
HAL Id: hal-03354587
https://hal.science/hal-03354587

Submitted on 25 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Musical Expertise Is Associated with Improved Neural
Statistical Learning in the Auditory Domain

Jacques Pesnot Lerousseau, Daniele Schön

To cite this version:
Jacques Pesnot Lerousseau, Daniele Schön. Musical Expertise Is Associated with Improved Neural
Statistical Learning in the Auditory Domain. Cerebral Cortex, 2021, �10.1093/cercor/bhab128�. �hal-
03354587�

https://hal.science/hal-03354587
https://hal.archives-ouvertes.fr


Musical expertise is associated with improved neural statistical 

learning in the auditory domain. 
 

Jacques Pesnot Lerousseau 1,*, Daniele Schön 1 

 
1 Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France 

* Correspondence: jacques.pesnot-lerousseau@univ-amu.fr 

 

 

 

Corresponding Author and Lead Contact: Jacques Pesnot Lerousseau, Aix-Marseille 

Univ, INS, Inst Neurosci Syst, Marseille, France; jacques.pesnot-lerousseau@univ-amu.fr 

Conflict of interests: The authors declare no competing interests. 

Acknowledgments: We thank Céline Hidalgo and Patrick Marquis for helping with the data 

acquisition, Clement François, Benjamin Morillon, Maxime Maheu, Christopher Summerfield, 

and eLife for their Preprint Review service (Maria Chait, Timothy Behrens and three 

anonymous reviewers).  

Funding sources: Work supported by APA foundation (RD-2016-9), ANR-11-LABX-0036 

(BLRI), ANR-16-CONV-0002 (ILCB) and the Excellence Initiative of Aix-Marseille University 

(A*MIDEX).  

Author contributions: Conceptualization J.P.L. and D.S.; Data curation J.P.L.; Formal 

Analysis J.P.L.; Funding acquisition D.S.; Investigation J.P.L.; Methodology J.P.L. and D.S.; 

Project administration D.S.; Resources D.S.; Supervision D.S.; Visualization J.P.L.; Writing – 

original draft J.P.L. and D.S.; Writing – review & editing J.P.L. and D.S. 

 

  

mailto:jacques.pesnot-lerousseau@univ-amu.fr
mailto:jacques.pesnot-lerousseau@univ-amu.fr


Abstract. 

It is poorly known whether musical training is associated with improvements in 

general cognitive abilities, such as statistical learning (SL). In standard SL paradigms, 

musicians have shown better performances than non-musicians. However, this advantage 

could be due to differences in auditory discrimination, in memory or truly in the ability to learn 

sequence statistics. Unfortunately, these different hypotheses make similar predictions in 

terms of expected results. To dissociate them, we developed a Bayesian model and 

recorded electroencephalography (EEG). Our results confirm that musicians perform ~15% 

better than non-musicians at predicting items in auditory sequences that embed either low or 

high-order statistics. These higher performances are explained in the model by parameters 

governing the learning of high-order statistics and the selection stage noise. EEG recordings 

reveal a neural underpinning of the musician’s advantage: the P300 amplitude correlates 

with the surprise elicited by each item, and so, more strongly for musicians. Finally, early 

EEG components correlate with the surprise elicited by low-order statistics, as opposed to 

late EEG components that correlate with the surprise elicited by high-order statistics and this 

effect is stronger for musicians. Overall, our results demonstrate that musical expertise is 

associated with improved neural SL in the auditory domain. 
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Significance statement.  

 It is poorly known whether musical training leads to improvements in general 

cognitive skills. One fundamental cognitive ability, statistical learning (SL), is thought to be 

enhanced in musicians, but previous studies have reported mixed results. This is because 

such musician’s advantage can embrace very different explanations, such as improvement 

in auditory discrimination or in memory. To solve this problem, we developed a Bayesian 

model and recorded electroencephalography to dissociate these explanations. Our results 

reveal that musical expertise is truly associated with an improved ability to learn sequence 

statistics, especially high-order statistics. This advantage is reflected in the 

electroencephalographic recordings, where the P300 amplitude is more sensitive to 

surprising items in musicians than in non-musicians.  

 

 

 

 

  



Introduction. 

 Musical training provides exposure to rich statistical structure, which is thought to 

improve the ability to detect and use statistical regularities. The ability to learn sequence 

statistics is referred to as “statistical learning” (SL) (Dehaene et al. 2015). Having improved 

SL abilities in the auditory domain would allow musicians to make more accurate predictions 

about future events, thus improving perception (Summerfield and de Lange 2014), decision-

making (Skinner 1953), and language acquisition (Saffran et al. 1996; Regnault et al. 2001; 

Koelsch et al. 2002; Kuhl 2004; Koelsch et al. 2007; Jentschke and Koelsch 2009; Koelsch 

2009a; Romberg and Saffran 2010; Kim et al. 2011). In this definition, statistics is employed 

in a broad sense, and can refer for example to the frequency of occurrence of individual 

items (e.g. the frequency of ⚫, P(⚫), in ⚫⚫⚫⚫⚫⚫⚫) or to the transition probability between 

items (e.g. the transition probability of ⚫➞⚪, P(⚪|⚫), in ⚫⚫⚫⚫⚫⚫⚫). In reference to 

discrete Markov chain analysis, those statistics reflect different orders of Markov chains. The 

probability of occurrence of an item given the preceding one, e.g. P(⚫|⚫), is known as 1st 

order Markov probability (see Figure 1A top). Similarly, the probability of an item given the 

preceding K items, e.g. P(⚫|⚫⚫), is known as Kth order Markov probability (see Figure 1A 

bottom). The concept of Markov chain order defines an ordering of SL, from low to high 

order as K increases.  

  

Musicians perform better than non-musicians in different tasks of different SL orders. 

For example, numerous studies have shown that musicians have a mismatch negativity 

component (MMN) of higher amplitude, i.e. stronger neural responses to infrequent items 

than non-musicians (Regnault et al. 2001; Koelsch et al. 2002, 2007; Jentschke and Koelsch 

2009; Koelsch 2009a; Kim et al. 2011; Putkinen et al. 2014). Musicians are also better at 

segmenting words from an artificial language stream (Francois and Schön 2011). They have 

stronger neural responses to violations of 1st order Markov probability (Regnault et al. 2001; 

Koelsch et al. 2002, 2007; Jentschke and Koelsch 2009; Koelsch 2009a; Kim et al. 2011; 

François et al. 2012) and to higher order statistics (Vuust et al. 2009; Pearce et al. 2010; 

Daikoku 2018). However, it is not clear whether the advantage of musicians over non-

musicians concerns low or high-order statistics because both have rarely been 

orthogonalized. Furthermore, it is also not clear whether these differences arise from an 

improved ability to learn sequence statistics — and if so, at which SL order — or from other 

processes. Indeed, given the probabilistic nature of the task and the multiplicity of the 

cognitive processes at stake, the fact that musicians performed better than non-musicians 

can receive different explanations. We isolated four alternative hypotheses. (H0: auditory 

discrimination) Musicians are better at discriminating between sounds. (H1: memory span) 

Musicians use a longer history of stimuli to make their predictions. (H2: SL) Musicians are 

able to estimate transition probabilities of higher order, such as 2nd order Markov 

probabilities. (H3: selection noise) Musicians have less noise in the selection process, i.e. 

they lose less information in late stages of the statistical learning process and/or are better at 

transforming statistical estimates into choices. 

 

 The major problem is that these hypotheses (H0, H1, H2, H3) make very similar 

predictions in terms of expected results: impaired auditory discrimination, lower memory, 

inappropriate statistics and increased selection noise all provoke a decrease in average 

performances. Confusion regarding these hypotheses could explain the discrepancies 
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observed in the literature, where the musician advantage is not always replicated (Regnault 

et al. 2001; Koelsch et al. 2002; Steinbeis et al. 2006; Koelsch et al. 2007; Miranda and 

Ullman 2007; Koelsch and Jentschke 2008; Koelsch and Sammler 2008; Jentschke and 

Koelsch 2009; Koelsch 2009a; Loui et al. 2010; Kim et al. 2011; Rohrmeier et al. 2011). 

Finally, previous computational models used to study trial-by-trial responses (Squires et al. 

