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ABSTRACT

Context. Polarimetric imaging is one of the most effective techniques for the high-contrast imaging and characterization of circum-
stellar environments. These environments can be characterized through direct-imaging polarimetry at near-infrared wavelengths. The
Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)/IRDIS instrument, installed on the Very Large Telescope (VLT)
in its dual-beam polarimetric imaging mode, offers the capability to acquire polarimetric images at high contrast and high angular
resolution. However, dedicated image processing is needed to eliminate the contamination from the stellar light, instrumental polar-
ization effects, and blurring from the instrumental point spread function.

Aims. We aim to reconstruct and deconvolve the near-infrared polarization signal from circumstellar environments.

Methods. We used observations of these environments obtained with the high-contrast imaging infrared polarimeter SPHERE-IRDIS
at the VLT. We developed a new way to extract the polarimetric signal using an inverse approach method that benefits from the
additional knowledge of the detected signal formation process. The method includes a weighted data fidelity term and smooth penal-
ization, and it takes the instrumental polarization into account.

Results. This method enables us to accurately measure the polarized intensity and angle of linear polarization of circumstellar disks
by taking into account the noise statistics and the convolution by the instrumental point spread function. It has the capacity to use
incomplete polarimetry cycles, which enhance the sensitivity of the observations. The method improves the overall performances in
particular for instances of both low signal-to-noise (S/N) and small polarized flux compared to standard methods.

Conclusions. By increasing the sensitivity and including deconvolution, our method will allow for more accurate studies of these
disks morphology, especially in the innermost regions. It also will enable more accurate measurements of the angle of linear polariza-
tion at low S/N, which would lead to in-depth studies of dust properties. Finally, the method will enable more accurate measurements

of the polarized intensity, which is critical for the construction of scattering phase functions.

Key words. methods: numerical — techniques: polarimetric — methods: data analysis — techniques: high angular resolution —

protoplanetary disks — techniques: image processing

1. Introduction

With the adaptive-optics-fed high-contrast imaging instruments
GPI (Macintosh et al. 2014) and SPHERE-IRDIS (Beuzit et al.
2019; Dohlen et al. 2008), we now have access to the spatial res-
olution and sensitivity required to observe in the near-infrared
(NIR) circumstellar matter at small angular separations. Along
with the Integral Field Spectrograph (IFS; Claudi et al. 2008)
and the Ziirich IMaging POLarimeter (ZIMPOL; Schmid et al.
2018) which can also be used to observe circumstellar environ-
ments in polarimetry, the IRDIS instrument is one of the three
SPHERE instruments (Beuzit et al. 2019). SPHERE/IRDIS is
able to acquire two simultaneous images at two different
wavelengths, in a so-called Dual Band Imaging (DBI) mode
(Vigan et al. 2014), or for two different polarizations, in a so-
called Dual Polarimetry Imaging mode (Langlois et al. 2014;
de Boer et al. 2020). Both circumstellar disks and self-luminous
giant exoplanets or companion brown dwarfs can be character-
ized thanks to these new instruments in direct-imaging processes
at these wavelengths.

The NIR polarimetric mode of SPHERE/IRDIS at the Very
Large Telescope (VLT), which is described in Beuzit et al.

(2019), de Boer et al. (2020), van Holstein et al. (2020), has
been proven to be very successful in the detection of cir-
cumstellar disks in scattered light (Garufi, et al. 2017) and
shows much promise for the characterization of brown dwarfs
(van Holstein et al. 2017) and exoplanets (van Holstein et al.
2021, and in prep.) when they are surrounded by circumsubstel-
lar disks.

There are three particular types of circumstellar disks that
are the subject of recent studies: protoplanetary disks, transi-
tion disks, and debris disks. Observations of the protoplanetary
and transition disks, in terms of their morphology and linked
to hydrodynamical simulations, allow for the study of their for-
mation scenario, as in studies of HD 142527 (Price et al. 2018),
IM Lup, RU Lup (Avenhaus et al. 2018), and GSC 07396-759
(Sissa et al. 2018). Their observations are valuable because their
shapes can serve as the signposts for the formation of one or
several exoplanets. In fact, during their formation, the planets
“clean” the dust off their orbits, creating gaps without dust, as in
the case of RXJ 1615, MY Lup, PDS 66 (Avenhaus et al. 2018),
and PDS 70 (Keppler et al. 2018, 2019; Haffert et al. 2019). The
planet formation scenario can be explained with hydrodynam-
ical simulations as the cases of HL Tau (Dipierro et al. 2015),
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HD 163296 (Pinte et al. 2019). Due to gravity, exoplanets can
also create spiral arms, as in RY Lup (Langlois et al. 2018) and
MWC 758 (Benisty et al. 2015) where the presence of exoplan-
ets is predicted by hydrodynamical simulations. Debris disks are
the oldest step in the evolution of circumstellar disks, when there
is already one or several planets in the system and the gas is
almost completely consumed. These disks are composed of dust
and grain that never accreted onto the planets, as in the case of
HR 4796A (Perrin et al. 2015; Milli et al. 2019).

These environments can be observed with SPHERE in the
near-infrared and in the visible. However, such observations are
difficult because of the high contrast between the light of the
environment and the residual light from the host star. As a result,
when acquiring images, the light of the environment is contam-
inated by the diffraction stains from the host star. Two methods
can be used to disentangle the light of the disk from that of the
star: angular differential imaging (ADI; Marois et al. 2006) and
differential polarimetric imaging (DPI; van Holstein et al. 2020).
The ADI technique makes use of the fact that the stellar residuals
are fixed in the pupil plane and the object of interest artificially
rotates. The resulting diversity makes it possible to disentangle
the light of the object of interest from the residual light of the
star. Still, such a method does not allow for a good reconstruc-
tion of the disk morphology as it is impacted by artifacts due
to self-subtraction. Moreover, the method fails when the envi-
ronment is nearly rotation-invariant. The DPI observations allow
for access to the morphology of the disks, without the artifacts,
by using the difference of polarization states between the light
scattered by the environment and the light of the host star.

The state-of-the-art methods to process datasets in polarime-
try, apart from the calibration, are “step-by-step” methods. First,
the data are transformed with the required translations and rota-
tions to be easier to process and the bad pixels are interpo-
lated. Such interpolations introduce correlations that are not
taken into account in the following processing. Second, the inter-
polated data are reduced to the Stokes parameters, which are
directly related to the different polarization states. These reduc-
tions can be done with the double difference or the double ratio
(Tinbergen 2005; Avenhaus et al. 2014). If the double ratio takes
into account the possibility of multiplicative instrumental effects,
none of these methods are equipped to deal with the noise statis-
tics. This results in some limitations in sensitivity in the case of
a low signal-to-noise ratio (S/N). Lastly, a deconvolution may
be performed to get rid of the blurring by the instrumental point
spread function. As this is done without accounting for the noise
statistics after all the earlier processing, the results are not opti-
mal given the available data. Still, these state-of-the-art methods
have proven over the years to be sufficiently efficient to produce
quality results. However, studies of circumstellar disks are often
limited to analyses of the orientation (position angle and incli-
nation) and morphology (rings, gaps, cavities, and spiral arms)
of the disks (Muto et al. 2012; Quanz et al. 2013; Ginski et al.
2016; de Boer et al. 2016a). Quantitative polarimetric measure-
ments of circumstellar disks and substellar companions are cur-
rently very challenging because existing data-reduction methods
do not properly estimate the sources of the errors from both noise
and detector calibration. They also require complete polarimet-
ric cycles and do not account for the instrument convolution. For
observations of circumstellar disks (van Holstein et al. 2020),
calibrating the instrumental polarization effects with a suffi-
ciently high accuracy has already yielded several improvements.

Over the last decades in image processing, it has been proven
that the reconstruction of parameters of interest benefits from
a global “inverse problems” approach, taking into account the
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noise statistics and all instrumental effects, rather than “step-by-
step” procedures. In this framework, image restoration methods
rely on a physically grounded model of the data as a function
of the parameters of interest and express the estimated param-
eters of interest as the constrained minimum of an objective
function. This objective function is generally the sum of a data
fidelity term and of regularization terms introduced to favor
known priors. Depending on the convexity and on the smooth-
ness of the objective function, several numerical algorithms
with guarantees of convergence may be considered to seek
the minimum (Nocedal & Wright 1999; Combettes & Pesquet
2011; Pustelnik et al. 2016). Such methods have been used
over decades in astrophysics for the estimation of the physi-
cal parameters (Titterington 1985), mostly in adaptive optics
(Borde & Traub 2006) as well as radio-interferometry with
the well-known algorithm CLEAN (Hogbom 1974). This last
method has been the starting point of a wide variety of algo-
rithms, such as the algorithms SARA (Carrillo et al. 2012)
and Polca-SARA (Birdi et al. 2020) in polarimetric radio-
interferometry using more sophisticated tools as non-smooth
penalizations. A non-smooth method was also used for images
denoising with curvelets (Starck et al. 2003). The minimiza-
tion of a co-log-likelihood was also used in the blind decon-
volution of images convolved by an unknown PSF with
aberrations (Thiébaut & Conan 1995). Learning methods have
been used more recently for the estimation of the CMB
(Adam et al. 2016) and the imaging of the supermassive black-
hole (Akiyama et al. 2019). In high-contrast imaging, the use of
inverse problem methods is more recent. It has been used to
perform auto-calibration of the data (Berdeu et al. 2020) with
the IFS/SPHERE. It has also been used to reconstruct extended
objects in total intensity by using ADI data (Pairet et al. 2019;
Flasseur et al. 2019) with the SPHERE instrument. However,
such reconstruction methods have not been used in polarimet-
ric high-contrast direct imaging.

