
HAL Id: hal-03354713
https://hal.science/hal-03354713v1

Submitted on 25 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exponential upper bounds for the runtime of
randomized search heuristics

Benjamin Doerr

To cite this version:
Benjamin Doerr. Exponential upper bounds for the runtime of randomized search heuristics. Theo-
retical Computer Science, 2021, 851, pp.24-38. �10.1016/j.tcs.2020.09.032�. �hal-03354713�

https://hal.science/hal-03354713v1
https://hal.archives-ouvertes.fr

ar
X

iv
:2

00
4.

05
73

3v
3

 [
cs

.N
E

]
 4

 S
ep

 2
02

0

Exponential Upper Bounds for the Runtime of

Randomized Search Heuristics∗

Benjamin Doerr
Laboratoire d’Informatique (LIX)

CNRS, École Polytechnique

Institut Polytechnique de Paris
Palaiseau

France

September 7, 2020

Abstract

We argue that proven exponential upper bounds on runtimes, an
established area in classic algorithms, are interesting also in heuris-
tic search and we prove several such results. We show that any of
the algorithms randomized local search, Metropolis algorithm, simu-
lated annealing, and (1+1) evolutionary algorithm can optimize any
pseudo-Boolean weakly monotonic function under a large set of noise
assumptions in a runtime that is at most exponential in the problem
dimension n. This drastically extends a previous such result, limited to
the (1+1) EA, the LeadingOnes function, and one-bit or bit-wise prior
noise with noise probability at most 1/2, and at the same time simpli-
fies its proof. With the same general argument, among others, we also
derive a sub-exponential upper bound for the runtime of the (1, λ)
evolutionary algorithm on the OneMax problem when the offspring
population size λ is logarithmic, but below the efficiency threshold.
To show that our approach can also deal with non-trivial parent pop-
ulation sizes, we prove an exponential upper bound for the runtime
of the mutation-based version of the simple genetic algorithm on the
OneMax benchmark, matching a known exponential lower bound.

∗Extended version of a paper appearing in the proceedings of PPSN 2020 [Doe20b].
This version contains all proofs and other details that had to be omitted in the conference
version for reasons of space (roughly an additional 50% text over the conference version)
as well as the new Section 5 on the simple genetic algorithm.

1

http://arxiv.org/abs/2004.05733v3

1 Introduction

The mathematical analysis of runtimes of randomized search heuristics is an
established field of the general area of heuristic search [NW10, AD11, Jan13,
DN20]. The vast majority of the results in this area show that a certain
algorithm can solve (or approximately solve) a certain problem within some
polynomial runtime (polynomial upper bound on the runtime) or show that
this is not possible by giving a super-polynomial, often exponential, lower
bound on the runtime.

As a rare exception to this rule, in his extensive analysis of how the (1+1)
evolutionary algorithm ((1 + 1) EA)1 optimizes the LeadingOnes bench-
mark in the presence of prior noise, Sudholt [Sud20, Theorem 6] showed that
for one-bit or bit-wise noise with noise probability at most 1

2
, the (1 + 1) EA

finds the optimum of LeadingOnes in time at most 2O(n). While clearly
a very natural result – everyone would agree that also with such noise the
unimodal LeadingOnes problem should not become harder than the needle-
in-the-haystack problem – the technical, long, and problem-specific proof of
this result, despite following the intuitive argument just laid out, suggests
that such analyses can be harder than one would expect.

In this work, we will argue that such exponential upper bounds are in-
teresting beyond completing a runtime picture of a given problem. We then
show that with a different analysis method such uncommon runtime questions
can be analyzed relatively easily. As one out of several results, we drastically
extend the result in [Sud20] and show that an exponential runtime guarantee
holds for

• any of the algorithms randomized local search, Metropolis algorithm,
simulated annealing, and (1 + 1) EA,

• when optimizing any weakly monotonic objective function, e.g.,
OneMax, linear functions, monotone polynomials, LeadingOnes,
plateau functions, and the needle problem,

• in the presence of all common forms of prior and posterior noise with
a noise probability of at most 1− ε, ε > 0 a constant.

1.1 Exponential Runtime Analysis

The area of mathematical runtime analysis, established as a recognized sub-
field of the theory of evolutionary algorithms by Ingo Wegener and his re-
search group, seeks to understand the working principles of evolutionary

1See Section 2 for details on all technical terms used in this introduction.

2

computation via rigorously proven results on the performance of evolution-
ary algorithms and other search heuristics in a similar spirit as done in classic
algorithms analysis for much longer time.

Adopting the view of classic algorithmics that runtimes polynomial in the
problem size are efficient and larger runtimes are inefficient, the vast majority
of the results in this field prove polynomial upper bounds or super-polynomial
lower bounds. For two reasons, we feel that also super-polynomial and even
exponential runtime guarantees are desirable in the theory of evolutionary
algorithms.

Our first set of arguments is identical to the arguments made in the
classic algorithms field, which led to a shift in paradigms and established the
field of exact exponential algorithms [FK10, FK13]. These arguments are
that (i) for many important problems nothing better than exponential time
algorithms are known, so one cannot just ignore these problems in algorithms
research, (ii) with the increase of computational power, also exponential time
algorithms can be used for problems of moderate (and interesting) size, and
(iii) that the existing research on exponential-time algorithms has produced
many algorithms that, while still exponential time, are much faster than
näıve exponential-time approaches like exhaustive search.

Our second line of argument is that exponential time algorithms are of
additional interest in evolutionary computation for the following reasons.

(i) To increase our understanding of the working principles of evolution-
ary algorithms. For a large number of algorithmic problems in our field an
exponential lower bound has been proven, but for essentially none of these
problems an upper bound better than the trivial nO(n) bound exists. It is
clear that matching upper and lower bounds tell us most, not only about
the runtimes, but also about the working principles of EAs. Tight bounds
naturally have to grasp the true way the EA progresses better. For example,
the general nO(n) upper bound for all algorithms using standard bit muta-
tion is based on the simple argument that the optimum can be generated
from any search point with probability at least n−n. Besides being very
pessimistic, this argument does not tell us a lot on how really the EA op-
timizes the problem at hand (except for the very particular case that the
EA is stuck in a local optimum in Hamming distance n to the global op-
timum). In contrast, as a positive example, the matching (1 ± o(1))en lnn
upper [Müh92] and lower [GKS99, DFW11] bound for the runtime of the
(1 + 1) EA on OneMax together with their proofs shows that for this opti-
mization process, the effect of mutations flipping more than one bit has no
influence on the runtime apart from lower order terms. In a broader sense,
this insight suggests that flipping larger number of bits is mainly useful to

3

leave local optima, but not to make fast progress along easy slopes of the
fitness landscape.

(ii) Because understanding runtimes in the exponential and super-
exponential regime is important for the application of EAs. Many classic
evolutionary algorithms can easily have a super-exponential runtime. For
example, Witt [Wit05] has shown that the simple (1 + 1) EA has an ex-
pected runtime2 of nΘ(n) on the minimum makespan scheduling problem.
Hence knowing that an evolutionary algorithm “only” has an exponential
runtime can be interesting.

We note that for problems with exponential-size search spaces (such as the
search space {0, 1}n regarded exclusively in this work) blind random search
and exhaustive search are exponential-time alternatives. For that reason,
in addition to knowing that an EA has an exponential runtime guarantee
(that is, a runtime of at most Cn for some constant C > 1), it would be very
desirable to also have a good estimate for the base of the exponential function,
that is, the constant C. Unfortunately, at this moment where we just start
reducing the trivial nO(n) upper bound to exponential upper bounds, we
are not yet in the position to optimize the constants in the exponent. We
are optimistic though (and give some indication for this in Section 4.1.1)
that our methods can be fine-tuned to give interesting values for the base
of the exponential function as well. We recall that such an incremental
progress is not untypical for the mathematical runtime analysis of EAs –
in the regime of polynomial bounds, subject to intensive research since the
1990s, the leading constants for elementary problems such as LeadingOnes

and linear functions were only determined from 2010 on [BDN10, Sud13,
Wit13].

With this motivation in mind and spurred by the observation that ex-
ponential upper bounds are not trivial to obtain, we conduct in this work
the first investigation focused on the problem of proving exponential upper
bounds for runtimes of EAs.

1.2 State of the Art

We are not aware of many previous works on exponential or super-exponential
upper bounds on runtimes of EAs. In the, to the best of our knowledge, first
work proving an exponential upper bound for the runtime of an EA, Droste,
Jansen, and Wegener [DJW98, Theorem 9] show that the (1 + 1) EA opti-
mizes the Needle function (called peak function there) in expected time at

2As common both in classic algorithms and in our field, by runtime we mean the
worst-case runtime taken over all input instances.

4

most (2π)−1n1/2 exp(2n). Only a year later, Garnier, Kallel, and Schoe-
nauer [GKS99, Proposition 3.1] in a remarkably precise analysis showed
that the expected runtime of the (1 + 1) EA on the Needle function is
(1± o(1))(1− 1

e
)−12n.

A general upper bound of nn for the expected runtime of the (1 + 1) EA
on any pseudo-Boolean function was given in [DJW02, Theorem 6] by argu-
ing that each offspring with probability at least n−n is the optimum. This
bound is tight as witnessed, among others, by the trap function [DJW02,
Theorem 8] and the minimum makespan scheduling problem [Wit05]. Simi-
lar arguments as used in [DJW02] to prove the nn upper bound showed an
upper bound of 4n log2 n for the (1 + 1) EA using the mutation rates 2i/n,
i = 0, 1, . . . , 2⌊log2 n⌋−1, in a cyclic fashion [JW06, Theorem 3] and an upper
bound of O(nβ2n) for the fast (1 + 1) EA with (constant) power-law expo-
nent β > 1 [DLMN17, Theorem 5.3]. With more complex arguments, the
self-adjusting SD-(1+1) EA was shown to optimize the trap function in time
O((2.34)n log n) [RW20, Corollary 2]. It is easy to see that when compromis-
ing with the base of the exponential function, very similar arguments show
an exponential upper bound for the runtime on any function f : {0, 1}n → R.

