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Late levels of nested occupancy scheme in random environment

Consider a weighted branching process generated by a point process on [0, 1], whose atoms sum up to one. Then the weights of all individuals in any given generation sum up to one, as well. We define a nested occupancy scheme in random environment as the sequence of balls-in-boxes schemes (with random probabilities) in which boxes of the jth level, j = 1, 2, . . . are identified with the jth generation individuals and the hitting probabilities of boxes are identified with the corresponding weights. The collection of balls is the same for all generations, and each ball starts at the root and moves along the tree of the weighted branching process according to the following rule: transition from a mother box to a daughter box occurs with probability given by the ratio of the daughter and mother weights.

Assuming that there are n balls, we give a full classification of regimes of the a.s. convergence for the number of occupied (ever hit) boxes in the jth level, properly normalized, as n and j = j n grow to ∞. Here, (j n ) n∈N is a sequence of positive numbers growing proportionally to log n. We call such levels late, for the nested occupancy scheme gets extinct in the levels which grow super-logarithmically in n in the sense that each occupied box contains one ball. Also, in some regimes we prove the strong laws of large numbers (a) for the number of the jth level boxes which contain at least k balls, k ≥ 2 and (b) under the assumption that the mean number of the first level boxes is finite, for the number of empty boxes in the jth level.

Introduction 1.Definition of the model

Let P 1 , P 2 , . . . be nonnegative random variables with an arbitrary joint distribution satisfying k≥1 P k = 1 almost surely (a.s.). We interpret the sequence (P k ) k∈N as a random environment. In the occupancy scheme in random environment, conditionally on (P k ) k∈N , balls are thrown independently into an array of boxes 1, 2, . . . with probability P k of hitting box k. To exclude the trivial occupancy scheme with one ball, we always assume that the mean number of positive (nonzero) probabilities is larger than one.

We call the model infinite occupancy scheme in random environment provided that the number of positive probabilities is infinite a.s. When the random probabilities (P k ) k∈N follow a residual allocation model

P r := W 1 W 2 • . . . • W r-1 (1 -W r ), r ∈ N, (1.1) 
where W 1 , W 2 , . . . are independent copies of a random variable W taking values in (0, 1), the corresponding infinite occupancy scheme is called Bernoulli sieve. This scheme was introduced in [START_REF] Gnedin | The Bernoulli sieve[END_REF] and further investigated in many articles. See [START_REF] Gnedin | The Bernoulli sieve: an overview[END_REF] and [START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes[END_REF] for the surveys and [START_REF] Alsmeyer | Functional limit theorems for the number of occupied boxes in the Bernoulli sieve[END_REF][START_REF] Duchamps | Renewal sequences and record chains related to multiple zeta sums[END_REF][START_REF] Iksanov | A law of the iterated logarithm for the number of occupied boxes in the Bernoulli sieve[END_REF][START_REF] Pitman | Regenerative random permutations of integers[END_REF] for recent contributions. A list of other popular random environments can be found in [START_REF] Gnedin | On nested infinite occupancy scheme in random environment[END_REF].

A nested occupancy scheme in random environment is a sequence of occupancy schemes in random environments constructed as a successive refinement of the partition of balls. The model was introduced in [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF]. The other contributions that we are aware of are [START_REF] Buraczewski | On intermediate levels of nested occupancy scheme in random environment generated by stick-breaking I[END_REF][START_REF] Gnedin | On nested infinite occupancy scheme in random environment[END_REF][START_REF] Iksanov | On intermediate levels of nested occupancy scheme in random environment generated by stick-breaking II[END_REF][START_REF] Joseph | A phase transition for the heights of a fragmentation tree[END_REF]. Following [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF] and [START_REF] Gnedin | On nested infinite occupancy scheme in random environment[END_REF], we now provide the definition of the nested scheme. An important ingredient of the construction is a weighted branching process with positive weights which is nothing else but a multiplicative counterpart of a branching random walk.

