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ABSTRACT

Context. Polarimetric imaging is one of the most effective techniques for high-contrast imaging and characterization
of circumstellar environments. These environments can be characterized through direct-imaging polarimetry at near-
infrared wavelengths. The Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)/IRDIS instrument in-
stalled on the Very Large Telescope in its dual-beam polarimetric imaging (DPI) mode, offers the capability to acquire
polarimetric images at high contrast and high angular resolution. However dedicated image processing is needed to get
rid of the contamination by the stellar light, of instrumental polarization effects, and of the blurring by the instrumental
point spread function.
Aims. We aim to reconstruct and deconvolve the near-infrared polarization signal from circumstellar environments.
Methods. We use observations of these environments obtained with the high-contrast imaging infrared polarimeter
SPHERE-IRDIS at the Very Large Telescope (VLT). We developed a new method to extract the polarimetric signal
using an inverse approach method that benefits from the added knowledge of the detected signal formation process. The
method includes weighted data fidelity term, smooth penalization, and takes into account instrumental polarization
Results. The method enables to accurately measure the polarized intensity and angle of linear polarization of circum-
stellar disks by taking into account the noise statistics and the convolution by the instrumental point spread function. It
has the capability to use incomplete polarimetry cycles which enhance the sensitivity of the observations. The method
improves the overall performances in particular for low SNR/small polarized flux compared to standard methods.
Conclusions. By increasing the sensitivity and including deconvolution, our method will allow for more accurate studies
of these disks morphology, especially in the innermost regions. It also will enable more accurate measurements of the
angle of linear polarization at low SNR, which would lead to in-depth studies of dust properties. Finally, the method will
enable more accurate measurements of the polarized intensity which is critical to construct scattering phase functions.

1. Introduction

With the adaptive-optics-fed high-contrast imaging instru-
ments GPI (Macintosh et al. 2014) and SPHERE-IRDIS
(Beuzit et al. 2019; Dohlen et al. 2008), we now have access
to the spatial resolution and sensitivity required to observe
in the near-infrared (NIR) circumstellar matter at small
angular separations. Along with the Integral Field Spectro-
graph (IFS; Claudi et al. 2008) and the Zürich IMaging PO-
Larimeter (ZIMPOL; Schmid et al. 2018) which can also be
used to observe circumstellar environments in polarimetry,
the IRDIS instrument is one of the three SPHERE instru-
ments (Beuzit et al. 2019). SPHERE/IRDIS is able to ac-
quire two simultaneous images at two different wavelengths,
in a so-called Dual Band Imaging (DBI) mode (Vigan et al.
2014), or for two different polarizations, in a so-called Dual
Polarimetry Imaging mode (Langlois et al. 2014; de Boer
et al. 2020). Both circumstellar disks and self-luminous gi-
ant exoplanets or companion brown dwarfs can be charac-
terized by these new instruments in direct-imaging at these
wavelengths.

The NIR polarimetric mode of SPHERE/IRDIS at the
Very Large Telescope (VLT), which is described in Beuzit
et al. (2019); de Boer et al. (2020); van Holstein et al.
(2020), has proven to be very successful for the detection
of circumstellar disks in scattered light (Garufi et al. 2017)

and shows much promise for the characterization of brown
dwarfs (van Holstein et al. 2017) and exoplanets (van Hol-
stein 2020, in prep.) when they are surrounded by circum-
substellar disks.

Three particular types of circumstellar disks are stud-
ied: protoplanetary disks, transition disks, and debris disks.
The observations of the protoplanetary and transition disks
morphology linked to hydrodynamical simulations allows
for the study of their formation scenario as in the study of
HD 142527 (Price et al. 2018), IM Lup, RU Lup (Avenhaus
et al. 2018), GSC 07396-759 (Sissa et al. 2018). Their obser-
vations are valuable because their shapes can be the sign-
posts for the formation of one or several exoplanets. In fact,
during their formation, the planets “clean” the dust off their
orbits, creating gaps without dust such as for RXJ 1615,
MY Lup, PDS 66 (Avenhaus et al. 2018), PDS 70 (Keppler
et al. 2018, 2019; Haffert et al. 2019). The planet formation
scenario can be explained with hydrodynamical simulations
as the cases of HL Tau (Dipierro et al. 2015), HD 163296
(Pinte et al. 2019). Due to gravity, exoplanets can also cre-
ate spiral arms, as in RY Lup (Langlois et al. 2018) and
MWC 758 (Benisty et al. 2015) where the presence of exo-
planets is predicted by hydrodynamical simulations. Debris
disks are the oldest step in the evolution of circumstellar
disks, when there is already one or several planets in the
system and the gas is almost completely consumed. These
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disks are composed of dust and grain never accreted into
the planets, as in the case of HR 4796A (Perrin et al. 2015;
Milli et al. 2019).

These environments can be observed with SPHERE in
the near-infrared and in the visible. Yet, such observations
are difficult because of the high contrast between the light
of the environment and the residual light from the host star.
As a result, when acquiring images, the light of the envi-
ronment is contaminated by the diffraction stains from the
host star. Two methods can be used to disentangle the light
of the disk from that of the star: Angular Differential Imag-
ing (ADI; Marois et al. 2006) and Differential Polarimetric
Imaging (DPI; van Holstein et al. 2020). The ADI technique
uses the fact that the stellar residuals are fixed in the pupil
plane and the object of interest artificially rotates. The re-
sulting diversity makes it possible to disentangle the light
of the object of interest from the residual light of the star.
Yet, such a method does not allow a good reconstruction
of the disk morphology as it is impacted by artifacts due
to self-subtraction. Moreover, the method fails when the
environment is nearly rotation invariant. The DPI observa-
tions allow having access to the morphology of the disks,
without the artifacts, by using the difference of polarization
states between the light scattered by the environment and
the light of the host star.

The state-of-the-art methods to process datasets in po-
larimetry, apart from the calibration, are “step-by-step”
methods. First, the data are transformed with the required
translations and rotations to be easier to process and the
bad pixels are interpolated. Such interpolations introduce
correlations that are not taken into account in the following
processing. Second, the interpolated data are reduced to the
Stokes parameters which are directly related to the differ-
ent polarization states. These reductions can be done with
the double difference or the double ratio (Tinbergen 2005;
Avenhaus et al. 2014). If the double ratio takes into account
the possibility of multiplicative instrumental effects, none of
these methods deal with the noise statistics. This results in
some limitations in sensitivity in the case of low Signal-to-
noise Ratio (SNR). Last, deconvolution may be performed
to get rid of the blurring by the instrumental point spread
function. As this is done without accounting for the noise
statistics after all previous processing, the results are not
optimal given the available data. Still, these state-of-the-art
methods have proven over the years to be sufficiently effi-
cient to produce good quality results. However, studies of
circumstellar disks are often limited to analyses of the ori-
entation (position angle and inclination) and morphology
(rings, gaps, cavities, and spiral arms) of the disks (Muto
et al. 2012; Quanz et al. 2013; Ginski et al. 2016; de Boer
et al. 2016). Quantitative polarimetric measurements of cir-
cumstellar disks and substellar companions are currently
very challenging, because existing data-reduction methods
do not estimate properly the sources of the errors from both
noise and detector calibration. They also require complete
polarimetric cycles and do not account for the instrument
convolution. For observations of circumstellar disks (van
Holstein et al. 2020), calibrating the instrumental polariza-
tion effects with a sufficiently high accuracy already yield
to several improvements.

Over the last decades in image processing, it has been
proven that the reconstruction of parameters of interest
benefits from a global inverse problems approach, taking
into account the noise statistics and all instrumental effects,

rather than “step-by-step” procedures. In this framework,
image restoration methods rely on a physically grounded
model of the data as a function of the parameters of inter-
est and express the estimated parameters of interest as the
constrained minimum of an objective function. This objec-
tive function is generally the sum of a data fidelity term
and of regularization terms introduced to favor known pri-
ors. Depending on the convexity and on the smoothness of
the objective function, several numerical algorithms with
guarantees of convergence may be considered to seek the
minimum (Nocedal & Wright 1999; Combettes & Pesquet
2011; Pustelnik et al. 2016). Such methods have been used
over decades in astrophysics for the physical parameters
estimation (Titterington 1985), mostly in adaptive optics
(Borde & Traub 2006) and radio-interferometry with the
well known algorithm CLEAN (Högbom 1974). This last
method has been the starting point of a wide variety of
algorithms, such as the algorithms SARA (Carrillo et al.
2012) and Polca-SARA (Birdi et al. 2019) in polarimetric
radio-interferometry using more sophisticated tools as non-
smooth penalizations. A non-smooth method was also used
for images denoising with curvelets (Starck et al. 2003).
The minimization of a co-log-likelihood was also used in
the blind deconvolution of images convolved by an unknown
PSF with aberrations (Thiébaut & Conan 1995). Learning
methods have been used more recently for the estimation
of the CMB (Adam et al. 2016) and the imaging of the
supermassive blackhole (Akiyama et al. 2019). In high con-
trast imaging, the use of inverse problem methods is more
recent. It has been used to perform auto-calibration of the
data (Berdeu et al. 2020) with the IFS/SPHERE. It has
also been used to reconstruct extended objects in total in-
tensity by using using ADI data (Pairet et al. 2019; Flasseur
et al. 2019) with the SPHERE instrument. Yet, such recon-
struction methods have not been used in polarimetric high
contrast direct imaging.