There are a few analyses for parameterized problems showing bounds
that can become exponential or worse when the problem parameter is chosen
in an extreme manner. Here the Θ(nk) runtime bound for the (1 + 1) EA
optimizing jump functions with jump size k ≥ 2 [DJW02, Theorem 25] is the
best known example. More interesting results have been shown in the context
of parameterized complexity [NS20], but again these results have been derived
with small parameter values in mind and thus are most interesting for this
case.

In contrast to these sporadic upper bounds, there is a large num-
ber of (near-)exponential lower bounds, e.g., for a broad class of non-
elitist algorithms with too low selection pressure [Leh10], for some al-
gorithms using fitness-proportionate selection [HJKN08, NOW09, Leh11,
Doe20c], for the simple genetic algorithm with an only moderately large
population size [OW15], for the optimization of strictly monotonic func-
tions [DJS+13, Len18, LZ19], and for various problems in noisy optimiza-
tion [GK16, QBJT19, Sud20].

Apart from a single exception, for none of these lower bounds it is known
how tight they are, not even a result ruling out a runtime of nΘ(n). The
exceptional exponential upper bound shown in [Sud20, Theorem 6] reads as
follows. Consider optimizing the LeadingOnes benchmark function defined
on bit strings of length n via the (1 + 1) EA. Assume that in each iteration,
the fitness evaluation of both parent and offspring is subject to stochastically
independent prior noise of one of the following two types. (i) With probability

5

p ≤ 1
2
, not the true fitness is returned, but the fitness of a random Hamming

neighbor. (ii) With probability p′ ∈ [0, 1], the search point to be evaluated
is disturbed by flipping each bit independently with some probability q ≤ 1

2

and the fitness of this disturbed search point is returned, with probability
1 − p′, the fitness of the original search point is returned; here we assume
that p′ min{1, qn} ≤ 1

2
. Then the expected optimization time, that is, the

number of iterations until the optimum is sampled, is at most exponential in
n.

With a noise probability of at most 1
2
and a weakly monotonic, that is,

weakly preferring 1-bits over 0-bits, fitness function one would think that
this optimization process in some suitable sense is at least as good as the
corresponding process on the Needle function, where absolutely no fitness
signal guides the search. This is indeed true, as the proof in [Sud20] shows.
Surprisingly, as this proof also shows, it is highly non-trivial to make this
intuitive argument mathematically rigorous. The proof in [Sud20] is around
four pages long (including the one of the preliminary lemma) and builds on a
technical estimate of the mixing time, which heavily exploits characteristics
of the LeadingOnes objective function. Consequently, this proof does not
easily generalize to other easy benchmark functions such as OneMax or
linear functions.

1.3 Our Results

Observing that the natural approach taken in [Sud20] is unexpectedly dif-
ficult, we develop an alternative approach to proving exponential upper
bounds. It builds on the following elementary observation. In the, slightly
extremal, situation that we aim at an exponential upper bound, we can wait
for an exponentially unlikely “lucky” way to generate the optimum. Being
at most exponentially unlikely, that is, having a probability of p = 2−O(n), it
takes 2O(n) attempts until we succeed. Hence if each attempt takes at most
exponential time T0 (all our attempts will only take polynomial time), we
obtain an exponential upper bound on the expected runtime, and moreover,
the distributional bound that the runtime is stochastically dominated by T0

times a geometric distribution with success rate p. This general argument
(without the elementary rephrasing in the stochastic domination language)
was already used in the proof of the poly(n)e2n upper bound on the expected
runtime of the (1 + 1) EA on the Needle function by Droste, Jansen, and
Wegener [DJW98] more than twenty years ago. It is apparently not very well
known in the community, most likely due to the fact that only one year later,
Garnier, Kallel, and Schoenauer [GKS99] presented a much tighter analysis
of this runtime via different methods. We are not aware of any other use of

6

this argument, which might explain why it was overlooked in [Sud20] (and
we give in that we also learned it only from a review on an earlier version of
this work).

How powerful this simple approach is, naturally, depends on how easy it is
to exhibit lucky ways to find the optimum fast. As we shall demonstrate, this
is in fact often easy. For example (see Theorem 5 for the details), it suffices
that in each iteration the probability to move to a Hamming neighbor one
step closer to the optimum is Ω(n−1). From this, we can show that from any
starting point, the probability to reach the optimum in at most n iterations
is at least 2−O(n). As argued in the preceding paragraph, this yields an
expected runtime of n2O(n) = 2O(n). This argument, without noise and for
the (1 + 1) EA only, was also used in the Needle analysis in [DJW98].

Together with some elementary computations, this approach suffices to
show that a large number of (1 + 1)-type algorithms in the presence of a large
variety of types of noise with noise probability at most 1 − ε, ε > 0 a con-
stant, optimize any weakly monotonic function (including, e.g., OneMax,
LeadingOnes, and the needle function) in at most exponential time (The-
orem 6).

With similar arguments, we extend this result to the (1 + 1) EA opti-
mizing jump functions with jump size at most n

lnn
in Section 4.2. For the

particular noise model of bit-wise noise with rate q (search points are dis-
turbed by flipping each bit independently with probability q before the fitness
evaluation), we show in Section 4.3 that any of the above algorithms even in
the presence of extreme noise with q as high as 1− ε, ε > 0 a constant, can
optimize the OneMax benchmark in exponential time. For the exponen-
tial lower bound on the runtime of the (1 + 1) EA with fitness-proportionate
selection on linear functions in [HJKN08], we easily derive a matching up-
per bound in Section 4.4. As an example showing that our approach can
also yield sub-exponential upper bounds, we prove in Section 4.5 that the
(1, λ) EA with λ ≥ (1− ε) log e

e−1
(n), and thus potentially below the thresh-

old for polynomial time, optimizes OneMax in time exp(O(nε)). To ease the
presentation, we only regard single-trajectory algorithms in our general result
(Theorem 5). To show that similar arguments can also be used to analyze
algorithms with non-trivial parent populations, we show in Section 5 that the
mutation-based variant of the simple genetic algorithm finds the optimum of
OneMax in exponential time. This matches the known exponential lower
bound.

7

2 Preliminaries

In this section, we describe the algorithms, the noise models, and the bench-
mark problems considered in this work. Almost all of this is standard, so we
aim at brevity and refer to other works for more detail. We only consider
optimization problems defined on the search space {0, 1}n of bit strings of
length n; we thus also formulate all algorithms only for this setting. We have
no doubt, though, that our methods can also be applied to other discrete
optimization problems.

We only use the standard notation of this field. This includes writing
[a..b] := {z ∈ Z | a ≤ z ≤ b} and denoting by H(x, y) := |{i ∈ [1..n] |
xi = yi}| the Hamming distance of two bit strings x, y ∈ {0, 1}n. We denote
by Geom(p) the geometric distribution with success rate p ∈ (0, 1]. Hence
if a random variable X is geometrically distributed with parameter p, we
write X ∼ Geom(p) to denote this, then Pr[X = k] = (1 − p)k−1p for all
k ∈ Z≥1. For two random variables X, Y we write X � Y to denote that
Y stochastically dominates X , that is, that Pr[X ≥ λ] ≤ Pr[Y ≥ λ] for all
λ ∈ R.

2.1 Algorithms

We call a randomized search heuristic single-trajectory search algorithm if it
is an iterative heuristic which starts with a single solution x(0) and in each
iteration t = 1, 2, . . . updates this solution to a solution x(t). We do not make
any assumption on how this update is computed. In particular, the next
solution may be computed from more than one solution candidate sampled
in this iteration. We do, in principle, allow that information other than the
search point x(t−1) is taken into iteration t. However, in our main technical
result we require that the key condition can be checked only from the search
point x(t−1). Formally speaking, this means that for any possible history of
the search process up to this point, when conditioning on this history, the key
condition is true. To ease the language, we shall write “regardless of what
happened in the first t−1 iterations” to express this conditioning. Naturally,
for algorithms that can be described via a Markov chain a conditioning on
the history is not necessary.

Examples for single-trajectory algorithms are (randomized) local search,
the Metropolis algorithm, simulated annealing, and evolutionary algo-
rithms working with a parent population of size one, such as the
(1 + 1) EA, (1 + λ) EA, (1, λ) EA, (1 + (λ, λ)) GA [DDE15], and SSWM al-
gorithm [PHST17].

8

We call a single-trajectory algorithm (1 + 1)-type algorithm if in each
iteration t it generates one solution y and takes as next parent individual x(t)

either y or x(t−1). Among the above examples, (randomized) local search, the
Metropolis algorithm, simulated annealing, and the (1 + 1) EA are (1 + 1)-
type algorithms.

We briefly describe the (1 + 1)-type algorithms regarded in this work.
Usually all these algorithms start with a solution x(0) chosen uniformly at
random from {0, 1}n. Since none of our results relies on this assumption, we
allow any kind of initialization, that is, also without explicit mention all our
results hold for any initial search point x(0). We formulate all algorithms for
the maximization of a given objective function f : {0, 1}n → R, which as
common in evolutionary computation we call fitness.

The Randomized local search (RLS) heuristic in each iteration t
generates a new solution y by copying x(t−1) and then flipping a single bit,
chosen uniformly at random, in y. If f(y) ≥ f(x(t−1)), then x(t) := y, else
x(t) := x(t−1).

The Metropolis algorithm is identical to RLS apart from the selection
step. If f(y) ≥ f(x(t−1)), then again x(t) := y. However, if f(y) < f(x(t−1)),
then still with probability

exp

(

−
f(x(t−1))− f(y)

T

)

the algorithm accepts the new solution, that is, x(t) := y. Only with proba-
bility 1− exp(−(f(x(t−1))− f(y))/T) the new solution is discarded, that is,
x(t) := x(t−1). The temperature T > 0 is an algorithm parameter that de-
fines the selection pressure. The Metropolis algorithm with a time-dependent
(usually decreasing) temperature T (t) is called simulated annealing.

The (1+1) EA is identical to randomized local search except that now
the offspring y is generated by a global mutation operator. In this work,
we only consider the most classic choice of mutation, which is standard bit
mutation. Here, y is taken as a copy of x(t−1) and then each bit of y is flipped
independently with probability p, the mutation rate. The most common
choice, and our choice in this work for all static mutation rates, is p = 1

n
.