1976; Regnault et al. 2001; Koelsch et al. 2002, 2007; Mars et al. 2008; Jentschke and 

Koelsch 2009; Koelsch 2009a; Kim et al. 2011; Kolossa et al. 2012; Meyniel et al. 2016) 

were developed to uncover the general principles of SL. Being general by nature, they do 

not incorporate subject-specific parameters, and are thus unable to account for inter-

individual differences (Regnault et al. 2001; Koelsch et al. 2002, 2007; Jentschke and 

Koelsch 2009; Koelsch 2009a; Kim et al. 2011; Siegelman, Bogaerts, and Frost 2017; 

Siegelman, Bogaerts, Christiansen, et al. 2017). In the current work, rather than sticking to 

performance, we relied on modelling tools to tease apart the different hypotheses: we 

created a Bayesian model that makes explicit predictions, recorded electroencephalography 

(EEG) and assessed both trial-by-trial responses and inter-individual differences. 

 

We asked the following questions: do musicians have better abilities to predict items 

in auditory sequences than non-musicians? If yes, can we tease apart the possible sources 

of this advantage? Can we identify a neural correlate of the ability to learn auditory sequence 

statistics? To answer these questions, we first evaluated whether musicians have better SL 

abilities in the auditory domain than non-musicians by measuring their ability to predict the 

forthcoming items of auditory sequences that embed either low or high-order statistics. We 

first ascertained that stimuli were easily discriminable by musicians and non-musicians. We 

then tested each potential source of this advantage by fitting a computational model and 

contrasting subject-specific parameters. We identified a neural correlate of the musician’s 

advantage by correlating the model surprise with the EEG response amplitude at each time 

point, and compared the strength of this correlation in musicians and non-musicians. Finally, 

we explored the temporal structure of the EEG response by correlating the surprise elicited 

at very low, low and high-order SL with the EEG response amplitude at each time point. 

Based on the previous literature and because music provides a rich statistical structure, we 

made the hypothesis that musicians would be better at predicting items than non-musicians 

and that the advantage of musicians would be particularly pronounced for high-order 

statistics. We also made the hypothesis that the advantage of musicians would be explained 

by parameters relating to statistical learning, as opposed to parameters relating to memory 

or action selection. We also expected to observe a neural correlate of the musician’s 

advantage, with a higher modulation of the EEG response by surprise in musicians than in 

non-musicians.  

  

http://sciwheel.com/work/citation?ids=2215509,2215377,2215889,139999,2213817,2213780,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=2215509,2215377,2215889,139999,2213817,2213780,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=2215509,2215377,2215889,139999,2213817,2213780,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=2215509,2215377,2215889,139999,2213817,2213780,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=7326098,554264,6281690,6843071,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=7326098,554264,6281690,6843071,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=7326098,554264,6281690,6843071,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=7913086,4359526,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=7913086,4359526,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=7913086,4359526,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0


Methods. 

STIMULI AND PARADIGM. 

Participants. 

We collected data from 27 musician participants (17 females, mean age 33.3 y, 

standard deviation ± 12.2, range [18, 62]) and 26 non-musician participants (15 females, 

31.1 y ± 11.3 [20, 55]). All participated provided a written informed consent. All had normal 

hearing, reported no neurological deficits and received 20 euros for their time. Musicians had 

at least 10 years of intensive musical practice (19.9 y ± 11.4 range [10, 46], onset of 

practice, 7.8 y ± 4.7 [4, 25]). Non-musicians had no musical training. All participants were 

recruited at the university, among students and professors. This was done to increase the 

homogeneity in levels of education and in socioeconomic status between groups. Musicians 

were players in the university orchestra. Groups were matched on age (linear regression, ⚫ 

= 2.06 ± 3.23, p = 0.53) and sex (logistic regression, ⚫ = -0.22 ± 0.56, p = 0.70). No 

additional demographic variables were recorded. The experiment was approved by the Aix-

Marseille University Ethics Committee on research on human subjects.  

 

Stimuli. 

 Across the experiment, 10 sequences of 300 items (sounds) were presented to the 

participants. The vocabulary consisted of three items A, B and C. Each sequence contained 

the same amount of item types (100 As, Bs and Cs). The order of the items of the 10 

sequences was designed to probe two levels of statistical learning order. Five sequences 

were 1st order Markov chains: each item was chosen only based on the previous item given 

the corresponding column in a transition probability matrix of size 3x3. This matrix described 

the probability of choosing a particular item given the preceding one, e.g. P(A|B). The matrix 

was biased so that each item was followed primarily by one item (p=0.8) compared to the 

other two (p=0.1). The other five sequences were 2nd order Markov chains: each item was 

chosen only based on the previous pair of items given the corresponding column in a 

transition probability matrix of size 9x3. This matrix described the probability of a particular 

item given the preceding pair, e.g. P(A|CB). The matrix was biased so that each pair was 

followed primarily by one item (p=0.8) compared to the other two (p=0.1). A new  transition 

probability matrix was used for each sequence (in total five 1st order matrices and five 2nd 

order matrices for each participant). Before performing the experiment, we selected the 

sequences that allow proper parameter estimation (see Model parameter recovery). Note 

that the number of transition probabilities to be tracked grows exponentially with the order of 

the Markov chain, making high-order sequences (P(A|AA), P(A|BA), …, P(C|CC) → 27 

probabilities in total) harder to predict than low-order ones (P(A|A), P(A|B), …, P(C|C) → 9 

probabilities in total). 

 The three items A, B, and C were randomly assigned to three sounds for each 

participant. The same three sounds were used for each participant. The sounds were 

artificially generated impact sounds : wood, metal and glass (Aramaki et al. 2006). 

Importantly, all sounds had the same fundamental frequency, loudness and duration, and 

differed only in timbre (examples of “tuned” sounds available at http://www.lma.cnrs-

mrs.fr/~kronland/Categorization/sounds.html). Each sound was 150 ms long, with cosine 
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ramp on and off of 10 ms, presented at a fixed rate of ~1.6 Hz (onset asynchrony of 600 

ms). Each sequence lasted ~4.5 min.  

Explicit prediction judgments were probed 20 times per sequence. Probes were 

randomly spaced by 9, 12, 15, 18 or 21 items. During a probe, participants had 4s of silent 

intervals to indicate the most likely forthcoming item, using key press on a keyboard.  

 
 

Figure 1. Musicians are better than non-musicians at predicting the forthcoming items of auditory sequences that 

embed either low or high-order statistics. A. Paradigm. Each sequence was composed of 300 sounds, chosen among 3 

(impact sounds of glass, wood and metal; here respectively black, grey and white). Two types of sequences were generated, 

two examples of each are shown: (top sequences) Low-order statistics: 1
st
 order Markov chains, defined by P(st|st–1). Each item 

is chosen based on the previous one. (bottom sequences) High-order statistics: 2
nd

 order Markov chains, defined by P(st|st–2st–

1). Each item is chosen based on the previous pair of items. Participants were randomly probed for an explicit prediction about 

the forthcoming tone 20 times per sequence, here symbolized by question marks. B. Behavioral results. Overall, the 

performances were higher than chance (33%) but lower than the theoretical optimum (80% — sequences are probabilistic 

therefore 100% is not achievable). Participant’s predictions were closer to the generative statistics for low-order sequences, 

compared to high-order sequences (p < 10
–16

). On both types of sequences musicians were better than non-musicians (p < 10
–

7
). Error bars represent standard error of the mean (s.e.m.).  

Procedure. 

Classical SL paradigms are usually composed of two phases (Saffran et al. 1996; 

Regnault et al. 2001; Koelsch et al. 2002; Perruchet and Pacton 2006; Koelsch et al. 2007; 

Jentschke and Koelsch 2009; Koelsch 2009a; Romberg and Saffran 2010; Kim et al. 2011): 

a habituation block, consisting of the presentation of a sequence of items embedding the 

statistical regularity to be learned, and an evaluation block, consisting of the presentation of 

sequences that respect the regularity (“standard”) or not (“deviant”). Learning is indirectly 

measured as the impact of the violation of the rule, typically differences in reaction time or 

accuracy between “standard” and “deviant” items. Our paradigm differed in two aspects. (1) 

We evaluated SL during the learning block and eliminated the evaluation block. Beyond 

considerably reducing the duration of the experiment, this solves critical problems related to 

forgetting and learning occurring in the evaluation block (Regnault et al. 2001; Koelsch et al. 

2002, 2007; Jentschke and Koelsch 2009; Koelsch 2009a; Kim et al. 2011; François et al. 

2012). As the stimuli were probabilistic sequences and as learning is a continuous process, 

there was no a priori way to classify items into two binary classes, like “standard” or 

“deviant”. Instead, we relied on modelling tools and information theory to define the degree 

of expectation violation/fulfillment as the “theoretical surprise” elicited by each item. (2) The 
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task of the participant was to make explicit predictions, therefore SL was not indirectly 

measured via infrequent violations of the rule, but directly via the accuracy of the predictions 

and the adequation between participants’ responses and model predictions.  

