stochastic matching model introduced in Mairesse and
Moyal (2016), to the paradigm of reneging systems, is prevalent in practice. As will be specified later, adding an
impatience parameter (possibly to some, but not all of the item classes) makes the analysis more intricate than in
the original model. This constitutes the first main contribution of this work.

Using the specific structure of the max-weight policy, our second main contribution, Theorem 1, is to show
that a simple quadratic function is a Lyapunov function whenever the traffic condition “λ ∈ NCOND(G,γ)” (see
(4)) that can be understood as a generalization of the classical condition “λ ∈NCOND(G)” to the case of reneging,
is satisfied. This result is interesting and original for its own sake, even in the no-reneging case. This allows us
directly to characterize the stability region and, as a corollary, to conclude that the max-weight policy is maxi-
mum stable. By doing so, we widely generalize results in Mairesse and Moyal (2016) to the case of generalized
max-weight policies (of which the match the longest (ML) policy introduced in Bušić et al. (2013) and then Mair-
esse and Moyal (2016) is a particular case, see the later discussion) and to matching models with reneging. This
quadratic function was already identified in Mairesse and Moyal (2016) and Bušić et al. (2013) as a Lyapunov
function by an indirect proof: First, by stating that if the Foster-Lyapunov criterion applies to a quadratic Lyapu-
nov function for some matching policy, then it must be also the case for the policy ML, and second, by showing
that the criterion does apply to an ad hoc randomized policy. However, this argument cannot be generalized to
the much wider case of max-weight policies, whence the main interest of the direct proof that is presented here.

We say that a couple graph/reneging vector (G,γ) is stabilizable whenever there exists a matching policy and
an arrival vector λ making the corresponding matching model stable. As a consequence of Theorem 1, (G,γ) is
stabilizable if and only if the set NCOND(G,γ) is nonempty. It is well known (theorem 1 in Mairesse and Moyal
2016) that for a general stochastic matching model without reneging, the graph G is stabilizable if and only if it is
not bipartite, because this condition is equivalent to NCOND(G,γ) being nonempty. Our third main contribution
is a quite remarkable result: In Proposition 2, we show a very simple sufficient condition for the stabilizabiliy of
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the system: it is sufficient that G be nonbipartite, or that only one class of elements renege. In particular, for a
bipartite G (as is the case for organ transplants model, for instance), the system is stabilizable if, and only if at
least one class of elements renege. Said differently, whenever G is bipartite and arrivals are made by single items,
it is enough that one node receives impatient elements to make the system stabilizable, rather than artificially
assuming that arrivals are made by pairs (as is the case in the (extended) bipartite matching models studied in
the literature).

Showing that a given (even simple) function is a Lyapunov function is in general a challenging issue, and our case
is not an exception, especially in such general a context. Our proof is quite intricate and relies on carefully exploiting
this generalized NCOND condition. Combining these ideas, as our fourth main contribution, we are also able to prove
exponential convergence speed toward the stationary measure, and additionally, by combining with stochastic com-
parisons, to construct bounds for the stationary mean of the largest queue size of customers in the system.

We finally illustrate some of those results using simulations on toy examples.

1.3. Outline of the Paper
In Section 2, we give the formal definition of the model we study. Section 3 is dedicated to the theoretical results.
Section 3.1 focuses on stability: we characterize the stability region of the models in Theorem 1; this theorem is
based on Proposition 1, a key result in which we control the drift of a quadratic function. Last, Proposition 2
describes precisely whether a given model is stabilizable. In Section 3.2, we then investigate the speed of conver-
gence to equilibrium: a geometric Lyapunov bound is given in Proposition 3, and the exponential convergence to
equilibrium follows as a consequence in Theorem 2. In Section 3.3, some bounds are given for moments of the
size of the largest queue of the system in equilibrium in Theorem 3. Section 4 is dedicated to simulations: we
compare the max-weight policy with a priority policy in Section 4.1, and an analysis of the theoretical bounds
obtained in the previous section is given in Section 4.2. All proofs are provided in Section 5.

2. Model
2.1. Notation
The graph G � (V,E) is assumed in all the article to be finite, simple, undirected, and connected. Because the set of
nodes V represents customers classes, we use the words node and class in an indistinguishable way during all the
article. The nonconnected case can be addressed by decomposing into connected components. Furthermore, to avoid
trivialities, we assume |V| > 1. We write {i, j} ∈ E to denote that there is an edge connecting the nodes i, j ∈ V in the
graph G. We say that a subset I ⊂ V is an independent set if i, j ∈ I implies {i, j} ∉ E. For any subsetW ⊂ V, we let

I(W) � {I ⊂W : I is an independent set}\{∅}
be the family of nonempty independent subsets ofW, in a way that I :� I(V) gathers all nonempty independent sets
of the graph G. Let also E(W) � {i ∈ V : {i, j} ∈ E for some j ∈W}. For singletons, we write E(i) for E({i}). Observe
thatW ∩ E(W) is the union of the connected components ofW that are not singletons; in particular,W ∩ E(W) � ∅ if
and only if W is an independent set. Let R,R+,R∗

+,Z,N0 and N, respectively, denote the sets of real numbers, non-
negative real numbers, positive real numbers, integers, nonnegative integers, and positive integers. For p,q ∈ Z, we
let [[p,q]] :� [p,q] ∩ Z be the set of all integers in the closed interval [p,q]. Let also, for z ∈ R

V and W ⊂ V,
||z||W �maxi∈W |z(i)|, writing simply ||z|| in the caseW � V (this is the supremum norm), and letting ||z||∅ � 0.

2.2. Stochastic Matching Model with Reneging
The (continuous-time) stochastic matching model with reneging (G,MW,λ,γ) is formally defined as follows: we
give ourselves a set of |V| independent Poisson processes N(i), i ∈ V, of respective intensities λ(i) > 0 , i ∈ V, and
denote by λ :� (λ(i) , i ∈ V) the arrival intensity vector of the model. For any i ∈ V, we denote by {Ti

n : n ∈ N} the
sequence of successive arrival times in the process N(i). For any subset W ⊂ V, denote by λ(W) � ∑

i∈Wλ(i) the
intensity of the superposed Poisson processes having indexes in W. The overall superposition of the Poisson
process of the N(i)s, i ∈ V, is denoted by N. It is thus a Poisson process of intensity λ(V), and its points are denoted
by {Tn : n ∈ N} :� ⋃

i∈V{Ti
n : n ∈ N}. For all i, on each point Ti

n, n ∈ N, an item of class i (or i-item for short) enters
the system. Thus, the points of N are the overall arrival times in the system. We say that two items of respective
classes i and j in V are compatible if and only if {i, j} ∈ E. To each class i ∈ V is also associated a parameter γ(i) ≥ 0.
Denote γ :� (γ(i), i ∈ V), the reneging rate vector of the model. Unlike the vector λ, we allow γ to have null entries.
We then associate to each i-item an exponential random variable (r.v.) of distribution E(γ(i)), interpreted as its
patience time. An r.v. of distribution E(0) is interpreted as almost surely (a.s.) infinite, and we denote by

R :� {i ∈ V : γ(i) > 0} and Rc :� {i ∈ V : γ(i) � 0}

Jonckheere et al.: Stochastic Matching
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the subsets of nodes whose items do (respectively, do not) renege from the system. The corresponding item then
reneges from the system at the end of this time period provided that it has not left before because of the matching
mechanism we describe later. We assume that the patience times of all items are independent of one another and
of the other involved r.v.s.