When the mutation rate is chosen randomly according to a power-law with
exponent β > 1, this algorithm is called fast (1+1) EA [DLMN17]. More
precisely, here a random α ∈ [1..n/2] is chosen such that Pr[α = k] =

k−β/
∑n/2

i=1 i
−β and then standard bit mutation is performed with p = α

n
.

From the description of the algorithms, the following property is immedi-
ate. In simple words, it says that the algorithms go to any Hamming neighbor
that is not worse than the parent with probability Ω(1

n
).

9

Proposition 1. For any algorithm A described above (and any choice of the
parameters not fixed above, that is, temperature T , time-dependent temper-
ature T (t), or power-law exponent β > 1), there is a constant cA > 0 such
that the following holds.

For any iteration t and any z with H(z, x(t−1)) = 1, and regardless of
what happened in the previous iterations, the offspring y generated by A in
iteration t satisfies Pr[y = z] ≥ cA

n
. If f(y) ≥ f(x(t−1)), then also Pr[x(t) =

z] ≥ cA
n
.

2.2 Noise Models

Optimization in the presence of noise, that is, stochastically disturbed ac-
cess to the problem instance, is an important topic in the optimization of
real-world problems. The most common form are noisy objective functions,
that is, that the optimization algorithm does not always learn the correct
quality (fitness) of a search point. Randomized search heuristics are gener-
ally believed to be reasonably robust to noise, see, e.g., [JB05, BDGG09],
which differs from problem-specific deterministic algorithms, which often
cannot cope with any noise. Some theoretical work exists on how ran-
domized search heuristics cope with noise, started by the seminal pa-
per of Droste [Dro04] and, quite some time later, continued with, among
others, [ST12, DL15, AMT15, FKKS15, GK16, FKKS17, Sud20, QYZ18,
BQT18, DNDD+18, QBJT19, DS19]. We refer to the later papers or the
survey [NPR20] for a detailed discussion of the state of the art.

In theoretical studies on how randomized search heuristics cope with
noise, the usual assumption is that all fitness evaluations are subject to in-
dependently sampled noise. Also, it is usually assumed that whenever the
fitness of a search point is used, say in a selection step, then it is evaluated
anew. This was not done, e.g., in [ST12], but as [DHK12] points out, a much
better performance can be obtained when reevaluating solutions.

Various models of noise have been investigated so far. In prior noise mod-
els, the search point to be evaluated is subject to a stochastic modification
and the algorithm learns the fitness of the disturbed search point (but not
the disturbed search point itself). The following prior noise models from the
literature will be covered in this work. In this description, we always assume
that we try to learn the fitness f of a search point x.

One-bit noise with probability p: With probability p, the fitness of
a random Hamming neighbor of x is returned, that is, y is obtained from
x by flipping a bit chosen uniformly at random and then f(y) is returned;
otherwise, the correct fitness f(x) is returned. An asymmetric version of this

10

noise was considered in [QYZ18]. We do not regard this here, but note that
all our results hold for this noise as well.

Independent bit-flip noise with rate q: From x, a search point y is
obtained by flipping each bit independently with probability q; then f(y) is
returned.

(p, q)-noise: With probability p, a search point y is obtained from x
by flipping each bit independently with probability q and f(y) is returned;
otherwise, f(x) is returned. Note that the probability that the fitness of the
original search point is returned is p+(1−p)(1− q)n. The (p, q)-noise model
contains as special case (1, q) the independent bit-flip noise with rate q.

Very roughly speaking, the typical results for these types of noise are
that (1 + 1)-type algorithms remain efficient when noise occurs with a low
probability, e.g., of O(logn

n
) for the OneMax benchmark or O(logn

n2) for the
LeadingOnes benchmark, but that asymptotically higher noise levels lead
to super-polynomial runtimes. By using non-trivial populations, resampling,
or resorting to other algorithms such as estimation-of-distribution algorithms,
the robustness to noise can be considerably improved.

In the posterior noise model, the search point x is first correctly evaluated,
but then the obtained fitness f(x) is disturbed. The most common posterior
noise is additive noise, that is, the returned fitness is f(x) +X , where X
is a random variable sampled from some given distribution, which does not
depend on x (that is, for all search points the difference between the true
and the noisy fitness is identically distributed). The most common setting is
that X follows a Gaussian distribution. We note that regardless of X , this
noise gives a correct comparison of two search points of different quality with
probability at least 1

2
.

Proposition 2. Let x, y ∈ {0, 1}n with f(x) > f(y) (resp. f(x) ≥ f(y)). Let
X, Y be independent and identically distributed real-valued random variables.
Then Pr[f(x) +X > f(y) + Y] ≥ 1

2
(resp. Pr[f(x) +X ≥ f(y) + Y] ≥ 1

2
).

Proof. By symmetry, we have Pr[X ≥ Y] = Pr[Y ≥ X]. Hence

1 = Pr[(X ≥ Y) ∨ (Y ≥ X)]

≤ Pr[X ≥ Y] + Pr[Y ≥ X] = 2Pr[X ≥ Y].

This shows Pr[X ≥ Y] ≥ 1
2
and thus Pr[f(x) + X > f(y) + Y] ≥ Pr[X ≥

Y] ≥ 1
2
(resp. Pr[f(x) +X ≥ f(y) + Y] ≥ Pr[X ≥ Y] ≥ 1

2
).

Since our aim is showing that also in the presence of extreme noise we
still have at most exponential runtimes, we also consider the following un-
restricted adversarial noise with probability p. In this model, with

11

probability 1 − p the true fitness is returned. With probability p, however,
an all-powerful adversary decides the returned fitness value. This adversary
knows the algorithm, the optimization problem, and the full history of the
optimization process. He does not know, though, the outcome of future
random events (both concerning the algorithm and the noise).

The following basic observation gives an estimate for the probability that
a noisy fitness comparison gives the right result. A corresponding result
for additive posterior noise, namely that regardless of the noise distribution
the fitnesses are compared correctly with probability at least 1

2
, was already

shown in Proposition 2.

Proposition 3. Let ε > 0. Let f : {0, 1}n → R. Let x, y ∈ {0, 1}n such that
f(x) ≤ f(y). Consider any noise model described above except the one of
additive posterior noise. Assume that p ≤ 1 − ε in the case of one-bit noise
or unrestricted adversarial noise, (1 − q)n ≥ ε in the case of bit-wise noise,
1 − p(1 − (1 − q)n) ≥ ε in the case of (p, q)-noise. Denote by f̃ the noisy
version of f with our convention that each noise evaluation of f uses fresh
independent randomness. Then Pr[f̃(x) ≤ f̃(y)] ≥ ε2.

Proof. Under the conditions named above, with probability at least ε the
noisy fitness returns the true fitness value. Consequently, with probability
at least ε2 this happens for both x and y and we have thus f̃(x) ≤ f̃(y).

2.3 Benchmark Problems

We now describe the benchmark problems used in this paper. They are all
well-known and extensively used, so we refer to the literature [NW10, AD11,
Jan13, DN20] for more details. As said earlier, we only regard problems de-
fined on bit-strings of length n, hence all functions are {0, 1}n → R. In many
respects the easiest benchmark problem is the function OneMax defined by
OM(x) := OneMax(x) := ‖x‖1 =

∑n
i=1 xi for all x = (x1, . . . , xn) ∈ {0, 1}n.

This function is a member of the class of linear functions, which are all
functions f such that f(x) =

∑n
i=1 aixi for given a1, . . . , an ∈ R. One often

assumes that all ai are positive, but we do not need this assumption. A
function f is called strictly monotonic (or strictly monotonically increas-
ing), where the word strictly often is omitted, when f(x) < f(y) for all
x, y ∈ {0, 1}n with x ≤ y (component-wise) and x 6= y. This is equiva-
lent to saying that whenever one flips a zero of the argument into a one,
the fitness strictly increases. Clearly, linear functions with positive weights
ai are strictly monotonic. OneMax, arbitrary linear functions, and mono-
tonic functions can all be solved easily via randomized local search (RLS),

12

namely in time O(n logn), as follows from a classic coupon collector argu-
ment. The (1 + 1) EA with mutation rate Θ(1

n
) solves all linear functions

in time O(n logn) [DJW02, DG13, Wit13], but this is less obvious; for the
(1 + 1) EA with fast mutation, an O(n logn) runtime bound is only known
for OneMax [DLMN17]. The situation for strictly monotonic functions is
complicated [Jan07, DJS+13, CDF14, Len18], but the latest result [LMS19]
shows at least that the (1 + 1) EA with standard mutation rate 1

n
solves

all strictly monotonic functions in time O(n log2 n). For the Metropolis al-
gorithm, a temperature of T ≤ 1

2 lnn
is easily seen to suffice to optimize

OneMax in time O(n logn), whereas a temperature of T ≥ 2
lnn

leads to a
negative drift in a large range around the optimum, and thus to a super-
polynomial runtime. The precise boundary between polynomial and super-
polynomial, unfortunately hard to interpret, was determined in [KWW09].
We are not aware of such a result for simulated annealing, but it is clear that
the cooling schedule needs to lead to temperatures for which the Metropolis
algorithm is polynomial for a sufficiently long time to ensure a polynomial
runtime.

When noise comes into play, RLS and (1 + 1) EA can stand low noise
levels when optimizing OneMax. For the one-bit noise model, any
p = O(logn

n
) implies a polynomial runtime, higher values of p give super-

polynomial runtimes [Dro04]. Similar results hold for bit-wise noise and
(p, q) noise [GK16, QBJT19, DNDD+18]. For additive posterior noise, the
(1 + 1) EA has a polynomial runtime on OneMax if the variance of the
noise distribution is σ2 = O(logn

n
). If the noise has a Gaussian distribution,

then the runtime is polynomial if the variance is at most σ2 ≤ 1
4 lnn

, and it
is super-polynomial, if σ2 ≥ (1 + ε) 1

4 lnn
for a constant ε > 0 [GK16].