Let V = ∪ n∈N 0 N n be the set of all possible individuals of some population, encoded with the Ulam-Harris notation, where N 0 := N ∪ {0}. The ancestor is identified with the empty word ∅ and its weight is P (∅) = 1. On some probability space (Ω, F, P) let ((P k (u)) k∈N ) u∈V be a family of independent copies of (P k ) k∈N . An individual u = u 1 . . . u j of the jth generation whose weight is denoted by P (u) produces an infinite number of offspring residing in the (j + 1)th generation. The offspring of the individual u are enumerated by uk = u 1 . . . u j k, where k ∈ N, and the weights of the offspring are denoted by P (uk). It is postulated that P (uk) = P (u)P k (u). Observe that, for each j ∈ N, |u|=j P (u) = 1 a.s., where, by convention, |u| = j means that the sum is taken over all individuals of the jth generation. For j ∈ N, denote by F j the σ-algebra generated by the weights (P (u)) |u|≤j .

The nested occupancy scheme in random environment is then constructed as follows. For each j ∈ N, the set of the jth level boxes is identified with the set {u ∈ V : |u| = j} of individuals in the jth generation, and the weight of box u is given by P (u). The collection of balls is the same for all levels. The balls are allocated, conditionally on (P (u)) u∈V , in the following fashion. At each time n ∈ N, a new ball arrives and falls, independently on the n -1 previous balls, into box u of the first level with probability P (u). Simultaneously, it falls into the box up of the second level with probability P (up)/P (u), into the box upq with probability P (upq)/P (up), and so on indefinitely. A box is deemed occupied at time n provided it was hit by a ball on its way over the levels. Observe that restricting attention to one arbitrary level we obtain the occupancy scheme in the random environment.

This process can be explicitly constructed as follows. For each j ∈ N, associated to u ∈ N j is the interval

I u =   |v|=j,v≺u P (v), |v|=j,v u P (v)   ,
where ≺ is the alphabetical ordering1 on N j , and u v means that either u ≺ v or u = v. Note that, for each u ∈ V, the interval I u has length P (u) and (I uk ) k∈N forms a partition of I u . More generally, ((I u ) |u|=j ) j∈N forms a nested sequence of partitions of [0, [START_REF] Alsmeyer | Functional limit theorems for the number of occupied boxes in the Bernoulli sieve[END_REF].
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Figure 1: Construction of the first three levels of a nested occupancy scheme in random environment. The first ball hits boxes 3, 31 and 312, the second one hits boxes 1, 11 and 113.

Let (U j ) j∈N be independent random variables with the uniform distribution on [0, 1], which are independent of (P (u)) u∈V . For each n ∈ N, U n is associated to the ball n, which falls simultaneously in all boxes u such that U n ∈ I u . Observe that, for all n ∈ N, the number of balls hitting box u can be written as n i=1 1 {U i ∈Iu} .

For j, n ∈ N, put

K (j) n (k) := |u|=j 1 { n i=1 1 {U i ∈Iu} ≥k} , k ∈ N.
(1.2)

In words, K (j) n (k) is the number of the jth level boxes that were hit by at least k balls before time n. In particular, K (j) n := K (j) n [START_REF] Alsmeyer | Functional limit theorems for the number of occupied boxes in the Bernoulli sieve[END_REF] represents the number of occupied boxes that is, those containing at least one ball in the jth level.

Observe that the random variables K (j) n (k) are constructed consistently for all positive integer k, j and n. In particular, an immediate consequence of (1.2) is that, with n fixed, the sequence (K (j) n [START_REF] Alsmeyer | Functional limit theorems for the number of occupied boxes in the Bernoulli sieve[END_REF]) j∈N is a.s. nondecreasing, and with j and k fixed, the sequence (K (j) n (k)) n∈N is a.s. nondecreasing, too. The process introduced above may be called a deterministic version of the nested occupancy scheme in random environment. Let (N t ) t≥0 be a Poisson process of unit intensity with the arrival times S 1 , S 2 , . . ., so that