The dynamics of the model (G,MW,λ,γ) is then defined recursively at the successive points of N, as follows:
•We start at time 0 with a state in which all present items are incompatible. In other words, in the system at time

0, for any {i, j} ∈ E, there are either no i items, or no j items, or neither. Such a buffer content is called admissible. We
associate a patience to each of these initial items that is drawn, independently of everything else, from the distribu-
tion corresponding to its class, for example, from E(γ( j)) for a j-item. As previously mentioned, if j ∈ Rc, that is,
γ( j) � 0, the patience time of the corresponding item is set as infinite.

• Let n ∈ N, and suppose that the buffer content of the system was admissible at time Tn−1. We first update the
buffer content at each reneging time in [Tn−1,Tn), by discarding all items present in the system at time Tn−1 and
whose patience time has expired during that time interval. Observe that the buffer content remains admissible after
this procedure. Then, suppose that Tn is a point of the jth arrival process, that is, Tn � Tj

k for some k ∈ [[1,n]], or in
other words, a j-item enters the system at Tn. This happens with probability

µλ( j) :�
λ( j)
λ(V) · (1)

We then face the following alternatives:
(a) Either the buffer contains no items compatible with the incoming j-item, that is, there are no stored items

of classes in E(j), in which case the latter item is stored in the buffer. We then draw the (possibly infinite)
patience time of this item from the distribution E(γ( j)), independently of everything else.

(b) Or there is at least one remaining item having class in E(j) in the buffer. Then the incoming j-item must be
matched with one of these compatible items, and it is the role of the matching policy to determine its match. We
assume that the matching policy is of the generalized max-weight policy type with parameters w and F (MWw,F, or
simply MW, for short). To define this, let w :� {w( j,i) : ( j, i) ∈ V2 s:t: {i, j} ∈ E} be a family of nonnegative numbers
and {F( j,i) : ( j, i) ∈ V2 s:t: {i, j} ∈ E} be a family of cumulative distribution functions (c.d.f.s). We index with
ordered pairs ( j, i) instead of the unordered ones because the involved parameters are not assumed to be sym-
metric. The first entry of the pair j will typically represent the class of the incoming item, and the second one i,
the class of the item j performs a match with. Denote, for all i ∈ V, by x(i) the number of stored i-items at this
time. Then the match of the incoming j-item is chosen uniformly at random from the set

arg max
i∈E( j) :x(i)>0

[x(i) +U( j,i),n]+ +w( j,i)
( )

, (2)

where U( j,i),n is an r.v. drawn at time n independently of everything else from the c.d.f. F( j,i), interpreted as the
measurement error of the queue length of node i, made on an arrival of a j element at time Tn, and w( j,i) is inter-
preted as the specific reward of matching an incoming j-item with an i-item. Observe that in (2), we make the
simplifying assumption that measurement errors are made only regarding the length of nonempty queues; that is,
empty queues are identified correctly. This makes sense in practice, first, because the overestimation of the size
of an empty queue might lead to a matching involving an item that is not actually present in the system. Second,
it is usually simpler to determine whether a given buffer is empty or not (by sending a ping to the corresponding
server) than to precisely measure the size of a (potentially much longer) nonempty queue.

Then, once the matching is done, the incoming j-item leaves the system right away, together with its match.
We emphasize that, unlike the notion of compatibility given by the undirected set of edges E, symmetry between
i and j is a priori not assumed in the definitions of the measurement errors and the matching rewards.

It is then easily seen that, in any case, the buffer content at time Tn is also admissible.
•We continue the construction inductively.

Remark 1. Particular cases of generalized max-weight policies are as follows:
1. The classical max-weight policies, as defined in Tassiulas and Ephremides (1992), recovered by taking constant weights

and, for every ( j, i) ∈ V2 such that {i, j} ∈ E, the c.d.f. F( j,i) :� 1R+ as the one corresponding to the Dirac δ0 distribution, that is,
no error.

2. The match the longest policy introduced in Mairesse and Moyal (2016), recovered by taking F( j,i) :� 1R+ and w( j,i) � 0
for all ( j, i) ∈ V2 such that {i, j} ∈ E, that is, no measurement errors and no rewards.
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Remark 2. The error measurement model we consider is additive, namely, a scale-free error is made on all queue lengths,
and we prevent absurd measurement of negative queue lengths by taking the positive part of the latter (see (2)). Another
interesting model would be to assume mutliplicative error measurements; namely, (2) would read

arg max
i∈E( j) : x(i)>0

(x(i)U( j,i),n + w( j,i)):

We strongly believe that all results to come also hold in that case but leave the proof of this conjecture to the
reader.

2.3. Markov Representation
Let, for all t ≥ 0, Xt :� Xt(i), i ∈ V( ) be the queue length vector at time t, namely, for any i ∈ V, Xt(i) is the number
of i-items in the buffer at time t. It is easily seen that the process X � {Xt : t ≥ 0} is a regular continuous time Mar-
kov chain (CTMC) on the (countable) commutative state-space

X � {x ∈ N
V
0 : x(i)x( j) � 0 for any {i, j} ∈ E}:

For any x ∈ X , let Sx � {i ∈ V : x(i) > 0} be its support. Observe that Sx is an independent set for every x ∈ X . For
all i ∈ V, denote by δi the ith canonical vector: δi( j) � 1{i � j}. The infinitesimal generator L of X is then simply
given by

Lf (x) � ∑
i∉E(Sx)

f (x+ δi) − f (x)[ ]
λ(i) +∑

i∈Sx
f (x− δi) − f (x)[ ]

γ(i)x(i) + ∑
j∈E(i)

λ( j)νx,j(i)
[ ]

(3)

for any x ∈ X and any function f : X → R, where, for all i ∈ V and j ∈ E(i), νx,j(i) is the probability of performing
the match {i, j}, given that a j-item enters the system in state x. From the very definition of MW, the latter is fully
determined by the c.d.f.s F( j,i), i ∈ Sx ∩ E( j).
3. Results
3.1. Stability
The state x ∈ X is said to be positive recurrent if the expected amount of time until the CTMC revisits x given that
X0 � x, is finite. The CTMC is said to be positive recurrent if every state x ∈ X is. Because the CTMC is irreducible,
this occurs if and only if some state is positive recurrent. Positive recurrence is equivalent to the existence and
uniqueness of an invariant distribution. We say that the matching model (G,MW,λ,γ) is stable if the CTMC
(Xt)t≥0 is positive recurrent. The next result provides a necessary and sufficient condition for stability.

Theorem 1. For any connected graph G and any γ ∈ R
V
+ , the model (G,MWw,F,λ,γ) is stable if and only if its intensity vec-

tor λ belongs to the set

NCOND(G,γ) � λ ∈ (R∗
+)V : λ(I) < λ E(I)( ) for any I ∈ I(Rc)

{ }
: (4)

Observe that if we define

η � η(λ) :� min{λ E(I)( ) − λ(I) : I ∈ I(Rc)} if Rc ≠ ∅
∞ else,

{
then λ ∈NCOND(G,γ) if and only if η(λ) > 0.