 Participants were seated in a soundproof room in front of a computer screen, a 

loudspeaker and a keyboard. Prior to the experiment, normal hearing was assessed using a 

rapid 5dB-step audiogram. Participants were then familiarized with the stimuli and the 

mapping between the items and response keys in a familiarization block of 50 items. During 

this block, items were presented in a random order and participants had to press the key 

corresponding to the heard sound at every item (three keys “left”, “up” and “down”). The 

mapping between keys and sounds were fixed during the whole experiment and randomized 

across participants. The principal aim of the familiarization bloc was to train the participant to 

map the sounds and the keys. The second aim was to confirm that sounds were easily 

discriminable, by measuring the accuracy of the participants. On average, participants 

scored 97.8 % (± 0.5) of correct responses during this familiarization block.  

 Participants were then instructed to listen to the sequences, and to predict the 

forthcoming item using the keyboard whenever they saw the probe screen. Emphasis was 

put on accuracy and not speed. Each participant did 10 sequences, 5 of each type (1st order 

and 2nd order Markov chains), in a random order. Participants were informed of the 

unpredictable nature of the sequences and of the difference between the two types of 

sequences. This was done to minimize the use of incorrect strategies, such as trying to learn 

patterns or trying to uncover deterministic rules. More precisely, they were told that the 

sequences contained more or less regular patterns, but that there was always some 

variability engendering unpredictability. In piloting the experiment, most participants reported 

in the debriefing that some sequences were more difficult than others. We thus decided to 

inform all participants that some sequences were more difficult than others so as to prevent 

differences due to the awareness of the complexity level. They could take small breaks 

between each sequence. The whole experiment lasted ~50 min. 

The sequences were presented binaurally to participants at an adjusted comfortable 

level (~70 dB) using loudspeakers. Stimuli presentation and data collection was controlled 

with Python custom scripts. Submillisecond synchrony between stimulus presentation and 

EEG acquisition was ensured using triggers embedded in the audio files and delivered to the 

acquisition computer via a dedicated channel.  

 

BEHAVIORAL ANALYSES. 

 

Outliers. 

 One participant (musician) was removed from the analyses because of poor 

performances in the familiarization block (80%, z < -3 on the z-scored performances scale of 

the group).  

 

Model-free statistical analyses. 

 Statistical analyses were done using R and the package lme4 (Bates et al. 2014). 

The effects of sequence type, musicianship and their interaction on performances were 

estimated using logistic mixed-effect models. The random effect structure was set to take 

into account the experimental design, with a random intercept and a random “sequence 

type” slope for each participant. The probability of a correct response (0: incorrect, 1: 

correct) was modeled as a logistic regression with “sequence type” (0: 1st order Markov 

chain, 1: 2nd order Markov chain), “musicianship” (0: non-musicians, 1: musicians) and their 
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interaction as predictors. Model complexity was monitored using the Akaike Information 

Criterion, a standard measure to arbitrate between complexity and accuracy. The logistic 

mixed-effect model with the smallest Akaike Information Criterion (best model) was a model 

including “sequence type”, “musicianship” and their interaction as fixed effects. Reported p-

values are Satterthwaite approximations.  

 

MODELING ANALYSES. 

 

Computational model. 

 The optimal model was based on a previously published model IDyOM (Pearce and 

Wiggins 2012; Harrison et al. 2020), an n-gram model (Chen and Goodman 1999) that we 

reframed and extended in a Bayesian framework. It is based on an “ideal observer” model, in 

the sense that it exploits all available information to compute predictions: it learns the correct 

generative model, without noise and with perfect memory. Its predictions are encoded in a 

“transition probability matrix”, that links immediate contexts and items. This matrix is 

continuously updated using Bayes rule, given the observed sequence. Formally, the model 

is exposed to a sequence of T items s0:T–1 of a vocabulary Ω of size V. The context is given 

by the last K items of the sequence. As a Bayesian ideal observer, she uses Bayes rule to 

update her belief: 

  

 
 

The transition probability matrix ⚫ describes how likely each element is, given its 

preceding context. This learning process consists in estimating ⚫ from the sequence s0:T–1. 

This computation is based on the matrix N that contains the number of occurrences of each 

(K+1)-uplets of items in the sequence s0:T-1. The matrix N is a matrix of size V x VK where 

each row designates a particular item and each column a particular K-uplets of items. Nij 

designates the number of occurrences of the (K+1)-uplet corresponding to the cell (i, j) of the 

matrix N (the jth K-uplet followed by the ith item). The full derivation of the likelihood term is 

given in Supplementary Methods. In the end, the predictive posterior probability of the model 

for each item is, rather naturally: 

 

 
 

where P(st = xi|s0:T–1) is the probability of the element xi ∈ Ω. It corresponds to the ratio of two 

scalars: 

- Nij+1: the number of times that the context (jth column), i.e. the last K elements of the 

sequence, i.e. sT-K:T-1, and the element xi (i
th row) have been observed together plus 

one, 

- ∑v (Nvj+1): the number of times that the context sT-K:T-1 (the sum of the jth column) has 

been observed plus V. 

 

 On top of this ideal observer, three sources of noise were added: imperfect memory 

(⚫), order of the estimated transition probability matrix (K) and selection noise (β). First, the 

size of the context K varied between 0 and 2. Second, a leak parameter was introduced to 
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account for memory decay. Previous observations were weighted by a weight e–t/⚫ for the tth 

past stimulus. A small ⚫ indicates quicker memory decay and worsen the performances.  

Note that ⚫ is not related to K: K is the size of the chunk taken into account to compute the 

statistics (K = 2 means statistics on the form P(⚫|⚫⚫), while ⚫ modulates how far in the 

sequence the observer looks to estimate this statistics). Finally, predictions were 

transformed into choice probability via a softmax function with inverse temperature β. A high 

β indicates high noise in the decision process and worsens the performances.  

 

Formally, the predictive posterior probability of the model with noise is derived as 

follows: 

 

 
 

 “1” is the indicator function. It,i,K is a helpful indicator to count the number of times that 

the context (sT-K:T-1) has been observed with the element xi in the whole sequence (s0:T-1). At 

any given point t in the sequence, It,i,K is equal to one if and only if the substring st-K:t is equal 

to the substring sT-K:T-1xi. Otherwise It,i,K is equal to zero.  

 

 
  

Ni,⚫,K is the number of times that the context that the context (sT-K:T-1) has been 

observed with the element xi in the whole sequence. This counting is weighted by an 

exponential decay parameter. Past observations weigh less than recent observations. This 

weighting is the same as the PPM-Decay model (Harrison et al. 2020), an updated version 

of the IDyOM model.  

 

 
  

Where ∑v (Nvj+1) is the number of times that the context (sT-K:T-1) has been observed 

in the whole sequence, plus V. 

 

 
 

Pi,⚫,K is transformed into a choice probability Pmodel by taking the softmax of parameter 

β over all possible elements in the vocabulary Ω.  

The simulated effect of each parameter is displayed on Fig. Supp. 2.  

The model was run on each sequence independently and re-initialized at the 

beginning of each sequence (it does not keep track of probabilities present in the other 

sequences).  

 

Model parameter recovery. 

 We assessed our model selection procedure with a parameter recovery analysis. 

This standard procedure in modelling (Palminteri et al. 2017) ensures that there is no bias in 
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the parameter estimation, i.e. the values of the parameters do not suffer from a systematic 

overestimation or underestimation. We generated synthetic data for 103 models with random 

parameters (⚫ uniform between 2 and 1000, K, uniform choice between 0, 1 and 2, β 

exponential between 0 and 1). We then ensured that the estimated parameters from these 

synthetic data using our procedure were close to the original parameters. This was the case 

using our sequence and the same number of trials as our participants (spearman  ⚫⚫ = 0.91, 

⚫K= 0.99, ⚫β = 0.96, see Fig. Supp. 8).  

 

Model fitting.  

 The model fitting values reported in the paper are maximum likelihood estimates (see 

Fig. Supp. 3). Formally, for a set of responses r0:N, a model M⚫,K,β with parameters ⚫, K, β, 

and assuming that each response is independent, the likelihood was defined for each 

participant as:  

 

 
 

 
 

As the logarithm is a monotonically increasing function, finding the maximum of the 

likelihood is the same as finding the maximum of the log-likelihood. As the number of 

parameters is low (⚫, K, β), we relied on grid search to find estimates of this maximum. We 

computed the log-likelihood for each participant on trial-by-trial responses, for 200 

logarithmically spaced values of ⚫ (range 1, 1000), 3 values of K (range 0, 2), and 200 

logarithmically spaced values of β (range 0, 2). For each participant, the argmax of the log-

likelihood on this grid was defined as its parameters estimates. 