Still unimodal (that is, not having true local optima), but not any-
more strictly monotonic is the classic LeadingOnes function, which counts
the number of ones up to the first zero. Formally, LeadingOnes(x) :=
max{i ∈ [0..n] | ∀j ∈ [1..i] : xj = 1}. Both RLS and (1 + 1) EA op-
timize LeadingOnes in time Θ(n2). With one-bit noise p = O(logn

n2)
gives a polynomial runtime and larger values of p lead to super-polynomial
runtimes of the (1 + 1) EA; again, similar results hold for bit-wise and
(p, q) noise [QBJT19, Sud20]. For additive posterior noise, the runtime of
the (1 + 1) EA on LeadingOnes remains O(n2) if the noise distribution
has a variance of σ ≤ 1

12en2 . Another unimodal, but not strictly mono-
tonic class of functions that has been the subject of a runtime analysis
are monotone polynomials of degree d. For these, a (tight) upper
bound of O(2d n

d
log(n

d
+ 1)) has been shown for the expected runtime of

RLS [WW05]. For the (1 + 1) EA, only weaker bounds were proven, but the
O(2d n

d
log(n

d
+ 1)) was conjectured as well [WW05].

13

The classic multimodal benchmark is the class of jump functions. The
jump function with jump parameter (jump size) k ∈ [1..n] is defined by

Jumpnk(x) =

{

‖x‖1 + k if ‖x‖1 ∈ [0..n− k] ∪ {n},

n− ‖x‖1 if ‖x‖1 ∈ [n− k + 1 .. n− 1].

Hence for k = 1, we have a fitness landscape isomorphic to the one
of OneMax, but for larger values of k there is a fitness valley (“gap”)
Gnk := {x ∈ {0, 1}n | n − k < ‖x‖1 < n} consisting of the k − 1 highest
sub-optimal fitness levels of the OneMax function. This valley is impos-
sible to cross for RLS, very hard to cross for the Metropolis algorithm (an
expected optimization of exp(Ω(n)) was stated without proof in [LOW19]),
and hard to cross for the (1 + 1) EA. When using standard bit mutation with
mutation rate 1

n
, the probability to generate the optimum from a parent on

the local optimum is only pk := (1 − 1
n
)n−kn−k < nk. For this reason, the

runtime of the (1 + 1) EA on Jumpnk is Θ(nk) [DJW02]. When the fitness
in the gap region is not lower than the one of the local optimum, but equal
to it (so that there is no local optimum, but all search points in Hamming
distance 1 to k from the optimum have the same fitness n), then we have
the plateau function Plateaunk introduced in [AD18]. While not multi-
modal, it is still difficult to optimize and, for k constant, a runtime of Θ(nk)
was shown. The special case Plateaunn is the famous needle function
or needle-in-the-haystack problem, where all search points apart from the
optimum have the same fitness. Since a black-box optimization algorithm
optimizing this function receives no useful feedback during the optimization
(except when the optimum is found), no better algorithms than exhaustive
search can exist for this problem. We are not aware of any proven results on
the optimization of jump or plateau functions subject to noise, but we would
conjecture that the runtime is roughly the maximum of the noisy runtime
on OneMax and the noise-free runtime on the jump or plateau function.
In particular for the case of jump functions, this is not obvious since the
algorithm could also profit from noise, allowing it to accept a worse search
point which is closer to the target. A profit from this effect was mostly ruled
out for comma selection [Doe20a] and we expect a similar situation here.

2.4 A Technical Tool

Since we shall use it twice, we present here the additive drift theorem for
upper bounds of He and Yao [HY01] (see also the recent survey [Len20]),
which allows to translate an expected additive progress in a random process
(or a lower bound on it) into an upper bound on an expected hitting time.

14

Theorem 4. Let S ⊆ R≥0 be finite and 0 ∈ S. Let X0, X1, . . . be a random
process taking values in S. Let δ > 0. Let T = inf{t ≥ 0 | Xt = 0}. Assume
that for all t ≥ 0 and all s ∈ S \ {0} we have E[Xt − Xt+1 | Xt = s] ≥ δ.

Then E[T] ≤ E[X0]
δ

.

3 Proving Exponential Upper Bounds

We now state our general technical result which in many situations allows one
to prove exponential upper bounds without greater difficulties. We formulate
our result for single-trajectory algorithms since this is notationally convenient
and covers most of our applications. We show an exponential upper bound
for an EA with non-trivial parent population in Section 5. The result below is
formulated for hitting a general search point x∗, but the natural application
will be for x∗ being the optimum solution. We remind the reader that the
key argument of the proof below has already appeared in the conference
paper [DJW98], but has, to the best of our knowledge, not been used again
since then.

Theorem 5. Let A be a single-trajectory search algorithm for the optimiza-
tion of pseudo-Boolean functions. Let f : {0, 1}n → R and let x∗ ∈ {0, 1}n.
Assume that we use A to optimize f , possible in the presence of noise. As-
sume that this optimization process satisfies the following property.

(Acc) There is a number 0 < c ≤ 1 such that the following is true. Let
t ≥ 1 and x, z ∈ {0, 1}n such that x 6= x∗, H(x, z) = 1, and H(z, x∗) =
H(x, x∗)− 1. Regardless of what happened in the first t − 1 iterations
of optimization process, if x(t−1) = x, then Pr[x(t) = z] ≥ c

n
.

Let T = min{t ≥ 0 | x(t) = x∗}. Then T is stochastically dominated by
nGeom((c

e
)n). In particular, E[T] ≤ n(e

c
)n.

Proof. The key argument of this proof is that any interval of n iterations
with probability at least (c

e
)n generates x∗. More precisely, let t ≥ 0. We

condition on x(t) having any fixed value x ∈ {0, 1}n different from x∗. We also
condition on the history of the process up to iteration t − 1. We now show
that conditional on all this, we have Pr[x∗ ∈ {x(t+1), . . . , x(t+n)}] ≥ (c

e
)n.

Let d = H(x, x∗). We consider the event E that for all i ∈ [1..d], we have
H(x(t+i−1), x(t+i)) = 1 and H(x(t+i), x∗) = d− i, that is, that the algorithm A
reduced the distance to x∗ by exactly one in each iteration. Let P be the set
of all such paths x = z(0), . . . , z(d) = x∗, that is, the set of all (z(0), . . . , z(d))
such that z(0) = x and for all i ∈ [1..d], we have H(z(t+i−1), z(t+i)) = 1 and
H(z(t+i), x∗) = d − i. Each such path can alternatively be described by the

15

order in which the bits x and x∗ differ in are flipped. Consequently, |P| = d!.
By assumption (Acc), the probability that the algorithm follows exactly such
a path, that is, that x(t+i) = z(i) for all i ∈ [0..d], is at least (c

n
)d. We thus

have

Pr[E] =
∑

P∈P

Pr[A follows the path P]

≥ |P |
(c

n

)d

=
d!

(n
c
)d

≥
n!

(n
c
)n

≥
(c

e

)n

, (1)

where the last line uses c ≤ 1 and the elementary estimate n! ≥ (n
e
)n, see,

e.g., [Doe20e, (4.13)].
With this, we now know that any interval of n iterations (“phase”) finds

the optimum with probability at least p = (c
e
)n. Consequently, the number of

phases until the optimum is found is stochastically dominated by a geometric
law with parameter p, see [Doe19] for more details on this argument. Since
each phase by definition lasts exactly n iterations, the number of iterations
until the optimum is found is stochastically dominated by nGeom(p) and
the expected number of iterations is at most E[T] ≤ n(e

c
)n.

4 Applications of the Main Result

Despite its simplicity, Theorem 5 allows to prove, often without much effort,
exponential upper bounds for various different algorithmic settings, as we
now show.

4.1 Noisy Optimization of Weakly Monotonic Func-
tions

As one such result, we now prove that all (1 + 1)-type algorithms discussed in
Section 2.1 optimize any weakly monotonic function in at most exponential
time even in the presence of any noise discussed in Section 2.2 as long as
the noise probability is at most 1 − ε, ε > 0 a constant, in the cases of
prior or adversarial noise. We recall that the only previous result in this
direction [Sud20] shows this claim in the particular case of the (1 + 1) EA
optimizing the LeadingOnes function subject to one-bit or (p, q) prior noise
with noise probability at most 1

2
.

We say that a function f : {0, 1}n → R is weakly monotonic (or weakly
monotonically increasing) if for all x, y ∈ {0, 1}n the condition x ≤ y

16

(component-wise) implies f(x) ≤ f(y). The class of weakly monotonic func-
tions includes, obviously, all strictly monotonic functions and thus in particu-
lar the classic benchmarks OneMax and linear functions (with non-negative
coefficients). However, this class also contains more difficult functions like
LeadingOnes, monotone polynomials, plateau functions, and the needle
function.

Theorem 6. Let ε > 0 be a constant. Let A be one of the randomized
search heuristics RLS, the Metropolis algorithm, simulated annealing, or the
(1 + 1) EA using standard bit mutation with mutation rate 1

n
or using the

fast mutation operator with β > 1. Let f : {0, 1}n → R be any weakly
monotonic function. Assume that A optimizes f under one of the following
noise assumptions: one-bit noise or unrestricted adversarial noise with p ≤
1−ε, bit-wise noise with (1−q)n ≥ ε, (p, q)-noise with 1−p(1−(1−q)n) ≥ ε,
or posterior noise with an arbitrary noise distribution.

Then there is a constant C > 1, depending only on ε and the choice of A,
such that the time T to sample the optimum (1, . . . , 1) of f is stochastically
dominated by nGeom(C−n). In particular, the expected optimization time is
at most E[T] ≤ nCn.

Proof. By Theorem 5, it suffices to show that condition (Acc) is satisfied
for x∗ = (1, . . . , 1). To this aim, let x, z ∈ {0, 1}n such that H(x, z) = 1
and H(x, x∗) = H(z, x∗) + 1. Assume that for some iteration t the parent
individual satisfies x(t−1) = x. By Proposition 1, there is a constant cA
such that the offspring y generated by A in this iteration is equal to z with
probability at least cA

n
. By the weak monotonicity of f , we have f(z) ≥ f(x).

By Proposition 2 or 3, there is a constant cN = min{1
2
, ε2} depending on the

noise model such that the noisy evaluations of both x(t−1) and y = z in
iteration t with probability at least cN return an at least as good fitness
value for z as for x. In this case, A accepts z with probability one, that
is, we have x(t) = z. In summary, we have shown Pr[x(t) = z] ≥ cAcN

n
as

desired. Now Theorem 5 immediately gives the claim of Theorem 6 with
C = e

cAcN
.