For ( j, i) ∈ V2 such that {i, j} ∈ E, let U( j,i) be an r.v. with c.d.f. given by F( j,i); that is, U( j,i) has the same distribu-
tion than U( j,i),n for every n. For κ ∈ (0,λ(V)), define

uκ,( j,i) �min u ∈ R+ : P |U( j,i)| ≤ u
( )

≥ 1− κ

λ(V)
( ) 1

2|E|
{ }

,

and let
uκ �max{uκ,( j,i) : ( j, i) ∈ V2 s:t: {i, j} ∈ E}:

The quantity uκ is tailor-made for the event

Bκ,n :� ∩
( j, i)∈V2:{i, j}∈E

{|U( j,i),n| ≤ uκ}
to satisfy

P Bκ,n
( ) ≥ 1− κ

λ(V) for every n ∈ N: (5)

Theorem 1 is a corollary of the following key generator bound for a quadratic function.
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Proposition 1. Assume λ ∈NCOND(G,γ) and let κ ∈ (0,λ(V)). Let f2 : X → R be the quadratic function defined by
f2(x) � ∑

i∈Vx(i)2, and let w̌ �max( j,i)∈V2:{i,j}∈Ew( j,i).
1. If R � ∅, then

Lf2(x) ≤ λ(V) + 2λ(V)(2uκ + w̌)|V| + 2(κ− η)||x|| (6)

for every x ∈ X .
2.Otherwise, if R≠ ∅,we have

Lf2(x) ≤λ(V) +∑
i∈R

−2γ(i)x(i)2 + γ(i) + 2λ(i)( )
x(i)

[ ]
+ 2[||x||R + (2uκ + w̌)|Rc|]λ(Rc)
+ 2[λ(V)(2uκ + w̌)|Rc| + (κ− η)||x||Rc]1{||x||Rc > ||x||R + (2uκ + w̌)|Rc|} (7)

for every x ∈ X .

As can be easily seen in the proof of the necessity statement in Theorem 1, for a connected graph G and a
reneging rate vector γ, λ being an element of NCOND(G,γ) is necessary for the existence of a matching policy that
makes the system stable, whatever the matching policy is. The sufficiency statement means that such models
always exist whenever λ do belong to NCOND(G,γ)—It suffices to implement a matching policy in the max-
weight class. Therefore, it is natural to say that the couple (G,γ) is stabilizable if there exists an intensity vector λ
such that the model with reneging (G,MW,λ,γ) is stable, that is, if NCOND(G,γ) is nonempty. The following prop-
osition makes precise the class of stabilizable graphs.

Proposition 2. Let G � (V,E) be a connected graph and γ ∈ R
V
+ be a reneging rate vector. ThenNCOND(G,γ) is nonempty

if and only if G is nonbipartite or R≠ ∅.
In other words, if G is bipartite, it is enough that one class of elements renege to make the system stabilizable.

As will be made clearer in the proof of Proposition 2, the reason behind this (apparently surprising) result is as
follows: if G � (V,E) is bipartite, say of bipartition V � V1

⋃
V2, and no elements renege, then the only independ-

ent set I that cannot satisfy λ(I) < λ(E(I)) for some intensity vector λ is either I � V1 or I � V2 because, as G is
bipartite and connected, {V1,V2} is the only pair of sets such that V2 � E(V1) and V1 � E(V2), and we cannot have
λ(V1) < λ(V2) together with λ(V2) < λ(V1). Then, adding reneging to a single node of V1 (if I � V1), or to V2 (if I �
V1) allows to simply break this paradoxal symmetrical condition. See the details in Section 5.3.

To summarize, gathering Theorem 1 and Proposition 2, we obtain the following panorama regarding the
stability of the model:

1. Any couple (G,γ) is stabilizable provided that G is nonbipartite or that some classes of elements renege, that is,
R≠ ∅.

2. Under these conditions, any model (G,MW,λ,γ)with λ ∈ NCOND(G,γ), is stable.
Remark 3 (Full Reneging Case). In the case where Rc � ∅, that is, all items may renege, Condition (4) is empty, and we
retrieve the good-sense result that any such matching model is stable, whatever the intensity vector λ.

Remark 4 (No-Reneging Case). In the case where R � ∅ (no reneging), the model amounts to a continuous-time version of
that introduced in Mairesse and Moyal (2016). From Theorem 1, any model (G,MW,λ,γ) is stable whenever λ belongs to
the set

NCOND(G) � λ ∈ (R∗
+)V : λ(I) < λ E(I)( ), for all I ∈ I

{ }
: (8)

In other words, any policy of the MW type is then maximal stable, in the sense that it has the largest stability region. This
result generalizes those of Mairesse and Moyal (2016). Indeed, setting F( j,i) :� 1R+ for all (j, i) (no errors) and w( j,i) :� wj
for all j ∈ V and all i ∈ E( j) (equal rewards for all matches involving an incoming j-item, j ∈ V), the matching policy
amounts to match the longest (priority is given to the node having the largest queue), and we retrieve assertion (15) in theo-
rem 2 of Mairesse and Moyal (2016). Theorem 1 is thus a wide generalization of the latter result, to the case of weighted MW

policies with measurement errors.

3.2. Speed of Convergence to Equilibrium
In this and the following section, we assume R � ∅ for simplicity. The involved techniques can be used to obtain
analogous results in the general case (see Remark 5).
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Building on the previous results and following classical approaches for Markov processes with bounded
jumps, we now show how to define a geometric Lyapunov function that is very useful to quantify the speed of
convergence to the steady state. We first have the following result.

Proposition 3. Let (G,MWw,F,λ,γ) be a max-weight stochastic matching model with γ ≡ 0 and λ belonging to the set
NCOND(G,γ) defined by (4). Then, if α > 0 is small enough, there exist c,k > 0 such that

Leα||x||2 ≤ −ceα||x||2
for any x ∈ X such that ||x||2 ≥ k, being ||x||2 � ∑

i∈Vx(i)2
( )1=2

and L is the generator of the process X defined by (3).

The previous proposition implies that the distribution of the Markov process X converges to its stationary dis-
tribution exponentially fast. More precisely, the following result follows immediately from Proposition 3, using,
for example, the results in Hairer (2014).

Theorem 2. As in Proposition 3, let (G,MWw,F,λ,γ) be a max-weight stochastic matching model with γ ≡ 0 and λ belong-
ing to NCOND(G,γ), and let π be the unique invariant distribution of the process X (granted by Theorem 1). For any α > 0
there exist constants c > 0 and 0 < ρ < 1 such that

||Px(Xt � ·) −π(·)||TV ≤ cρteα||x||

for all x ∈ X . Here Px is the law of the process conditioned to [X0 � x], and ||:||TV denotes the total variation distance.

3.3. Moments Bounds at Equilibrium
We control below the first moment of the maximum queue size under the steady state of the system.

Theorem 3. Assume that we are under hypotheses of Proposition 3, namely R � ∅ and λ ∈NCOND(G,γ), and let π be the
unique invariant distribution. Let U( j,i) have distribution F( j,i) (this r.v. has been defined in Section 3.1), and assume that
there exists B ≥ 0 such that P[−B ≤U( j,i) ≤ B] � 1 for every ( j, i) ∈ V2 such that {i, j} ∈ E. Then we have that

max
i∈V

ρi

1− ρi
≤

∫
||x||∞π(dx) ≤ λ(V)

η

1
2
+ (w̌ + 2B)|V|

( )
, (9)

where ρi � λ(i)=λ(E(i)) for all i ∈ V.