In the present work, we describe in details the method and
the benefits of the use of an inverse problem formalism for
the reconstruction of circumstellar environments observed in
polarimetry with the instrument ESO/VLT SPHERE IRDIS. In
Sect. 2, we develop the physical model of the data obtained
with the ESO/VLT SPHERE IRDIS instrument. This includes
the polarimetric parametrization, the convolution by the PSF and
the observing sequence. In Sect. 3, we describe Reconstruction
of High-contrAst Polarized Sources and Deconvolution for near-
Infrared Environments (RHAPSODIE!), the method we devel-
oped. Section 4 is dedicated to the calibration of the detector, the
instrument, and the instrumental polarization. Finally, in Sect. 5,
we present the results obtained with RHAPSODIE on both sim-
ulated and astrophysical data.

2. Modeling polarimetric data

The principal parameters of interest for studies of circumstel-
lar environments in polarimetry are the intensity, /P, of the lin-
early polarized light and the corresponding polarization angle 6
which are caused by the reflection of the stellar light onto the
circumstellar dust. By modulating the orientation of the instru-
mental polarization, these parameters can be disentangled from
the intensity I" of the unpolarized light received from the star and
its environment. Without ADI observations, it is not possible to

' The code of RHAPSODIE is available online at https://github.
com/LaurenceDenneulin/Rhapsodie. j1
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Fig. 1. Schematic view of the instrument ESO/VLT-SPHERE IRDIS
showing the various optical parts that can induce polarization effects.
The same notations as in the text are used (e.g., n is the pixel index in
the restored maps, k is the sequence index, and j is the polarizer index
of the analyzer set).

unravel the contributions by the star and by its environment from
the unpolarized light, I".

The estimation of the parameters (1", I®, 8) from polarimetric
data is the objective of the present contribution. Stokes param-
eters are, however, more suitable in striving to account for the
effects of the instrument on the observable polarization as the
model of the data happens to be a simple linear combination
of these parameters. Stokes parameters account for the total
light, the linearly polarized light, and the circularly polarized
light. Since circular polarization is mostly generated by mag-
netic interactions and double scattering, it is often negligible in
the case of circumstellar environments and thus not measured
by the SPHERE or GPI instruments. Ultimately, it is possible to
reconstruct the parameters of interest /', IP, and 6 from a combi-
nation of the Stokes parameters.

2.1. Polarization effects

The four Stokes parameters S = (I, Q,U,V) € R* describe the
state of polarized light: I is the total intensity accounting for
the polarized and unpolarized light, Q and U are the intensi-
ties of the light linearly polarized along 2 directions at 45° to
each other, and V is the intensity of the circularly polarized light.
Under this formalism, polarization effects by an instrument like
SPHERE/IRDIS (see Fig. 1) can be modeled by (see Eq. (17) of
van Holstein et al. 2020):

quet — MEOI T (_gder) Méer T (Qder) T (-a) MTWP T (@)

MM4 T (Ga]t) MUT T (gpar) S, (1)

where SJ‘.jlet are the Stokes parameters on the detector after the
left (j = 1) or right (j = 2) polarizer of the analyzer set while §
represents the Stokes parameters at the entrance of the telescope.
In the above equation, M denotes a Mueller matrix accounting
for the polarization effects of a specific part of the instrument:

M‘;.Ol for the left or right polarizer of the analyzer set, M%" for

the optical derotator, MPWP is for the half-wave plate (HWP),
MM# for the fourth mirror of the telescope and MU for the three
mirrors (M1 to M3) constituting the telescope. The term T (6)
denotes a rotation matrix of the polarization axes by an angle 6:
g% is the derotator angle, « is the HWP angle, @ is the altitude
angle, and 6" is the parallactic angle of the pointing of the alt-
azimuthal telescope.

In the optical, only the total intensity / jde‘ out of the Stokes
parameters S jdet can be measured by any existing detector. It then
follows from Eq. (1) that the quantity measured by the detector

Table 1. Positions of HWP «; and orientations of the analyzer ¢; and
the corresponding values of the coefficients v, assuming no instru-
mental polarization and ignoring field rotation.

(075 (HWP) lﬂj (Analyzer) Vijk,1 Vijk?2 Vik3
0° 0° (left: j = 1) A 0
0° 90° (right: j=2) 'h “1h 0
45° 0° (left: j=1) h “1h 0
45° 90° (right: j=2) % % 0
22.5° 0° (left: j=1) 1 0 1
22.5° 90° (right: j=2) '/ 0o
77.5° 0° (left: j=1) h 0 “1h
77.5° 90° (right: j=2) 'h 0 h

Notes. It is computed from Eq. (4).

is a simple linear combination of the input Stokes parameters:

4

I =" v(@)S,

=1

(@)

where, for every £ € [1,4], S, denotes the £th component
of the input Stokes parameters S and v;(®), for j € {1,2},
are real coefficients depending on all involved angles ® =
(Oder’ galt’ epar’ a/)'

Even though the observables are restricted to the component
1;1"", rotating the angle a of the HWP introduces a modulation
of the contribution of the Stokes parameters Q and U in Ij.let,
which can be exploited to disentangle the Stokes parameters 1/,
Q and U. The Stokes parameter V characterizing the circularly
polarized light cannot be measured with an instrument such as
SPHERE/IRDIS (a modulation by a quarter-wave plate would
have been required to do so). In the following, we therefore
neglect the circularly polarized light and only consider the unpo-
larized and linearly polarized light characterized by the Stokes
parameters S = (I, Q, U). As a direct simplification, the sum in
the right hand side of Eq. (2) is reduced to its first three terms.
For a sequence of acquisitions with different angles of the HWP,
the detected intensities follow:

3

det __
Iy = Z VikeS e,
=1

3

where v, = v;(O) with O the set of angles during the kth
acquisition.

The instrumental polarization effects being reduced to those

caused by the analyzers and the HWP and ignoring the rotation
due to the altitude and parallactic angles, the detected intensity
writes (van Holstein et al. 2020):
I =31+ 5 cos(day +2y;) Q + 5 sin(day +2¢ ) U, (4)
where i/} is the orientation angle of the left/right polarizer while
ay is the HWP angle during the kth acquisition. Table 1 lists the
values of the linear coefficients v, for a typical set of HWP
angles.

2.2. Parameters of interest

The model of the detected intensity given in Eq. (3) is linear with
regard to the Stokes parameters S = (I, Q, U), which makes its
formulation suited to inverse problem solving. However, to study

A138, page 3 of 22



Table 2. Notations.

A&A 653, A138 (2021)

Notation Description

djjm Measured data, Eq.(12)

Ifi‘m Model of the data, Eq. (9)

H;imn Instrumental PSF, Eq. (10)

Zikm Variance of data, Eq. (15)

Vike Polarization effects, Eq. (3)

S =,0,U) Stokes parameters, Eq. (5)

" Unpolarized intensity, Eq. (6)

P Polarized intensity, Eq. (6)

0 angle of polarization, Eq. (6)

X Parameters of interest, Eq. (13)

X Estimated parameters, Eq. (13)

Xy Ground truth, Eq. (28)

Saata Data fidelity term, Eq. (14)

Wim Weights, Eq. (15)

o Regularization term, Egs. (16)—(20)

Ao Regul. contribution, Egs. (16)—(20)

1% Regularization threshold, Egs. (16)—(20)

D, 2D spatial gradient, Eq. (19)

C Positivity constraint, Eq. (22)
Indices

je{1,2} Polarizer of the analyser set

ke[l1,K] Data frame in the sequence

Ce1,L] Component the parameter of interest.

me 1, M] Pixel in data sub-image

n,n €[1,N] Pixel in restored model maps

o Param. to regularize (1, 1", I?, Q + U)

circumstellar environments in polarimetry, the knowledge of the
linearly polarized light /P and the polarization angle 6 is crucial.
Both set of parameters are related as it follows:

="+
Q=1 cos(206) o)
U = IP sin(26)

and conversely by?:

P = +0%*+ U?

6= (1/2)arctan (U/Q) mod 7 (6)
I"=1- 0%+ U2
We assume that these relations hold independently at any posi-
tion of the field of view (FOV). From Egs. (3) and (5), the direct

model of the detected intensity is a non-linear function of the
parameters /", [P, and 6:

198 = vt '+ (Vi + vika €08(26) + vjus sin26)) P, (7)

For a perfect SPHERE/IRDIS-like instrument and not consider-
ing field rotation, combining Egs. (4) and (5) yields:

FE = L P o8- 201 - ), ®

which is the Malus law.