N t = #{k ∈ N : S k ≤ t}, t ≥ 0.
Furthermore, we assume that the Poisson process is independent of both (P (u)) u∈V and the sampling. As in much of the previous research on occupancy models, we shall also work with a Poissonized version in which balls arrive at random times S 1 , S 2 , . . . rather than 1, 2, . . .. A key observation is that in the Poissonized nested occupancy scheme at time t, conditionally given (P (u)) u∈V , the number of balls in box u is given by a Poisson random variable of mean tP (u) which is independent of the number of balls in all boxes v such that I u ∩ I v = ∅. Similarly to the deterministic version, we set

K (j) t (k) := K (j) Nt (k), t ≥ 0, k, j ∈ N.
(1.

3)

The so defined random variable represents the number of boxes at time t in the jth level of the Poissonized version containing at least k balls. In particular, K

t := K (j) (j) 
t [START_REF] Alsmeyer | Functional limit theorems for the number of occupied boxes in the Bernoulli sieve[END_REF] represents the number of occupied boxes at time t in the jth level of the Poissonized version.

Following [START_REF] Iksanov | On intermediate levels of nested occupancy scheme in random environment generated by stick-breaking II[END_REF], we call the jth level early, intermediate or late depending on whether j is fixed, j = j n → ∞ and j n = o(log n) as n → ∞, or j is of order log n. The asymptotic behavior of K (j) n (k) in certain late levels was investigated in [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF] and [START_REF] Joseph | A phase transition for the heights of a fragmentation tree[END_REF]. An extension of some results obtained in these two papers to a multitype version of the nested occupancy scheme in random environment can be found in [START_REF] Businger | Asymptotics of the occupancy scheme in a random environment and its applications to tries[END_REF]. According to Theorem 1 in [START_REF] Joseph | A phase transition for the heights of a fragmentation tree[END_REF], the nested occupancy schemes in random environment get extinct in a level j (n) of order a log n. This means that in the level j ≥ j (n) every ball is in a distinct box, that is, K (n) j = n. This shows that as far as analysis of the random variables K (j) n (k) is concerned, the aforementioned classification of the levels is complete.

Our purpose is to provide a complete description of regimes of the a.s. convergence for K (j) n , properly normalized, in the late levels. Our findings complement the results obtained in [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF], in which the a.s. behavior of K (j) n (k) was analyzed under the assumption j n = a log n+b+o(1) for a < a and b ∈ R. Additionally, assuming that the mean number of the first level boxes is finite we derive the asymptotic behavior of the number of empty boxes, in the regime when this number is small with respect to the total number of boxes. Last but not least, we investigate the a.s. convergence of K (j) n (k), k ≥ 2 in some late levels j. Our main technical tools are Biggins' local limit type estimate for the Gibbs measure of the branching random walk (Lemma 3.1) and its consequences (Propositions 3.2 and 3.4).

Standing assumptions

Throughout the rest of the paper, we prefer to work with the (additive) branching random walk (BRW, for short) associated to the (multiplicative) weighted branching process (P (u)) u∈V defined in Section 1.1. For u ∈ V, put V (u) := -log P (u). By convention, V (u) = ∞ if P (u) = 0. The process V := (V (u)) u∈V is a BRW, that is, in this process the daughters of each individual are positioned according to independent copies of a point process, centred around the position of that individual. The value ∞ is treated as a cemetery state. Individuals at that position only give birth to particles at ∞, and sums over |u| = j ignore individuals with V (u) = ∞. Note that the standing assumptions k≥1 P k = 1 a.s. and E #{k ∈ N :

P k > 0} > 1 are equivalent to |u|=1 e -V (u) = 1 a.s. and E |u|=1 1 > 1.
(1.4)

We additionally impose a nonlattice assumption, namely, for all a > 0 and b ∈ R,

P(V (u) ∈ aZ + b for all u with |u| = 1) < 1. (1.5)
For any θ ∈ R, define

L(θ) := E   |u|=1 e -θV (u)   and λ(θ) := log L(θ) (λ takes values in (-∞, ∞]
) and then put