 

Between-group parameter comparison.  

 The subject-specific parameters were then compared between groups. The group 

comparison for parameters ⚫ and β was done using a linear regression, with “musicianship” 

as predictor (0: non-musicians, 1: musicians). Both parameters ⚫ and β were log-

transformed prior to the test to satisfy the assumptions of the linear model. The group 

comparison for parameter K was done using a logistic regression (0: K=1, 1: K=2), with 

“musicianship” as predictor (0: non-musicians, 1: musicians).  

 

ELECTROENCEPHALOGRAPHY (EEG).  

 

Apparatus. 

EEG signal was recorded at 1000 Hz sampling rate using a BrainAmp amplifier and 

64 preamplified Ag–AgCl electrodes mounted following the 10–10 international system 

(actiCap) in a soundproofed Faraday cage. The ground electrode was placed at AFz and the 

reference electrode at FCz. 

 

Preprocessing. 

 Signal processing was done using MNE-python (Gramfort et al. 2013) and custom 

scripts written in Python. Continuous data were bandpass filtered (1-40 Hz, zero-phase 

Hamming window FIR filter) and major artifacts rejected by visual inspection. Independent 

component analysis (fastICA) was used to remove physiological artifacts such as eye blinks 

and muscular activity. Data were then segmented into epochs of 600 ms starting at 50 ms 
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prior to item onset and stopping 550 ms after. Epochs were zero-mean normalized to 

baseline ([–50, 0] ms) and re-referenced to the algebraic average of all electrodes.  

 

Multiway canonical correlation analysis (MCCA). 

 Brain signals recorded with EEG have poor signal-to-noise ratio due to the presence 

of multiple competing sources and artifacts. A common remedy is to average recorded 

signals over multiple repetitions of the same stimulus and over multiple participants. 

However, averaging across participants is problematic, because differences in brain sources 

and geometry considerably increase variance. To deal with this problem, we relied on a 

powerful yet simple method recently developed (de Cheveigné et al. 2019). Multiway 

canonical correlation analysis (MCCA) consists of summarizing the data into individual 

spatial filters, named “summary components” (SC). These individual filters are built to 

maximize the temporal correlation between participants. MCCA was run on pooled data of 

musicians and non-musicians, in order to avoid spurious group differences. The first SC 

explained on average 55% of the variance of the ERP (peak correlation between SC time 

course and ERP at Fz, 93% explained variance) and was therefore selected for the rest of 

the study. Electrodes best explained by the SC were FC1, FC2, F1, Fz, F2, FC4, FC3, C2, C1, 

F4, F3, Cz, C3, which is consistent with an auditory response topography. 

 

Model surprise regression. 

As the stimuli are probabilistic sequences and as learning is a continuous process, 

there is no a priori way to classify items into two binary classes, like “expected” or 

“unexpected”. Instead, we relied on information theory (Shannon 1948) to define the degree 

of expectation as the “surprise” elicited by each item. Formally, the surprise is defined as –

log2P(xi) where P(xi) is the posterior probability P(sT = xi|s0:T–1, M⚫,K,β) of the model M⚫,K,β on 

the presented item sT. Critically, the surprise depends on a particular model of the world 

M⚫,K,β, that ascribes a probability P(sT = xi) to each possible item at each time step T. We 

defined M⚫,K,β as our model fitted on behavioral responses. We then associated a level of 

theoretical surprise to each item of each sequence for each participant.  

We therefore used the parameters extracted by model fitting from the behavioral 

responses (that concern only a small fraction of all items) to study the EEG responses to 

each item (280 items x 10 sequences per participant). A value of surprise was defined for 

each participant, each sequence, and each item, based on the behaviourally fitted 

parameters. We regressed the surprise against the SC amplitude in epochs that did not 

correspond to behavioral probes (280 items x 10 sequences). For that, we computed the 

linear regression of the surprise at each time point, ending up with an array of linear 

coefficients of size 52 x 600.  

Statistical significance of the coefficients was assessed using cluster permutations in time (n 

= 2048). A t-test against 0 was performed and cluster-corrected for each group to assess the 

significance of the linear regression (the statistic was the sum of the t-values in the cluster). 

An independent t-test was performed and cluster-corrected between groups to assess the 

significance of the difference of the coefficients between musicians and non-musicians (the 

statistic was the sum of the t-values in the cluster).   
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Results. 

Musicians perform better than non-musicians in an auditory task implicating SL. 

 

 Results were analyzed using mixed-effect logistic regression (see Figure 1B, see 

Methods). First of all, participants were better at predicting items in sequence embedding 

low-order statistics (63.2 ± 1.5 %) compared to sequences embedding high-order statistics 

(48.4 ± 1.0 %, ⚫ = –0.51 ± 0.07, p < 10–14). In other words, while all participants performed 

well above chance level (33%), their predictions are closer to the generative statistics for 

low-order sequences compared to high-order sequences. It should be noted that 

performances were intermediate between a random strategy (33 %) and the theoretical 

optimum (80 % - sequences are probabilistic therefore 100% is not achievable), indicating 

that the stimuli are well designed to study the imperfection (suboptimality) of cognitive 

processes and the inter-individual differences. On average, musicians (60.1 ± 2.2 %) were 

better than non-musicians (51.3 ± 1.9 %), and this effect is significant (between-group 

comparison ⚫ = 0.48 ± 0.11, p < 10–5). The interaction is significant (⚫ = -0.22 ± 0.10, p = 

0.021). The negative sign indicates that the effect of musical expertise is less important for 

high-order than for low-order statistical regularities. Yet, this difference holds for both types 

of sequences: musical expertise is associated with higher performance in a statistical 

learning task, for both low-order (⚫ = 0.48 ± 0.11, p < 10–4)  and high-order (⚫ = 0.27 ± 0.07, 

p < 10–3) statistical regularities. Control analysis revealed that musicians and non-musicians 

did not benefit from an overall increase in performance during the course of the experiment 

(effect of block rank ⚫ = –0.001 ± 0.01, p = 0.84, interaction with musicianship ⚫ = 0.02 ± 

0.01, p = 0.10), ruling out the possibility of a difference between groups due to task learning.  

 

 
 

Figure 2. Modelling reveals key differences between musicians and non-musicians learning strategies. A. Model. The 

model comprises three components. (left) The sequence is weighted over time by an exponential decay function of parameter 

⚫, mimicking memory forgetting (low values deteriorate performances). (middle) The model learns the transition probability 

matrix between contexts and items. The context can be composed of K = 1 or K = 2 items. The model can also be sensitive to 

the probability of an item without any reference context (K = 0).  (K < 2 deteriorates performances for high-order sequences). 

(right) The values of the transition probability matrix are converted into choice probability via a softmax rule, controlled by a 

selection noise parameter β (high values deteriorate performances). (B) Memory decay parameter ⚫ did not differ significantly 

(p = 0.80) between musicians and non-musicians. (C) Model order parameter K was higher in musicians than in non-musicians 



(p = 0.038), indicating a better match with a model that estimates higher order statistics. (D) Selection noise β was lower in 

musicians than non-musicians (p < 10
–3

). Transparent dots represent individual data. Error bars represent standard error of the 

mean (s.e.m.).  

 

Musicians estimate higher order transition probabilities (K) with a lower selection 

noise (β) compared to non-musicians.  

 

 We then used the model to tease apart which of the four alternative hypothesis 

explained the musicians’s advantage: (H0: auditory discrimination) Musicians are better at 

discriminating between sounds. We eliminated this hypothesis by creating stimuli that were 

easily discriminable. Indeed, participants scored 97.8 % (± 0.5) of correct responses in an 

item identification task during the familiarization block, with no significant differences 

between musicians and non-musicians (⚫ = 0.57 ± 0.55, p = 0.29). Furthermore, EEG 

recordings during this task revealed no amplitude nor latency differences between musicians 

and non-musicians (see Fig. Supp. 1). (H1: memory span) Musicians use a longer history of 

stimuli to make their predictions. (H2: SL) Musicians are able to estimate higher order 

statistics. (H3: selection noise) Musicians have less noise in the selection stage. 

 

 The model we designed (see Figure 2A, see Fig. Supp. 2, see Methods, see Supp. 