Remark 5. With exactly the same procedures, the content of Sections 3.2 and 3.3 can be extended in the following two direc-
tions: on the one hand, one may weaken hypothesis R � ∅; on the other, bounds for higher order moments under π may be
obtained. We prefer to avoid developing this direction since the computations become rapidly cumbersome.

4. Simulations
In this section, we present a few simulation results. In the first set of simulations, we illustrate the gain of per-
formance of max-weight policies with respect to other, more static, policies, for systems with reneging. To do so,
as an illustrative example, in Section 4.1, a max-weight policy is compared with policies of the priority type,
namely, policies that only take into consideration the rewards of the various matches but not the queue sizes.
Then, in Section 4.2, we compare the theoretical bounds obtained by Lyapunov techniques in Section 3.3 with
simulated values. These bounds are not meant to be very tight, and we leave their optimization for future
research.

4.1. Comparison with Priority Policies
In this section, we assume F( j,i) � 1R+ for every i, j ∈ V such that {i, j} ∈ E, namely no measurement errors are con-
sidered. A policy is said to be of the priority type if, whenever the system is in state x ∈ X and a j-item enters the
system, the match of the incoming j-item (if any) is chosen uniformly at random from the set

arg max
i∈E( j) :x(i)>0

w( j,i):

This amounts to saying that each j-item has a fixed order of priorities between the neighboring nodes of i, for
choosing its match. (Observe that a priority policy can be seen as a max-weight policy where we set the errors to
U( j,i),n � −∞ a.s. for all n, (j, i).) As it is illustrated in the two examples in section 5 of Mairesse and Moyal (2016),
priority policies can be maximal stable or not. Conversely, as is shown in theorem 3 of Moyal and Perry (2017),
for any graph G outside a particular class of graphs, there always exists a nonmaximal priority policy.
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To compare the asymptotic behavior of max-weight and priority policies for a variety of graphs, arrival and
departure rates, and rewards, we randomize all these parameters. We perform 100 simulations. In each one, we
first sample the graph G, the arrival rates λ, departure rates γ, and rewards w, as follows:

1. The graphG � (V,E) is an Erdős-Rényi one with parameters |V| � 30 and p � 0:1;
2. The arrival rates (λ(i))i∈V are i.i.d. with common distribution Unif[0, 10];
3. The reneging rates are i.i.d. with common distribution Ber(0:5) (on average, half of the nodes do not renege);

and
4. We consider symmetric rewards, namely w( j,i) � w(i,j) for every i, j such that {i, j} ∈ E, and the family {w( j,i) :

{i, j} ∈ E} is i.i.d. with common law Unif[0, 10].
In each case, the condition NCOND is forced; that is, if λ is not an element of NCOND(G), the simulation is rerun.

Then, for each simulation we compare a system ruled by max-weight to the same system ruled by the corre-
sponding priority policy, for the same sampled parameters. In other words, we perform paired replications in
the sense that a random network is generated by items 1–4, and the same network is used for comparing the cor-
responding policies. Two level of randomness are involved: the first one to define the network (formed by the
graph, and the values of the rates and rewards), and the second one to draw, conditioned to the already sampled
network, the effective dynamic of the process (consisting on the arrival and departure episodes, and the random-
ness to decide which item class to pick in case of a tie in the value of the weights). Observe that, from Theorem 1,
the max-weight system is necessarily stable, whereas in view of the previous observations, the system ruled by
the priority policy is not necessarily so.

Figure 1 represents, in vertical order, the size of the largest queue, the cumulative reward (each time a
( j, i)-match occurs, a reward wj,i accumulates) and the cumulative number of departures, the three quantities ver-
sus time, in the time interval [0, 100]. Figure 2 is the boxplot for the size of the largest queue at time t � 100.

These results put in evidence an important and striking qualitative difference between the two policies, in the
behavior of the buffer size process. Specifically, max-weight keeps far fewer items in the system, whereas both
policies have essentially the same performance in terms of cumulative reward and departures. In many cases,
the priority policy seems to fail in stabilizing the system, whereas the corresponding max-weight system is
always stable. Finally, it is worth mentioning that the same picture was obtained in unpublished simulations ran
in much larger time intervals.

4.2. Bounds in the Stationary Regime
Unlike Section 4.1, in this section, impatience is excluded. We first restrict our attention to the classical match the
longest policy; that is, we take wj,i � 0 for every i, j ∈ V such that {i, j} ∈ E, and we work without measurement
errors. An important difference with respect to the previous subsection is that here the parameters (G,λ) are

Figure 1. From Top to Bottom, Largest Queue Size, Cumulative Reward, and Cumulative Number of Departures, in the Time
Interval [0, 100]

Notes. (a) Priority. (b) Max-weight.
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drawn only once at the beginning. We clarify that no comparison with a priority policy is made here. The distri-
bution of the pair (G,λ) is maintained: Erdős-Rényi distribution with parameters |V| � 30 and p � 0:1 for G, and
common distribution Unif[0, 10] for the i.i.d. family (λ(i))i∈V. Figure 3 represents a histogram at time t � 100 of
500 simulations. The vertical lines represent the lower and upper bounds for the expected size of the largest
queue given by Theorem 3.

Finally, we study the case with measurement errors and rewards. The random variables {U( j,i) : {i, j} ∈ E} giv-
ing place to the noises are chosen to be i.i.d. with common distribution Unif[−1, 1], and the rewards are again
symmetric and i.i.d. with common distribution Unif[0, 10]. The distributions of G and λ do not change, and the
tuple (G,λ,U,w) is drawn only once at the beginning. Figure 4 is a histogram also for 500 iterations at time t �
100, and the vertical line represents the lower bound for the expectation. The numerical value for the upper
bound for the expectation is 26,867.96, and it is not included in the graphic.

For match the longest, we observe tight bounds for the expected value. All the upper bounds become very
loose when we include the presence of rewards or noises. From unpublished simulations, we observe that this is
a general picture and not only a particular situation for this choice of the parameters. In the presence of asym-
metric rewards and noise, the bounds are not informative. We leave for future work to obtain better tailored
made bounds in this case. A typical histogram is very close to the lower bound for the expectation, and the upper
bound is more accurate if larger values of p in the distribution of G are considered.