2 In this representation, there is a +180° degeneracy for the linear
polarization angle 6.
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2.3. Accounting for the instrumental spatial PSF

In polarimetric imaging, each polarimetric parameter is a func-
tion of the two-dimensional (2D) FOV. We consider that the
Stokes parameters are represented by images of N pixels each
and denote as S ¢, the value of the nth pixel in the map of the {th
Stokes parameter.

Provided that polarization effects apply uniformly across the
FOV and that the instrumental spatial point spread function
(PSF) does not depend on the polarization of light, all Stokes
parameters of a spatially incoherent source are independently
and identically affected by the spatial PSF (e.g., Birdi et al. 2018;
Smirnov 2011; Denneulin 2020). As the effects of the spatial
PSF are linear, we can give the detected intensity for a given
detector pixel as:

3 N
det __
Lim = Z Z Vike HjkmnS tns )

=1 n=1

where If.;t’m is the intensity measured during the kth acquisi-
tion by the mth pixel of the sub-image corresponding to the
Jjth polarizer of the analyzer set. The coeflicients v, ; (account-
ing for the instrumental polarization) are defined in Eq. (3)
and H ; ,, denotes a given entry of the discretized spatial PSF
of the instrument. Here, j € {1,2}, k € [1,K] and m €
[[1, M]. Table 2 summarizes the main notations used in this
paper.

It follows from our assumption on spatial and polarization
effects applied independently that the discretized spatial PSF
does not depend on the polarization index €. Consequently, the
spatial and polarization effects in Eq. (9) mutually commute.

Figure 1 and Eq. (1) provide a representation of the instru-
ment from which we build a model of the spatial effects of
the instrument. Accordingly, an image representing the spatial
distribution of the light as the input of the instrument should
undergo a succession of image transformations before reaching
the detector. These transformations are either geometrical trans-
formations (e.g., the rotation depending on the parallactic angle)
or blurring transformations (e.g., by the telescope). Except in the
neighborhood of the coronographic mask, the effects of the blur
can be assumed to be shift-invariant and can thus be modeled
by convolution with a shift-invariant PSF. Geometrical trans-
forms and convolutions do not commute but their order may
be changed provided the shift-invariant PSFs are appropriately
rotated or shifted. Thanks to this property, and without loss of
generality, we can model the spatial effects of the instrument
by a single convolution accounting for all shift-invariant blurs
followed by a single geometrical transform accounting for all
the rotations but also possible geometrical translations or spa-
tial (de)magnification®. Following this analysis, our model of the
spatial PSF is given by:

N

Hj,k,m,n = Z (Tj’k)m,n’ (Ak)n’,n 5

n=1

(10)

where A; : RV — RY implements the shift-invariant blur of the
input model maps while T, : RY — RMi performs the geomet-
rical transform of the blurred model maps for the jth polarizer
of the analyzer set during the kth acquisition. N is the number
of pixels in the model maps and M; is the number of pixels

3 If the pixel size of the polarimetric maps is not chosen to be equal to
the angular size of the detector pixels.
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of the detector (or sub-image) corresponding to the jth output
polarizer.

In our implementation of the PSF model, the geometri-
cal transform of images is performed using interpolation by
Catmull-Rom splines. The blurring due to the instrument and
the turbulence is applied by:

A, = F! diag(p)F, (11)

where F denotes a fast Fourier transform (FFT) operator of suit-
able size and diag(p,) implements the frequency-wise multipli-
cation by p, = F p,, the discrete Fourier transform of p,, the
shift-invariant PSF. We note that p, must be specified in the
same reference frame as the FOV. If the shift-invariant PSF is
calibrated from empirical images of, for instance, the host star,
acquired by the detector, the inverse (or pseudo-inverse) of T«
must be applied to the empirical images.

2.4. Polarimetric data

During a sequence of observations with SPHERE/IRDIS in DPI
mode, the HWP is rotated several times along a given cycle of
angles @ € {0°,45°,22.5°,67.5°}. In addition, the two polariz-
ers of the analyzer set of SPHERE/IRDIS are imaged on two
disjoint parts of the same detector. The resulting dataset con-
sists in K frames composed of two (left and right) sub-images,
each with a different position of the HWP. Typical values of K
can go from 32 to more than 512 depending of the observed
target. After pre-processing of the raw images to compensate
for the bias and the uneven sensitivity of the detector and
to extract the two sub-images, the available data are modeled
by:

det
Ij,k,m ’

digm = 12)

where I;l‘;'(‘m is given in Eq. (9) for k € [1, K] the index of the
acquisition, j € {1, 2} indicating the left and right polarizer of the
analyzer, and m € [1, M] the pixel index in the corresponding
left and right sub-image.

The = sign in Eq. (12) is to account for an unknown random
perturbation term due to the noise. Noise in the pre-processed
images can be assumed to be centered and independent between
two different pixels or frames because the pre-processing sup-
presses the bias and treats pixels separately thus introducing no
statistical correlations between pixels. There are many sources
of noise: shot noise for the light sources and the dark current,
detector read-out noise, etc. For most of the actual data, the shot
noise is the most important contribution and the number of elec-
trons (photo-electrons plus dark current) integrated by a pixel
is large enough to approximate the statistics of the data by an
independent non-uniform Gaussian distribution whose mean is
given by the right-hand-side term of Eq. (12) and whose vari-
ance X, = Var(dj,) is estimated in the calibration stage (see
Sect. 4.1).

It is worth noting that since the proposed model is not valid
in the neighborhood of the coronographic mask, the data pixels
in this region have to be discarded. Moreover, the detector con-
tains defective pixels (e.g., dead pixels, non-linear pixels, satu-
rated pixels) which must be also discarded. This is achieved by
assuming that their variance is infinite, which amounts to setting
their respective weights to zero in the data fidelity term of the
objective function described in Sect. 3.2.

3. RHAPSODIE : Reconstruction of High-contrAst
Polarized SOurces and Deconvolution for
clrcumstellar Environments

3.1. Inverse problems approach

In polarimetric imaging, one is interested in recovering sampled
maps of the polarimetric parameters, which can be the Stokes
parameters (I, Q, U) or the intensities of unpolarized and linearly
polarized light and the angle of the linear polarization (1*, I?, 6)
or some mixture of these parameters. In order to remain as gen-
eral as possible, we denote by X € RV*L the set of parameters of
interest to be recovered and by X, € R", with £ € [[1, L], the £th
parameter component which is a N-pixel map.

Given the direct model of the pre-processed data developed
in the previous section, we propose to recover the parameters
of interest X by a penalized maximum likelihood approach.
This approach is customary in the solving of inverse problems
(Titterington 1985; Tarantola 2005) and amounts to defining the

estimated parameters X as the ones that minimize a given objec-
tive function f(X) possibly under constraints expressed as X € C
with C the set of acceptable solutions. The objective function
takes the form of the sum of a data-fidelity term fy,,(X) and of
regularization terms f,(X):

X = argmin (0 = fuua(X0+ 3 4 (0 (13)

————

fprior(X)

where 4, > 0 (Vp) are so-called hyperparameters introduced
to tune the relative importance of the regularization terms. The
data-fidelity term fg,o(X) imposes the direct model be as close
as possible to the acquired data while the regularization terms
Jp(X) enforce the components of the model to remain regular
(e.g., smooth). Regularization must be introduced to lift degen-
eracies and avoid artifacts caused by the data noise and the ill-
conditioning of the inverse problem. Additional strict constraints
may be imposed on the sought parameters via the feasible set
C, e.g., to account for the requirement that intensities are non-
negative quantities. These different terms and constraints are
detailed in the following sub-sections.

3.2. Data fidelity

With knowledge of the appropriate statistics for the pre-
processed data, the agreement of the model with the data is
properly insured by the co-log-likelihood of the data (Tarantola
2005), or equivalently by the following criterion:

fuaaX) = > Il = I DIRy (14)
Jk

where ||~||%,V = (-W-) denotes the Mahalanobis (1936) squared
norm, djy = (djx1,....djxm)" € RM collects all the pixels (e.g.,
in lexicographic order) of the jth sub-image in the kth acquisition
as defined in Eq. (12). Similarly, lj!j;(X) = (Ij{;fl, s I;{;fM)T €
RY where the terms [¢ are given by the model in Eq. (9)
applied to the Stokes parameters as a function of the parame-
ters of interest X, S = S (X). For instance, if X = (1", IP, 6), then
S (X) is obtained by Eq. (5). In the expression of the data fidelity
term given by Eq. (14), Wy is the precision matrix of the data.
The precision matrix is diagonal because pixels are considered
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as mutually independent. To account for the non-uniform noise
variance and for invalid data (see Sect. 2.4), we define the diag-
onal entries of the precision matrix as:

-1
)2 Jikm
0 for invalid data,

for valid data,

Vme [, M,  (Wir),. = { (15)

with Xz, = Var(d;s,) the variance of a valid datum d .
Invalid data include dead pixels, pixels incorrectly modeled by
our direct model because of saturation or of the coronograph,
missing frames for a given HWP angle, and unusable frames
due to overly strong atmospheric turbulence or improper corono-
graph centering.