θ := inf{θ ∈ R : λ(θ) < ∞}.
The function λ is strictly convex and decreasing on its domain, which particularly contains the interval [1, ∞) because λ(1) = 0. The speed of BRW is defined by v := -inf θ>0 λ(θ) θ . The term is justified by the limit relation lim

j→∞ 1 j min |u|=j V (u) = v a.s.,
see, for instance, Theorem 1.3 on p. 6 in [START_REF] Shi | Branching random walks[END_REF]. We assume the existence of θ * such that

θ * λ (θ * ) -λ(θ * ) = 0. (1.6) Under (1.6), the minimum of λ(θ) θ is attained at point θ * , that is, v = - λ(θ * ) θ * = -λ (θ * ). Observe that λ (1) = -E |u|=1 V (u)e -V (u) = E P (u) log P (u) ∈ [-∞, 0), using that P (u) ∈ [0, 1] a.
s. for all |u| = 1 and P(P

(u) = 1) < 1. As λ(1) = 0, we infer that θ ≤ 1 < θ * and -λ (1) > v > 0.
Here, we have also used the fact that θ ∈ [1, ∞) → -λ (θ) is strictly decreasing and positive, as λ is strictly convex and decreasing. Put

λ * (a) := sup θ∈R (-θa -λ(θ)) = -inf θ>0 (θa + λ(θ)), a > 0
and note that λ * is the Legendre transform of θ → λ(-θ). In particular, λ * is a convex function. It is a classical observation that, if there exists θ > θ such that -λ (θ) = a for some a > 0, then

λ * (a) = -(θa + λ(θ)) = θλ (θ) -λ(θ). (1.7)
In particular, λ * (v) = 0, with (λ * ) (v) = -θ * . More generally,

λ (θ) = -a ⇐⇒ (λ * ) (a) = -θ.
When θ < 0, define a counterpart of θ * on the negative halfline by

θ * := inf{θ ∈ (θ, 0) : θλ (θ) -λ(θ) < 0} (1.8)
and put a -:= lim θ→θ * + (-λ (θ)). Two other (mutually exclusive) properties of λ * which we use later on are the following. Property A. Under the assumption λ(0) = ∞, λ * is a strictly decreasing function. In this situation, we put θ * = θ.

Property B. Under the assumption θ < 0, λ * attains its minimum at point -λ (0). Furthermore, λ * is negative on (-λ (0), a -). For θ > θ, put

W j (θ) = |u|=j e -θV (u)-λ(θ)j and W (θ) = lim j→∞ W j (θ) a.s.
Observe that (W j (θ), F j ) j≥0 is a nonnegative martingale, so that the limit random variable W (θ) is well-defined and non-negative almost surely. Let γ > 1. Using the convexity of x → x γ on R + := [0, ∞) we obtain, for θ > θ,

|u|=1 e -θV (u) γ = |u|=1 e -V (u) e -(θ-1)V (u) γ ≤ |u|=1 e -((θ-1)γ+1)V (u) a.s.
Choosing γ > 1 sufficiently close to 1 that satisfies γ(θ -1) + 1 > θ, so that particularly L(γ(θ -1) + 1) < ∞, we infer E(W 1 (θ) γ ) < ∞. Hence, irrespective of whether θ < 0 or λ(0) = ∞, we conclude with the help of Theorem 1 in [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] that W (θ) > 0 a.s. for all θ ∈ (θ * , θ * ) and W (θ) = 0 a.s. for all θ > θ * .

Recall that θ * = θ if λ(0) = ∞.

Main results

We formulate in this section our main results which are concerned with the almost sure asymptotic behaviour of K (j) n := K (j) n (1) the number of occupied boxes in the late levels j when n balls have been thrown. More precisely, we investigate a regime in which j = j n satisfies log n ∼ aj, n → ∞ for some a > 0. It turns out that the asymptotic behavior of K (j) n depends heavily upon the value of a, which can be partially explained by the fact that K (j) n ≈ K (j) e aj , in this setting, is an increasing function in a. We call the parameter a the density of balls in the jth level. We expect that in the levels of low density most balls fall into distinct boxes, whereas in the levels of higher density more and more balls fall into the same box, so that the total number of occupied boxes do not increase any longer proportionally to the number of balls.