4.1.1 Discussion: The Base of the Exponential

In this first work on exponential upper bounds, we did not try to optimize
the base of the exponential function, that is, the constant C such that the
upper bound is poly(n)Cn. As discussed in the introduction, this constant is
important to understand the performance of the algorithm and to compare
it to other exponential time algorithms such as blind random search and
exhaustive search.

17

Since optimizing implicit constants often is highly non-trivial and techni-
cal, we shall not start this endeavor here, but only briefly describe how our
current approach compares to the one of [Sud20] and where we see room for
improving our constants, possibly below the Θ(2n) runtime of blind random
search and exhaustive search.

We first note that the proof of [Sud20], which also is not optimized for
giving good constants, shows an upper bound that is at least exp(3en) ≥
(3480)n. Under the noise assumptions taken in [Sud20], we have a proba-
bility of at least cN ≥ 1

4
that parent and offspring are not subject to noise.

Regarding the (1 + 1) EA, the probability that a particular Hamming neigh-
bor of the parent is generated as offspring is at least 1

en
, that is, in the notation

of the proof of Theorem 5 we have cA = 1
e
. This would give a runtime bound

of at most n(e
cAcN

)n = n(4e2)n ≤ n(30)n. For other scenarios, the constant is
slightly better. For example, for RLS, Metropolis algorithm, and simulated
annealing, we have cA = 1. For posterior noise, cN can be taken as 1

2
as

shown in Proposition 2. Hence for these combinations, the above runtime
could be estimated by n(2e)n ≤ n(5.5)n.

We now argue why we are optimistic that with additional arguments,
the constants can be improved when taking into account the particular sit-
uations, that is, the noise model, the objective function, and the EA. For
example, when optimizing any weakly monotonic function subject to 1-bit
noise, we accept an offspring strictly dominating the parent (in the proof of
Theorem 5) except when the noise flips a zero-bit of the parent or a one-bit
of the offspring. This undesired event happens with probability at most 1

2
,

hence we have cN = 1
2
instead of cN = 1

4
before.

When taking more details of the fitness function into account, we have
additional arguments to reduce the impact of the noise. When optimizing
OneMax, for example, 1-bit noise is detrimental (in our proof) only if both
a one-bit of the offspring and a zero-bit of the parent is flipped, increasing
cN further to cN = (1− O(1

n
))15

16
.

Taking into account the particular algorithm also allows to fine-tune the
analysis. Let us take the (1 + 1) EA as an example. If in our main argument
we do not wait for the lucky event that in each iteration we approach the
target by one Hamming step, but by two steps, then the number of different
ways to go from a starting point in (pessimistic) Hamming distance n to the
optimum reduces by a factor of 2n/2, but we need to pay the price of 1

e
for

flipping exactly one bit only n/2 times instead of n times. So we reduce the
runtime bound by a factor of (2/e)n/2. Note that in addition now one-bit
noise has no chance to prevent us from accepting the desired parent if we
optimize OneMax.

18

Finally, a mild understanding of the optimization process can be ex-
ploited. In our analysis, we pessimistically pretended that we start a run
towards the target from a search point with maximal distance. Unless we
are optimizing a very deceptive problem, one should be able to argue that
the typical starting point will be rather in distance n

2
, more precisely, that

is takes an expected short time to reach such a search point, and then start
the run towards the target from there. Note that such an argument does not
need a mixing time argument as precise as in [Sud20]. With a little more un-
derstanding, we might also be able to argue that the algorithm easily (that is,
in expected polynomial time) reaches a search point that is even closer to the
optimum. Depending on the strength of the noise and the fitness function, it
can be possible to argue that up to a certain fitness level, the influence of the
fitness outweighs the negative effect of the noise. Consequently, the resulting
drift lets the algorithm quickly approach this fitness level. Such arguments
have been used, e.g., in [DNDD+18].

We shall not elaborate on these ideas further, but in summary they give
us some optimism that further, more detailed and problem-specific studies
will be able to show exponential upper bounds which are of order Cn for a
constant C that is less than 2 (which would prove the algorithm superior to
random search).

4.2 Noisy Optimization of Jump Functions

To show the versatility of our general approach, we continue with a number
of results of varying flavor. We first show that the (1 + 1) EA can optimize
noisy jump functions with jump size at most n

lnn
in exponential time.

Theorem 7. The result of Theorem 6 holds also for the (1 + 1) EA optimiz-
ing Jumpnk when k ≤ n

lnn
.

We omit a formal proof since it is very similar to the proof of Theorem 5
and 6. Let x be any search point outside the gap region of the jump function
and let x = z(0), z(1), . . . , z(d) = (1, . . . , 1) be any shortest path in the Ham-
ming cube from x to the optimum. Note that z(d−k) is a local optimum of the
jump function Jumpnk. We say that the (1 + 1) EA follows this path from
iteration t on if x(t+i) = z(i) for all i ∈ [0..d− k] and x(t+d−k+1) = (1, . . . , 1).
Since the assumptions of this theorem imply condition (Acc) of Theorem 5
(see the proof of Theorem 6), the probability that the (1 + 1) EA follows this
path is at least (c

n
)d−kn−k(1− 1

n
)n−k. When applying a union bound over all

these paths, we have to take care that k! paths describe the same event.
Consequently, the probability that the (1 + 1) EA follows some path from

x to (1, . . . , 1) is at least d!
k!
(c
n
)d(1 − 1

n
)n−k ≥ 1

k!
(c
e
)n 1

e
as in the proof of

19

Theorem 5. Since k ≤ n
lnn

, we have k! ≤ kk ≤ (n
lnn

)
n

lnn = exp(n
lnn

ln(n
lnn

)) ≤
exp(n). Hence the probability that the optimum is found in d−k+1 iterations
is at least (c

e2
)n 1

e
. The remainder of the proof is analogous to the one of

Theorem 5.

4.3 Optimization of OneMax Under Extreme Bit-Wise

Noise

The following result shows that our general method can also exploit particular
noise models. Here, for example, we show that OneMax can be optimized
in exponential time even in the presence of bit-wise noise with constant rate
q < 1. Recall that this means that the search point to be evaluated is
disturbed in an expected number of qn bits!

Theorem 8. Let ε > 0 be a constant. Let A be one of the randomized
search heuristics RLS, the Metropolis algorithm, simulated annealing, or the
(1 + 1) EA using standard bit mutation with mutation rate 1

n
or using the fast

mutation operator with β > 1. Consider optimizing the OneMax benchmark
function via A in the presence of bit-wise noise with rate q ≤ 1 − ε. Then
the expected time to find the optimum is at most nCn, where C is a constant
depending on ε and the algorithm used.

The theorem above contains as special case q = 1
2
the situation that the

noisy fitness returns the fitness of a search point uniformly distributed in
{0, 1}n. Here, obviously, the algorithm cannot gain any advantage from the
fitness evaluations.

Proof. The proof is identical to the one of Theorem 6 except that we cannot
invoke Proposition 3 to argue that with constant probability the better of two
Hamming neighbors also has the higher noisy fitness. So we complete the
proof by showing this missing statement. To this aim, let x, y ∈ {0, 1}n

such that H(x, y) = 1 and OneMax(x) ≤ OneMax(y), which implies
OneMax(y) = OneMax(x) + 1. By assumption, there is a unique bit
position i ∈ [1..n] such that xi 6= yi (“interesting bit”), and for this we have
xi = 0 and yi = 1.

Let f̃x, f̃y be one-time samples of the noisy fitness values of x and y. We
have f̃x = f(x⊕mx), where ⊕ denotes addition in Z2 (or logical XOR) and
mx ∈ {0, 1}n is random such that each bit of mx is 1 with probability q.
Likewise, let my be such that f̃y = f(y ⊕my).

With probability (1− q)2, we have mx
i = my

i = 0, that is, the interesting
bit is not affected by the noise. Conditional on this, we have f̃x = ‖(x ⊕
mx)|[1..n]\{i}‖1+0 and f̃y = ‖(y⊕my)|[1..n]\{i}‖1+1. The two random variables

20

‖(x ⊕mx)|[1..n]\{i}‖1 and ‖(y ⊕my)|[1..n]\{i}‖1 are identically distributed. By
symmetry, we have ‖(x⊕mx)|[1..n]\{i}‖1 ≤ ‖(y⊕my)|[1..n]\{i}‖1 with probability

at least 1
2
. Consequently, Pr[f̃x < f̃y] ≥

1
2
(1 − q)2 = 1

2
ε2. This shows the

missing claim and completes the proof.

4.4 Fitness Proportionate Selection

Our general method is not restricted to the analysis of noisy optimiza-
tion. In this subsection, we prove an upper bound matching an exponential
lower bound proven in [HJKN08]. The main result of [HJKN08] is that the
(1 + 1) EA needs at least exponential time to optimize any linear function
with positive coefficients when the usual elitist selection is replaced by fitness-
proportionate selection. Here an offspring y of the parent x is accepted with
probability f(y)

f(x)+f(y)
. We now show that this result is tight, that is, that an

exponential number of iterations suffices to optimize any linear function with
this algorithm. This result is true for all weakly monotonic functions.

Theorem 9. Let A be the (1 + 1) EA with fitness-proportionate selection.
Let f : {0, 1}n → R>0 be any weakly monotonic function. Then the first
iteration T in which the optimum of f is generated satisfies E[T] ≤ (2e2)n.

Proof. We use our main tool Theorem 5. Denote by x∗ = (1, . . . , 1) this
particular optimum of f . The probability that the (1 + 1) EA generates a
particular Hamming neighbor of the parent as offspring is 1

n
(1− 1

n
)n−1 ≥ 1

en
.

The probability that a Hamming neighbor with better fitness accepted is
at least 1

2
. This shows condition (Acc) of Theorem 5 with c = 1

2e
. By the

theorem, the expected runtime is at most (2e2)n.