We note that in Eq. (14), the Mahalanobis squared norms
arise from our Gaussian approximation of the statistics, while
the simple sum of these squared norms for each sub-image in
each frame is justified by the fact that all frames and all sub-
images are mutually independent.

3.3. Regularization

The problem of recovering the polarimetric parameters from the
data is an ill-conditioned inverse problem mainly due to the
instrumental blur. Furthermore, the problem may also be ill-
posed if there are too many invalid data. In the case of an ill-
conditioned inverse problem, the maximum likelihood estimator
of the parameters of interest, that is the parameters which min-
imize the data fidelity term fy,,,(X) defined in Eq. (14) alone,
cannot be used because it is too heavily corrupted by noise
amplification. Explicitly requiring that the sought parameters be
somewhat regular is mandatory to avoid this (Titterington 1985;
Tarantola 2005). In practice, this amounts to adding one or more
regularization terms f,(X) to the data-fidelity as assumed by the
objective function defined in Eq. (13).

3.3.1. Edge-preserving smoothness

We expect that the light distribution of circumstellar environ-
ments be mostly smooth with some sharp edges, hence, using an
edge-preserving smoothness regularization (Charbonnier et al.
1997) appears to be the most suited choice to this kind of light
distribution. When considering the recovering of polarimetric
parameters, such a constraint can be directly imposed to the
unpolarized intensity /Y, to the polarized intensity /P or to the
total intensity / by the following regularization terms:

fuX) =" \IDL O + 12, (16)
Fo(X) =" \IDLPXOIR +12,, (17)
(18)

[0 =" JIDJCOIR + 13,

where we denote in boldface sampled maps of polarimetric
parameters, for instance I* € RV the image of the unpolarized
intensity or I'(X) to make explicit that it is uniquely determined
by the sought parameters X. In the above expressions, p, > 0
models the smoothing threshold and D, : RY — R? is a lin-
ear operator which yields an approximation of the 2D spatial
gradient of its argument around the nth pixel. This operator
is implemented by means of finite differences; more specifi-
cally applying D, to a sampled map u of a given parameter is
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expressed as:

un+l,n _un,n
Dnu=( 1 2 v

Up ny+1 — Uy ny (19)
where (n1,n,) denotes the row and column indices of the nth
pixel in the map. At the edges of the support of the parameter
maps, we simply assume flat boundary conditions and set the
spatial gradient to zero there.

The regularizations in Egs. (16)—(18) implement a hyper-
bolic version of a pseudo-norm of the spatial gradient of a given
component of the light distribution which behaves as an L,-norm
(i.e., quadratically) for gradients much smaller than @ and as an
Li-norm (i.e., linearly) for gradients much larger than n. Hence
imposing smoothness for flat areas where the spatial gradient is
small while avoiding strong penalization for larger spatial gradi-
ents at edges of structures.

It has been shown (Lefkimmiatis et al. 2013; Chierchia et al.
2014) that grouping different sets of parameters in regularization
terms that are sub-L, norm of the gradient, as with the last one in
Egs. (16)—(18), yields solutions in which strong changes tend to
occur at the same locations in the sets of parameters. In order to
encourage sharp edges to occur at the same places in the Stokes
parameters Q and U, we also consider using the following regu-
larization for these components:

Josv(X) = Z \/”DnQ(X)”2 + DU + 15, - (20)

Many other regularizations implementing smoothness con-
straints can be found in the literature from the simple quadratic
one (Tikhonov 1963) to the very popular total variation (TV;
Rudin et al. 1992). Quadratic regularizations tend to yield strong
ripples which, owing to the contrast of the recovered maps, are
an unacceptable nuisance while TV yields maps affected by a
so-called cartoon effect (i.e., piecewise flat images), which is not
appropriate for realistic astronomical images. We however note
that the hyperbolic edge-preserving regularization with a thresh-
old, u,, set to a very small level can be seen as a relaxed version
of TV and has been widely used as a differentiable approxima-
tion of this regularization. Our choice of a differentiable regular-
ization is also motivated by the existence of efficient numerical
methods to minimize non-quadratic but differentiable objective
functions of many (millions or even billions) variables possibly
with additional strict constraints (Thiébaut 2002). We refer to
Denneulin et al. (2019, 2020), Denneulin (2020) for a compari-
son of possible advanced regularizers.

3.3.2. Tuning of the hyperparameters

In the regularization function fy;o(X), the terms defined in
Egs. (16)—(18) and Eq. (20) can be activated (or inhibited) by
choosing the corresponding 4, > 0 (or 4, = 0). It is also
required to tune the threshold level p, > 0 in addition to the 4,
multipliers. All these hyperparameters have an incidence on the
recovered solution: the higher 4, the smoother the correspond-
ing regularized component and a lowering of the threshold, u,,
allows us to capture sharper structures. A number of practical
methods have been devised to automatically tune the hyperpa-
rameters: Stein’s Unbiased Risk Estimator (SURE: Stein 1981;
Eldar 2008; Ramani et al. 2008; Deledalle et al. 2014), gener-
alized cross-validation (GCV: Golub et al. 1979), the L-curve
(Hansen & O’Leary 1993), and hierarchical Bayesian strategies
(Molina 1994).
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Fig. 2. Comparison of the non-linear RHAPSODIE reconstructions of
RXJ 1615 (Avenhaus et al. 2018) for different values of Ap,y and pg.y.
The value of the GSURE criterion is indicated for each reconstruction.

Unsupervised tuning of the hyperparameters with GSURE
(Eldar 2008), in a prediction error formulation, has been con-
sidered in this context. Figure 2 shows the value of GSURE
for several reconstructions of RXJ 1615 (Avenhaus et al. 2018).
Since it is expected that there are relatively few sharp edges,
ID,X,ll < w, should hold for most pixels n in the component
X,. As a result, for most pixels n, the regularization penalty
behaves as a quadratic Tikhonov (1963) smoothness weighted

by A,/u,:

A
A \JID X2 + 12 ~ A, + ﬁ D, X, 1.
0

The strength of the blurring imposed by the regularization is
therefore mostly controlled by the value of 4,/u, (e.g., from top
to bottom in Fig. 2) while the sharp edges are controlled by the
threshold p,, (e.g., from left to right in Fig. 2).

In Fig. 2, we can observe that an automatic selection of the
hyperparameters with GSURE would lead to an over regularized
solution. In other high-contrast contexts, we also observed this
tendency of GSURE to over-smooth the result. We think that
devising a good unsupervised method for tuning the hyperpa-
rameters deserve further stud; in addition, for the results pre-
sented in this paper, we tuned the hyperparameters by hand by
visually inspecting several reconstructions under different set-
tings, as presented in Fig. 2.

The polarized parameter IP contribute to I, Q, and U (see
Eq. (5)). To avoid a contamination of the extracted polarized
parameters /P by the unpolarized component /', we regularize
I" and [P separately. Hence, the regularization of the unpolar-
ized component /" should be done via fn defined in Eq. (16)
rather than via f; defined in Eq. (18). For the polarized light, the
joint regularization of Q and U by fp.y defined in Eq. (20) is
more effective than the regularization of /P alone by fp defined
in Eq. (17) which does not constrain the angle 6 of the linear
polarization. In Eq. (13), we therefore take the Set 1 or Set 2 of
hyperparameters presented in Table 3. The latter combination is
preferable as discussed previously.

ey

Reconstruction of high-contrast polarized circumstellar environments

Table 3. Set of hyperparameters used in the present work.

Hyperparameters Ap  Ap A1 Agsu
Set 1 =0 >0 =0 >0
Set 2 =0 =0 >0 >0

3.4. Imposing the positivity of the intensities

Imposing non-negativity constraints on the restored intensities
has proven its efficiency for astronomical imaging where large
parts of the images consist in background pixels whose value
should be zero (Biraud 1969). Whatever the choice of the
parametrization, the intensities 7, I, and I should all be every-
where non-negative.

Since I = I" + IP, it is sufficient to require that I* and /P be
nonnegative. Hence, for the set of parameters X = (I", I?, §), the
positivity constraint is expressed as:

C={U",r,6) e RN [Vn e [1,N], I} 2 0, I} > 0}. (22)

As given for the Stokes parameters X = (I, Q, U), the posi-
tivity yields an epigraphical constraint:

C= {(I,Q, U) e RV |Vn e [1,N], I, > /02 + U},}. (23)

Such a constraint can be found in Birdi et al. (2018), but it has
not yet been implemented in high contrast polarimetric imaging.
Since I} = +/Q% + U2 (for all pixels n), the positivity of
the intensity /P of the polarized light automatically holds if the
parameters X = (I', Q, U) are considered. It is then sufficient to
impose the positivity of the intensity I* of the unpolarized light
as expressed by the following feasible set:
(24)

n —

C={U",Q.U) eR"? |Vn e [1,N], I} 2 0}.