Put Φ(x) := (2π) -1 x -∞ exp(-y 2 /2)dy for x ∈ R, so that Φ is the standard normal distribution function. Put

a * :=    -λ(2) 2 if θ * > 2, v = -λ(θ * ) θ * if θ * ≤ 2.
(2.1)

Our first main result is Theorem 2.1.

Theorem 2.1. Let a > 0, b ∈ R and fix θ > 0 such that a = -λ (θ). Also, let (j n ) n∈N be a sequence of positive integers.

(I) If a < a and lim n→∞ (log n/j n ) = a, then K (jn) n = n a.s. for n large enough. (II) Let a < a < a c := -λ (1).

(A) If a < -λ (2) and j n = a -1 log n + O((log n) 1/2 ) as n → ∞, then

K (jn) n = n - W (2) 2 n 2 e λ(2)jn (1 + o(1)) a.s. as n → ∞. (2.2) (B) If a = -λ (2)
and

lim n→∞ log n -aj n (log n) 1/2 = b, (2.3)
then as n → ∞,

K (jn) n = n - Φ -b(a/λ (2)) 1/2 2 W (2)n 2 e λ(2)jn (1 + o(1)) a.s. (2.4) (C) If a > -λ (2)
and the sequence (j n ) n∈N satisfies (2.3), then as n → ∞,

K (jn) n = n - Γ(2 -θ) θ(θ -1)(2πλ (θ)) 1/2 e -ab 2 /(2λ (θ)) W (θ) n θ e λ(θ)jn j 1/2 n (1 + o(1)) a.s. (2.5) (III) If a = a c and the sequence (j n ) n∈N satisfies (2.3), then K (jn) n = Φ -b(a/λ (1)) 1/2 n(1 + o(1)) a.s. as n → ∞.
(IV) If a c < a < a := lim θ→max(θ,0) (-λ (θ)) and the sequence (j n ) n∈N satisfies (2.3), then

K (jn) n = Γ(1 -θ) θ(2πλ (θ)) 1/2 e -ab 2 /(2λ (θ)) W (θ) n θ e λ(θ)jn j 1/2 n (1 + o(1)) a.s. as n → ∞.
Remark 2.2. We intend to show that in the settings of cases (II) and (IV) of Theorem 2.1, the a.s. growth of n -K (jn) n and K (jn) n , respectively, is sublinear, the principal contribution being n α(a)+o (1) for some α(a) ∈ (0, 1).

Let a > 0, we fix θ > 0 such that a = -λ (θ). Let (j n ) n∈N be a sequence of positive integers satisfying j n ∼ log n/a as n → ∞. Then

n θ e λ(θ)jn = n -λ * (a) a +o(1) , n → ∞,
which implies that α is given by

α(a) :=    -λ * (a) a if a > -λ (2) 2 -λ(2)/a if a ≤ -λ (2)
, a ∈ (a , a).

Further, in view of (1.7),

- λ * (a) a = θλ (θ) -λ(θ) λ (θ) ,
and the function g : θ ∈ (θ, ∞) → θλ (θ) -λ(θ) -λ (θ) satisfies g(1) = 0 and g (θ) = (θ -1)λ (θ). This in conjunction with the strict convexity of λ implies that, for θ = 1, g(θ) > 0 or equivalently

θλ (θ) -λ(θ) > λ (θ).
Thus sup a>0 α(a) = 1, with the supremum being attained at a = -λ (1).

Remark 2.3. In case (II) of Theorem 2.1, the limit of the martingale appearing in the asymptotic expansion of K (jn) n is always positive almost surely. Let a > a and θ be such that a = -λ (θ). By convexity of λ, there is the following dichotomy.

• If θ * > 2 (in particular W (2) > 0 a.s.), then a = -λ (2) 2 < v < -λ (2). In this situation, the cases θ > 2, θ = 2 and θ < 2 corresponds to cases (IIA), (IIB) and (IIC) of Theorem 2.1, respectively.