4.5 Subexponential Upper Bounds

We now show that our method is not restricted to showing runtime bounds
that are exponential in the problem dimension. We recall that the (1, λ) EA
is a simple non-elitist algorithm working with a parent population of size one,
initialized with a random individiual. In each iteration, the algorithm creates
independently λ offspring via standard bit mutation (here: with mutation
rate 1

n
) and takes a random best offspring as new parent. In their very precise

determination of the efficiency threshold of the (1, λ) EA onOneMax, Rowe
and Sudholt [RS14] showed that the (1, λ) EA has a runtime of at least
exp(Ω(nε/2)) when λ ≤ (1 − ε) log e

e−1
(n), ε > 0 a constant. We now show

an upper bound of exp(O(nε)) for this runtime. We do not know what is
the right asymptotic order of the exponent. From the fact that there is a

21

considerable negative drift when the fitness distance is below nε

2λ
, we would

rather suspect that also a lower bound of exp(Ω(n
ε

λ
)) iterations, and hence

λ exp(Ω(n
ε

λ
)) fitness evaluations, comes true. Since this is not the main topic

of this work, we leave this an open problem.

Theorem 10. Let 0 < ε < 1 be a constant. Then there is a constant Cε

such that for all λ ≥ (1 − ε) log e
e−1

(n) the expected runtime of the (1, λ) EA

on OneMax is at most exp(Cεn
ε).

Proof. Our proof uses some of the arguments given in [RS14], however, since
we do not require a precise analysis of the easy part of the process, we simply
resort to the additive drift theorem (Theorem 4) for that part. For any search
point x ∈ {0, 1}n, denote by d(x) := n − OneMax(x) its fitness distance
(which also is its Hamming distance) to the optimum.

For the easy part that the fitness distance is more than d0 := 2e2nε

λ
, we

first show that starting from an arbitrary solution, with probability at least
1
2
within (1 + o(1))2

e
n2−ε iterations, a solution x with d(x) ≤ d0 is found. To

ease the notation, we show our claim for the initial solution x(0). Since the
sequence of search points x(t) generated by the (1, λ) EA is a Markov chain,
the claim holds analogously for any starting iteration.

Hence let x(0) be arbitrary. For t = 0, 1, 2, . . . , let Xt = max{0, d(x(t))−
d0} the distance to our target of having a d-value of at most d0. Let t be
such that Xt−1 > 0. By Lemma 7 of [RS14], we have E[Xt − Xt−1 | Xt >
Xt−1] ≤ e. The event Xt > Xt−1 itself means that all λ offspring generated
in iteration t have a fitness inferior to the one of the parent. For an offspring
to have an inferior OneMax fitness, it is necessary that at least one of the
1-bits of the parent was flipped. This happens with probability at most
1− (1− 1

n
)n−d0 ≤ 1− 1

e
, since Xt−1 > 0. Consequently,

Pr[Xt > Xt−1] ≤ (1− 1
e
)λ ≤ n−(1−ε).

In summary,

E[max{0, Xt −Xt−1}]

= E[Xt −Xt−1 | Xt > Xt−1] · Pr[Xt > Xt−1]

≤ en−(1−ε).

For the drift towards the target, we first observe that an offspring y is
better than the parent x with probability at least

d(x) 1
n
(1− 1

n
)n−1 ≥

d(x)

en
.

22

Consequently, the probability that at least one offspring is better, is at least
1 − (1− d(x)

en
)λ. By the elementary, but very useful Lemma 8 of [RS14], this

is at least

1−
1

λd(x)
en

+ 1
≥ 1−

1
λd0
en

+ 1

= 1−
1

2en−(1−ε) + 1

=
2en−(1−ε)

2en−(1−ε) + 1
≥ (1− o(1))2en−(1−ε).

Recalling that a fitness improvement means that the process (Xt) goes down
by at least one, we have, E[max{0, Xt−1 − Xt}] = E[Xt−1 − Xt | Xt >
Xt−1] · Pr[Xt > Xt−1] ≥ 1 · (1− o(1))2en−(1−ε).

We have just computed that the drift of the process (Xt) satisfies

E[Xt−1 −Xt | Xt−1 > 0]

≥ E[max{0, Xt−1 −Xt}]− E[max{0, Xt −Xt−1}]

≥ (1− o(1))2en−(1−ε) − en−(1−ε) = (1− o(1))en−(1−ε).

Consequently, by the additive drift theorem (Theorem 4), the first time T to
have d(x(T)) ≤ d0 satisfies

E[T] ≤
n

(1− o(1))en−(1−ε)
= (1 + o(1))1

e
n2−ε.

By Markov’s inequality, with probability at least 1
2
, 2E[T] ≤ (1+ o(1))2

e
n2−ε

iterations suffice to have a parent individual x(t) with d(x(t)) ≤ d0.
We now argue, reusing some arguments from the proof of Theorem 5, that

now another d0 iterations suffice to find the optimum with probability at least
exp(−Cen

ε). In a similar manner as above, we see that if the current parent
individual has a fitness distance of d ≤ d0, then the probability to increase
the fitness of the parent in one iteration 1− (1− d

en
)λ ≥ λd

en+λd
≥ λd

(e+2e2)n
by

our assumption that d ≤ d0 and the blunt estimate λd ≤ 2e2n.

23

Consequently, the probability that d0 iterations suffice to find the opti-
mum is at least

d0
∏

d=1

dλ

(e+ 2e2)n
=

(

λ

(e+ 2e2)n

)d0

(d0)! ≥

(

d0λ

e(e + 2e2)n

)d0

= exp

(

−d0 ln

(

e(e + 2e2)n

d0λ

))

= exp

(

−
2e2nε

λ
ln

(

e(e + 2e2)n1−ε

2e2

))

≤ exp(−C ′
εn

ε)

for a suitable constant C ′
ε; note that we used λ = Ω(log n) in the last step.

Now as in the proof of Theorem 5, the runtime is stochastically dominated
by (1+ o(1))2

e
n2−ε + d0 times a geometric random variable with success rate

p = 1
2
exp(−C ′

εn
ε), which gives the claimed expected runtime of at most

(1 + o(1))(2
e
n2−ε + d0)

1
p
= exp(Cεn

ε) for a suitable choice of Cε.

5 An Exponential Upper Bound for the

Mutation-based Simple Genetic Algorithm

To indicate that our general analysis method is not restricted to (1 + 1)-type
algorithms, we now prove an exponential upper bound for the mutation-
based simple genetic algorithm (simple GA), which uses a non-trivial parent
population and which is a generational GA, that is, individuals from the
current population are never taken into the next population. We believe
that, in principle, this algorithm could be covered via an extension of the
framework regarded in Theorem 5, but for the sake of readability we prefer
to give an independent analysis even if this requires repeating (in a compact
manner) some arguments from the proof of Theorem 5.

The simple GA traditionally is used with crossover [Gol89]. The
mutation-only version has been regarded in the runtime analysis commu-
nity mostly because runtime analyses for crossover-based algorithms are ex-
tremely difficult. For example, the first runtime analysis of the crossover-
based version is only from 2012 [OW12] and only shows results for relatively
small population sizes below n1/8 (the current best result [OW15] covers
population sizes up to slightly below n1/4), whereas for the mutation-based
version already in 2009 a strong result valid for all polynomial population
size was shown [NOW09].

We start by making this algorithm precise and then discuss the known re-
sults. The mutation-only version of the simple GA with population size µ ∈ N

24

for the optimization of a non-negative fitness function f : {0, 1}n → R≥0 is
described in Algorithm 1. The algorithm starts with a population P (0) of
µ random individuals from {0, 1}n (our result will be valid for any initial
population, but the usual initialization is random). We view a population P
as an array (tuple) P = (P1, . . . , Pµ) of not necessarily distinct individuals.
In each iteration t = 1, 2, 3, . . . , the simple GA computes from the previous
population P (t−1) a new population P (t) by µ times independently selecting
an individual from P (t−1) via fitness proportionate selection and mutating it
via standard bit mutation with mutation rate p = 1

n
. Here fitness proportion-

ate selection from P (t−1) means that the i-th individual P
(t−1)
i is chosen with

probability f(P
(t−1)
i)/

∑µ
j=1 f(P

(j)); except when all individuals have fitness
zero, then fitness proportionate selection agrees with uniform selection, that
is, the i-th individual is chosen with probability 1

µ
.

Algorithm 1: The simple genetic algorithm (simple GA) with pop-
ulation size µ and mutation rate p = 1

n
to maximize a function

f : {0, 1}n → R≥0.

1 Initialize P (0) with µ individuals chosen independently and uniformly
at random from {0, 1}n;

2 for t = 1, 2, . . . do
3 for i ∈ [1..µ] do
4 Select x ∈ P (t−1) via fitness proportionate selection;

5 Generate P
(t)
i from x by flipping each bit independently with

probability p = 1
n
;

The existing runtime results for the simple GA are not very encourag-
ing for this algorithm. Apart from results for very small mutation rates
p = O(n−2), see [DL16, Theorem 16] and [DK19, Theorem 22], or results for
exponentially transformed fitness functions [NOW09, Theorem 13 and 14],
they show that the selection pressure resulting from fitness proportionate se-
lection is not strong enough to give a sufficient progress to the optimum. The
precise known results for the performance of Algorithm 1 on the OneMax

benchmark are the following. [NOW09, Theorem 8] showed that the simple

GA with µ ≤ poly(n) needs with high probability more than 2n
1−O(1/ log log n)

iterations to find the optimum of the OneMax function or any search point
in Hamming distance at most 0.003n from it. This is only a subexponential
lower bound. In [Leh11, Corollary 13], building on the lower bound method
from [Leh10], a truly exponential lower bound is shown and this for weaker
the task of finding a search point in Hamming distance at most 0.029n from

25

the optimum, but only for a relatively large population size of µ ≥ n3 (and
again µ ≤ poly(n)). The conditions µ ≥ n3 and µ ≤ poly(n) were removed
in [Doe20c]. Lehre [Leh11] also showed an exponential lower bound for the
time to reach the optimum for a (mildly) scaled version of fitness proportion-
ate selection and for general Θ(1/n) mutation rates. For the crossover-based
version of the simple GA the current best results is that with population size
µ ≤ n(1/4)−ε it takes at least time 2n

ε/11
to find a solution that is a small

constant factor better than n
2
, which is the expected fitness of a random

solution.
For the mutation-based version of the simple GA (Algorithm 1) we now

show that the known exponential lower bounds are tight, that is, regardless
of the population size (as long as it is not super-exponential) the simple GA
finds the optimum of the OneMax benchmark in expected time exp(O(n)).