Methods for a formal derivation of the model) encodes its predictions in a “transition 

probability matrix”, that links immediate contexts and items. This matrix is continuously 

updated using Bayes rule, given the observed sequence. The context is given by the last K 

items of the sequence. We added three sources of noise to this model: imperfect memory 

(⚫), order of the estimated transition probability matrix (K) and selection noise (β). The 

model was fitted to each participant’s trial-by-trial responses (see Methods, see Figure 2B, 

Fig. Supp. 3). This procedure led to a set of three parameters per participant: ⚫, K, β. On 

average, the model explained 61.5 % (± 1.2) of the responses (musicians: 66.8 % ± 1.7; 

non-musicians: 56.3 % ± 1.5, low-order statistics sequences: 61.2 % ± 1.4, high-order 

statistics sequences: 62.1 % ± 1.4, between-group comparison ⚫ = 10.5 ± 2.0 %, p < 10-4, 

between-condition comparison ⚫ = 0.96 ± 1.5 %, p = 0.53). It should be noted that this is 

higher than chance (33%, p < 10-16) but also higher than the performances of the participants 

(55.8 ± 1.1 %, ⚫ = 5.4 ± 0.5 %, p < 10-13). This difference points to the fact that the model 

must be predicting more than just the participants’ correct responses, i.e. it must be 

predicting their errors as well.  

 

The comparison of the fitted parameters revealed key differences between the two 

groups. (H1) Memory decay ⚫ fitted values were not significantly different between 

musicians and non-musicians (⚫ = 0.09 ± 0.34, p = 0.80). (H2) The order K of the estimated 

transition probability matrix was higher in musicians compared to non-musicians (⚫ = 1.39 ± 

0.67, p = 0.038). This indicates that musicians tend to estimate higher order statistics. More 

specifically, the statistics they estimated (85 % of participants at K = 2) was the same as the 

statistics that generates the highest order sequences, i.e. 2nd order Markov chains. Non-

musicians were closer to a model that estimates lower-order statistics (58 % of participants 

at K = 2). This suggests that, compared to musicians, non-musicians estimate lower-order 

statistics, leading to a loss of performance. (H3) Finally, the selection noise ⚫ was lower in 

musicians compared to non-musicians (⚫ = -0.38 ± 0.11, p < 10–3). Critically, the individual 

values of selection noise did not correlate with performances (⚫ = –1.38 ± 1.15, p = 0.23) 

nor with reaction times  (⚫ = 0.21 ± 0.22, p = 0.37) in the item identification task of the 

familiarization block. This indicates that ⚫ does probably not represent response mapping 



confusion nor task engagement – global effects that should be observed similarly in the item 

identification task – but rather genuine noise in the late stages of the statistical learning. 

Without being exhaustive, we can hypothesize for example greater computational precision, 

less over/underestimation of small/large probabilities or application of accurate heuristics 

that marginally approximate Bayesian computations.  

 

It should be noted that the negative interaction reported in Figure 1B seems to be 

inconsistent with the modeling results: K was higher for musicians, which intuitively predicts 

a larger effect of musicianship for higher order statistics. However, model simulations reveal 

that this inconsistency is solved if we take into account that the selection noise ⚫ is changing 

as well. Indeed, a high selection noise reduces the difference in performance between low 

and high-order statistics – it “flattens” the line. As a consequence, the group that estimates 

low-order statistics with a high selection noise has less difference between high- and low-

order sequences than a group that estimates high-order statistics with a low selection noise. 

Overall, a higher K combined with a lower selection noise ⚫ predicts an interaction with a 

negative sign (see Fig. Supp. 2). This is what we observe in the data.  

 

The P300 amplitude is more strongly correlated to model surprise in musicians 

relative to non-musicians. 

 

We then used the model fitted on the behavioral data to shed light on the brain 

responses. Following previous work (Regnault et al. 2001; Koelsch et al. 2002, 2007; Mars 

et al. 2008; Jentschke and Koelsch 2009; Koelsch 2009a; Chase et al. 2011; Kim et al. 

2011; Maheu et al. 2019), we hypothesized that brain signals linearly scale with the level of 

theoretical surprise. We relied on information theory (Shannon 1948) to formally define 

theoretical surprise as the negative log probability under the model M that, given a context, 

the forthcoming item will be a given item. This quantity corresponds to the intuitive notion of 

surprise: it is low when the item is expected and high when unexpected. We defined M as 

our model fitted on behavioral responses. Formally, it was defined as –log2(P) where P is the 

posterior predictive probability of the presented item under the model M. We then associated 

a level of theoretical surprise with each item of each sequence for each participant. As only 

~7% of items were behavioral probes, ~93% could be used to study EEG responses. 

 

 We relied on spatial filtering to reduce the dimension of the EEG dataset. Using 

multiway canonical correlation analysis (de Cheveigné et al. 2019), we computed spatial 

filters that maximize the temporal correlation between participants without diminishing inter-

individual amplitude differences (see Methods, see Fig. Supp. 4). The filters are summary 

components (SC), ordered by explained variance. The first SC was a central (frontal 

positive, occipital negative) filter, with a standard auditory response topology. It explained on 

average 55% of the variance of the ERP (peak correlation between SC time course and ERP 

at Fz, 93% explained variance) and was therefore kept for the rest of the analyses. We fitted 

a linear regression across all items between the theoretical surprise level and the SC 

amplitude at each time point. The matrix of linear coefficients (number of participants x 

number of time points) was then submitted to a cluster permutation in time algorithm to 

assess its statistical significance (see Figure 3A-B). The linear regression was significant 

during a long-lasting late time window for musicians (210 - 320ms, p < 10–3) and non-

musicians (220 - 430ms, p < 10–3). The associated function, topography and time window of 

this response coincided with a P300 response. During active processing of the sequence, 

http://sciwheel.com/work/citation?ids=554264,2452083,7909675,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=554264,2452083,7909675,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=554264,2452083,7909675,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=852065&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6297182&pre=&suf=&sa=0


the amplitude of the P300 is therefore linearly strongly correlated with the theoretical level of 

surprise.  
 

 

Figure 3. Model surprise correlates with single 

trial late auditory event related potential (ERP) 

amplitude. A. Average ERP of the main summary 

component (SC, see Methods) of non-musicians 

as a function of their model surprise quintiles. 

Model surprise was defined as –log2(P) where P is 

the posterior predictive probability of the presented 

item under the model fitted to the participants 

behavioral responses. The significant time cluster 

is shown in blue. The linear regression was 

significant in a late time window, between 220 and 

430 ms. B. Average ERP of the main SC of 

musicians as a function of their model surprise 

quintiles. The significant time cluster is shown in 

orange. The linear regression was significant in a 

late time window, between 210 and 420 ms. C. 

Coefficients of the linear regression between 

model surprise and SC amplitude for musicians 

and non-musicians. The difference was significant 

in the same late time window, between 220 and 

380 ms. The significance of the effect (all p < 10
-3
) 

was assessed using correction at the level of the 

cluster (blue and orange lines). The significance of 

the difference between groups (p = 0.013) was 

also cluster-corrected (grey area). Colored shaded 

areas represent standard error of the mean 

(s.e.m.). Inset plot shows the main SC topography.  

 

 

 We finally submitted the 

difference between musicians and 

nonmusicians coefficient matrices to 

a cluster permutation algorithm. This 

analysis revealed that the linear 

coefficients of the musicians were 

higher than the coefficients of the 

non-musicians in the same late time 

window (220 - 380ms, p = 0.013). This effect could be confounded with the overall ERP 

amplitude, artificially inflating the linear coefficients. Indeed, musicians had a larger root 

mean square (RMS) than non-musicians (⚫ = 0.67 ± 0.31, p = 0.035). This is a known 

phenomenon, that has been correlated to functional effect, such as better encoding of 

spectrally complex sounds (Regnault et al. 2001; Koelsch et al. 2002; Shahin et al. 2004, 

2005; Koelsch et al. 2007; Jentschke and Koelsch 2009; Koelsch 2009a; Kim et al. 2011; 

Kaganovich et al. 2013), and to anatomical differences, such as auditory cortex volume 

(Regnault et al. 2001; Koelsch et al. 2002, 2007; Jentschke and Koelsch 2009; Koelsch 

2009a; Kim et al. 2011; Seither-Preisler et al. 2014). In order to control for this potential 

confound, we normalized the ERP of each participant by the RMS of the ERP between 0 and 

500 ms. This led to similar results (see Fig. Supp. 5), ensuring that the difference is not 

explained by the difference of overall ERP amplitude between musicians and non-musicians. 

The P300 amplitude is therefore modulated by the theoretical surprise to a higher degree in 

musicians than in non-musicians (see Figure 3C).  
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The ERP amplitude modulation enhancement in musicians is restricted to high-order 

statistical learning.  