• If θ * ≤ 2, then a = v ≤ -λ(2)
2 ≤ -λ (2). In this situation, θ < θ * ≤ 2, so that the assumptions of case (IIC) hold. Theorem 2.1 provides the strong laws of large numbers (SLLNs, for short) for K (j) n in all late levels j = j n of order log n. In particular, case (I) a < a corresponds to the levels of the very low density, in which balls fall into distinct boxes with overwhelming probability. According to the terminology of the already mentioned article [START_REF] Joseph | A phase transition for the heights of a fragmentation tree[END_REF], the nested occupancy scheme gets extinct in these levels. Case (I) is treated in Section 4.1. Case (II) corresponds to the levels of the low density that we call presaturation levels. The terminology stems from the fact that in these levels most balls fall into distinct boxes, but some of them may share the same box. Therefore, the SLLN for the number of occupied boxes is mainly driven by the number of available balls. Case (II) is further divided into three subcases (IIA), (IIB) and (IIC), in which K (j) n exhibits different asymptotics. Case (II) is analyzed in Section 4.2.

Case (IV) a c < a < a corresponds to the levels of the high density that we call postsaturation levels. The motivation for this term is that in these levels most balls fall into the same collection of boxes, so that the number of occupied boxes in these levels is small with respect to the number of balls. It is explained in Remark on p. 1595 of [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF] that the a.s. asymptotic behavior of K (j) n is mainly driven by the number of the jth level boxes whose hitting probabilities are of order e -j/a 1/n. Case (IV) which is mostly a generalization of Theorem 1 in [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF] is treated in Section 4.4. Case (III) a = a c corresponds to the levels of the moderate density that we call saturation levels. The a.s. growth rate of the number of occupied boxes in these levels is of order cn for some c ∈ (0, 1). Case (III) is treated in Section 4.3.

Let k ∈ N. Next, we discuss the a.s. asymptotic behavior of K (jn) n (k) the number of boxes in the late levels j n which contain at least k balls. Note that in low levels j n most balls cluster together. As a result, K (jn) n (k) and K (jn) n (1) are of the same order of magnitude. We focus here on the levels j n = log n/(-λ (k)), in which a phase transition occurs for the asymptotic behavior of K (jn) n (k). Below that level, the behavior of K (jn) n (k) is driven by the asymptotic behavior of the number of 'large' boxes (and was studied in [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF]), whereas above that level, it is driven by the number of available balls. In some sense, Theorem 2.4 is a generalisation to k ∈ N of part (III) of Theorem 2.1 dealing with the k = 1 case.

Theorem 2.4. Let b ∈ R, k ∈ N be such that k ∈ (θ, θ * ) and (j n ) n∈N a sequence of positive integers satisfying lim n→∞ log n + λ (k)j n (log n) 1/2 = b.
Then, as n → ∞,

K (jn) n (k) = 1 k! W (k)Φ -b -λ (k) λ (k) 1/2 n k e λ(k)jn e -(k-1)(λ (k)jn+log n) (1 + o(1)) a.s.
The proof of Theorem 2.4 is given in Section 4.3.

Assume that λ(0) < ∞, that is, the mean number of the first level boxes is finite. Then all boxes in low enough levels are occupied with high probability. We refer to this situation as freezing. For j ∈ N, denote by Z j := #{|u| = j : P (u) = 0} the number of available boxes in the jth level. Then L (j) n := Z j -K (j) n is the number of empty boxes in the jth level. Theorem 2.5 is a strong law of large numbers for L (j) n for the levels j in which freezing occurs. Recall that the quantity θ * is defined in (1.8).