Figure 2. Boxplots for 100 Iterations at Time t � 100 of the Largest Queue Size

Figure 3. Histogram for 500 Simulations at Time t � 100 of the Largest Queue Size for Match the Longest (i.e., MWwithwij � 0)
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5. Proofs
5.1. Proof of Proposition 1
Fix x ∈ X and κ ∈ (0,λ(V)). To shorten notation, we write

τi(x) �
∑
j∈E(i)

λ( j)νx,j(i):

We assume during the proof that we are in the (n− 1) th step, namely, the law of νx,j is ruled by the family of
r.v.s {U( j,i),n : {i, j} ∈ E}; of course, by homogeneity, this can be done without loss of generality. For the quadratic
function f2, identity

f2(x6δi) − f2(x) � 162x(i)
holds as long as x6δi ∈ X . Hence, in view of the expression defining the generator (3), we get

Lf2(x) �
∑

i∉E(Sx)
[1+ 2x(i)]λ(i) +∑

i∈Sx
[1− 2x(i)][γ(i)x(i) + τi(x)]: (10)

Because x( j) � 0 for all j ∈ E(Sx), the first sum equals

λ(E(Sx)c) + 2
∑
i∈V

λ(i)x(i):

Observe that ∑
i∈Sx

τi(x) �
∑
i∈Sx

∑
j∈E(i)

λ( j)νx,j(i)
� ∑

i∈V

∑
j∈V

1{i ∈ Sx}1{{i, j} ∈ E}λ( j)νx,j(i)
� ∑

i∈V

∑
j∈V

1{i ∈ Sx}1{j ∈ E(Sx)}λ( j)νx,j(i)
� ∑

i∈V

∑
j∈V

1{j ∈ E(Sx)}λ( j)νx,j(i)
� ∑

j∈E(Sx)
λ( j)∑

i∈V
νx,j(i)

� ∑
j∈E(Sx)

λ( j)
� λ(E(Sx)), (11)

the third and the forth identities following because νx,j(i) is zero if {i, j} ∉ E or i ∉ Sx. Hence, the second sum in
(10) can be rewritten as ∑

i∈V
γ(i)x(i) +λ(E(Sx)) − 2

∑
i∈V

γ(i)x(i)2 − 2
∑
i∈V

x(i)τi(x):

Figure 4. Histogram for 500 Simulations at Time t � 100 of the Largest Queue Size for Max-Weight with Rewards and Noise
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Putting these observations together, we get

Lf2(x) � λ(V) + ∑
i∈V

[−2γ(i)x(i)2 + x(i)γ(i)] + 2
∑
i∈V

x(i) [λ(i) − τi(x)]: (12)

From now on the proof is devoted to controlling the last term; an objective that will be carried out through the
use of the following technical result.

Lemma 1. Fix x ∈ X and κ ∈ (0,η], and assume that the nonempty subset W ⊂ Sx satisfies the following hypotheses:
1. For every j ∈ E(W), ∑i∈Wνx,j(i | Bκ,n) � 1.
2. For every A ⊂W, λ(A) < λ(E(A)).
Then ∑

i∈W
x(i)[λ(i) − τi(x)] ≤ λ(E(W))(2uκ + w̌)|W| + (κ − η)||x||W: (13)

In the assumptions of Lemma 1, hypothesis 1 states that, conditioned to Bκ,n, an arriving j-item necessarily
matches with an item whose class belongs to W. On another hand, hypothesis 2 states that the inequalities defin-
ing NCOND are satisfied inside the set W. The connection between the two hypotheses can be informally under-
stood as follows: the second one gives stability inside W, and the first one tells you that this stability is not being
taken advantage of by classes outsideW

⋃
E(W).

Before providing the proof of Lemma 1, we show how to conclude from it. To avoid trivialities, we assume
Sx ≠ ∅ from now on.

1. Assume R � ∅ (no reneging). It is easy to see that the hypotheses of Lemma 1 are satisfied for W � Sx. Hence,
from (13) it follows that ∑

i∈V
x(i)[λ(i) − τi(x)] ≤ λ(V)(2uκ + w̌)|V| + (κ− η)||x||: (14)

Then simply replace in (12) to obtain the desired inequality (6).
2. We now turn to the case where R≠ ∅. First, the result in the subcase Rc � ∅ follows immediately from (12).

Therefore, let us finally assume that R≠ ∅ and Rc ≠ ∅. Coming back to (12), we have

Lf2(x) ≤ λ(V) +∑
i∈V

[−2γ(i)x(i)2 + x(i)γ(i)] + 2
∑
i∈R

x(i)λ(i) + 2
∑
i∈Rc

x(i) [λ(i) − τi(x)]

� λ(V) +∑
i∈R

[−2γ(i)x(i)2 + x(i)(γ(i) + 2λ(i))] + 2
∑
i∈Rc

x(i)[λ(i) − τi(x)]: (15)

If ||x||Rc ≤ ||x||R + |Rc|(2uκ + w̌), we can easily conclude because∑
i∈Rc

x(i)[λ(i) − τi(x)] ≤
∑
i∈Rc

x(i)λ(i) ≤ [||x||R + |Rc|(2uκ + w̌)]λ(Rc): (16)

From now on we assume that ||x||Rc > ||x||R + |Rc|(2uκ + w̌), and we recall that we are in the situation in which R≠ ∅
and Rc ≠ ∅. One is tempted to apply Lemma 1 with W � Rc ∩ Sx, especially because, for this particular choice of W,
hypothesis 2 of this lemma is guaranteed by the hypothesis NCOND(G,γ). Unfortunately, hypothesis 1 of Lemma 1
fails. The rest of the proof is devoted to finding a proper subsetW ⊂ Rc ∩ Sx fitting this missing requirement.

Here we introduce a crucial notion of connectivity that depends on the number of stored items, notion that is
also used in the proof of Lemma 1. We define an auxiliary graph (V′,E′) by setting V′ � Sx ∩ Rc and {i, j} ∈
E′� i≠ j and |x(i) − x( j)| ≤ 2uκ + w̌. Let C be the partition of V′ induced by the connected components of the
graph (V′,E′): for every C ∈ C, C is a subset of V′, and every pair i, j ∈ C is connected by a path of edges in E′. The
set

W � ⋃{C ∈ C : x(i) > ||x||R + 2uκ + w̌ for every i ∈ C}
is the one that does the trick as we show here:

• We first see that W ≠ ∅. Let i0 ∈ V′ be such that ||x||Rc � x(i0), and let C0 ∈ C be the subset to which i0 belongs.
Wewill prove that C0 ⊂W. We have to see that x(i) > ||x||R + 2uκ + w̌ for every i ∈ C0. If i � i0, this follows because

x(i0) � ||x||Rc > ||x||R + |Rc|(2uκ + w̌) ≥ ||x||R + 2uκ + w̌: (17)

If i≠ i0, consider a path in (V′,E′) connecting i0 with i, namely, take i1, : : : , iL ∈ C0 (L is simply the length of the
path) such that iL � i, {il−1, il} ∈ E′ for every 1 ≤ l ≤ L, and il ≠ il′ for every l, l′ ∈ {0, : : : ,L}, l≠ l′. The definition of
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C0 implies that
x(i0) − x(i) ≤ ∑L

l�1
|x(il−1) − x(il)| ≤ L(2uκ + w̌): (18)

Using that L+ 1 ≤ |Rc|, we have

x(i) ≥ x(i0) − L(2uκ + w̌)
> ||x||R + |Rc|(2uκ + w̌) − L(2uκ + w̌) ≥ ||x||R + 2uκ + w̌

as desired.
•We prove now that hypothesis 1 of Lemma 1 holds. For j ∈ E(W) fixed, we have to see that, conditioned to Bκ,n,

the policy necessarily performs a match with an item class inW. This follows if we prove that

[x(i) +U( j,i),n]+ +w( j,i) > [x(i′) +Un,( j,i′)]+ +w( j,i′) (19)

for every i ∈W and i′ ∈ Sx\W. We split into the following two subcases: i′ ∈ Sx ∩ R and i′ ∈ (Sx ∩ Rc)\W.
(a) If i′ ∈ Sx ∩ R, we have