In the present work, we describe in details the method
and the benefits of the use of an inverse problem formal-
ism for the reconstruction of circumstellar environments
observed in polarimetry with the instrument ESO/VLT
SPHERE IRDIS. In Section 2, we develop the phys-
ical model of the data obtained with the ESO/VLT
SPHERE IRDIS instrument. This includes the polarimet-
ric parametrization, the convolution by the PSF and the
observing sequence. In Section 3, we describe RHAP-
SODIE (Reconstruction of High-contrAst Polarized Sources
and Deconvolution for near-Infrared Environments), the
method we developed. Section 4 is dedicated to the calibra-
tion of the detector, the instrument, and the instrumental
polarization. Finally, in Section 5, we present the results
obtained with RHAPSODIE on both simulated and astro-
physical data.

2. Modeling polarimetric data

The principal parameters of interest for studying circum-
stellar environments in polarimetry are the intensity Ip of
the linearly polarized light and the corresponding polar-
ization angle θ which are caused by the reflection of the
stellar light onto the circumstellar dust. By modulating the
orientation of the instrumental polarization, these param-
eters can be disentangled from the intensity Iu of the un-
polarized light received from the star and its environment.
Without ADI observations, it is not possible to unravel the
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Fig. 1: Schematic view of the instrument ESO/VLT-
SPHERE IRDIS showing the various optical parts that can
induce polarization effects. The same notations as in the
text are used (e.g., n is the pixel index in the restored maps,
k is the sequence index and j is the polarizer index of the
analyzer set).

contributions by the star and by its environment from the
unpolarized light Iu.

The estimation of the parameters (Iu, Ip, θ) from po-
larimetric data is the objective of the present contribution.
Stokes parameters are however more suitable to account
for the effects of the instrument on the observable polar-
ization as the model of the data happens to be a simple
linear combination of these parameters. Stokes parameters
account for the total light, the linearly polarized light, and
the circularly polarized light. Since circular polarization is
mostly generated by magnetic interactions and double scat-
tering, it is often negligible in the case of circumstellar envi-
ronments and thus not measured by the SPHERE or GPI
instruments. In the end, it is possible to reconstruct the
parameters of interest Iu, Ip, and θ from a combination of
the Stokes parameters.

2.1. Polarization effects

The four Stokes parameters S = (I,Q, U, V ) ∈ R4 describe
the state of polarized light: I is the total intensity account-
ing for the polarized and unpolarized light, Q and U are the
intensities of the light linearly polarized along 2 directions
at 45◦ to each other, and V is the intensity of the circularly
polarized light. Under this formalism, polarization effects
by an instrument like SPHERE/IRDIS (see Fig. 1) can be
modeled by (see Eq. (17) of van Holstein et al. 2020):

Sdet
j = Mpol

j T
(
−θder)Mder T

(
θder)T(−α)MHWP T(α)

MM4 T
(
θalt
)
MUT T(θpar)S (1)

where Sdet
j are the Stokes parameters on the detector after

the left (j = 1) or right (j = 2) polarizer of the analyzer
set while S are the Stokes parameters at the entrance of
the telescope. In the above equation, M denotes a Mueller
matrix accounting for the polarization effects of a specific
part of the instrument: Mpol

j for the left or right polarizer
of the analyzer set, Mder for the optical derotator, MHWP

is for the half-wave plate (HWP), MM4 for the 4-th mirror
of the telescope and MUT for the 3 mirrors (M1 to M3)
constituting the telescope. The term T(θ) denotes a rota-
tion matrix of the polarization axes by an angle θ: θder is
the derotator angle, α is the HWP angle, θalt is the altitude
angle, and θpar is the parallactic angle of the pointing of the
alt-azimuthal telescope.

In the optical, only the total intensity Ijdet out of the
Stokes parameters Sjdet can be measured by any existing

αk (HWP) ψj (Analyzer) νj,k,1 νj,k,2 νj,k,3
0◦ 0◦ (left : j = 1) 1/2

1/2 0
0◦ 90◦ (right : j = 2) 1/2

−1/2 0
45◦ 0◦ (left : j = 1) 1/2

−1/2 0
45◦ 90◦ (right : j = 2) 1/2

1/2 0
22.5◦ 0◦ (left : j = 1) 1/2 0 1/2
22.5◦ 90◦ (right : j = 2) 1/2 0 −1/2
77.5◦ 0◦ (left : j = 1) 1/2 0 −1/2
77.5◦ 90◦ (right : j = 2) 1/2 0 1/2

Table 1: This table lists the positions of HWP αk and the
orientations of the analyzer ψj and the corresponding val-
ues of the coefficients νj,k,` assuming no instrumental po-
larization and ignoring field rotation. It is computed from
Eq. (4).

detector. It then follows from Eq. (1) that the quantity
measured by the detector is a simple linear combination of
the input Stokes parameters:

Idet
j =

4∑
`=1

νj,`(Θ)S` (2)

where, for every ` ∈ J1, 4K, S` denotes the `-th component
of the input Stokes parameters S and νj,`(Θ), for j ∈ {1, 2},
are real coefficients depending on all involved angles Θ =
(θder, θalt, θpar, α).

Even though the observables are restricted to the com-
ponent Idet

j , rotating the angle α of the HWP introduces
a modulation of the contribution of the Stokes parameters
Q and U in Idet

j , which can be exploited to disentangle
the Stokes parameters I, Q and U . The Stokes parameter
V characterizing the circularly polarized light cannot be
measured with an instrument such as SPHERE/IRDIS (a
modulation by a quarter-wave plate would have been re-
quired to do so). In the following, we therefore neglect the
circularly polarized light and only consider the unpolarized
and linearly polarized light characterized by the Stokes pa-
rameters S = (I,Q, U). As a direct simplification, the sum
in the right hand side of Eq. (2) is reduced to its first three
terms. For a sequence of acquisitions with different angles
of the HWP, the detected intensities follow:

Idet
j,k =

3∑
`=1

νj,k,` S` (3)

where νj,k,` = νj,`(Θk) with Θk the set of angles during the
k-th acquisition.

The instrumental polarization effects being reduced to
those caused by the analyzers and the HWP and ignoring
the rotation due to the altitude and parallactic angles, the
detected intensity writes (van Holstein et al. 2020):

Idet
j,k = 1

2 I+ 1
2 cos

(
4αk+2ψj

)
Q+ 1

2 sin
(
4αk+2ψj

)
U , (4)

where ψj is the orientation angle of the left/right polarizer
while αk is the HWP angle during the k-th acquisition.
Table 1 lists the values of the linear coefficients νj,k,` for a
typical set of HWP angles.
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2.2. Parameters of interest

The model of the detected intensity given in Eq. (3) is lin-
ear in the Stokes parameters S = (I,Q, U), which makes
its formulation suited to inverse problem solving. How-
ever, to study circumstellar environments in polarimetry,
the knowledge of the linearly polarized light Ip and the
polarization angle θ is crucial. Both set of parameters are
related as it follows:
I = Iu + Ip

Q = Ip cos(2 θ)

U = Ip sin(2 θ)

(5)

and conversely by1:
Ip =

√
Q2 + U2

θ = (1/2) arctan (U/Q) mod π

Iu = I −
√
Q2 + U2.

(6)

We assume that these relations hold independently at any
position of the field of view (FOV). From Eqs. (3) and (5),
the direct model of the detected intensity is a non-linear
function of the parameters Iu, Ip and θ:

Idet
j,k = νj,k,1 I

u +
(
νj,k,1 + νj,k,2 cos(2 θ) + νj,k,3 sin(2 θ)

)
Ip .

(7)

For a perfect SPHERE/IRDIS-like instrument and not con-
sidering field rotation, combining Eqs. (4) and (5) yields:

Idet
j,k = 1

2 I
u + Ip cos2

(
θ − 2αk − ψj

)
, (8)

which is the Malus law.

2.3. Accounting for the instrumental spatial PSF

In polarimetric imaging, each polarimetric parameter is a
function of the 2-dimensional FOV. We consider that the
Stokes parameters are represented by images of N pixels
each and denote as S`,n the value of the n-th pixel in the
map of the `-th Stokes parameter.

Provided that polarization effects apply uniformly
across the FOV and that the instrumental spatial point
spread function (PSF) does not depend on the polariza-
tion of light, all Stokes parameters of a spatially incoherent
source are independently and identically affected by the
spatial PSF (e.g., Birdi et al. 2018; Smirnov 2011; Den-
neulin 2020). As the effects of the spatial PSF are linear,
we can write the detected intensity for a given detector pixel
as:

Idet
j,k,m =

3∑
`=1

N∑
n=1

νj,k,`Hj,k,m,n S`,n , (9)

where Idet
j,k,m is the intensity measured during the k-th ac-

quisition by the m-th pixel of the sub-image corresponding
to the j-th polarizer of the analyzer set. The coefficients
νj,k,` accounting for the instrumental polarization are de-
fined in Eq. (3) and Hj,k,m,n denotes a given entry of the
discretized spatial PSF of the instrument. Here j ∈ {1, 2},
1 In this representation there is a ±180◦ degeneracy for the
linear polarization angle θ.