 

 

Figure 4. A cascade of low to high-order surprise correlates with the amplitude of single trial auditory event related 

potentials (ERP). A. Coefficients of the linear regression between surprise from the very low-order model (K=0) and SC 

amplitude for musicians and non-musicians. The linear regression is significant in a middle latency window for musicians, 

between 80 and 270 ms, and marginally significant for nonmusicians. The difference in linear coefficients between groups is not 

statistically significant (all clusters p > 0.05). B. Coefficients of the linear regression between the model (K=1) surprise and SC 

amplitude for musicians and non-musicians. The linear regression is significant in a late latency window, between 210 and 430 

ms. There is no significant difference between groups (all clusters p > 0.05). C. Coefficients of the linear regression between 

the highest order model (K = 2) surprise and SC amplitude for musicians and non-musicians. The linear regression is significant 

in a late latency window, between 210 and 430 ms. The significant difference between groups (p = 0.030) is shown in the grey 

area, between 210 and 350 ms. Significance of the linear regression is shown in orange and blue (all p < 10
–3

). Colored shaded 

areas represent standard error of the mean (s.e.m.). Significance of the interaction term Group x Model order  is shown in black 

(p = 0.041). The topography of the results is the same as in Figure 3 (main SC).  

The key component of the model is the estimation of the transition probability matrix. 

Critically, this matrix can be of any order (K), i.e. reflects the probability of observing an 

element given the preceding item (K = 1), bigram (K = 2), trigram (K = 3), or even a priori, 

without context (K = 0). This defines an ordering, from low (K ≤ 1) to high-order predictions 

(K = 2). Modelling results on the behavioral data suggest that musicians compute higher 

order statistics. Unfortunately, behavioral data only reflect an aggregate of the neural 

processes. On the contrary, EEG data can give access to covert computations. We relied on 

the model to analyze the temporal structure of the EEG response, and uncover the 

succession of covert computations. We fitted the parameters ⚫ and ⚫ while fixing the order 

parameter K. This allowed us to define a level of theoretical surprise to each item, each 

sequence, each participant, for very low (K = 0), low (K = 1) and high-order statistics (K = 2). 

We then performed the same linear regression followed by cluster permutation analysis.  

The regression with very low-order statistics (K = 0, see Figure 4A) showed a 

modulation peaking around 150 ms, significant for musicians and marginally significant for 

nonmusicians. It should be noted that even though when looking at the entire sequence the 

three items have the same frequency of occurrence, it is possible to look locally for 

surprising events. The topology and time window of the modulation was consistent with a 



MMN (Näätänen 1995). This is coherent with the fact that a “K = 0” model is actually 

estimating the probability of an item irrespective of its immediately preceding context, i.e. the 

overall frequency of occurrence of this element. Indeed, MMN are typically elicited in an 

oddball paradigm, wherein the frequency of occurrence of items is manipulated (frequent 

versus rare). By contrast, the regression with higher order statistics revealed a significant 

correlation with the ERP amplitude later in time, between ~200 and ~400 ms for both "K = 1" 

(see Figure 4B) and "K = 2" (see Figure 4C) models. Group contrast analysis revealed that 

this modulation was larger for musicians compared to non musicians only for the highest 

model level (K = 2, p = 0.030). The interaction term Group x Model order revealed that this 

group difference was specific to the “K = 2” model. Using ERP normalized by the overall 

RMS led to similar results (see Fig. Supp. 6). In a nutshell, the very low statistics model 

correlates with ERP amplitude around 200 ms, similar to an MMN, and this correlation is 

similar in musicians and non-musicians. By contrast, higher order models correlate around 

300 ms, similar to a P300, and this correlation is higher in musicians compared to non-

musicians.  
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Discussion. 

We presented auditory sequences drawn from a vocabulary of size 3 (glass, wood 

and metal) to a group of musicians and a group of non-musicians. We designed two types of 

sequences that embed either low or high-order statistics corresponding to 1st order and 2nd 

order Markov chains, respectively. Each sequence contained probes requiring participants to 

explicitly predict the most likely future item. In this task, musicians make more accurate 

predictions than non-musicians. This result is not explained by a sensory advantage, such 

as a better ability to discriminate or identify auditory targets. Indeed, the stimuli were chosen 

to be easily and unambiguously identifiable. Computational modelling further reveals that 

this advantage is best explained in terms of parameters governing the order of the Markov 

chain model and the selection noise, and no significant differences were revealed for the 

parameter governing the memory decay.  EEG recordings during behaviorally unprobed 

items allow bridging modeling and electrophysiological signatures of the behavioral task. 

First, the amplitude of a central frontal cluster at 300 ms is strongly correlated on a single 

trial basis to the computationally modeled theoretical surprise. Second, this P300 model-

based modulation is stronger for musicians than non-musicians, suggesting a difference in 

sensitivity to the probabilistic structure of the sequence. Last, neural responses to surprise 

with a low-order statistical structure (K ≤ 1) are not statistically different between musicians 

and non-musicians, and diverge only for surprise with high-order statistical structures (K = 

2). We conclude from these results that musicians have improved neural SL in the auditory 

domain compared to non-musicians.  

 

Our results are relevant in the debate on musical training induced plasticity. It has 

been known for a long time that musical training is associated with low level sensory 

improvements, such as pitch or duration detection thresholds (Spiegel and Watson 1984; 

Regnault et al. 2001; Koelsch et al. 2002; Micheyl et al. 2006; Koelsch et al. 2007; Jentschke 

and Koelsch 2009; Koelsch 2009a; Kim et al. 2011; Kuman et al. 2014). However, music 

expertise does not only require fine perception of isolated pitches and durations but it also 

puts high demands in terms of sequence processing (melody and harmony) that require both 

accurate temporal and spectral prediction (Patel 2011). In the current experimental design, 

we chose to control sensory-related gain biases by using large acoustic differences between 

stimuli. Thus, observed differences between musicians and non-musicians cannot be due to 

low level sensory differences. Another potential confound is that musicians may have a 

higher level of attention during the task. However, we observe a larger modulation of the 

P300 amplitude by model surprise in musicians compared to non-musicians. Attentional 

differences would mostly result in global amplitude differences and a main effect of group 

only. Moreover, we analyzed the ERP in the statistical learning task in response to the visual 

probes. This supplementary analysis revealed no amplitude nor latency differences between 

musicians and non-musicians (see Fig. Supp. 7). This suggests that the two groups were 

equally surprised by the visual probes, and thus were similarly attending the sounds. Finally, 

the fact that normalizing data by the global RMS does not change our results goes well in 

line with the fact that attentional differences, if they exist, do not fully account our results. By 

contrast and critically, the model captures differences related to downstream computations, 

directly involved in the inference process itself. It is important to note that the model not only 

captures the surprise associated with violations of the internal expectations but it also 

describes the continuous learning by constantly updating predictions as a function of the 
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context. Hence, the advantage of musicians over non-musicians does not solely rely on a 

greater sensitivity to predictions errors, as shown by the larger P300 modulation, it also 

reflects a higher order and more accurate continuous learning.  

 

 In the current experiment, we have chosen an explicit task with deliberately included 

probe trials to engage participants actively as well as to collect behavioural responses. 

Participants were active, aware of the unpredictable nature of the sequences, and explicitly 

doing a prediction task. This differs from more implicit tasks, where learning is inferred from 

indirect measures such as a reduction of reaction times in a serial reaction time task (Nissen 

and Bullemer 1987). There is a long standing debate concerning the distinction between 

implicit and explicit learning (Regnault et al. 2001; Cleeremans and Jiménez 2002; Koelsch 

et al. 2002, 2007; Jentschke and Koelsch 2009; Kim et al. 2009; Koelsch 2009a; Kim et al. 

2011; Dale et al. 2012; Batterink et al. 2015). While our aim was not to address this 

question, our results can be compared with other studies using a similar approach. First, the 

linear relation between the theoretical level of surprise and the amplitude of the P300 has 

been reported in both implicit (Mars et al. 2008) and explicit prediction tasks (Maheu et al. 

2019). Second, studies on music listening have reported that early EEG components, such 

as the N100 amplitude, are modulated by acoustic aspects of the signal while later EEG 

components, such as the MMN, early right anterior negativity (ERAN) and P300, are related 

to the formation of musical expectations. This was true in both passive (Koelsch 2009b; 

Vuust et al. 2012; Di Liberto et al. 2020; Quiroga-Martinez et al. 2020) and active (Koelsch et 

al. 2000; Omigie et al. 2013) listening conditions. Third, the ~300 ms latency and the fronto-

central topography that we report indicate a probable modulation of the P3a subcomponent 

of the P300, which is earlier and more frontal than the P3b. P3a has been referred to as 

novelty P300 and possibly reflecting a rather automatic orientation of attention to unexpected 

context changes (Polich 2007). This is consistent with the recent study of (Quiroga-Martinez 

et al. 2020) that reported the same modulation of the P3a in musicians in a passive listening 

paradigm. Last, our results are also consistent with two studies that have shown an 

advantage of musicians over non-musicians in music listening (Hansen and Pearce 2014) 

and of jazz-specific expertise over classical-music expertise in jazz listening (Hansen et al. 