Theorem 11. Consider a run of the simple GA with arbitrary population size
µ and with an arbitrary initial population P (0) on the OneMax benchmark.
Let T be the first iteration in which the optimum of OneMax is generated.
Then T � O(n)Geom(− exp(O(n)) and E[T] = exp(O(n)). In particular, if
µ = exp(O(n)), then the optimum is sampled within an exponential number
of fitness evaluations.

Proof. We follow the rough outline of the proof of Theorem 5. As there,
it suffices to show that for any state of the algorithm the probability that
the optimum is found in the next O(n) iterations is at least exp(−O(n)).
Then a simple restart argument as in the proof of Theorem 5 shows that
T � O(n)Geom(− exp(O(n)) and thus E[T] = exp(O(n)).

Obtaining a fitness of at least n
3
: To have a better control over the

individuals selected via fitness proportionate selection, it helps to have at
least one individual with fitness at least n

3
in the population. To this aim, we

now show that when starting the simple GA with an arbitrary population, it
takes an expected time of at most 3n iterations to have at least one individual
in the population that has fitness at least n

3
.

Let P (0) be an arbitrary initial population and let P (t), t = 0, 1, 2, . . . be
the populations generated in a run of the simple GA started with P (0). We
regard the following random process Xt, t = 0, 1, 2, If P (t) contains at
least one individual with fitness n

3
or more, or if t ≥ 1 and Xt−1 = n, then

let Xt := n. Otherwise, let Xt be the average fitness of the individuals in
P (t). This defines a random process in a finite subset of [0, n]. We estimate
T0 := min{t | Xt = n}. Assume that for some t we have Xt < n. We
compute the expected fitness of an individual in P (t+1). Such an individual
y is generated from a parent x chosen via fitness proportionate selection
from P (t) by flipping each bit independently with probability p = 1

n
. We

26

compute E[OM(y) | x] = OM(x) + (n−OM(x)) 1
n
−OM(x) 1

n
≥ OM(x) +

1
3
, using that the OM(x) ≤ n

3
. Since fitness-proportionate selection favors

better individuals, OM(x) stochastically dominates the fitness of a random
individual X from P (t), see [Doe20d, Lemma 12]. Consequently, E[OM(y)−
OM(X)] ≥ E[OM(y) − OM(x)] ≥ 1

3
. Note that E[OM(y)] is also the

expected average fitness of P (t+1). Since Xt+1 is this average fitness (which
is always at most n) or n (in the case that P (t+1) contains an individual with
fitness at least n

3
), we have E[Xt+1 − Xt] ≥ E[OM(y)−OM(x)] ≥ 1

3
. Our

computation just made was under the assumption that Xt < n. Hence we
have E[Xt+1 −Xt | t < T0] ≥

1
3
. By the additive drift theorem (Theorem 4),

we have E[T0] ≤ 3n. Via a simple Markov bound, we see that with probability
at least 1

2
, there is a t ∈ [0..6n] such that P (t) contains an individual with

fitness at least n
3
.

From an individual with fitness at least n
3
to the optimal so-

lution: For any population of the simple GA, an individual x with fitness
OM(x) ≥ n

3
in each selection of a particular parent has a probability of

q =
OM(x)

∑

y∈P f(x)
≥

n/3

µn
=

1

3µ

of being selected. Hence with probability 1 − (1 − q)µ ≥ 1 − (1 − 1
3µ
)µ ≥

1 − exp(−1
3
), it is selected at least once as parent (here we used the basic

estimate 1+r ≤ er valid for all r ∈ R). For the first offspring generated from
x in this iteration (and for any other, but we want to regard a particular
one), the probability that a particular Hamming neighbor of x results from
mutating x is at least 1

n
(1− 1

n
)n−1 ≥ 1

en
. Via an elementary induction we see

that if at some time t, say for simplicity t = 0, we have an individual x(0) in
the population with d := n − OM(x(0)) ≤ 2

3
n, then the probability that at

each time t ∈ [1..d] there is an x(t) ∈ P (t) such that OM(x(t)) = n − (d − t)
and x(t) has been generated from x(t−1) by flipping a single bit, is at least
(1
e
1
e
(1− exp(−1

3
)))n, where this number is computed as in (1).

This shows that for any time t of the run of the simple GA, regardless
of the past, the probability that the optimum of OneMax is sampled in
iterations t, . . . , t+7n− 1 is at least exp(O(n)). This completes the proof of
Theorem 11.

6 Conclusion and Outlook

In this work, we argued for proving exponential runtime guarantees for evo-
lutionary algorithms. Exponential-time algorithms have been a modern sub-
field of classic algorithms for around twenty years now for various reasons.

27

Exponential upper bounds for evolutionary algorithms can not only comple-
ment the many exponential lower bounds existing in this field (and by this
indicate that the problem is well-understood), but they can also rule out that
the algorithm does not suffer from an even worse runtime behavior such as
the not uncommon nΘ(n) runtime.

With Theorem 5 we provided a simple and general approach towards
proving exponential upper bounds. With this method, we easily proved ex-
ponential upper bounds for various algorithmic settings.

In this first work on exponential-time evolutionary algorithms, we have
surely not developed the full potential of this perspective in evolutionary com-
putation. The clearly most important question for future work is what can be
said about the constant C in the poly(n)Cn runtime guarantee. A constant
C less than 2 shows that the algorithm is superior to random or exhaustive
search. Taking again the field of classic algorithms as example, another in-
teresting question is if there are EAs with “nice” exponential runtimes such
as, e.g., the 1.0836n runtime of the algorithm of Xiao and Nagamochi [XN13]
for finding maximum independent sets in graphs with maximum degree 3.

We mention two directions in which extensions of our method would be
desirable. In Section 5, we have analyzed the mutation-based simple GA, but
as many previous works, we have shied away from the original simple GA
using crossover. Our proof, regarding one lucky lineage, does not apply to
settings with crossover. Hence nothing better than the trivial nn upper bound
is known, which is quite far from the 2n

ε/11
lower bound shown in [OW15] for

µ ≤ n(1/4)−ε.
In Section 4, we have applied our general method, formulated for single-

trajectory algorithms, mostly to (1 + 1)-type algorithms. The reason is that
when regarding more offspring, say in a run of the (1 + λ) EA for λ > 1,
then each of these could potentially interfere with the survival of the desired
offspring. Our methods would remain applicable when also excluding such
interferences in the lucky event we are waiting for, but this would lead to
upper bounds of order exp(O(nλ)). We do not believe that larger offspring
populations are that detrimental and hope that stronger methods can prove
upper bounds which are exponential only in the problem size n.

References

[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Random-
ized Search Heuristics. World Scientific Publishing, 2011.

28

[AD18] Denis Antipov and Benjamin Doerr. Precise runtime analysis
for plateaus. In Parallel Problem Solving From Nature, PPSN
2018, Part II, pages 117–128. Springer, 2018.

[AMT15] Youhei Akimoto, Sandra Astete Morales, and Olivier Teytaud.
Analysis of runtime of optimization algorithms for noisy func-
tions over discrete codomains. Theoretical Computer Science,
605:42–50, 2015.

[BDGG09] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and
Walter J. Gutjahr. A survey on metaheuristics for stochas-
tic combinatorial optimization. Natural Computing, 8:239–287,
2009.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Op-
timal fixed and adaptive mutation rates for the LeadingOnes
problem. In Parallel Problem Solving from Nature, PPSN 2010,
pages 1–10. Springer, 2010.

[BQT18] Chao Bian, Chao Qian, and Ke Tang. Towards a running time
analysis of the (1+1)-EA for OneMax and LeadingOnes under
general bit-wise noise. In Parallel Problem Solving from Nature,
PPSN 2018, Part II, pages 165–177. Springer, 2018.

[CDF14] Sylvain Colin, Benjamin Doerr, and Gaspard Férey. Monotonic
functions in EC: anything but monotone! In Genetic and Evo-
lutionary Computation Conference, GECCO 2014, pages 753–
760. ACM, 2014.

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-
box complexity to designing new genetic algorithms. Theoretical
Computer Science, 567:87–104, 2015.

[DFW11] Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. Sharp
bounds by probability-generating functions and variable drift.
In Genetic and Evolutionary Computation Conference, GECCO
2011, pages 2083–2090. ACM, 2011.

[DG13] Benjamin Doerr and Leslie A. Goldberg. Adaptive drift
analysis. Algorithmica, 65:224–250, 2013.

[DHK12] Benjamin Doerr, Ashish Ranjan Hota, and Timo Kötzing. Ants
easily solve stochastic shortest path problems. In Genetic and

29

Evolutionary Computation Conference, GECCO 2012, pages
17–24. ACM, 2012.

[DJS+13] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen,
and Christine Zarges. Mutation rate matters even when opti-
mizing monotone functions. Evolutionary Computation, 21:1–
21, 2013.

[DJW98] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the opti-
mization of unimodal functions with the (1 + 1) evolutionary al-
gorithm. In Parallel Problem Solving from Nature, PPSN 1998,
pages 13–22. Springer, 1998.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the
analysis of the (1+1) evolutionary algorithm. Theoretical Com-
puter Science, 276:51–81, 2002.

[DK19] Benjamin Doerr and Timo Kötzing. Multiplicative up-drift.
CoRR, abs/1806.01331, 2019.

[DL15] Duc-Cuong Dang and Per Kristian Lehre. Simplified runtime
analysis of estimation of distribution algorithms. In Genetic and
Evolutionary Computation Conference, GECCO 2015, pages
513–518. ACM, 2015.

[DL16] Duc-Cuong Dang and Per Kristian Lehre. Runtime analysis of
non-elitist populations: from classical optimisation to partial
information. Algorithmica, 75:428–461, 2016.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy
Nguyen. Fast genetic algorithms. In Genetic and Evolutionary
Computation Conference, GECCO 2017, pages 777–784. ACM,
2017.

[DN20] Benjamin Doerr and Frank Neumann, editors. Theory of
Evolutionary Computation—Recent Developments in Dis-
crete Optimization. Springer, 2020. Also available at
https://cs.adelaide.edu.au/∼frank/papers/TheoryBook2019-selfarchived.pdf.

[DNDD+18] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gau-
tier Izacard, and Dorian Nogneng. A new analysis method for
evolutionary optimization of dynamic and noisy objective func-
tions. In Genetic and Evolutionary Computation Conference,
GECCO 2018, pages 1467–1474. ACM, 2018.