Notation Description
dj,k,m Measured data, Eq.(12)
Idet
j,k,m Model of the data, Eq. (9)
Hj,k,m,n Instrumental PSF, Eq. (10)
Σj,k,m Variance of data, Eq. (15)
νj,k,` Polarization effects, Eq. (3)
S = (I,Q, U) Stokes parameters, Eq. (5)
Iu Unpolarized intensity, Eq. (6)
Ip Polarized intensity, Eq. (6)
θ angle of polarization, Eq. (6)
X Parameters of interest, Eq. (13)
X̂ Estimated parameters, Eq. (13)
Xgt Ground truth, Eq. (28)
fdata Data fidelity term, Eq. (14)
Wj,k,m Weights, Eq. (15)
fρ Regularization term, Eq. (16)-(20)
λρ Regul. contribution, Eq. (16)-(20)
µρ Regularization threshold, Eq. (16)-(20)
Dn 2D spatial gradient, Eq. (19)
C Positivity constraint, Eq. (22)

Indices
j ∈ {1, 2} Polarizer of the analyser set
k ∈ J1,KK Data frame in the sequence
` ∈ J1, LK Component the paramter of interest.
m ∈ J1,MK Pixel in data sub-image
n, n′ ∈ J1, NK Pixel in restored model maps
ρ Param. to regularize (I, Iu, Ip, Q+ U)

Table 2: Notations.

k ∈ J1,KK and m ∈ J1,MK. Table 2 summarizes the main
notations used in this paper.

It follows from our assumption on spatial and polar-
ization effects applying independently, that the discretized
spatial PSF does not depend on the polarization index `.
Consequently, the spatial and polarization effects in Eq. (9)
mutually commute.

Figure 1 and Eq. (1) provide a representation of the
instrument from which we build a model of the spatial ef-
fects of the instrument. Accordingly, an image representing
the spatial distribution of the light as the input of the in-
strument should undergo a succession of image transforma-
tions before reaching the detector. These transformations
are either geometrical transformations (e.g., the rotation
depending on the parallactic angle) or blurring transforma-
tions (e.g., by the telescope). Except in the neighborhood
of the coronographic mask, the effects of the blur can be
assumed to be shift-invariant and can thus be modeled by
convolution with a shift-invariant PSF. Geometrical trans-
forms and convolutions do not commute but their order
may be changed provided the shift-invariant PSFs are ap-
propriately rotated and/or shifted. Thanks to this property
and without loss of generality, we can model the spatial ef-
fects of the instrument by a single convolution accounting
for all shift-invariant blurs followed by a single geometrical
transform accounting for all the rotations but also possible
geometrical translations and/or spatial (de)magnification2.
Following this analysis, our model of the spatial PSF is
2 if the pixel size of the polarimetric maps is not chosen to be
equal to the angular size of the detector pixels
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given by:

Hj,k,m,n =

N∑
n′=1

(
Tj,k

)
m,n′

(
Ak

)
n′,n

, (10)

where Ak : RN → RN implements the shift-invariant blur
of the input model maps while Tj,k : RN → RMj performs
the geometrical transform of the blurred model maps for
the j-th polarizer of the analyzer set during the k-th acqui-
sition. N is the number of pixels in the model maps and
Mj is the number of pixels of the detector (or sub-image)
corresponding to the j-th output polarizer.

In our implementation of the PSF model, the geometri-
cal transform of images is performed using interpolation by
Catmull-Rom splines. The blurring due to the instrument
and the turbulence is applied by:

Ak = F−1 diag(p̃k)F (11)

where F denotes a Fast Fourier Transform (FFT) opera-
tor of suitable size and diag(p̃k) implements the frequency-
wise multiplication by p̃k = Fpk the discrete Fourier trans-
form of pk the shift-invariant PSF. Note that pk must be
specified in the same reference frame as the FOV. If the
shift-invariant PSF is calibrated from empirical images of,
e.g., the host star, acquired by the detector, the inverse (or
pseudo-inverse) of Tj,k must be applied to the empirical
images.

2.4. Polarimetric data

During a sequence of observations with SPHERE/IRDIS
in DPI mode, the HWP is rotated several times along a
given cycle of angles α ∈ {0◦, 45◦, 22.5◦, 67.5◦}. Besides,
the two polarizers of the analyzer set of SPHERE/IRDIS
are imaged on two disjoint parts of the same detector. The
resulting dataset consists in K frames composed of two, left
and right, sub-images, each with a different position of the
HWP. Typical values of K can go from 32 to more than
512 depending of the observed target. After pre-processing
of the raw images to compensate for the bias and the un-
even sensitivity of the detector and to extract the two sub-
images, the available data are modeled by:

dj,k,m ≈ Idet
j,k,m (12)

where Idet
j,k,m is given in Eq. (9) for k ∈ J1,KK the index of

the acquisition, j ∈ {1, 2} indicating the left/right polarizer
of the analyzer, and m ∈ J1,MK the pixel index in the
corresponding left/right sub-image.

The ≈ sign in Eq. (12) is to account for an unknown
random perturbation term due to the noise. Noise in the
pre-processed images can be assumed centered and inde-
pendent between two different pixels or frames because the
pre-processing suppresses the bias and treats pixels sepa-
rately thus introducing no statistical correlations between
pixels. There are many sources of noise: shot noise for the
light sources and the dark current, detector read-out noise,
etc. For most actual data, the shot noise is the most im-
portant contribution and the number of electrons (photo-
electrons plus dark current) integrated by a pixel is large
enough to approximate the statistics of the data by an in-
dependent non-uniform Gaussian distribution whose mean
is given by the right-hand-side term of Eq. (12) and whose

variance Σj,k,m = Var(dj,k,m) is estimated in the calibra-
tion stage (see subsection 4.1).

It is worth noticing that since the proposed model is
not valid in the neighborhood of the coronographic mask,
the data pixels in this region have to be discarded. More-
over, the detector contains defective pixels (e.g., dead pix-
els, non-linear pixels, saturated pixels) which must be also
discarded. This is achieved by assuming that their variance
is infinite which amounts to setting their respective weights
to zero in the data fidelity term of the objective function
described in Section 3.2.

3. RHAPSODIE : Reconstruction of High-contrAst
Polarized SOurces and Deconvolution for
cIrcumstellar Environments

3.1. Inverse problems approach

In polarimetric imaging, one is interested in recovering sam-
pled maps of the polarimetric parameters, which can be the
Stokes parameters (I,Q, U) or the intensities of unpolarized
and linearly polarized light and the angle of the linear po-
larization (Iu, Ip, θ) or some mixture of these parameters.
To remain as general as possible, we denote by X ∈ RN×L
the set of parameters of interest to be recovered and by
X` ∈ RN , with ` ∈ J1, LK, the `-th parameter component
which is a N -pixel map.

Given the direct model of the pre-processed data de-
veloped in the previous section, we propose to recover the
parameters of interest X by a penalized maximum like-
lihood approach. This approach is customary in the solv-
ing of inverse problems (Titterington 1985; Tarantola 2005)
and amounts to defining the estimated parameters X̂ as the
ones that minimize a given objective function f(X) possi-
bly under constraints expressed as X ∈ C with C the set of
acceptable solutions. The objective function takes the form
of the sum of a data-fidelity term fdata(X) and of regular-
ization terms fρ(X):

X̂ = arg min
X∈C

{
f(X) = fdata(X) +

∑
ρ
λρ fρ(X)︸ ︷︷ ︸

fprior(X)

}
(13)

where λρ ≥ 0 (∀ρ) are so-called hyperparameters intro-
duced to tune the relative importance of the regulariza-
tion terms. The data-fidelity term fdata(X) imposes the
direct model be as close as possible to the acquired data
while the regularization terms fρ(X) enforce the compo-
nents of the model to remain regular (e.g., smooth). Regu-
larization must be introduced to lift degeneracies and avoid
artifacts caused by the data noise and the ill-conditioning
of the inverse problem. Additional strict constraints may
be imposed on the sought parameters via the feasible set C,
e.g. to account for the requirement that intensities are non-
negative quantities. These different terms and constraints
are detailed in the following sub-sections.

3.2. Data fidelity

Knowing the sufficient statistics for the pre-processed data,
agreement of the model with the data is properly insured by
the co-log-likelihood of the data (Tarantola 2005) or equiv-
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alently by the following criterion:

fdata(X) =
∑
j,k

∥∥∥dj,k − Idet
j,k (X)

∥∥∥2

Wj,k

, (14)

where ‖·‖2W = 〈·,W·〉 denotes Mahalanobis (1936) squared
norm, dj,k = (dj,k,1, . . . , dj,k,M )> ∈ RM collects all the
pixels (e.g., in lexicographic order) of the j-th sub-image
in the k-th acquisition as defined in Eq. (12). Similarly,
Idet
j,k (X) = (Idet

j,k,1, . . . , I
det
j,k,M )> ∈ RM where the terms

Idet
j,k,m are given by the model in Eq. (9) applied to the
Stokes parameters as a function of the parameters of inter-
est X, S = S(X). For instance, if X = (Iu, Ip, θ), then
S(X) is obtained by Eq. (5). In the expression of the data
fidelity term given by Eq. (14), Wj,k is the precision matrix
of the data. The precision matrix is diagonal because pixels
are considered as mutually independent. To account for the
non-uniform noise variance and for invalid data (see 2.4),
we define the diagonal entries of the precision matrix as:

∀m ∈ J1,MK,
(
Wj,k

)
m,m

=

{
Σ−1
j,k,m for valid data;

0 for invalid data,

(15)

with Σj,k,m = Var(dj,k,m) the variance of a valid datum
dj,k,m. Invalid data include dead pixels, pixels incorrectly
modeled by our direct model because of saturation or of the
coronograph, missing frames for a given HWP angle, and
unusable frames because of too strong atmospheric turbu-
lence or unproper coronograph centering.