3.5. Choice of the polarimetric parameters

Our method expresses the recovered parameters X as the solu-
tion of a constrained optimization problem specified in Eq. (13).
As explained in Sect. 3.3.2, the weights of imposed regulariza-
tion is chosen via the values of the multipliers A,,.

The constraints can be implemented by the feasible C for
different choices of the parameters X. More specifically, X =
a1, 1°,6),Xx =,Q,U),or X = (I',Q, U) can be chosen. What-
ever the choice for X, the relations given in Eqgs. (5) and (6) can
be used to estimate any parameter of interest given the recov-

ered X. These relations can also be used to compute the objec-
tive function f(X) which require the Stokes parameters needed
by the direct model of the data Eq. (9) and various polarimetric
component depending on the choice of the regularization.

With X = (1,0, U), the positivity constraints take the form
of an epigraphic constraint that is more difficult to enforce as
being not separable in the parameters space. To solve the prob-
lem in Eq. (13) with such a constraint, an epigraphic projection
is required, leading to the use of a forward-backward scheme
(Combettes & Wajs 2005), reduced in this context to a standard
projected gradient descent. A description of the method for such
a minimization problem can be found in Denneulin et al. (2020).

The choice of X = (I,Q,U) may avoid some degeneracies
because it ensures the convexity of the problem in Eq. (13).
With X = (I",I?,6) or X = (I", Q, U), the positivity constraints
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Table 4. Information of the datasets used for the target reconstruction.

Target Date Filter A, (s) HWPcycles K™ At (s) seeing 7o (ms)
TW Hydrae 2015-04-01 H 16 22 13 5424 1.15 2.2
IM Lupus 2016-03-14 H 64 6 7 2624 1.40 2.7
MY Lupus 2016-03-16 H 64 7 18 2432 1.63 1.5
RY Lupus 2016-05-27 H 32 8 0 4096 0.65 33
T Chae 2016-02-20 H 32 30 0 3840 1.8 2.2
RXJ 1615 2016-03-15 H 64 11 7 5184 0.7 4.1
HD 106906 2019-01-17/18/20 H 32 42 0 5376 0.54 14.0
HD 61005 2015-05-02 H 16 12 16 2816 1.5 3.2
AU MIC 2017-06-20 J 16 23 0 11776 1.4 2.2

Notes. The table lists: the name of the target, the date of the observation, the filter used, the exposition time A, for one acquisition, the number of
cycles of HWP, the number of frame missing or removed K™, the total exposition time of the observation A} considering K™, the seeing, and
observation conditions 7¢. The total number of frames in each dataset is given by K = Al*'/A, + K™,

amounts to applying simple separable bound constraints on some
parameters. Since the objective is differentiable, a method such
as VMLM-B (Thiébaut 2002) can be used to solve the problem
in Eq. (13). The VMLM-B algorithm is a quasi-Newton method
with limited memory requirements and able to account for sep-
arable bound constraints. VMLM-B is applicable to large size
problems and only requires the provision of the bounds and a
numerical function to compute the objective function and its
gradient.

In the following, we compare the performances of RHAP-
SODIE for the polarimetric parameters X = (I,Q,U) and X =
(I",0Q,U) on simulated synthetic datasets. We refer to linear
RHAPSODIE when we reconstruct X = (I,Q,U) and to non-
linear RHAPSODIE when we reconstruct X = (I, @, U). Both
parametrizations allow us to access the parameters of interest IP
and 6 using Eq. (6). The best choice of polarimetric parameters
is then used to process astrophysical datasets.

4. Data calibrations
4.1. Detector calibration

Before the application of a reconstruction method, the calibra-
tion of the data is essential to account for the noise and the arti-
facts linked to the measurement. It allows for the estimation and
correction of any pollution induced by the sky background or the
instrument as well as the detector behavior in terms of errors on
pixel values.

We use an inverse method to calibrate the raw data from
these effects: the quantity required for the calibration are jointly
estimated from the likelihood of the calibration data direct
model (Denneulin 2020). In this method, all the calibration data
are expressed as a function of the different contributions (i.e.,
flux, sky background, instrumental background, gain, noise, and
quantum efficiency). All these quantities are then jointly esti-
mated by the minimization of the co-log-likelihood of the data.
Calibrated data are corrected for contribution of the bias and the
background and for non-uniform sensitivity and throughput. The
calibration also provides associated weights computed accord-
ing to the estimated variance, see Eq. (15). Finally, the defective
pixels are detected by crossing several criteria, such as their lin-
earity, their covariance compared to that of the other pixels, or
the values of their likelihood in the calibration data. This cali-
bration method produces calibrated data outputs (di)ief1,xy and
their weights (Wi )kep1.x7-
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4.2. Instrumental calibration

The instrumental calibration is a required step for the estima-
tion, from dedicated data, of the instrumental PSF and of the star
centers on each side of the detector. Since the star is placed
behind the coronagraphic mask, a simultaneous PSF estima-
tion is not possible. To estimate the PSF, we use a dedicated
flux calibration (STAR-FLUX) that is acquired just before and
after the science exposure by offsetting the telescope to about
0.5 arcsec with respect to the coronagraphic mask by using
the SPHERE tip/tilt mirror (Beuzit et al. 2019). Consequently,
the PSF is recorded with similar atmospheric conditions (listed
in Table 4) as the science observations. When performing this
calibration, suitable neutral density filters are inserted to avoid
detector saturation. It has been shown in Beuzit et al. (2019) that
these neutral density filters do not affect the PSF shape and thus
its calibration. This instrumental calibration leads to the esti-
mation of the PSF modeled through the operators A;. The PSF
model does not include the spiders so that it may remain rotation-
invariant (see Fig. 3).

In the case of synthetic observations, the assumed 2D PSF is
extracted from the real data RY Lup (e.g., similar to the top left
image in Fig. 3). For astrophysical observations, we fit a 2D PSF
model on pre-reduced PSF data for each observed target (e.g.,
Gaussian, Airy, and Moffat fits in Fig. 3).

During the coronographic observing sequence, the star point
spread function peak is hidden by the coronagraphic mask
and its position was determined using a special calibration
(STAR-CENTER) where four faint replicas of the star image are
created by giving a bi-dimensional sinusoidal profile to the
deformable mirror (see Beuzit et al. 2019). The STAR-CENTER
calibration was repeated before and after each science observa-
tion, and the resulting center estimations were averaged. In addi-
tion, we used the derotator position and the true north calibration
from Maire et al. (2016) to extract the angle of rotation of the
north axis. These instrumental calibration steps lead to the esti-
mation of the transformation operators, T, which rotate and
translate the maps of interest to make the centers and the north
axes coincide with those in the data.

4.3. Polarization calibration

When the light is reflected by the optical devices in the instru-
ment, some instrumental polarization is introduced, resulting in a
loss of polarized intensity and cross-talk contamination between
the Stokes parameters Q and U.
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Fig. 3. Example of the fitting of the true PSF on the empirical SPHERE/IRDIS data of the target HD 106906 reduced with RHAPSODIE. Observed
PSF in H band (upper left) and different parametrization (Airy, Gaussian, and Moffat). Intensities are in log-scale to enhance the faint diffraction

patterns.

The classical method to compensate for this instrumental
polarization is to employs the azimuthal Q4 and U, parameters
to reduce the noise floor in the image (Avenhaus et al. 2014).
Because this method is limited to face-on disks, we instead use
the method developed by van Holstein et al. (2020) which rely
on the pre-computed calibration of the instrumentation polar-
ization as a function of the observational configurations. The
pipeline IRDAP (van Holstein et al. 2020) yields the possibility
to determine and correct the instrumental polarization in the sig-
nal reconstruction, yet this reconstruction requires to estimate
first the Q and U parameters and then to perform the instru-
mental polarization correction. After computing the double dif-
ference, IRDAP uses a Mueller matrix model of the instrument
carefully calibrated using real on sky data to correct for the polar-
ized intensity IP (created upstream of the HWP) and crosstalk of
the telescope and instrument to compute the model-corrected O
and U images.

Using IRDAP, we estimate the instrumental transmission
parameters (V;x 1) je(1, 2).kef1,K].Lef1,] from the Mueller matrix to
calibrate the instrumental polarization in our datasets.