2016) in a task of explicit uncertainty rating but not in a task of inferred uncertainty rating. 

These mixed results can be interpreted in the context of a recent proposal (Conway 2020) 

that suggested the existence of two interdependent systems for (statistical) learning. First, a 

“suite” of multiple automatic subsystems responsible for the learning of “simple” statistical 

regularities. Second, a central, attention-dependent system responsible for the learning of 

“complex” statistical regularities such as long term dependencies, and for the gating and 

control of the automatic subsystems. In this context, our results suggest that the learning of 

very low (K = 0) and low-order (K = 1) statistics depend on automatic subsystems, with no 

advantage of musicians over non-musicians. On the contrary, the learning of high-order 

statistics (K = 2) would depend on top-down control (Koelsch et al. 2019), with an advantage 

of musicians over non-musicians. Following (Conway 2020), this would in turn suggest that 

the advantage of musicians over non-musicians could possibly transfer to other cognitive 

functions, such as language, as the central system is thought of as a hub involved in multiple 

brain networks. 

 

Our results also replicate and integrate in the Bayesian framework the notion of 

“abstract” MMN (Paavilainen 2013), i.e. the sensitivity  to regularities beyond the mere 

frequency of appearance. Studies have demonstrated that musicians have larger MMN in 
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response to changes in melodic contours (Regnault et al. 2001; Tervaniemi et al. 2001; 

Koelsch et al. 2002, 2007; Fujioka et al. 2004; Jentschke and Koelsch 2009; Koelsch 2009a; 

Herholz et al. 2011; Kim et al. 2011; Paraskevopoulos et al. 2012) (Tervaniemi et al. 2001; 

Fujioka et al. 2004; Herholz et al. 2011; Paraskevopoulos et al. 2012), while having similar 

MMN in response to simple change of pitch (Fujioka et al. 2004). Similar findings have also 

been described for chord sequences (Regnault et al. 2001; Koelsch et al. 2002, 2007; 

Jentschke and Koelsch 2009; Koelsch 2009a; Kim et al. 2011). Interestingly, changes of 

pitch concern the frequency of occurrence of items, i.e. K = 0 Markov chains, whereas 

changes of melody concerns the ordered structure, which is typically captured by a K = 1 or 

K = 2 Markov chain. We extend these results by using a task that does not rely on the pitch 

dimension, thus ensuring that sensory processing is not the origin of the musical expertise 

advantage. Furthermore, the model we developed sheds light on these results by drawing an 

explicit line between low-order statistics (frequency of occurrence, K ≤ 1) and high-order 

ones (K = 2). Anecdotally, the musical advantage of high-order statistics over low-order ones 

is also present in music automatic generation, where high-order Markov chains “generate 

results with a sense of phrasal structure, rather than the 'aimless wandering' produced by a 

first-order system” (Roads and Strawn 1996) (see Iannis Xenakis’ Analogique A and B for an 

example music generated by 1st order Markov chains).  

 

 Our model combines two approaches: an “ideal observer” and an “individualized 

modelling” strategy. This ideal observer allows defining a theoretical maximum on the 

probabilistic task, here defining performance bounds between a random (33%) and an 

optimal strategy (80%). However, ideal observer models are usually universal, and as such 

are unable to characterize inter-individual variability. By contrast, the added parameters 

included in our model precisely specify the multiple ways of being suboptimal and allow 

testing clear and separable hypotheses about different suboptimality sources. Using this 

combined approach, we reveal that humans do not accurately estimate 1st and 2nd order 

Markov statistics and provide insight on the possible limitations of this suboptimal estimation. 

If (Bayesian) optimality has been standard in psychophysics, e.g. in visual orientation 

discrimination (Regnault et al. 2001; Koelsch et al. 2002, 2007; Jentschke and Koelsch 

2009; Koelsch 2009a; Girshick et al. 2011; Kim et al. 2011) or multisensory integration (Ernst 

and Banks 2002) tasks, suboptimality is almost systematically observed in higher level 

cognitive tasks, such as discrete evidence accumulation (Drugowitsch et al. 2016) or explicit 

manipulation of probabilities (Kahneman and Tversky 1977). The errors are usually 

explained in terms of task-independent noise in sensory processing (Regnault et al. 2001; 

Koelsch et al. 2002, 2007; Osborne et al. 2005; Jentschke and Koelsch 2009; Koelsch 

2009a; Kim et al. 2011; Brunton et al. 2013; Kaufman and Churchland 2013) or noise in the 

response selection, following the decision (Sutton and Barto 1998). However, recent 

proposals have put emphasis on limitations in the inference process itself (Regnault et al. 

2001; Koelsch et al. 2002, 2007; Jentschke and Koelsch 2009; Koelsch 2009a; Kim et al. 

2011; Acerbi et al. 2014; Dayan 2014; Drugowitsch et al. 2016), arising from systematic 

biases (Beck et al. 2012) or from variability in the computational precision of variables 

represented in populations of neurons (Renart and Machens 2014). Our results are in line 

with these recent proposals. Indeed, the key parameters to separate musicians and non-

musicians are the order of the estimated statistics (K) and the selection noise (⚫) after this 

computation. The interpretation of the parameter K is straightforward: the musician’s 

estimates resemble high-order statistics more than non-musician’s estimates. The selection 
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noise parameter ⚫ is more subject to interpretation. We isolated three interpretations. First, it 

can reflect a loss of information in the inference process itself, due to imperfect 

computations. Second, it can reflect an imperfect transformation of statistical estimates into 

choices. This could depend on the task and on the type of ratings asked to the participants. 

For example, (Hansen and Pearce 2014) suggest that the IDyOM model is more accurate to 

account for inferred uncertainty rating than for explicit uncertainty ratings. Last, the 

parameter ⚫ can also capture systematic deviations of the human behavior from the model’s 

predictions. Indeed, the model we designed is limited in its ability to capture the full range of 

human sequence learning abilities. For example, humans learn syntactic and supra-regular 

rules (Fitch 2014; Dehaene et al. 2015) that cannot be captured by transition probabilities. It 

is also possible that humans learn higher-order Markov statistics. For example, it has been 

shown that 4-grams best approximate musicians' ratings to chord entropy (Hansen and 

Pearce 2014). Even though these other strategies would not result in improved behavioral 

accuracy, they could nonetheless be used by humans. Such deviations from the Markov 

strategy would all lead to an increase in the ⚫ parameter. Further work is needed to precise 

how to interpret the difference in ⚫ between musicians and non-musicians.  

 

Finally, this study is cross-sectional, therefore caution should be taken when 

interpreting causal effects (Schellenberg 2019). A first interpretation is that good SL 

predispose individuals to pursue musical training. Indeed, large-scale twin studies have 

documented a genetic component to musical skill and extent of practicing (Mosing et al. 

2014; Hambrick and Tucker-Drob 2015), suggesting that brain structure and function might 

predispose one to pursue musical training. This set of predispositions remains unknown. In 

light of the present results, we formulate the hypothesis that these genetic predispositions 

could directly concern SL abilities or a prerequisite for SL. A second interpretation is that 

other uncontrolled confounding factors, such as socio-economic status or levels of 

education, increase the probability of both pursuing musical training and having good SL 

abilities. We have tried to limit this by recruiting all participants at the university to increase 

the homogeneity between groups. A third interpretation is that musical training improves SL 

abilities. By providing a rich statistical structure and focusing attention on this structure, 

music could lead to beneficial effects on SL abilities in the auditory domain. Indeed, causal 

studies have previously demonstrated that musical training is effective for speech 

segmentation based on SL (François et al. 2013), for rehabilitation of reading and 

phonological skills (Flaugnacco et al. 2015) in children with dyslexia, turn taking in children 

with cochlear implant (Regnault et al. 2001; Koelsch et al. 2002, 2007; Jentschke and 

Koelsch 2009; Koelsch 2009a; Kim et al. 2011; Hidalgo et al. 2017, 2019) as well as in 

several neurological disorders (for a review, see (Sihvonen et al. 2017)). One open question 

relevant for the development of music-based remediation is whether different types of 

musical experience might provide different advantages, with more or less focus on the 

statistical structure. In our study, the musicians were practicing classical music, but it has 

been suggested for example that jazz players have larger responses to surprising auditory 

events than other musicians (Vuust et al. 2012). Overall, as a fundamental computation for 

any statistical structure representation and since statistical structuring is most often 

impaired, SL rehabilitation could possibly be at the core of the music remediation power.  