Note that, in Eq. (14), the Mahalanobis squared norms
arise from our Gaussian approximation of the statistics
while the simple sum of these squared norms for each sub-
image in each frame is justified by the fact that all frames
and all sub-images are mutually independent.

3.3. Regularization

The problem of recovering the polarimetric parameters
from the data is an ill-conditioned inverse problem mainly
due to the instrumental blur. Furthermore, the problem
may also be ill-posed if there are too many invalid data.
In the case of an ill-conditioned inverse problem, the maxi-
mum likelihood estimator of the parameters of interest, that
is the parameters which minimize the data fidelity term
fdata(X) defined in Eq. (14) alone, cannot be used because
it is too heavily corrupted by noise amplification. Explicitly
requiring that the sought parameters be somewhat regular
is mandatory to avoid this (Titterington 1985; Tarantola
2005). In practice, this amounts to adding one or more reg-
ularization terms fρ(X) to the data-fidelity as assumed by
the objective function defined in Eq. (13).

3.3.1. Edge-preserving smoothness

We expect that the light distribution of circumstellar en-
vironments be mostly smooth with some sharp edges,
hence edge-preserving smoothness regularization (Charbon-
nier et al. 1997) appears to be the most suited choice to
this kind of light distribution. When considering the re-
covering of polarimetric parameters, such a constraint can
be directly imposed to the unpolarized intensity Iu, to the

polarized intensity Ip or to the total intensity I by the fol-
lowing regularization terms:

fIu(X) =
∑
n

√
‖DnI

u(X)‖2 + µ2
Iu , (16)

fIp(X) =
∑
n

√
‖DnI

p(X)‖2 + µ2
Ip , (17)

fI(X) =
∑
n

√
‖DnI(X)‖2 + µ2

I , (18)

where we denote in boldface sampled maps of polarimet-
ric parameters, for instance Iu ∈ RN the image of the
unpolarized intensity or Iu(X) to make explicit that it is
uniquely determined by the sought parameters X. In the
above expressions, µρ > 0 models the smoothing threshold
and Dn : RN → R2 is a linear operator which yields an
approximation of the 2D spatial gradient of its argument
around the n-th pixel. This operator is implemented by
means of finite differences; more specifically applying Dn

to a sampled map u of a given parameter writes:

Dn u =

(
un1+1,n2

− un1,n2

un1,n2+1 − un1,n2

)
. (19)

where (n1, n2) denotes the row and column indices of the
n-th pixel in the map. At the edges of the support of the
parameter maps, we simply assume flat boundary conditions
and set the spatial gradient to zero there.

The regularizations in Eqs. (16)–(18) implement a hy-
perbolic version of a pseudo-norm of the spatial gradient
of a given component of the light distribution which be-
haves as an L2-norm (i.e., quadratically) for gradients much
smaller than µ and as an L1-norm (i.e., linearly) for gra-
dients much larger than µ. Hence imposing smoothness for
flat areas where the spatial gradient is small while avoiding
strong penalization for larger spatial gradients at edges of
structures.

It has been shown (Lefkimmiatis et al. 2013; Chierchia
et al. 2014) that grouping different sets of parameters in
regularization terms that are sub-L2 norm of the gradient
like the last one in Eq. (16)–(18) yields solutions in which
strong changes tend to occur at the same locations in the
sets of parameters. In order to encourage sharp edges to
occur at the same places in the Stokes parameters Q and
U , we also consider using the following regularization for
these components:

fQ+U (X) =
∑
n

√
‖DnQ(X)‖2 + ‖DnU(X)‖2 + µ2

Q+U .

(20)

Many other regularizations implementing smoothness
constraints can be found in the literature from the simple
quadratic one (Tikhonov 1963) to the very popular total
variation (TV; Rudin et al. 1992). Quadratic regulariza-
tions tend to yield strong ripples which, owing to the con-
trast of the recovered maps, are an unacceptable nuisance
while TV yields maps affected by a so-called cartoon ef-
fect (i.e., piecewise flat images) which is not appropriate
for realistic astronomical images. We however note that the
hyperbolic edge-preserving regularization with a threshold
µρ set to a very small level can be seen as a relaxed ver-
sion of TV and has been widely used as a differentiable
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approximation of this regularization. Our choice of a dif-
ferentiable regularization is also motivated by the existence
of efficient numerical methods to minimize non-quadratic
but differentiable objective functions of many (millions or
even billions) variables possibly with additional strict con-
straints (Thiébaut 2002). See Denneulin et al. (2019, 2020);
Denneulin (2020) for a comparison of possible advanced reg-
ularizers.

3.3.2. Tuning of the hyperparameters

In the regularization function fprior(X), the terms defined
in Eq. (16)–(18) and Eq. (20) can be activated (or inhibited)
by choosing the corresponding λρ > 0 (or λρ = 0). It is also
required to tune the threshold level µρ > 0 in addition to
the λρ multipliers. All these hyperparameters have an inci-
dence on the recovered solution: the higher λρ the smoother
the corresponding regularized component and a lowering of
the threshold µρ allows us to capture sharper structures.
A number of practical methods have been devised to auto-
matically tune the hyperparameters:Stein’s Unbiased Risk
Estimator (SURE: Stein 1981; Eldar 2008; Ramani et al.
2008; Deledalle et al. 2014), Generalized Cross-Validation
(GCV: Golub et al. 1979), the L-curve (Hansen & O’Leary
1993), or hierarchical Bayesian strategies (Molina 1994).

Unsupervised tuning of the hyperparameters with
GSURE (Eldar 2008), in a prediction error formulation, has
been considered in this context. Fig. 2 shows the value of
GSURE for several reconstructions of RXJ 1615 (Avenhaus
et al. 2018). Since it is expected that there are relatively
few sharp edges, ‖DnXρ‖ � µρ should hold for most pix-
els n in the component Xρ. As a result, for most pixels n,
the regularization penalty behaves as a quadratic Tikhonov
(1963) smoothness weighted by λρ/µρ:

λρ

√
‖DnXρ‖2 + µ2

ρ ≈ λρ µρ +
λρ

2µρ
‖DnXρ‖2 . (21)

The strength of the blurring imposed by the regularization
is therefore mostly controlled by the value of λρ/µρ (e.g.
from top to bottom in Fig. 2) while the sharp edges are
controlled by the threshold µρ (e.g. from left to right in
Fig. 2).

In Fig. 2, we can observe that an automatic selection of
the hyperparameters with GSURE would lead to an over
regularized solution. In other high contrast contexts, we
also observed this tendency of GSURE to over-smooth the
result. We think that devising a good unsupervised method
for tuning the hyperparameters deserve further studies,
and, for the results presented in this paper, we tuned the
hyperparameters by hand by visually inspecting several re-
constructions under different settings as presented in Fig. 2.

The polarized parameter Ip contribute to I, Q, and U
(see Eq. (5)). To avoid a contamination of the extracted po-
larized parameters Ip by the unpolarized component Iu, we
regularize Iu and Ip separately. Hence, the regularization
of the unpolarized component Iu should be done via fIu
defined in Eq. (16) rather than via fI defined in Eq. (18).
For the polarized light, the joint regularization of Q and
U by fQ+U defined in Eq. (20) is more effective than the
regularization of Ip alone by fIp defined in Eq. (17) which
does not constrain the angle θ of the linear polarization. In
Eq. (13), we therefore take the Set 1 or Set 2 of hyperpa-
rameters presented in Table 3. The latter combination is
preferable as discussed previously.

Hyperparameters λIp λIu λI λQ+U

Set 1 = 0 ≥ 0 = 0 ≥ 0
Set 2 = 0 = 0 ≥ 0 ≥ 0

Table 3: Set of hyperparameters used in the present work.
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Fig. 2: Comparison of the non-linear RHAPSODIE recon-
structions of RXJ 1615 (Avenhaus et al. 2018) for different
values of λQ+U and µQ+U . The value of the GSURE crite-
rion is indicated for each reconstruction.

3.4. Imposing the positivity of the intensities

Imposing non-negativity constraints on the restored intensi-
ties has proven its efficiency for astronomical imaging where
large parts of the images consist in background pixels whose
value should be zero (Biraud 1969). Whatever the choice of
the parametrization, the intensities I, Iu, and Ip should all
be everywhere non-negative.

Since I = Iu + Ip, it is sufficient to require that Iu

and Ip be nonnegative. Hence, for the set of parameters
X = (Iu, Ip,θ), the positivity constraint writes:

C =
{

(Iu, Ip,θ) ∈ RN×3
∣∣∣ ∀n ∈ J1, NK, Iu

n ≥ 0, Ip
n ≥ 0

}
.