IRDAP also determines the corresponding uncertainty by
measuring the stellar polarization for each HWP cycle individ-
ually and by computing the standard error of the mean over the
measurements. Finally, IRDAP creates an additional set of Q and
U images by subtracting the measured stellar polarization from
the model-corrected Q and U images. We use a similar method
to correct for the stellar polarization which is responsible for
strong light pollution at small separation in particular for faint
disks, such as debris disks. The contribution of this stellar light
is estimated as different factors of I* in both Q and U, respec-
tively, ¢ and . We estimate this stellar contribution by using
a pixel annulus Q located at a separation where there is no disk
signal (either near the edge of the coronograph or at the sepa-
ration corresponding to the adaptive optics cut-off frequency).
Both correction factors ¢ and e are expressed as follows:

{8Q = (ZneQ Qn/lrt:)/NQ

25
eu = (Znea Un/1y)/Na, 25

where N, is the number of pixels of the ring 2. We then compute
Q%" = Q —gpl" and U*" = U — gyI" in order to create an addi-
tional set of Q°" and U images by subtracting the measured
stellar polarization from the model-corrected Q and U images.

5. Applications on high-contrast polarimetric data

In this section, we compare two RHAPSODIE configurations.
The first configuration is defined as “without deconvolution”,
meaning that Iﬁ‘m in the data fidelity term (14) does not include
the convolution, leading to the simplification of the Egs. (9) and
(10):

3
(i.e., Ay is the identity). Such a configuration of RHAPSODIE
aims to be comparable to state-of-the-art methods (i.e., Dou-
ble Difference and IRDAP). These methods do not include any
deconvolution and we aim to show that RHAPSODIE also per-
forms well for such a case.

The second configuration is defined as “with deconvolution”
and states for the full RHAPSODIE capabilities. Such a config-
uration of RHAPSODIE is aimed at showing the benefits of the
global model compared to an a posteriori deconvolution with the
aim of improving the angular resolution.

det
Ij,k,m

N
Vike Z (T )man S ens (26)

n=1

5.1. Application on synthetic data

The performance of the linear and non-linear methods are first
evaluated on synthetic datasets, without (resp. with) the decon-
volution displayed in Figs. 4-6 (resp. Figs. 7-9). These datasets
are composed of unpolarized residual stellar flux, mixed with
unpolarized and polarized disk flux. We produce several syn-
thetic datasets following steps given in Appendix A, for different
ratios of the polarization of the disk, called 74isk and defined in
Eq. (A.1).
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The results of the RHAPSODIE methods are compared to
the results obtained with the classical double difference method
(Tinbergen 2005; Avenhaus et al. 2014). The double difference
is applied on recentered and rotated datasets with the bad pixels
interpolated. For the comparison with deconvolution, the results
of the Double Difference are deconvolved after the reduction. In
order to provide fair comparisons with RHAPSODIE, we pro-
pose to use an inverse approach rather than applying a high-pass
spatial filtering. The deconvolved double difference reconstruc-
tions are obtained by solving the following problem:

(Q ﬁ) € argmin

nin [u@m ~AQIP +|UPP - AU
(Q,U)eRN xR

+ /l(QJrU)D,D.f(QJrU)D.D,(Q, U)], (27)
where @D'D‘ and UPP are the Stokes parameters reconstructed
with the double difference and A represents the convolution by
the PSF. This deconvolution method performs the deconvolution
of Stokes parameters Q and U jointly in order to sharpen the
polarized intensity image, but does not recover the polarization
signal lost by averaging over close-by polarization signals with
the opposite sign and may even introduce artificial structures that
are not present in the original source.

For the reconstruction with RHAPSODIE, the hyperparam-
eters of regularization, A, and W,, are chosen in order to min-
imize the total mean square error (MSE), i.e., the sum of the
MSE between each estimated parameter ﬁ, P and ’6: obtained
from X from Eq. (6), and the ground truth Igt, Igt and 6. The
total MSE is given by:

Np
MSE®™* = Z:;E[(F - 14)’]
A

+ Z E[(P - I5)’]

Ny
+ > B[angle(e ")’ (28)
n=1
where, Np., Np, and Ny are the number of pixels with a signal of
interest in the respective I, IP, and 6 maps. For the deconvolu-
tion of the double difference results, A, yypo. and W, yypo. are
chosen to minimize only the sum of the MSE on /" and 6.

For the reconstructions without the deconvolution, Figs. 4
and 5 show that the reconstructions are less noisy with RHAP-
SODIE. The inner circle is always better reconstructed. More-
over, the non-linear reconstruction (i.e., minimization on I, Q
and U) is better than the linear when 79*¢ grows. In both config-
urations of RHAPSODIE (non-linear and linear), the thin ring
is not as well reconstructed as with the double difference. It is
possible to recover such sharper structure with RHAPSODIE,
by reducing the regularization weight (i.e., reducing the hyper-
parameter Adg.y). However, if Ag,y is too small, the data will
be overfitted and the noise in the reconstructed images will be
amplified. It is thus necessary to keep a good trade-off between
a smooth solution and a solution close to the data. Classically,
minimizing the MSE is a good trade-off between underfitting
and overfitting. The MSE curves in Fig. 6 are coherent with
the observations. When 79K = 25%. the non-linear RHAP-
SODIE MSE and double difference MSE are equivalent, but on
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the reconstructions, we can see that if the thin circle is better
reconstructed with the double difference, the inner circle is better
reconstructed with RHAPSODIE. Moreover, we can see that the
angle error is more than three-time smaller with RHAPSODIE
compared to the double difference error.

For reconstructions with the deconvolution, the RHAP-
SODIE methods have a better approach to the reconstructions of
the polarized intensity, as shown on the reconstructions in Fig. 7,
mostly for the inner ring, even if the background is less biased
with the proposed deconvolved double difference (as shown on
the error maps in Fig. 8). In fact, as shown on the MSE displayed
in Fig. 9, for 7disk = 30, RHAPSODIE delivers a more accurate
polarized intensity estimation. The errors of the reconstructions
are larger for the double difference than for the RHAPSODIE
methods. The RHAPSODIE methods also allow us to achieve a
better reconstruction of the angle of polarization, mostly with the
non-linear estimation. The non-linear reconstruction appears to
be more efficient as being not polluted by the artifacts of decon-
volution of the unpolarized point source companion as seen in
Fig. 8. Even if according to the MSE in Fig. 9, for r%*¢ = 25%,
the MSE is smaller for the linear RAPSODIE. in fact, the space
between the outer ring and the thin ring is better reconstructed
with such a configuration (see Figs. 7 and 8).

According to these results, the RHAPSODIE methods are
better than the state-of-the-art methods, in particular the non-
linear RHAPSODIE method. The benefits of our contribution is
clearly visible in the case of faint disks and structures, which
are the most common on astrophysical data. This is why in the
following section dedicated to the astrophysical data, we select
the non-linear RHAPSODIE method with manual selection of
the hyperparameters.

5.2. Astrophysical data

RHAPSODIE was applied to several IRDIS datasets dedicated to
protoplanetary, transition, and debris disks to test the efficiency
of our method and to compare it to the state-of-the-art method.
For each reconstruction, we present the map of the projected
intensities, by using the standard azimuthal Stokes parameters
0Oy and Uy estimated from:

{Q¢ = 0, cos (2,) + U, sin (2, 29)

Uy = Uy c0s (2¢n) — Qn sin (24) ,

__center

with ¢, = arctan(%) where (n;,n,) denotes the
2
row and the column indices of the nth pixel in the map and

(niem"'r , ng"‘mer) those of the pixel center. We also present the maps

of polarized intensities /P and the angles of polarization 8 esti-
mated by the different methods.

First, the reconstructions of the target TW Hydrae with the
double difference and RHAPSODIE without deconvolution are
compared in Fig. 10, without and with the correction of the
instrumental polarization. The images are scaled by the square
of the separation to account for the drop-off of stellar illumina-
tion with distance.

The instrumental polarization in this dataset introduces a
polarization rotation and an attenuation (loss of polarization sig-
nal) of the intensity with varying time during the observations,
which can be monitored easily because the disk is face-on. If
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Fig. 4. Visual comparison of the reconstructed polarized intensity P
with the state-of-the-art double difference and the RHAPSODIE meth-
ods without deconvolution.
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Fig. 5. Maps of errors of the reconstructions displayed in Fig. 4. These
errors are obtained as the difference between the true and the recon-
structed images.
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Fig. 6. Comparison of the MSE between the true map and the estimated
map of the polarized intensity /P and of the angle of polarization 6 for
the double difference and the linear and non-linear RHAPSODIE meth-

ods without deconvolution.

uncorrected, the combination of data from multiple polarimetric
cycles will result in very poorly constrained polarimetric inten-
sity measurements. When we correct the instrumental polariza-
tion (see Fig. 10c) by using the IRDAP method, these effects
are compensated and the disk reconstructed is more accurate
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Fig. 7. Visual comparison of the reconstructed polarized intensity /P
with the state-of-the-art double difference and the RHAPSODIE meth-
ods with deconvolution.
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Fig. 8. Maps of errors of the reconstructions displayed in Fig. 7. These
errors are obtained as the difference between the true and the recon-
structed images.
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disk disk

Fig. 9. Comparison of the MSE between the true map and the estimated
map of the polarized intensity /P and of the angle of polarization 6 for
the double difference and the linear and non-linear RHAPSODIE meth-
ods with deconvolution.