[x(i) +U( j,i),n]+ +w( j,i) > ||x||R + 2uκ + w̌ +U( j,i),n +w( j,i)
≥ x(i′) + uκ + w̌
≥ [x(i′) +Un,( j,i′)]+ +w( j,i′):

(b) For the subcase i′ ∈ (Sx ∩ Rc)\W, we will use the following obvious property: if i1, i2 ∈ V′ both belong to
the same set of connected nodes C ∈ C, and i3 ∈ V′ is such that x(i1)�x(i2) − (2uκ + w̌) ≤ x(i3) ≤ x(i1)�x(i2)
+2uκ + w̌, then also i3 belongs to C. We next show that

x(i) > x(i′) + 2uκ + w̌: (20)

Suppose by contradiction that the inequality is false. Let C′ ∈ C be the subset to which i′ belongs, and let i′′ ∈ C′
be such that x(i′′) ≤ ||x||R + 2uκ + w̌ (such an i′′ exists because otherwise i′ would belong toW). In particular,

x(i′)�x(i′′) − (2uκ + w̌) ≤ ||x||R + 2uκ + w̌ < x(i) ≤ x(i′)�x(i′′) + 2uκ + w̌:

The mentioned property implies that i ∈ C′, contradictorily implying that i ∉W. Once we have Inequality (20),
we can conclude because

[x(i) +U( j,i),n]+ +w( j,i) > x(i′) + 2uκ + w̌ +U( j,i),n +w( j,i)
≥ [x(i′) +Un,( j,i′)]+ +w( j,i′):

(21)

• As mentioned before, hypothesis 2 of Lemma 1 holds for V′ because of the NCOND(G,γ) assumption, and it
extends toW simply for being a subset.

We can now apply Lemma 1 to W, use that x(i) ≤ ||x||R + (2uκ + w̌)|Rc| for every i ∈ Rc\W, and use that ||x||W �
||x||Rc , to obtain ∑

i∈Rc

x(i)[λ(i) − τi(x)] ≤
∑

i∈Rc\W
x(i)λ(i) +∑

i∈W
x(i)[λ(i) − τi(x)]

≤ [||x||R + |Rc|(2uκ + w̌)]λ(Rc) +λ(Wc)(2uκ + w̌)|W| + (κ− η)||x||W
≤ [||x||R + |Rc|(2uκ + w̌)]λ(Rc) +λ(V)(2uκ + w̌)|Rc| + (κ− η)||x||Rc :

Replace in (15) to conclude.

Proof of Lemma 1. We divide the proof into three steps.
Step 1: Separation into connected components. We define an auxiliary graph (W, Ẽ) by {i, j} ∈ Ẽ� |x(i) − x( j)|

≤ 2uκ + w̌, and we denote by {C1, : : : ,CL} the partition of W into connected subsets of nodes. We suppose that
they are ordered in a decreasing way with respect to the number of stored items: if l < l′, and if i ∈ Cl and i′ ∈ Cl′ ,
then x(i) > x(i′) + 2uκ + w̌. More precisely, if i1, : : : , i|W| is an enumeration of the nodes inW such that x(ik) ≤ x(ik+1)
for every k ∈ {1, : : : , |W| − 1}, there are exactly L− 1 of them ik1 , : : : , ikL−1 such that x(ikl+1) > x(ikl) + 2uκ + w̌ for every
l ∈ {1, : : : ,L− 1}, and they satisfy x(ikl) �max{x(i) : i ∈ Cl} and x(ikl+1) �min{x(i) : i ∈ Cl+1}. The idea behind these
definitions is to distinguish nodes whose weights are too far apart. In particular, we will use the following
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property:
for every l ∈ [[1,L]] and every j ∈ E(C1

⋃
: : :

⋃
Cl),

∑
i∈C1

⋃
: : :

⋃
Cl

νx,j(i | Bκ,n) � 1: (22)

In other words, conditioned to Bκ,n, an incoming item whose class belongs to E(C1
⋃
: : :

⋃
Cl) necessarily matches

with an item whose class belongs to C1
⋃
: : : ,Cl. To see why this is true, take j ∈ E(C1

⋃
: : :

⋃
Cl). In particular, we

have j ∈ E(W), so ∑
i∈Wνx,j(i | Bκ,n) � 1 by hypothesis; hence, we are done if l � L. The case l < L follows because,

for every i ∈ C1
⋃
: : :

⋃
Cl and every i′ ∈ Cl+1

⋃
: : :

⋃
CL, we have

[x(i) +U( j,i)]+ +w( j,i) � x(i) +U( j,i) +w( j,i) > x(i′) +U( j,i) + 2uκ + w̌ +w( j,i)
≥ [x(i′) +U( j,i′)]+ +w( j,i′): (23)

We will also use that
||x||Cl

− (2uκ + w̌)|W| ≤ x(i) ≤ ||x||Cl
(24)

for any l ∈ [[1,L]] and any i ∈ Cl.
Step 2: Control of the number of stored items in each Cl. In this step, we reduce the problem by controlling the

maximum and minimum number of stored items belonging to the same connected subsets. First observe that∑
i∈W

x(i)[λ(i) − τi(x)] ≤
∑
i∈W

x(i) λ(i) − ∑
j∈E(i)

λ( j)νx,j(i | Bκ,n)P Bκ,n
( )[ ]

(25)

� ∑
i∈W

x(i)hi(x) (26)

� ∑L
l�1

∑
i∈Cl

x(i)hi(x),

the first identity being simply a definition of hi(x) as the expression in square brackets. Using (24), we have∑
i∈Cl

x(i)hi(x) �
∑+
i∈Cl

x(i)hi(x) +
∑−
i∈Cl

x(i)hi(x) ≤ ||x||Cl

∑+
i∈Cl

hi(x) + [||x||Cl
− (2uκ + w̌)|W|]∑−

i∈Cl

hi(x)

� ||x||Cl

∑
i∈Cl

hi(x) − (2uκ + w̌)|W|∑−
i∈Cl

hi(x), (27)

where the superscripts + (respectively, –) in the sums mean that we are summing over the indexes is for which
hi(x) ≥ 0 (respectively, hi(x) < 0). Hence, calling Hl(x) � ∑

i∈Clhi(x), we have∑L
l�1

∑
i∈Cl

x(i)hi(x) ≤
∑L
l�1

||x||Cl
Hl(x) − (2uκ + w̌)|W|∑L

l�1

∑−
i∈Cl

hi(x): (28)

However, observe that

−hi(x) �
∑
j∈E(i)

λ( j)νx,j(i | Bκ,n)P(Bκ,n) − λ(i) ≤ ∑
j∈E(i)

λ( j)νx,j(i | Bκ,n),

implying that

−∑L
l�1

∑−
i∈Cl

hi(x) ≤
∑L
l�1

∑−
i∈Cl

∑
j∈E(i)

λ( j)νx,j(i | Bκ,n)

≤ ∑L
l�1

∑
i∈Cl

∑
j∈E(i)

λ( j)νx,j(i | Bκ,n)

� ∑
i∈W

∑
j∈E(i)

λ( j)νx,j(i | Bκ,n)

� ∑
j∈E(W)

λ( j) ∑
i∈W∩E( j)