(22)

Expressed for the Stokes parametersX = (I,Q,U), the
positivity yields an epigraphical constraint:

C =
{

(I,Q,U) ∈ RN×3
∣∣∣ ∀n ∈ J1, NK, In ≥

√
Q2
n + U2

n

}
.

(23)

Such a constraint can be found in Birdi et al. (2018), but it
has not yet been implemented in high contrast polarimetric
imaging.

Since Ip
n =

√
Q2
n + U2

n (for all pixels n), the positivity
of the intensity Ip of the polarized light automatically holds
if the parameters X = (Iu,Q,U) are considered. It is then
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sufficient to impose the positivity of the intensity Iu of the
unpolarized light as expressed by the following feasible set:

C =
{

(Iu,Q,U) ∈ RN×3
∣∣∣ ∀n ∈ J1, NK, Iu

n ≥ 0
}
. (24)

3.5. Choice of the polarimetric parameters

Our method expresses the recovered parameters X̂ as the
solution of a constrained optimization problem specified in
Eq. (13). As explained in Sec. 3.3.2, the weights of imposed
regularization is chosen via the values of the multipliers λρ.

The constraints can be implemented by the feasible C
for different choices of the parametersX. More specifically,
X = (Iu, Ip,θ), X = (I,Q,U) or X = (Iu,Q,U) can be
chosen. Whatever the choice for X, the relations given in
Eq. (5) and Eq. (6) can be used to estimate any parameter
of interest given the recovered X̂. These relations can also
be used to compute the objective function f(X) which re-
quire the Stokes parameters needed by the direct model of
the data Eq. (9) and various polarimetric component de-
pending on the choice of the regularization.

WithX = (I,Q,U), the positivity constraints take the
form of an epigraphic constraint that is more difficult to
enforce as being not separable in the parameters space. To
solve the problem in Eq. (13) with such a constraint, an
epigraphic projection is required, leading to the use of a
forward-backward scheme (Combettes & Wajs 2005), re-
duced in this context to a standard projected gradient de-
scent. A description of the method for such a minimization
problem can be found in Denneulin et al. (2020).

The choiceX = (I,Q,U) may avoid some degeneracies
because it ensures the convexity of the problem in Eq. (13).

With X = (Iu, Ip,θ) or X = (Iu,Q,U), the positiv-
ity constraints amounts to applying simple separable bound
constraints on some parameters. Since the objective is dif-
ferentiable, a method such as VMLM-B (Thiébaut 2002)
can be used to solve the problem in Eq. (13). The VMLM-B
algorithm is a quasi-Newton method with limited memory
requirements and able to account for separable bound con-
straints. VMLM-B is applicable to large size problems and
only require to provide the bounds and a numerical function
to compute the objective function and its gradient.

In the following, we compare the performances of
RHAPSODIE for the polarimetric parameters X =
(I,Q,U) and X = (Iu,Q,U) on simulated synthetic
datasets. We refer to linear RHAPSODIE when we re-
construct X = (I,Q,U) and to non-linear RHAPSODIE
when we reconstruct X = (Iu,Q,U). Both parametriza-
tions allow us to access the parameters of interest Ip and θ
using Eq. (6). The best choice of polarimetric parameters
is then used to process astrophysical datasets.

4. Data calibrations

4.1. Detector calibration

Before the application of a reconstruction method, the cali-
bration of the data is essential to account for the noise and
the artifacts linked to the measurement. It allows for the
estimation and correction of any pollution induced by the
sky background or the instrument as well as the detector
behavior in terms of errors on pixel values.

We use an inverse method to calibrate the raw data
from these effects: the quantity required for the calibration
are jointly estimated from the likelihood of the calibration
data direct model (Denneulin 2020). In this method, all
calibration data are expressed as a function of the differ-
ent contributions (i.e., flux, sky background, instrumental
background, gain, noise, and quantum efficiency). All these
quantities are then jointly estimated by the minimization
of the co-log-likelihood of the data. Calibrated data are cor-
rected for contribution of the bias and the background and
for non-uniform sensitivity and throughput. The calibra-
tion also provides associated weights computed according
to the estimated variance, see Eq. (15). Finally, thedefec-
tive pixels are detected by crossing several criteria, such
as their linearity, their covariance compared to that of the
other pixels, or the values of their likelihood in the cali-
bration data. This calibration method produces calibrated
data outputs (dk)k∈J1,KK and their weights (Wk)k∈J1,KK.

4.2. Instrumental calibration

The instrumental calibration is a required step for the esti-
mation, from dedicated data, of the instrumental PSF and
of the star centers on each side of the detector. Since the
star is placed behind the coronagraphic mask, simultaneous
PSF estimation is not possible. To estimate the PSF, we use
a dedicated flux calibration (STAR-FLUX) that is acquired
just before and after the science exposure by offsetting the
telescope to about 0.5 arcsec with respect to the corona-
graphic mask by using the SPHERE tip/tilt mirror (Beuzit
et al. 2019). Consequently, the PSF is recorded with similar
atmospheric conditions (listed in Table 4) as the science ob-
servations. When performing this calibration, suitable neu-
tral density filters are inserted to avoid detector saturation.
It has been shown in (Beuzit et al. 2019) that these neu-
tral density filters do not affect the PSF shape and thus its
calibration. This instrumental calibration leads to the esti-
mation of the PSF modeled through the operators Ak. The
PSF model does not include the spiders to remain rotation
invariant (see Fig. 3).

In the case of synthetic observations, the assumed 2D
PSF is extracted from the real data RY Lup (e.g. similar
to the top left image on Fig. 3). For astrophysical observa-
tions, we fit a 2D PSF model on pre-reduced PSF data for
each observed target (e.g. Gaussian, Airy, and Moffat fits
on Fig. 3).

During the coronographic observing sequence, the star
point spread function peak is hidden by the coronagraphic
mask and its position was determined using a special cali-
bration (STAR-CENTER) where four faint replicas of the star
image are created by giving a bi-dimensional sinusoidal pro-
file to the deformable mirror (see Beuzit et al. 2019). The
STAR-CENTER calibration was repeated before and after each
science observation, and resulting center estimations were
averaged. In addition we use the derotator position and the
true north calibration from Maire et al. (2016) to extract
the angle of rotation of the north axis. These instrumental
calibration steps lead to the estimation of the transforma-
tion operators Tj,k which rotate and translate the maps of
interest to make the centers and the north axes coincide
with those in the data.
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Fig. 3: Example of the fitting of the true PSF on the empirical SPHERE/IRDIS data of the target HD 106906 reduced
with RHAPSODIE. Observed PSF in H band (upper left) and different parametrization (Airy, Gaussian, and Moffat).
Intensities are in log-scale to enhance the faint diffraction patterns.

4.3. Polarization calibration

When the light is reflected by the optical devices in the
instrument, some instrumental polarization is introduced,
resulting in a loss of polarized intensity and cross-talk con-
tamination between Stokes parameters Q and U .

The classical method to compensate for this instrumen-
tal polarization is to employs the azimuthal Qφ and Uφ
parameters to reduce the noise floor in the image (Aven-
haus et al. 2014). Because this method is limited to face-on
disks, we instead use the method developed by van Holstein
et al. (2020) which rely on the pre-computed calibration of
the instrumentation polarization as a function of the ob-
servational configurations. The pipeline IRDAP (van Hol-
stein et al. 2020) yields the possibility to determine and
correct the instrumental polarization in the signal recon-
struction, yet this reconstruction requires to estimate first
theQ and U parameters, to perform the instrumental polar-
ization correction. After computing the double difference,
IRDAP uses a Mueller matrix model of the instrument care-
fully calibrated using real on sky data to correct for the
polarized intensity Ip (created upstream of the HWP) and
crosstalk of the telescope and instrument to compute the
model-corrected Q and U images.

Using IRDAP, we estimate the instrumental trans-
mission parameters (νj,k,l)j∈{1, 2},k∈J1,KK,`∈J1,LK from the
Mueller matrix to calibrate the instrumental polarization
in our datasets.

IRDAP also determines the corresponding uncertainty
by measuring the stellar polarization for each HWP cycle
individually and by computing the standard error of the
mean over the measurements. Finally, IRDAP creates an
additional set of Q and U images by subtracting the mea-
sured stellar polarization from the model-corrected Q and
U images. We use a similar method to correct for the stellar

polarization which is responsible for strong light pollution
at small separation in particular for faint disks such as de-
bris disks. The contribution of this stellar light is estimated
as different factors of Iu in both Q and U , respectively εQ
and εU . We estimate this stellar contribution by using a
pixel annulus Ω located at a separation where there is no
disk signal (either near the edge of the coronograph or at
the separation corresponding to the adaptive optics cut-off
frequency). Both corrections factors εQ and εU as follow:{
εQ =

(∑
n∈ΩQn/I

u
n

)
/NΩ

εU =
(∑

n∈Ω Un/I
u
n

)
/NΩ,

(25)

where NΩ is the number of pixels of the ring Ω. We then
compute Qcor = Q − εQI

u and U cor = U − εUI
u in or-

der to create an additional set of Qcor and U cor images
by subtracting the measured stellar polarization from the
model-corrected Q and U images.