(Fig. 10c (iii)). As a result, the contamination of the Uy signal
from cross-talk is decreased and becomes negligible as seen in
(Fig. 10c (iii)).

The comparison with van Boekel et al. (2017), de Boer et al.
(2020) shows that our method is less impacted by the bad pixels
and improves the disk S/N in the area where the signal is low. On
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Fig. 10. Reconstruction of the Q (a) and U (b) parameters of the target TW Hydrae, for the first three cycle of HWP rotation, without (upper
row) and with (lower row) the correction of the polarization. Without the correction, both Q and U are rotated and attenuated. The Q, and U,
images reconstructed from the entire dataset are presented in (c¢). All the reconstructions are done without deconvolution to demonstrate mainly the
efficiency of the instrumental polarization correction and the benefits of RHAPSODIE. (¢) Azimutal Stokes parameters displayed in arcseconds:
(i) Double Difference, (if) Double Difference with the instrumental polarization correction, (iii) RHAPSODIE which includes by default the
instrumental polarization correction. The intensities are multiplied in each pixel by the distance to the star 2.

the other hand, it is slightly more sensitive to detector flat cali-
bration accuracy. It is worth noticing that IRDAP has a dedicated
correction of the detector response nonuniformity (flat field vari-
ation between the detector column) for the various amplifiers
that is not implemented in RHAPSODIE. However, the flat
calibrations of observations more recent than 2016 have
improved and do allow for a better calibration and, as a con-
sequence, they do not impact our method efficiency anymore.
The efficiency of the method we have developed is demon-
strated on the Figs. 11-17. Figures 11 and 12 present the double
difference and RHAPSODIE reconstructions of the proto-
planery disks TW Hydrae (van Boekel et al. 2017), IM Lupus
(Avenhaus et al. 2018) and MY Lupus (Avenhaus et al. 2018).
Figures 13, 14, and Fig. 17 present RHAPSODIE recon-
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structions of transition disks RY Lupus (Langlois et al. 2018)
and T Chamaeleontis (Pohl etal. 2017). Figures 13 and 14
also present RHAPSODIE reconstructions of transition
disk RXJ 1615 (de Boeretal. 2016a). Figures 15 and 16
present the RHAPSODIE reconstructions of the debris disks
HD 106906 (Kalas et al. 2015; Lagrange et al. 2016), HD 61005
(Olofsson et al. 2016), and AU Mic (Boccaletti et al. 2018).
These reconstructions are all normalized in contrast to the
unpolarized stellar flux (estimated when registering the PSF
off-centered from the coronograph) by taking into account the
transmission of the neutral-density filter used when registering
the PSF to prevent saturation. The hyperparameters of regular-
ization and the PSF models used for the reconstructions are listed
in Table 5.
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Table S. Information related to the parameters used for the target reconstruction presented in this section.

Taget g g e apde ke ke, e uhs,  PSF

TW Hydrae 10*0 10*0 10740 10740 10 10 10759 1079  Moffat
IMLupus  10%° 100 10°%  10*° 10°° 10°5 1070 1070  Airy

MY Lupus 102 104 107 1076 100 10° 100 107° Moffat
RY Lupus  10*°  10°° 10739 10730 105 103 103° 1039 Moffat
T Chae 10°0 10710 10730 1070 10°° 1070 1020 10720 Moffat
RXJ 1615 10().0 10().0 10—4.0 101.() 10].0 10—1.5 10—3.0 10—3.0 Moffat
HD 106906 10?3 10" 10740 10740 10 10" 10> 1078 Airy

HD 61005 1030 10*! 10707 10734 1030 10™ 10°%7 1073  Moffat
AU MIC 1030 10%3 10742 10732 10°° 10*3 10712 10™*?  Moffat

/lnufdec’ Agrlt/iec’ um)fde(: (resp. /ldec /ldec

Notes. The table lists: the name of the target and the values of the hyperparameters

Ju

u s

< s 1°°) used for the

reconstruction with RHAPSODIE without deconvolution (resp. with deconvolution), and the parametrization model of the PSF used.

Double Difference

TW Hydrae

IM Lupus

MY Lupus

RHAPSODIE (without dec.)

1073
1074
10
- -i 3

RHAPSODIE (with dec.)

Fig. 11. Reconstructions of the polarized intensity /P of the protoplanetary disks TW Hydrae, IM Lupus, and MY Lupus. From the left to the right,
the reconstructions have been obtained with the Double Difference, RHAPSODIE without deconvolution and RHAPSODIE with deconvolution.
The maps are displayed in logarithmic scale and normalized in contrast to the unpolarized stellar flux. The pixels lying underneath the coronograph

are masked in black. North is up and east is to the left in all frames.
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Fig. 12. Reconstructions of the polarization angle 8 of the protoplanetary disks TW Hydrae, IM Lupus, and MY Lupus. From the left to the right,
the reconstructions have been obtained with the Double Difference, RHAPSODIE without deconvolution and RHAPSODIE with deconvolution.
The maps are displayed in logarithmic scale and normalized in contrast to the unpolarized stellar flux. The pixels lying underneath the coronograph

are masked in black. North is up and east is to the left in all frames.

ing the reality; and, thus, this approach should be strengthened

through the use of numerical models

The contrast between the selected disks polarized light and

their host stars unpolarized light responsible for the level of stel-

In addi-

for these objects.

tion, our method can produce deblurred results, which clearly
enhances the angular resolution and is beneficial for interpret-

lar pollution are also very different (ranging from 3 x 1072 to

8 x 107%). The achievable contrast is more favorable for highly

inclined disk, such as MY Lup in Fig. 11, because in such a

ing the disk morphology and for studying its physical properties.

In all cases, the deconvolution sharpens the polarized intensity
image, helps to recover the polarization signal lost by averaging
over close-by polarization signals with opposite sign, and does

case, the star likely shines partially through the disk, which is
dimming the starlight and thus decreasing the contrast between

the star and the disk.

not introduce artificial structures that are not present in the orig-

In all cases, our method produces high-quality reconstruc-

tions of the disk polarized signal and minimizes the artifacts

inal source (see Fig. 13 (RY Lup)). As mentioned earlier in this

the hyperparameters could be further tuned to adjust the
smoothing of the deconvolved images according to the required

noise-and-angular resolution trade-off.

paper,

from bad pixels. The comparison of these reductions with the

state-of-the-art methods confirms the benefits of our method, but

it is more difficult to quantify the gain on real data without know-
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Double Difference

RY Lupus

T Chae

RXJ 16 15

RHAPSODIE (without dec.)

RHAPSODIE (with dec.)

Fig. 13. Reconstructions of the polarized intensity I of the transition disks RY Lupus, T Chae, and RXJ 1615. From the left to the right, the
reconstructions have been obtained with the Double Difference, RHAPSODIE without deconvolution and RHAPSODIE with deconvolution. The
maps are displayed in logarithmic scale and normalized in contrast to the unpolarized stellar flux. The pixels lying underneath the coronograph are

masked in black. North is up and east is to the left in all frames.

For several of these disks (IM Lup, MY Lup in Fig. 11),
the outer edge of the disk and thus the lower disk surface
have been detected in Avenhaus et al. (2018) and are confirmed
by our method. The deconvolution of these datasets allows to
further highlight these fainter features, to enhance or reveal the
midplane gaps in the case of T Cha (in Fig. 13) which was not
identified by Pohl et al. (2017). The reason for this is that with-
out deconvolution, the PSF smears light from the disk upper and
lower sides into the midplane gap.

Except for Au Mic, the debris disks presented in Fig. 15 are
much fainter in contrast than the protoplanetary or the transition
disks in polarized intensity. As a consequence, these datasets
have required careful stellar polarization compensation. The
HD 106906 debris disk is viewed close to edge-on in polar-

ized light as reported in van Holstein et al. (2020), Esposito et al.
(2020). The image clearly shows the known east-west bright-
ness asymmetry of the disk, which was detected in total inten-
sity (Kalas et al. 2015; Lagrange et al. 2016). Thanks to the deep
dataset and good reconstruction, we also detect the backward-
scattering far side of the disk to the west of the star, just south
of the brighter near side of the disk. This feature is further high-
lighted by the deconvolution.

We may remark that the RHAPSODIE deblurred reconstruc-
tions of RXJ 1615 (in Fig. 13) and HD 106906 (in Fig. 15) appear
noisier than those without deconvolution. This is due to the hyper-
parameters that were purposely chosen so as to achieve the best
angular resolution with the side effect of slight noise amplifica-
tion. Thus, the noise is not negligible in the reconstruction. As
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Fig. 14. Reconstructions of the polarization angle 6 of the transition disks RY Lupus, T Chae, and RXJ 1615. From the left to the right, the
reconstructions have been obtained with the Double Difference, RHAPSODIE without deconvolution and RHAPSODIE with deconvolution. The
maps are displayed in logarithmic scale and normalized in contrast to the unpolarized stellar flux. The pixels lying underneath the coronograph are

masked in black. North is up and east is to the left in all frames.

shown in Fig. 2, increasing the regularization weight to smooth
the background would lead to a loss of the thin structures.