νx,j(i | Bκ,n)

� ∑
j∈E(W)

λ( j)

≤ λ(E(W)),
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the second identity following as in (11), the last identity following from hypothesis 1, and the last inequality
from the fact that W ⊆ Sx is an independent set. An application of this bound to the right-hand side (r.h.s.) of (28)
reduces the proof to proving that ∑L

l�1
||x||Cl

Hl(x) ≤ (κ− η)||x||W,

and for this we use an iterative procedure.
Step 3: Iterative procedure. First, recalling (5), observe that

H1(x) �
∑
i∈C1

λ(i) − P Bκ,n
( ) ∑

j∈E(C1)
λ( j)∑

i∈C1

νx,j(i | Bκ,n)

� λ(C1) − P Bκ,n
( ) ∑

j∈E(C1)
λ( j) ≤ λ(C1) − 1 − κ

λ(V)
( )

λ E(C1)( ) ≤ κ − η: (29)

In the last inequality, we used hypothesis 2; in the second identity, we use Property (22). We are in the following
alternative: if it holds that

Hl(x) ≤ 0 ∀l ∈ {2, : : : ,L}, (30)

we are done because, in view of (29),∑L
l�1

||x||Cl
Hl(x) ≤ ||x||C1

H1(x) ≤ (κ − η)||x||W

(observe that ||x||C1
� ||x||W). If (30) does not hold, we define

L′ �max{l ∈ [[1,L]] : Hl(x) > 0},
which, from (29), is necessarily strictly larger than one. Then we have that∑L

l�1
||x||Cl

Hl(x) ≤
∑L′
l�1

||x||Cl
Hl(x) ≤

∑L′−2
l�1

||x||Cl
Hl(x) + ||x||CL′−1[HL′−1(x) +HL′ (x)], (31)

where sums over empty sets are set to zero. If HL′−1(x) +HL′ (x) ≤ 0, we bound the last quantity by∑L′−2
l�1 ||x||Cl

Hl(x) and restart the procedure; that is, we look for

max{l ∈ [[1,L′ − 2]] :Hl(x) > 0},
and so on. If HL′−1(x) +HL′ (x) > 0, we bound the r.h.s. of (31) by∑L′−3

l�1
||x||Cl

Hl(x) + ||x||CL′−2[HL′−2(x) +HL′−1(x) +HL′ (x)],
separate between the cases

HL′−2(x) +HL′−1(x) +HL′ (x) ≤ 0 and HL′-2(x)+HL′-1(x)+HL′ (x) > 0,

and proceed as previously shown. It only remains to address the case where all partial sums are positive; that is,∑L′
l�l0 Hl(x) > 0 for any l0 ∈ [[2,L′ − 2]]. In this case, the final step of the iteration gives∑L′

l�1
||x||Cl

Hl(x) ≤ ||x||C1

∑L′
l�1

Hl(x): (32)

However, as in (29), we have that∑L′
l�1

Hl(x) �
∑

i∈C1
⋃
: : :

⋃
CL′

λ(i) − P Bκ,n
( ) ∑

j∈E(C1
⋃
: : :

⋃
CL′ )

λ( j) ∑
i∈C1

⋃
: : :

⋃
CL′

νx,j(i | Bκ,n)

� λ(C1
⋃
: : :

⋃
CL′ ) − P Bκ,n

( )
λ[E(C1

⋃
: : :

⋃
CL′ )] ≤ κ − η,

where we are again using Property (22). Plugging this into (32), we get that∑L′
l�1

||x||Cl
Hl(x) ≤ (κ − η)||x||W,

which concludes the proof. w
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5.2. Proof of Theorem 1
Necessity of the condition NCOND can be shown similarly to proposition 2 in Mairesse and Moyal (2016): For any
I ∈ I(Rc) and any t ≥ 0, all items of class in I that have departed the system before t have necessarily been matched
with an element of E(I) arrived before t; thus, we have that

Xt(I) :�
∑
i∈I

Xt(i) ≥
∑
i∈I

X0(i) −
∑
i∈E(I)

X0(i) +
∑
i∈I

N(i)t −
∑
i∈E(I)

N(i)t
≥ ∑

i∈I
X0(i) +MI

t + t λ(I) −λ(E(I))( ),

where for all i, N(i)t denotes the number of points of the process N(i) up to t, and MI is a martingale with respect
to the natural filtration of N. Therefore, it is routine to check that the above process tends a.s. to infinity as t→∞
if λ(I) −λ(E(I)) > 0, and is at best null recurrent if λ(I) −λ(E(I)) � 0.

We now prove sufficiency. By the continuous-time version of the Foster-Lyapunov theorem (Meyn and Twee-
die 1993), it suffices to show that

Lf2(x) ≤ −1
for every x outside a finite set. Take κ � η=2. If R � ∅, Inequality (6) becomes

Lf2(x) ≤ c1 − η||x|| (33)

for a constant c1 that does not depend on x; this clearly implies the assertion. If R≠ ∅, Inequality (7) becomes

−2γ̂||x||2R + c2||x||R + c3 − η||x||Rc1{||x||Rc > ||x||R + c4}, (34)

being γ̂ �mini∈R γ(i). The r.h.s. of (34) is larger than −1 only when ||x||R and ||x||Rc are simultaneously small
enough, a fact that occurs only for finitely many xs. w

5.3. Proof of Proposition 2
To expedite the proof, first observe that, for any G and γ, λ ∈ (R∗

+)V is an element of NCOND(G,γ) defined by (4) if
and only if µλ defined by (1) is an element of

NCOND′(G,γ) � µ ∈ P∗
V : µ(I) < µ(E(I)) for any I ∈ I(Rc){ }

,

being P∗
V the set of strictly positive probabilities defined on V; similarly, λ belongs to NCOND(G) defined by (8) if

and only if µλ belongs to

NCOND′(G) � µ ∈ P∗
V : µ(I) < µ(E(I)) for any I ∈ I

{ }
:

First, if G is bipartite and R � ∅, then theorem 1 of Mairesse and Moyal (2016) shows that the set NCOND′(G,γ) �
NCOND′(G) is empty. From the previous remark, so is the set NCOND(G,γ) �NCOND(G).

Regarding the converse, let us first assume that G is nonbipartite. Then, again from theorem 1 in Mairesse and
Moyal (2016), the set NCOND′(G) is nonempty. However, plainly, for any γ, we have NCOND′(G) ⊂ NCOND′(G,γ)
because any element of I(R) (if any) is also an element of I. This shows that NCOND′(G,γ) is nonempty and there-
fore is NCOND(G,γ).

It only remains to consider the case where G is bipartite (in which case NCOND′(G) is empty again by theorem 1
of Mairesse and Moyal (2016)), and γ is such that R≠ ∅. Let V1

⋃
V2 be a bipartition of V into two independent sets.