5. Applications on high contrast polarimetric data

In this section, we will compare two RHAPSODIE configu-
rations. The first configuration defined as without deconvo-
lution, means that Idet

j,k,m in the data fidelity term (14) does
not include the convolution, leading to the simplification of
the equations (9) and (10):

Idet
j,k,m =

3∑
`=1

νj,k,`

N∑
n=1

(Tj,k)m,n S`,n , (26)

(i.e., Ak is the identity). Such a configuration of RHAP-
SODIE aims to be comparable to the state-of-the-art meth-
ods (i.e., Double Difference and IRDAP). These methods
do not include any deconvolution and we aim to show that
RHAPSODIE also performs well in such a case.
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The second configuration defined as with deconvolution
states for the full RHAPSODIE capabilities. Such a config-
uration of RHAPSODIE aims to show the benefits of the
global model compared to an a posteriori deconvolution to
improve the angular resolution.

5.1. Application on synthetic data

The performance of the linear and non-linear methods are
first evaluated on synthetic datasets, without (resp. with)
the deconvolution displayed on Fig. 4, Fig. 5 and Fig. 6
(resp. Fig. 7, Fig. 8 and Fig. 9). These datasets are com-
posed of unpolarized residual stellar flux, mixed with un-
polarized and polarized disk flux. We produce several syn-
thetic datasets following steps given in Appendix A, for
different ratios of the polarization of the disk, called τdisk

and defined in the equation (A.1).
The results of the RHAPSODIE methods are compared

to the results obtained with the classical Double Difference
method (Tinbergen 2005; Avenhaus et al. 2014). The Dou-
ble Difference is applied on recentered and rotated datasets
with the bad pixels interpolated. For the comparison with
deconvolution, the results of the Double Difference are de-
convolved after the reduction. In order to provide fair com-
parisons with RHAPSODIE, we propose to use an inverse
approach rather than applying a high-pass spatial filtering.
The deconvolved Double Difference reconstructions are ob-
tained by solving the following problem:

(Q̂, Û) ∈ arg min
(Q,U)∈RN×RN

[
‖Q̂D. D. −AQ‖2 + ‖ÛD. D. −AU‖2

+ λ(Q+U)D. D.f(Q+U)D. D.(Q,U)

]
(27)

where Q̂D. D. and ÛD. D. are the Stokes parameters recon-
structed with the Double Difference and A represents the
convolution by the PSF. This deconvolution method per-
forms the deconvolution of Stokes parameters Q and U
jointly in order to sharpen the polarized intensity image,
but does not recover the polarization signal lost by aver-
aging over close-by polarization signals with opposite sign
and may even introduce artificial structures that are not
present in the original source.

For the reconstruction with RHAPSODIE, the hyper-
parameters of regularization λρ, and µρ are chosen in order
to minimize the total Mean Square Error (MSE), i.e. the
sum of the MSE between each estimated parameter Îu, Îp

and θ̂, obtained from X̂ from Eq. (6), and the ground truth
Iu
gt, I

p
gt and θgt. The total MSE is given by:

MSEtot =

NIu∑
n=1

E
[(
Îu − Iu

gt
)2]

+

NIp∑
n=1

E
[(
Îp − Ip

gt
)2]

+

Nθ∑
n=1

E
[
angle

(
e2i(θ̂−θgt)

)2]
. (28)

where, NIu , NIp , and Nθ are the number of pixels with
signal of interest in the respective Iu, Ip, and θ maps.

For the deconvolution of the Double Difference results,
λ(Q+U)D. D. and µ(Q+U)D. D. are chosen to minimize only the
sum of the MSE on Iu and θ.

For the reconstructions without the deconvolution,
Fig. 4 and Fig. 5 show that the reconstructions are less
noisy with RHAPSODIE. The inner circle is always better
reconstructed. Moreover, the non-linear reconstruction
(i.e., minimization on Iu, Q and U) is better than the
linear when τdisk grows. In both configurations of RHAP-
SODIE (non-linear and linear), the thin ring is not as well
reconstructed as with the Double Difference. It is possible
to recover such sharper structure with RHAPSODIE,
by reducing the regularization weight (i.e., reducing the
hyperparameter λQ+U ). However, if λQ+U is too small, the
data will be overfitted and the noise in the reconstructed
images will be amplified. It is thus necessary to keep a
good trade-off between a smooth solution and a solution
close to the data. Classically, minimizing the MSE is a
good trade-off between underfitting and overfitting. The
MSE curves in Fig. 6 are coherent with the observations.
When τdisk = 25%, the non-linear RHAPSODIE MSE
and Double Difference MSE are equivalent, but on the
reconstructions, we can see that if the thin circle is better
reconstructed with the Double Difference, the inner circle
is better reconstructed with RHAPSODIE. Moreover, we
can see that the angle error is more than three-time smaller
with RHAPSODIE compared to the Double Difference
error.

For the reconstructions with the deconvolution, the
RHAPSODIE methods better reconstructions of the po-
larized intensity as shown on the reconstructions in Fig. 7,
mostly for the inner ring, even if the background is less bi-
ased with the proposed deconvolved Double Difference (as
shown on the error maps in Fig. 8). In fact, as shown on the
MSE displayed in Fig. 9, for τdisk = 3%, RHAPSODIE de-
livers a more accurate polarized intensity estimation. The
errors of the reconstructions are larger for the Double Dif-
ference than for the RHAPSODIE methods. The RHAP-
SODIE methods also allow us to achieve a better recon-
struction of the angle of polarization, mostly with the non-
linear estimation. The non-linear reconstruction appears to
be more efficient as being not polluted by the artifacts of
deconvolution of the unpolarized point source companion
as seen on Fig. 8. Even if according to the MSE in Fig. 9,
for τdisk = 25%, the MSE is smaller for the linear RAP-
SODIE. in fact, the space between the outer ring and the
thin ring is better reconstructed with such a configuration
(see Fig. 7 and Fig. 7).

According to these results, the RHAPSODIE methods
are better than the state-of-the-art methods, in particular
the non-linear RHAPSODIE method. The benefits of our
contribution is clearly visible in the case of faint disks and
structures which are the most common on astrophysical
data. This is why in the following section dedicated to the
astrophysical data, we select the non-linear RHAPSODIE
method with manual selection of the hyperparameters.

5.2. Astrophysical data

RHAPSODIE was applied to several IRDIS datasets dedi-
cated to protoplanetary, transition and debris disks, to test
the efficiency of our method and to compare it to the state-
of-the-art method. For each reconstruction, we present the
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map of the projected intensities, by using the standard az-
imuthal Stokes parameters Qφ and Uφ estimated from:{
Qφ = Qn cos (2ψn) + Un sin (2ψn)

Uφ = Un cos (2ψn)−Qn sin (2ψn) ,
(29)
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Fig. 4: Visual comparison of the reconstructed polarized
intensity Ip with the state-of-the-art Double Difference and
the RHAPSODIE methods without deconvolution.
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Fig. 5: Maps of errors of the reconstructions displayed on
Fig. 4. These errors are obtained as the difference between
the true and the reconstructed images.
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Fig. 6: Comparison of the MSE between the true map and
the estimated map of the polarized intensity Ip and of the
angle of polarization θ for the Double Difference and the
linear and non-linear RHAPSODIE methods without de-
convolution.

with ψn = arctan
(
n1−ncenter

1

n2−ncenter
2

)
where (n1, n2) denotes the

row and the column indices of the n-th pixel in the map and
(ncenter

1 , ncenter
2 ) those of the pixel center. We also present

the maps of polarized intensities Ip and the angles of po-
larization θ estimated by the different methods.
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Fig. 7: Visual comparison of the reconstructed polarized
intensity Ip with the state-of-the-art Double Difference and
the RHAPSODIE methods with deconvolution.
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Fig. 8: Maps of errors of the reconstructions displayed on
Fig. 7. These errors are obtained as the difference between
the true and the reconstructed images.
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Target Date Filter ∆t HWP Kmiss ∆tot
t seeing τ0 (ms)

(s) cycles (s)
TW Hydrae 2015-04-01 H 16 22 13 5424 1.15 2.2
IM Lupus 2016-03-14 H 64 6 7 2624 1.40 2.7
MY Lupus 2016-03-16 H 64 7 18 2432 1.63 1.5
RY Lupus 2016-05-27 H 32 8 0 4096 0.65 3.3
T Chae 2016-02-20 H 32 30 0 3840 1.8 2.2
RXJ 1615 2016-03-15 H 64 11 7 5184 0.7 4.1
HD 106906 2019-01-17/18/20 H 32 42 0 5376 0.54 14.0
HD 61005 2015-05-02 H 16 12 16 2816 1.5 3.2
AU MIC 2017-06-20 J 16 23 0 11776 1.4 2.2

Table 4: Information of the datasets used for the target reconstruction: the name of the target, the date of the observation,
the filter used, the exposition time ∆t for one acquisition, the number of cycles of HWP, the number of frame missing or
removedKmiss, the total exposition time of the observation ∆tot

t consideringKmiss, the seeing, and observation conditions
τ0. The total number of frames in each dataset is given by K = ∆tot

t /∆t +Kmiss.