We also analyzed two datasets (HD 61005 and Au Mic),
which were taken under very bad conditions. For these two
datasets, our method is also proven to be efficient in using incom-
plete polarization cycles to recover the disk polarized signal
and to deconvolve this signal despite strong artifacts addition-
ally produced by the rotating spiders (i.e., unmasked by the
Lyot stop) when observing in field stabilized. The difference in
the spider position during the polarimetric cycle results in an
artificial polarimetric signal when using standard data reduction
techniques. It is worth noticing that the strength of our method
to deal with these artifacts comes from its ability to use weighted
maps to account for them. For instance, the spiders are weighted
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by their variance during their rotation frame by frame, in addi-
tion to the inclusion of a static bad pixel ponderation. As a
result, the contribution of the spiders to the polarimetric sig-
nal when using our method is decreased compared to the other
methods. The noise created by these spiders remains, as seen
in Fig. 15, and can generate artifacts in the deconvolution as
seen for HD 61005. Counteracting the artifacts caused by the
spiders can be efficiently done by performing DPI observation
in pupil tracking mode as proposed in van Holstein et al. (2017).
We have also validated the efficiency of RHAPSODIE in such
observations which allows a further gain in the reduction of the
instrumental artifacts from the telescope spiders.

Another advantage of our method is its ability to use incom-
plete polarimetric cycles, which are discarded by the classical
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HD 61005
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RHAPSODIE (without dec.)

RHAPSODIE (with dec.)

Fig. 15. Reconstructions of the polarized intensity /P of the debris disks HD 106906, HD 61005, and AU MIC. From the left to the right, the
reconstructions have been obtained with the Double Difference, RHAPSODIE without deconvolution and RHAPSODIE with deconvolution. The
maps are displayed in logarithmic scale and normalized in contrast to the unpolarized stellar flux. The pixels lying underneath the coronograph are

masked in black. North is up and east is to the left in all frames.

methods. This capability of our method leads to an increase in
S/N, which was quantified more precisely using our model of the
data in Denneulin (2020). To benefit from this improvement, the
instrumental polarization has to remain small because incom-
plete polarimetric cycles do not benefit from the instrumental
polarization compensation performed by estimating both cou-
ples Q and —Q (and U and —-U, respectively).

6. Conclusion

In this work, we develop a new method for extracting the
polarimetric signal using an inverse problems approach that
exploits a model of the measured signal formation process. The
method includes a weighted data fidelity term, which takes into

account the blur and the polarization due to the instrument, and
effectively disentangles polarized signal of interest from stellar
contamination. In order to avoid noise amplification in the min-
imization of the data fidelity term, an edge preserving smooth-
ing penalization was added allowing to favor smooth estimates
almost everywhere. The associated minimization problem is
solved by standard optimization techniques. Our method enables
to accurately measure the polarized intensity and angle of lin-
ear polarization of circumstellar disks by taking into account the
noise propagation and the observed objects convolution. It has
the capability to use incomplete polarimetry cycles (when the
instrumental polarization is small), which enhances the sensi-
tivity of these observations. It also takes proper account of bad
pixels by using weighted maps instead of interpolating them.
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Fig. 16. Reconstructions of the polarized intensity /P of the debris disks HD 106906, HD 61005, and AU MIC. From the left to the right, the
reconstructions have been obtained with the Double Difference, RHAPSODIEwithout deconvolution and RHAPSODIE with deconvolution. The
maps are displayed in logarithmic scale and normalized in contrast to the unpolarized stellar flux. The pixels lying underneath the coronograph are

masked in black. North is up and east is to the left in all frames.

These bad pixels can cause systematic errors of several tenths
of a percent in the polarization measurements as shown by
van Holstein et al. (2021) In addition, the effect of bad pixel
interpolation could also have some impact when reaching 0.1%
polarimetric accuracy.

We validated the method on both simulated and archive data
from SPHERE/IRDIS and compared its performance with state-
of-the-art methods. We implemented the method in an end-to-
end data-analysis package called RHAPSODIE. The method
we developed improves the overall performances in particu-
lar at low S/N-and-small polarized flux compared to standard
methods.
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By increasing the sensitivity and including deconvolution,
this method will allow for more accurate studies of the orien-
tation and morphology of the disks, especially in the innermost
regions. It also will enable more accurate measurements of the
angle of linear polarization at low S/N, which would allow for
more in-depth studies of dust properties. Finally, the method will
enable more accurate measurements of the polarized intensity
which is critical to construct the scattering phase functions.

RHAPSODIE is the first regularized inverse approach imple-
mented for high-contrast polarimetric imaging. It demonstrates
the benefits of advanced signal processing methods in this
domain.
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Fig. 17. Q, and U, projections of the reconstructions of RY Lupus and T Chae. The maps are displayed in symmetrical logarithmic scale and
normalized in contrast to the unpolarized stellar flux. The coronograph is masked in white.
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Appendix A: Synthetic dataset simulation

In order to evaluate the performance of the RHAPSODIE
method, synthetic data have been created. These synthetic data
are designed to reproduce astrophysical cases. First, the truth
N = 128 x 128 maps Igt, Igl et Oy are created. Such a value
of N pixels fits the main Region Of Interest (ROI) size.

The hardest disk structures to reconstruct are faint, small,
and lightly polarized structures, and consequently have high con-
trast with the unpolarized stellar intensity and a low S/N. This is
why the synthetic environment we generated a disk with three
rings of equal brightness but with a different contrast with the
unpolarized stellar intensity. This disk is partially polarized with
a linearly polarization /P and a polarization angle 8 €] — «, 7]
and an unpolarized component /*%¥ The disk polarization ratio
between both component is given by:

sk _ _Ip _

Iudlsk +Jp
These synthetic images are then combined as maps of Stokes
parameters I, Q, and U.

The 1'“** component is mixed with the unpolarized IS
stellar components and a point source companion (star close to
the host star of different brightness). The unpolarized intensity
is represented as /" = "% 4+ Judisk Tt i important to keep in
mind that unmixing both the disk and stellar unpolarized com-
ponents is not possible from the DPI data without the diversity
introduced by ADI. The 7%* value used to synthetise datasets
is thus inaccessible in practice from observational polarimetric
datasets. To assert the case difficulty, one can then use the total

(A.1)

polarization, given for all pixel n € {1, ..., N} by:

total IP

W xy) = ——, A2
77 (xn) T3 (A.2)
and the S/N, given for all pixel n € {1, ..., N} by:

VK. I,
S/N(x,) = , (A.3)
VUL +1)/2 + 0,
Tdisk =3% Tdisk =7% Tdisk =10%

where o2 is the read-out noise variance. The difference between

7@l and 79K is that the last one does not take into account the
unpolarized star residuals. Figure A.1 presents the S/N maps and
the maps of total polarization ratio of the synthetic parameters
generated for different 74X, At the center, where the unpolarized
star residual are the brightest, the S/N and the total polarization
ratio are the weakest, especially in the case of small /"%, Yet
the S/N grows with the separation from the star center (as with
the stellar contribution or when the polarized contribution of the
disk increases). Figure A.2 present the true simulated maps for
7disk = 10%.

Finally, to generate synthetic calibrated data, the Stokes
maps are combined following the expression of the data physical
model (12), with K X M noise realizations from a fixed random
seed. The values of 10% of the pixels, chosen at random, are
replaced by zeros to mimic bad pixel behaviours. The weights
related to each acquisition are simulated at the same time fol-
lowing Eq. (15). The datasets are composed of 8 HWP cycles,
with two acquisitions per positions in each cycles, leading to 16
images per position of the half-wave plate (HWP). Thus, the total
number of images per datasets is K = 64.

Several datasets were created with
{3%, 7%, 10%, 15%,25%}, corresponding to difficult cases for
74k < 109% and less difficult brighter cases above this threshold.
Before producing a K X 2N noise realization for each dataset,
the random seed is reset to the same value. This allow the repro-
ducibility of the results. In fact this realization is obtained by
the multiplication of the standard deviation of the pixel to
a Gaussian, centered and reduced gaussian realization. Since
the random seed is the same for each dataset, the realization
is the same for the given pixel, only the standard deviation
changes.

In order to compare the results of the double differ-
ence to the results of the RHAPSODIE methods the dataset
are pre-processed. The bad pixels are interpolated; then the
left and right part of the images are cut, recentered, and
rotated.

Tdisk c

7disk = 15% 7disk = 25% sk = 509

Ttotal

107!

10

S/N
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1
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Fig. A.1. Total ratios of polarization 7\%2!

lesk .

1

maps, with respect to the total intensities, and S/N maps for the different values of disk polarized fractions
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Fig. A.2. Schematic illustration describing the process of the data simulation. Starting from synthetic maps I, Igt, and 6y based on a disc model,

we generate artificial calibrated and pre-processed datasets d and associated weights W, illustrated here for 7% = 10%.
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