 
  

http://sciwheel.com/work/citation?ids=2209815&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3125221,5421734&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=2209815&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2209815&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=8725959&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2210190,118604&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=2210190,118604&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=2212145&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1442804&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=8204719,8204724,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=8204719,8204724,2214827,2213411,2218342,2216142,140221,2215120&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0
http://sciwheel.com/work/citation?ids=3910693&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2212472&pre=&suf=&sa=0


Supplementary Methods. 

DERIVATION OF THE MODEL. 

 The goal of the model is to infer the probability of each item given the preceding 

context. Formally, the model is exposed to a sequence of T items s0:T–1 taken from a 

vocabulary Ω of size V. The context is given by the last K items of the sequence. As a 

Bayesian ideal observer, she uses Bayes rule to update her belief: 

  

 
 

We can decompose the likelihood term using the chain rule : 

 

 
 

Restricted case K = 1, v = 2 

 

For simplicity, let's first suppose a restricted case in which K = 1, i.e. the sequence is 

a Markov chain of order K = 1, and V = 2, i.e. there are only two items: A and B. The 

derivation is inspired from (Brooks et al. 1996; Regnault et al. 2001; Koelsch et al. 2002, 

2007; Jentschke and Koelsch 2009; Koelsch 2009a; Kim et al. 2011; Meyniel et al. 2016). 

The likelihood of a given observation depends only on the estimated transition probabilities 

and the previous item: 

 

 
 

Assuming that for the first observation P(s0|⚫) = 0.5, we have:  

 

 
 

Where ⚫ denotes the “transition probability matrix” of order 1. It is a matrix of size 2 x 2 

where each row designates a particular item (A or B) and each column a particular context 

item (A or B). NA|B designates the number of occurence of the bigram “BA” in the sequence, 

i.e. the number of times that the context “B” was followed by the item “A”. As each column 

sum to one, we can rewrite the equation as: 

 

 
 

A nice conjugate prior for this likelihood equation is the Beta distribution as the product of 

two Beta distributions is also a Beta distribution. Combined with a uniform prior distribution 

Beta(1, 1), the posterior distribution on ⚫ is therefore the product of two Beta distributions 

with parameters corresponding to the transition counts plus one. 

 

 
 

General case. 
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The general case is similar to the restricted case. The main extension relies on the 

fact that the Dirichlet distribution generalizes the Beta distribution, with more than two 

parameters. The only difference will therefore be that the posterior is not any more a product 

of two Beta distributions but a product of VK Dirichlet distributions with V parameters. As 

previously, the likelihood of a given observation depends only on the estimated transition 

probabilities and the previous K items: 

 

 
 

 
 

Where ⚫ denotes the “transition probability matrix” of order K. It is a matrix of size V x VK 

where each row designates a particular item and each column a particular K-uplets of items. 

Nij designates the number of occurrences of the (K+1)-uplet corresponding to the cell (i, j) of 

the matrix (the jth K-uplet followed by the ith item). For simplicity, the first K observations are 

considered arbitrary such that P(s0) = P(s1) = … = P(sK–1) = 1/V. As each column sums to 

one, the derived likelihood corresponds to the product of VK Dirichlet distributions. Combined 

with a uniform joint prior distribution Dir(1, 1, …, 1), the posterior distribution therefore results 

in a Dirichlet distribution with parameters corresponding to the transition counts Nij plus one: 

 

 
 

The posterior distribution can then be turned into the likelihood of the next stimulus using 

Bayes’ rule: 

 
 

Which can be analytically solved and ends up being simply: 

 

 
 

Where P(st = xi|s0:t–1) is the probability of the element xi ∈ Ω. It corresponds to the ratio of two 

scalars: 

- Nij+1: the number of times the (K+1)-uplet sT–K:T–1xi has been observed plus one, 

- ∑v=1 (Nvj+1): the number of times that the K-uplet context sT–K:T–1 has been observed 

plus V.  



Supplementary Figures.  
 

 
Figure Supp. 1. Auditory ERP in the familiarization task. A. Musicians and non-musicians have similar ERP in the central 

cluster (10 most activated electrodes between 50 and 150 ms, highlighted in the inset plot). Cluster permutations did not detect 

any difference (all cluster-corrected p-values > 0.05). B. Boxplot of the average activity of these central electrodes between 50 

and 150 ms.  

  



 
 

Figure Supp. 2. Model simulations. Performances can be impaired for multiple reasons. The model captures three sources of 

imperfections: low-order statistics (K), short memory (⚫) and high selection noise (β). The majority of participants have a value 

of K of 1 or 2, a value of ⚫ between 5 and 50 and a value of β between 0.3 and 0.8. Within this range, each parameter has an 

impact on the performances. The last panel is showing the negative interaction. This pattern emerges when the two groups 

differ in proportion of K = 2 agents (here 80% orange vs 60% blue) and in selection noise β (here 0.2 orange vs 0.6 blue).  

 

  



 
 

Figure Supp. 3. Maximum-likelihood fitting. Average log-likelihood of the data as a function of model parameters. Yellow 

indicates higher log-likelihood. Colored dots represent individual participants. Diamonds represent participants with the worst 

behavioral performance of each group. On the contrary, stars represent participants with the best behavioral performance of 

each group. Participants with good performance tend to have a low selection noise (β) and high model order (K). 

  



 
 

Figure Supp. 4. Topographies of the Summary Component (SC) #1 computed by the Multiway Canonical Correlation 

Analysis. Each topography represents the correlation between one individual SC #1 time course and each electrode time 

course. High correlation (yellow) indicates that the electrodes contributes strongly to the SC #1 time course.  

 

  



 
Figure Supp. 5. Model surprise correlates with single trial late auditory event related potential (ERP) amplitude. The 

ERP amplitude has been normalized on an individual basis by the root mean square of the ERP between 0 and 500 ms. 

Coefficients of the linear regression between model surprise and SC amplitude for musicians and non-musicians. The 

difference is significant in the same late time window, between 220 and 380 ms. Significance of the effect (all p < 10
-3
) was 

assessed using correction at the level of the cluster (blue and orange lines). Significance of the difference between groups (p = 

0.014) was also cluster-corrected (grey area). Colored shaded areas represent standard error of the mean (s.e.m.).  

 

  



 
 

Figure Supp. 6. A cascade of low to high-order surprise correlates with the amplitude of single trial auditory event 

related potentials (ERP). The ERP amplitude has been normalized on an individual basis by the root mean square of the ERP 

between 0 and 500 ms. A. Coefficients of the linear regression between surprise from the very low-order model (K=0) and SC 

amplitude for musicians and non-musicians. The linear regression is significant in a middle latency window for musicians only, 

between 80 and 270 ms. There is no significant difference between groups (all clusters p > 0.05). B. Coefficients of the linear 

regression between the model (K=1) surprise and SC amplitude for musicians and non-musicians. The linear regression is 

significant in a late latency window, between 210 and 430 ms. There is no significant difference between groups (all clusters p 

> 0.05). C. Coefficients of the linear regression between the highest order model (K = 2) surprise and SC amplitude for 

musicians and non-musicians.  



 
Figure Supp. 7. ERP in the statistical learning task in response to the visual probes. A. Musicians and non-musicians have 

similar ERP in the occipital cluster (10 most activated electrodes between 50 and 100 ms, highlighted in the inset plot). Cluster 

permutations did not detect any difference (all cluster-corrected p-values > 0.05). B. Boxplot of the average activity of these 

occipital electrodes between 50 and 100 ms. C. Musicians and non-musicians have similar ERP in the central cluster (10 most 

activated electrodes between 110 and 220 ms, highlighted in the inset plot). Cluster permutations did not detect any difference 

(all cluster-corrected p-values > 0.05). D. Boxplot of the average activity of these central electrodes between 110 and 220 ms.  

 

  



 
 

Figure Supp. 8. Parameter recovery analysis. We generated synthetic data for 10
3
 models with random parameters (⚫ 

exponential between 0 and 100, K, uniform choice between 0, 1 and 2, β exponential between 0 and 1). Recovered parameters 

from these synthetic data using our procedure were close to the original parameters (spearman ⚫⚫ = 0.91, ⚫K= 0.99, ⚫β = 

0.96).  
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