Target λno-dec
Iu λno-dec

Q+U µno-dec
Iu µno-dec

Q+U λdec
Iu λdec

Q+U µdec
Iu µdec

Q+U PSF
TW Hydrae 104.0 104.0 10−4.0 10−4.0 104.0 104.0 10−5.0 10−5.0 Moffat
IM Lupus 103.0 104.0 10−0.8 10−4.0 105.0 105.5 10−3.0 10−3.0 Airy
MY Lupus 102.0 100.4 10−0.7 10−3.6 101.0 100.5 10−3.0 10−3.0 Moffat
RY Lupus 104.0 105.5 10−3.0 10−3.0 105.0 103.0 10−3.0 10−3.0 Moffat
T Chae 100.0 10−1.0 10−3.0 10−3.0 100.5 10−1.0 10−2.0 10−2.0 Moffat
RXJ 1615 100.0 100.0 10−4.0 101.0 101.0 10−1.5 10−3.0 10−3.0 Moffat
HD 106906 102.5 101.5 10−4.0 10−4.0 105.0 101.7 102.2 10−1.8 Airy
HD 61005 105.0 104.1 10−0.7 10−3.4 105.0 104.1 10−0.7 10−3.9 Moffat
AU MIC 105.0 104.3 10−4.2 10−3.2 105.0 104.3 10−1.2 10−4.2 Moffat

Table 5: Informations of the parameters used for the target reconstruction presented in this section: the name of the
target and the values of the hyperparameters λno-dec

Iu , λno-dec
Q+U , µno-dec (resp. λdec

Iu , λdec
Q+U , µ

dec) used for the reconstruction
with RHAPSODIE without deconvolution (resp. with deconvolution), and the parametrization model of the PSF used.

First, the reconstructions of the target TW Hydrae with
the Double Difference and RHAPSODIE without deconvo-
lution are compared in the Fig.10, without and with the
correction of the instrumental polarization. The images are
scaled by the square of the separation to account for the
drop-off of stellar illumination with distance.

The instrumental polarization in this dataset introduces
a polarization rotation and an attenuation (loss of polariza-
tion signal) of the intensity with varying time during the ob-
servations which can be monitored easily because the disk is
face-on. If uncorrected, the combination of data from multi-
ple polarimetric cycles will result in very poorly constrained
polarimetric intensity measurements. When we correct the
instrumental polarization (see Fig. 10c) by using the IR-
DAP method, these effects are compensated and the disk
reconstructed is more accurate (Fig. 10c (iii). As a result,
the contamination of the Uφ signal from cross-talk is de-
creased and becomes negligible as seen in Fig. 10c (iii).

The comparison with van Boekel et al. (2017); de Boer
et al. (2020) shows that our method is less impacted by the
bad pixels and improves the disk SNR in the area where
the signal is low. On the other hand, it is slightly more
sensitive to detector flat calibration accuracy. It is worth
noticing that IRDAP has a dedicated correction of the de-
tector response nonuniformity (flat field variation between
the detector column) for the various amplifiers that is not
implemented in RHAPSODIE. However, the flat calibra-
tion of observations more recent than 2016 have improved
and do allow better calibration and as a consequence do
not impact our method efficiency anymore.

The efficiency of the method we have developed is
demonstrated on the Figures 11, 12, 13, 14, 15, and 16.
Fig. 11 and Fig. 12 present the Double Difference and
RHAPSODIE reconstructions of the protoplanery disks
TW Hydrae (van Boekel et al. 2017), IM Lupus (Avenhaus
et al. 2018) and MY Lupus (Avenhaus et al. 2018). Fig. 13
and 14 presents RHAPSODIE reconstructions of transition
disks RY Lupus (Langlois et al. 2018), T Chamaeleontis
(Pohl et al. 2017), RXJ 1615 (de Boer et al. 2016). Fig. 15
and Fig. 16 presents the RHAPSODIE reconstructions of
the debris disks HD 106906 (Kalas et al. 2015; Lagrange
et al. 2016), HD 61005 (Olofsson et al. 2016), and AU
Mic (Boccaletti et al. 2018).These reconstructions are all
normalized in contrast to the unpolarized stellar flux (es-
timated when registering the PSF off-centered from the
coronograph) by taking into account the transmission of
the neutral-density filter used when registering the PSF to
prevent saturation.

The contrast between the selected disks polarized light
and their host stars unpolarized light responsible for the
level of stellar pollution are also very different (ranging from
3·10−2 to 8·10−6). The achievable contrast is more favorable
for highly inclined disk such as MY Lup on Fig. 11 because
in such a case, the star likely shines partially through the
disk, which is dimming the starlight and thus decreasing
the contrast between the star and the disk.

In all cases, our method produces high-quality recon-
structions of the disk polarized signal and minimizes the
artifacts from bad pixels. The comparison of these reduc-
tions with the state-of-the-art confirms the benefits of our
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(a) Stokes parameter Q. (b) Stokes parameter U .
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polarization correction, (iii) RHAPSODIE which includes by default the instrumental polarization correction. The intensities are
multiplied in each pixel by the distance to the star r2.

Fig. 10: Reconstruction of the Q (a) and U (b) parameters of the target TW Hydrae, for the first three cycle of HWP
rotation, without (upper row) and with (lower row) the correction of the polarization. Without the correction, both Q
and U are rotated and attenuated. The Qφ and Uφ images reconstructed from the entire dataset are presented in (c). All
the reconstructions are done without deconvolution to demonstrate mainly the efficiency of the instrumental polarization
correction and the benefits of RHAPSODIE.

method but it is more difficult to quantify the gain on real
data not knowing the truth and should be strengthened
by using numerical models of these objects. In addition,
our method can produce deblurred results which clearly
enhances the angular resolution and is beneficial for inter-
preting the disk morphology and for studying its physical
properties. In all cases, the deconvolution sharpens the po-
larized intensity image, helps to recover the polarization
signal lost by averaging over close-by polarization signals
with opposite sign, and does not introduce artificial struc-
tures that are not present in the original source (see Fig. 13
(RY Lup)). As mentioned before the hyperparameters could

be further tuned to adjust the smoothing of the deconvolved
images according to the required noise/angular resolution
trade-off.

For several of these disks (IM Lup, MY Lup on Fig.11),
the outer edge of the disk and thus the lower disk surface
have been detected in Avenhaus et al. (2018) and are con-
firmed by our method. The deconvolution of these datasets
allows to further highlight these fainter features, to enhance
or reveal the midplane gaps in the case of T Cha (on Fig. 13)
which was not identified by Pohl et al. (2017). The reason
is that without deconvolution, the PSF smears light from
the disk upper and lower sides into the midplane gap.
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Fig. 11: Reconstructions of the polarized intensity Ip of the protoplanetary disks TW Hydrae, IM Lupus, and MY Lupus.
From the left to the right, the reconstructions have been obtained with the Double Difference, RHAPSODIE without
deconvolution and RHAPSODIE with deconvolution. The maps are displayed in logarithmic scale and normalized in
contrast to the unpolarized stellar flux. The pixels lying underneath the coronograph are masked in black. North is up
and East is to the left in all frames.

Except for Au Mic, the debris disk presented on Fig. 15
are much fainter in contrast than the protoplanetary or the
transition disks in polarized intensity. As a consequence
these datasets have required careful stellar polarization
compensation. The HD 106906 debris disk is viewed close to
edge-on in polarized light as reported in van Holstein et al.
(2020); Esposito et al. (2020). The image clearly shows the
known East-West brightness asymmetry of the disk, which
was detected in total intensity (Kalas et al. 2015; Lagrange

et al. 2016). Thanks to the deep dataset and good recon-
struction, we also detect the backward-scattering far side of
the disk to the west of the star, just south of the brighter
near side of the disk. This feature is further highlighted by
the deconvolution.

The reader may remark that the RHAPSODIE de-
blurred reconstructions of RXJ 1615 (on Fig. 13) and
HD 10906 (on Fig. 15) seems noisier than without deconvo-
lution. This is due to hyperparameters purposely chosen so
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Fig. 12: Reconstructions of the polarization angle θ of the protoplanetary disks TW Hydrae, IM Lupus, and MY Lupus.
From the left to the right, the reconstructions have been obtained with the Double Difference, RHAPSODIE without
deconvolution and RHAPSODIE with deconvolution. The maps are displayed in logarithmic scale and normalized in
contrast to the unpolarized stellar flux. The pixels lying underneath the coronograph are masked in black. North is up
and East is to the left in all frames.

as to achieve the best angular resolution with the side effect
of slight noise amplification. Thus the noise is not negligi-
ble in the reconstruction. As shown in Fig. 2, increasing the
regularization weight to smooth the background would lead
to a loss of the thin structures.