Then, it follows from theorem 4.2 in Bušić et al. (2013) that there exists a probability measure µ ∈ P∗
V such that

µ(V1) � µ(V2) � 1
2

and µ(I) < µ(E(I)) for all I ∈ I \ V1,V2{ }: (35)

Suppose that R ∩ V1 ≠ ∅ (the case where R ∩ V2 ≠ ∅ is symmetric). Our idea is to modify the measure µ by trans-
ferring a small enough amount of mass from a node of V2 to a node of R ∩ V1, so as to belong to I(Rc). For this,
we first set a node i ∈ V2 and a positive real number ε as follows:

(i) IfV1 ⊂ R, i is arbitrary in V2 and

ε � 1
2
µ(i)�min 1−µ( j) : j ∈ R ∩ V1

{ }( )
:

(ii) Else, i is an arbitrary element of E Rc ∩ V1( ) and we set

ε � 1
3
min µ(E(I)) −µ(I) : I ∈ I(Rc ∩ V1){ }

� µ(i)� min 1−µ( j) : j ∈ R ∩ V1
{ }( )

, (36)

which is strictly positive because V1 is not an element of I(Rc ∩ V1).
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We then construct the measure µ̂, as follows:

µ̂(i) � µ(i) − ε;
µ̂( j) � µ( j) + ε for some arbitrary j ∈ R ∩ V1;
µ̂(k) � µ(k) for all other k ∈ V:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Then, µ̂ clearly is a probability measure on V, such that

µ(A) ≤ µ̂(A) ≤ µ(A) + ε and µ(B) − ε ≤ µ̂(B) ≤ µ(B), for all A ⊂ V1 and B ⊂ V2: (37)

We aim at showing that

µ̂(I) < Ê(I), for all I ∈ I(Rc): (38)

For this, first observe that because V1 intersects with R it is not an independent set of I(Rc). Second, if V2 ∈ I(Rc)
(which is true if and only if R ⊂ V1), we get

µ̂(V2) � µ(V2) − ε � µ(V1) − ε � µ̂(V1) − 2ε � µ̂(E(V2)) − 2ε < µ̂(E(V2)):
Now take an independent set I ∈ I(Rc)\{V2} such that I ∩ V1 � ∅. Then we have that

µ̂(E(I)) − µ̂(I) ≥ µ(E(I)) −µ(I) > 0, (39)

where the first inequality follows from (37) together with the fact that E(I) ⊂ V1, I ⊂ V2, and the second, from the
facts that I(Rc) ⊂ I, I ∉ {V1,V2} and (35).

Last, take an independent set I ∈ I(Rc)\{V2} such that I ∩ V1 ≠ ∅. (Such an element exists only if V1 is not
included in R, so we are in case (ii).) Then we have

µ̂(E(I)) − µ̂(I) � µ̂(E(I) ∩ V1) + µ̂(E(I) ∩ V2) − µ̂(I ∩ V2) − µ̂(I ∩ V1)
� µ̂(E(I ∩ V2)) − µ̂(I ∩ V2) + µ̂(E(I ∩ V1)) − µ̂(I ∩ V1)
≥ µ̂(E(I ∩ V1)) − µ̂(I ∩ V1)
≥ µ(E(I ∩ V1)) − ε− (µ(I ∩ V1) + ε) > 0,

where in the second equality, we use the fact that the graph is bipartite, implying that E(I) ∩ V1 � E(I ∩ V2) and
E(I) ∩ V2 � E(I ∩ V1); the first inequality follows from (39) in the case where I ∩ V2 ≠ ∅, or else is an equality; and
where we use (37) in the second inequality and (36) is the third one.

We have thus proven that µ̂(I) < Ê(I) for any I ∈ I(Rc). This implies that µ̂ is an element of NCOND′(G,γ) and
thereby an element of NCOND(G,γ) that let us conclude. w

5.4. Proof of Proposition 3
Neglecting the reneging part, we get for all x,

Leα||x||2 � ∑
i∉E(Sx)

λ(i)(eα||x+δi ||2 − eα||x||2) + ∑
i∈Sx

τi(x)(eα||x−δi ||2 − eα||x||2)

(recall that τi(x) � ∑
j∈E(i)λ( j)νx,j(i)). Taking common factor eα||x||2 , using that ea − 1 ≤ a+ a2 if |a| is small enough,

and that (||x6δi||2 − ||x||2)2 ≤ 1 (this is simply a triangular inequality), last expression can be bounded by

eα||x||2
∑

i∉E(Sx)
λ(i)[α(||x+ δi||2 − ||x||2) +α2] +∑

i∈Sx
(α(||x− δi||2 − ||x||2) + α2)τ(i)

[ ]

� eα||x||2α
∑

i∉E(Sx)
λ(i)(||x+ δi||2 − ||x||2) +

∑
i∈Sx

(||x− δi||2 − ||x||2)τ(i) + αλ(V)
[ ]

:

From a Taylor development,

||x6 δi||2 − ||x||2 ≤ 6 x(i)
||x||2 + 1

2||x||2 :
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Using this inequality, we get ∑
i∉E(Sx)

λ(i)(||x + δi||2 − ||x||2) +
∑
i∈Sx

(||x − δi||2 − ||x||2)τ(i)

≤ 1
||x||2

∑
i∈Sx

x(i)[λ(i) − τ(i)] + 1
2
λ(V)

( )

≤ 1
||x||2 λ(V)(2uκ + w̌)|V| + (κ − η)||x||∞ + 1

2
λ(V)

( )
≤ λ(V)(2uκ + w̌)|V|

||x||2 + (κ − η)     |V|√ + λ(V)
2||x||2

for every κ ∈ (0,λ(V)). In the second inequality, we used (6). We have obtained

Leα||x||2 ≤ eα||x||2
αλ(V)(2uκ + w̌)|V|

||x||2 +αλ(V)
2||x||2 + α(κ− η)     |V|√ + α2λ(V)

( )
:

We can conclude by choosing κ < η and α such that α(κ− η)     |V|√ + α2λ(V) < 0. w

5.5. Proof of Theorem 3
Under our assumptions, Inequality (6) takes the simpler form

Lf2(x) ≤ λ(V) + 2λ(V)(2B + w̌)|V| − 2η||x||:
The upper bound in (9) follows after integrating with respect to π and using that∫

(Lf )(x)π(dx) � 0 for every π-integrable f : X → R:

We now turn to the lower bound of (9). For this, we introduce the following stochastic lower bound for X: Con-
sider a fictional matching model such that, for any i ∈ V, as soon as an item of a class j ∈ E(i) enters the system,
one class-i item leaves the system. Let X̃ be the N|V|-valued process counting the number of items of each class in
the system at any time. It is easy to prove by an immediate coupling argument, that X̃t(i) ≤st Xt(i) for all i ∈ V,
where “≤st” stands for the strong stochastic ordering. Moreover, it is also immediate to observe that the ith mar-
ginal of X̃ is just a birth and death process with up rate λ(i) and down rate λ(E(i)) in any state. Hence, the mar-
ginal of the stationary measure π̃ of X̃ satisfies∫

x(i)π̃(dx) � ρi

1− ρi
, for ρi �

λ(i)
λ(E(i)) ·

Then, we get that
ρi

1 − ρi
≤

∫
x(i)π(dx) ≤

∫
||x||∞π(dx),

which completes the proof. w

6. Conclusion
By proving that a quadratic function and its exponential are Lyapunov functions under the generalized
N-COND condition, we showed that the generalized max-weight policy has very desirable properties: it is maxi-
mal stable even in the presence of noisy observations and has exponential convergence toward its stationary
measure. In an ongoing work, we show using systematic and extensive simulations that it also compares very
favorably to state-of-the-art matching policies both in terms of long-term variance and convergence.
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