30

https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf

[Doe19] Benjamin Doerr. Analyzing randomized search heuristics via
stochastic domination. Theoretical Computer Science, 773:115–
137, 2019.

[Doe20a] Benjamin Doerr. Does comma selection help to cope with local
optima? In Genetic and Evolutionary Computation Conference,
GECCO 2020, pages 1304–1313. ACM, 2020.

[Doe20b] Benjamin Doerr. Exponential upper bounds for the runtime of
randomized search heuristics. In Parallel Problem Solving From
Nature, PPSN 2020. Springer, 2020. To appear.

[Doe20c] Benjamin Doerr. Lower bounds for non-elitist evolutionary al-
gorithms via negative multiplicative drift. In Parallel Problem
Solving From Nature, PPSN 2020. Springer, 2020. To appear.

[Doe20d] Benjamin Doerr. Lower bounds for non-elitist evolutionary algo-
rithms via negative multiplicative drift. CoRR, abs/2004.01274,
2020.

[Doe20e] Benjamin Doerr. Probabilistic tools for the analysis of random-
ized optimization heuristics. In Benjamin Doerr and Frank Neu-
mann, editors, Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization, pages 1–87. Springer,
2020. Also available at https://arxiv.org/abs/1801.06733.

[Dro04] Stefan Droste. Analysis of the (1+1) EA for a noisy OneMax.
In Genetic and Evolutionary Computation Conference, GECCO
2004, pages 1088–1099. Springer, 2004.

[DS19] Benjamin Doerr and Andrew M. Sutton. When resampling to
cope with noise, use median, not mean. In Genetic and Evo-
lutionary Computation Conference, GECCO 2019, pages 242–
248. ACM, 2019.

[FK10] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algo-
rithms. Springer, 2010.

[FK13] Fedor V. Fomin and Petteri Kaski. Exact exponential algo-
rithms. Communications of the ACM, 56:80–88, 2013.

[FKKS15] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and An-
drew M. Sutton. Robustness of ant colony optimization to noise.
In Genetic and Evolutionary Computation Conference, GECCO
2015, pages 17–24. ACM, 2015.

31

https://arxiv.org/abs/1801.06733

[FKKS17] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and An-
drew M. Sutton. The compact genetic algorithm is efficient
under extreme Gaussian noise. IEEE Transactions on Evolu-
tionary Computation, 21:477–490, 2017.

[GK16] Christian Gießen and Timo Kötzing. Robustness of populations
in stochastic environments. Algorithmica, 75:462–489, 2016.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous
hitting times for binary mutations. Evolutionary Computation,
7:173–203, 1999.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publishing
Co., Inc., 1989.

[HJKN08] Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neu-
mann. Rigorous analyses of fitness-proportional selection for
optimizing linear functions. In Genetic and Evolutionary Com-
putation Conference, GECCO 2008, pages 953–960. ACM, 2008.

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity
of evolutionary algorithms. Artificial Intelligence, 127:51–81,
2001.

[Jan07] Thomas Jansen. On the brittleness of evolutionary algorithms.
In Foundations of Genetic Algorithms, FOGA 2007, pages 54–
69. Springer, 2007.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms – The
Computer Science Perspective. Springer, 2013.

[JB05] Yaochu Jin and Jürgen Branke. Evolutionary optimization in
uncertain environments – a survey. IEEE Transactions on Evo-
lutionary Computation, 9:303–317, 2005.

[JW06] Thomas Jansen and IngoWegener. On the analysis of a dynamic
evolutionary algorithm. Journal of Discrete Algorithms, 4:181–
199, 2006.

[KWW09] Lars Kaden, Nicole Weicker, and Karsten Weicker. Metropolis
and symmetric functions: a swan song. In Evolutionary Com-
putation in Combinatorial Optimization, EvoCOP 2009, pages
204–215. Springer, 2009.

32

[Leh10] Per Kristian Lehre. Negative drift in populations. In Paral-
lel Problem Solving from Nature, PPSN 2010, pages 244–253.
Springer, 2010.

[Leh11] Per Kristian Lehre. Fitness-levels for non-elitist populations.
In Genetic and Evolutionary Computation Conference, GECCO
2011, pages 2075–2082. ACM, 2011.

[Len18] Johannes Lengler. A general dichotomy of evolutionary algo-
rithms on monotone functions. In Parallel Problem Solving from
Nature, PPSN 2018, Part II, pages 3–15. Springer, 2018.

[Len20] Johannes Lengler. Drift analysis. In Benjamin Do-
err and Frank Neumann, editors, Theory of Evolutionary
Computation: Recent Developments in Discrete Optimiza-
tion, pages 89–131. Springer, 2020. Also available at
https://arxiv.org/abs/1712.00964.

[LMS19] Johannes Lengler, Anders Martinsson, and Angelika Steger.
When does hillclimbing fail on monotone functions: an entropy
compression argument. In Analytic Algorithmics and Combina-
torics, ANALCO 2019, pages 94–102. SIAM, 2019.

[LOW19] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair War-
wicker. On the time complexity of algorithm selection hyper-
heuristics for multimodal optimisation. In Conference on Arti-
ficial Intelligence, AAAI 2019, pages 2322–2329. AAAI Press,
2019.

[LZ19] Johannes Lengler and Xun Zou. Exponential slowdown for
larger populations: the (µ + 1)-EA on monotone functions. In
Foundations of Genetic Algorithms, FOGA 2019, pages 87–101.
ACM, 2019.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: muta-
tion and hillclimbing. In Parallel Problem Solving from Nature,
PPSN 1992, pages 15–26. Elsevier, 1992.

[NOW09] Frank Neumann, Pietro S. Oliveto, and Carsten Witt. Theoret-
ical analysis of fitness-proportional selection: landscapes and
efficiency. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2009, pages 835–842. ACM, 2009.

33

https://arxiv.org/abs/1712.00964

[NPR20] Frank Neumann, Mojgan Pourhassan, and Vahid Roostapour.
Analysis of evolutionary algorithms in dynamic and stochastic
environments. In Benjamin Doerr and Frank Neumann, ed-
itors, Theory of Evolutionary Computation: Recent Develop-
ments in Discrete Optimization, pages 323–357. Springer, 2020.
Also available at https://arxiv.org/abs/1806.08547.

[NS20] Frank Neumann and Andrew M. Sutton. Parameterized com-
plexity analysis of randomized search heuristics. In Ben-
jamin Doerr and Frank Neumann, editors, Theory of Evolu-
tionary Computation: Recent Developments in Discrete Op-
timization, pages 213–248. Springer, 2020. Also available at
https://arxiv.org/abs/2001.05120.

[NW10] Frank Neumann and Carsten Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their Computa-
tional Complexity. Springer, 2010.

[OW12] Pietro S. Oliveto and Carsten Witt. On the analysis of the
simple genetic algorithm. In Genetic and Evolutionary Com-
putation Conference, GECCO 2012, pages 1341–1348. ACM,
2012.

[OW15] Pietro S. Oliveto and Carsten Witt. Improved time complexity
analysis of the simple genetic algorithm. Theoretical Computer
Science, 605:21–41, 2015.

[PHST17] Tiago Paixão, Jorge Pérez Heredia, Dirk Sudholt, and Barbora
Trubenová. Towards a runtime comparison of natural and arti-
ficial evolution. Algorithmica, 78:681–713, 2017.

[QBJT19] Chao Qian, Chao Bian, Wu Jiang, and Ke Tang. Running time
analysis of the (1 + 1)-EA for OneMax and LeadingOnes under
bit-wise noise. Algorithmica, 81:749–795, 2019.

[QYZ18] Chao Qian, Yang Yu, and Zhi-Hua Zhou. Analyzing evolution-
ary optimization in noisy environments. Evolutionary Compu-
tation, 26:1–41, 2018.

[RS14] Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring
population size in the (1, λ) evolutionary algorithm. Theoretical
Computer Science, 545:20–38, 2014.

34

https://arxiv.org/abs/1806.08547
https://arxiv.org/abs/2001.05120

[RW20] Amirhossein Rajabi and Carsten Witt. Self-adjusting evolution-
ary algorithms for multimodal optimization. In Genetic and
Evolutionary Computation Conference, GECCO 2020, pages
1314–1322. ACM, 2020.

[ST12] Dirk Sudholt and Christian Thyssen. A simple ant colony op-
timizer for stochastic shortest path problems. Algorithmica,
64:643–672, 2012.

[Sud13] Dirk Sudholt. A new method for lower bounds on the running
time of evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation, 17:418–435, 2013.

[Sud20] Dirk Sudholt. Analysing the robustness of evolutionary algo-
rithms to noise: refined runtime bounds and an example where
noise is beneficial. Algorithmica, 2020. To appear.

[Wit05] Carsten Witt. Worst-case and average-case approximations by
simple randomized search heuristics. In Symposium on Theoret-
ical Aspects of Computer Science, STACS 2005, pages 44–56.
Springer, 2005.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a ran-
domized search heuristic on linear functions. Combinatorics,
Probability & Computing, 22:294–318, 2013.

[WW05] Ingo Wegener and Carsten Witt. On the optimization of mono-
tone polynomials by simple randomized search heuristics. Com-
binatorics, Probability & Computing, 14:225–247, 2005.

[XN13] Mingyu Xiao and Hiroshi Nagamochi. Confining sets and avoid-
ing bottleneck cases: a simple maximum independent set al-
gorithm in degree-3 graphs. Theoretical Computer Science,
469:92–104, 2013.

35

	1 Introduction
	1.1 Exponential Runtime Analysis
	1.2 State of the Art
	1.3 Our Results

	2 Preliminaries
	2.1 Algorithms
	2.2 Noise Models
	2.3 Benchmark Problems
	2.4 A Technical Tool

	3 Proving Exponential Upper Bounds
	4 Applications of the Main Result
	4.1 Noisy Optimization of Weakly Monotonic Functions
	4.1.1 Discussion: The Base of the Exponential

	4.2 Noisy Optimization of Jump Functions
	4.3 Optimization of OneMax Under Extreme Bit-Wise Noise
	4.4 Fitness Proportionate Selection
	4.5 Subexponential Upper Bounds

	5 An Exponential Upper Bound for the Mutation-based Simple Genetic Algorithm
	6 Conclusion and Outlook