We also analyzed two datasets (HD61005 and Au Mic)
taken under very bad conditions. For these two datasets,
our method also proves to be efficient in using incomplete
polarization cycles to recover the disk polarized signal, and

to deconvolve this signal despite strong artifacts produced
in addition by the rotating spiders (i.e., unmasked by the
Lyot stop) when observing in field stabilized. The difference
in the spider position during the polarimetric cycle results
in an artificial polarimetric signal when using standard data
reduction techniques. It is worth noticing that the strength
of our method to deal with these artifacts comes from its
ability to use weighted maps to account for them. For in-
stance, the spiders are weighted by their variance during
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Fig. 13: Reconstructions of the polarized intensity Ip of the transition disks RY Lupus, T Chae, and RXJ 1615. From the
left to the right, the reconstructions have been obtained with the Double Difference, RHAPSODIE without deconvolution
and RHAPSODIE with deconvolution. The maps are displayed in logarithmic scale and normalized in contrast to the
unpolarized stellar flux. The pixels lying underneath the coronograph are masked in black. North is up and East is to
the left in all frames.

their rotation frame by frame in addition to the inclusion
of a static bad pixel ponderation. As a result, the contri-
bution of the spiders to the polarimetric signal when using
our method is decreased compared to the other methods.
The noise which is created by these spiders remains, as seen
on Fig. 15, and can generate artifacts in the deconvolution
as seen for HD 61005. Counteracting the artifacts caused
by the spiders can be efficiently done by performing DPI
observation in pupil tracking mode as proposed in van Hol-

stein et al. (2017). We have also validated the efficiency of
RHAPSODIE in such observations which allows a further
gain in the reduction of the instrumental artifacts from the
telescope spiders.

Another advantage of our method is its ability to use
incomplete polarimetric cycles which are discarded by the
classical methods. This capability of our method leads to
an increase in SNR which was quantified more precisely us-
ing our model of the data in Denneulin (2020). To benefit
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Fig. 14: Reconstructions of the polarization angle θ of the transition disks RY Lupus, T Chae, and RXJ 1615. From the
left to the right, the reconstructions have been obtained with the Double Difference, RHAPSODIE without deconvolution
and RHAPSODIE with deconvolution. The maps are displayed in logarithmic scale and normalized in contrast to the
unpolarized stellar flux. The pixels lying underneath the coronograph are masked in black. North is up and East is to
the left in all frames.

from this improvement, the instrumental polarization has
to remain small because incomplete polarimetric cycles do
not benefit from the instrumental polarization compensa-
tion performed by estimating both couples Q and −Q (and
U and −U , respectively).

6. Conclusion

We developed a new method to extract the polarimetric
signal using an inverse problems approach that exploits
a model of the measured signal formation process. The
method includes a weighted data fidelity term which takes
into account the blur and the polarization due to the instru-
ment, and effectively disentangles polarized signal of inter-
est from stellar contamination. In order to avoid noise am-
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Fig. 15: Reconstructions of the polarized intensity Ip of the debris disks HD 106 906, HD 61005, and AU MIC. From the
left to the right, the reconstructions have been obtained with the Double Difference, RHAPSODIE without deconvolution
and RHAPSODIE with deconvolution. The maps are displayed in logarithmic scale and normalized in contrast to the
unpolarized stellar flux. The pixels lying underneath the coronograph are masked in black. North is up and East is to
the left in all frames.

plification in the minimization of the data fidelity term, an
edge preserving smoothing penalization is added allowing
to favor smooth estimates almost everywhere. The associ-
ated minimization problem is solved by standard optimiza-
tion techniques. Our method enables to accurately measure
the polarized intensity and angle of linear polarization of
circumstellar disks by taking into account the noise prop-
agation and the observed objects convolution. It has the
capability to use incomplete polarimetry cycles (when the

instrumental polarization is small) which enhances the sen-
sitivity of these observations. It also takes proper account
for bad pixels by using weighted maps instead of interpo-
lating them. These bad pixels can cause systematic errors
of several tenths of a percent in the polarization measure-
ments as shown by (van Holstein 2020, in prep.) In addition,
the effect of bad pixel interpolation could also have some
impact when reaching 0.1% polarimetric accuracy.
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Fig. 16: Reconstructions of the polarized intensity Ip of the debris disks HD 106 906, HD 61005, and AU MIC. From the
left to the right, the reconstructions have been obtained with the Double Difference, RHAPSODIE without deconvolution
and RHAPSODIE with deconvolution. The maps are displayed in logarithmic scale and normalized in contrast to the
unpolarized stellar flux. The pixels lying underneath the coronograph are masked in black. North is up and East is to
the left in all frames.

We have validated the method on both simulated and
archive data from SPHERE/IRDIS and compared its per-
formances with the state-of-the-art methods. We have
implemented the method in an end-to-end data-analysis
package called RHAPSODIE. The method we developed
improves the overall performances in particular at low
SNR/small polarized flux compared to standard methods.

By increasing the sensitivity and including deconvolu-
tion, this method will allow for more accurate studies of the

orientation and morphology of the disks, especially in the
innermost regions. It also will enable more accurate mea-
surements of the angle of linear polarization at low SNR,
which would allow for more in-depth studies of dust prop-
erties. Finally, the method will enable more accurate mea-
surements of the polarized intensity which is critical to con-
struct scattering phase functions.

RHAPSODIE is the first regularized inverse approach
implemented for high contrast polarimetric imaging. It
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demonstrates the benefits of advanced signal processing
methods in this domain.
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Fig. 17: Qφ and Uφ projections of the reconstructions of RY Lupus and T Chae. The maps are displayed in symmetrical
logarithmic scale and normalized in contrast to the unpolarized stellar flux. The coronographe is masked in black.
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Appendix A: Synthetic dataset simulation

In order to evaluate the performance of the RHAPSODIE
method, synthetic data have been created. These synthetic
data are designed to reproduce astrophysical cases. First,
the truth N = 128 × 128 maps Iu

gt, I
p
gt et θgt are created.

Such a value of N pixels fits the main Region Of Interest
(ROI) size.

The hardest disk structures to reconstruct are faint,
small and lightly polarized structures, and consequently
have high contrast with the unpolarized stellar intensity
and a low SNR. This is why the synthetic environment we
generated a disk with three rings of equal brightness but
with a different contrast with the unpolarized stellar in-
tensity. This disk is partially polarized with a linearly po-
larization Ip and a polarization angle θ ∈] − π, π] and an
unpolarized component Iudisk. The disk polarization ratio
between both component is given by:

τdisk =
Ip

Iudisk + Ip
. (A.1)

These synthetic images are then combined as maps of
Stokes parameters I, Q and U .

The Iudisk component is mixed with the unpolarized
Iustar stellar components and a point source companion
(star close to the host star of different brightness). The
unpolaized intensity is represented as Iu = Iustar + Iudisk.
It is important to keep in mind that unmixing both disk
and stellar unpolarized components is not possible from
DPI data without the diversity introduced by ADI. The
τdisk value used to synthetise datasets is thus inaccessible in
practice from observational polarimetric datasets. To assert
the case difficulty, one can then use the total polarization,
given for all pixel n ∈ {1, . . . , N} by:

τ total(xn) =
Ip
n

Iu
n + Ip

n
, (A.2)

and the Signal-to-Noise Ratio (SNR), given for all pixel
n ∈ {1, . . . , N} by:

SNR(xn) =

√
KαI

p
n√

(Iu
n + Ip

n)/2 + σ2
ro
, (A.3)

where σ2
ro is the read-out noise variance. The difference be-

tween τ total and τdisk is that the last one does not take
in account the unpolarized star residuals. The figure A.1
present the SNR maps and the maps of total polarization
ratio of the synthetic parameters generated for different
τdisk. At the center, where the unpolarized star residual
are the brightest, the SNR and the total polarization ratio
are the weakest especially in the case of small Iudisk. Yet the
SNR grows with the separation from the star center (like
the stellar contribution or when the polarized contribution
of the disk increases. Fig. A.2 present the true simulated
maps for τdisk = 10%.

Finally, to generate synthetic calibrated data, the Stokes
maps are combined following the expression of the data
physical model (12), with K ×M noise realizations from a
fixed random seed. Are also introduced 10% of bad pixels
choosen randomly. The weights related to each acquisition
are simulated at the same time following (15). The datasets
are composed of Kαrot = 8 HWP cycles, with Kαacc = 2
acquisitions per positions in each cycles, giving Kα = 16
total images per position of Half-Wave Plate (HWP), for a
total of K = 4Kα = 64 images per dataset.

Several datasets are created with τdisk ∈
{3%, 7%, 10%15%, 25%}, corresponding to difficult cases
for τdisk < 10% and less difficult brighter cases above this
threshold.

Before producing K × 2N noise realization on each
dataset, the random seed is reset to the same value. This
allow the reproductibility of the results. In fact this real-
ization is obtained by the multiplication of the standard
deviation of the pixel to a gaussian, centered and reduced
gaussian realization. Since the random seed is the same for
each dataset, the realization is the same for the given pixel,
only the standard deviation changes.

In order to compare the results of the Double Difference
to the results of the RHAPSODIE methods the dataset are
pre-processed. The bad pixels are interpolated; then the left
and right part of the images are cut, recentered and rotated.
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Fig. A.1: Total ratios of polarization τ total maps, with respect to the total intensities, and SNR maps for the different
values of disk polarized fractions τdisk.
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Fig. A.2: Schematic describing the process of the data simulation. Starting from synthetic maps Iu
gt, I

p
gt, and θgt based on

a disc model, we generate artificial calibrated and pre-processed datasets d and associated weights W, illustrated here
for τdisk = 10%.
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