Theorem 2.5. Assume that θ < 0. Let -λ (0) < a < a -= lim θ→θ * + (-λ (θ)), b ∈ R and pick θ ∈ (θ * , 0) satisfying a = -λ (θ). Also, let (j n ) n∈N be a sequence of positive integers such that lim n→∞ log n -aj n (log n) 1/2 = b. Then L (jn) n = Γ(-θ) (2πλ (θ)) 1/2 e -ab 2 /(2λ (θ)) W (θ) n θ e λ(θ)jn j 1/2 n (1 + o(1)) a.s. as n → ∞.
Theorem 2.5 tells us that L (jn) n diverges to ∞ sublinearly a.s., with the rate of divergence being smaller than e λ(0)jn , the growth rate of Z jn . The former claim follows by the same reasoning as given in Remark 2.2. To justify the latter claim, write n θ e λ(θ)jn = e -λ * (a)jn(1+o(1)) and note that by Property B in Section 1.2, -λ * (a) < λ(0) whenever a ∈ (-λ (0), a -). As a consequence, the a.s. growth rates of K (jn) n and Z jn are of the same order e λ(0)jn . This demonstrates that the theorem does indeed treat the levels j n in which freezing occurs. The proof of Theorem 2.5 is given in Section 4.5.

Branching random walk estimates

Throughout this section we work with the BRW V as given in Section 1.2. In particular, we always assume that conditions (1.4) and (1.5) hold. For all θ ∈ (θ * , θ * ) and j ∈ N, define the random measure

Z (j) θ := |u|=j e -θV (u)-λ(θ)j δ V (u) .
Note that the total mass of Z (j) θ is W j (θ), and that Z (j)

θ := Z (j)
θ /W j (θ) is a random probability measure on R which is called the Gibbs measure of the BRW with inverse temperature θ. Choosing a point according to the law Z (j) θ can be thought of as sampling the position of an individual u in the jth generation of the BRW with probability proportional to e θV (u) . The asymptotic behavior of Z (j) θ for θ ≥ θ * has been explored in [START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF][START_REF] Pain | The near-critical Gibbs measure of the branching random walk[END_REF]. In the present work we need some uniform estimates on Z (j) θ for θ ∈ (θ * , θ * ). These are presented in Propositions 3.2 and 3.4 and Corollary 3.5 below.

For θ > θ * , put

g θ (y) := 1 (2πλ (θ)) 1/2 exp - y 2 2λ (θ)
, y ∈ R, so that g θ is the density of centered normal distribution with variance λ (θ). For θ ∈ (θ * , θ * ), Biggins [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] showed that the random measure Z (j) θ , properly scaled, converges a.s. to the normal distribution with density g θ . Specifically, we recall the case p = 1 of Theorem 4 in [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], in the form presented by Bertoin in Lemma 4 of [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF] (for a BRW satisfying (1.4)). The result is a local limit theorem for the random measure Z (j) θ as j → ∞. Lemma 3.1. The limit relation

lim j→∞ j 1/2 Z (j) θ ((x -λ (θ)j -h, x -λ (θ)j + h]) -2hW (θ)g θ (j -1/2 x) = 0 a.s. (3.1)
holds uniformly in x ∈ R, in h in bounded sets, and in θ in compact subsets of (θ * , θ * ).

Recall that a function

f : R → R + is called directly Riemann integrable (dRi) on R, if (a) n∈Z sup (n-1)h≤y<nh f (y) < ∞ for each h > 0 and (b) lim h→0+ h n∈Z sup (n-1)h≤y<nh f (y) -inf (n-1)h≤y<nh f (y) = 0.
In this article we need the following extension of Lemma 3.1.

Proposition 3.2. Let θ ∈ (θ * , θ * ) and f : R → R + be a directly Riemann integrable function on R. Then

lim j→∞ sup y∈R j 1/2 |u|=j e -θV (u)-λ(θ)j f (-λ (θ)j + y -V (u)) -W (θ)g θ (yj -1/2 ) R f (x)dx = 0 a.s. (3.2) Remark 3.3. Proposition 3.
2 is an extension of Corollary 4 in [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] and Corollary 1 in [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF]. The former result only treats dRi functions of compact support. The latter result is concerned with a subclass of dRi functions having a prescribed rate of decay at ±∞ and investigates the sums of the form

|u|=j e -θV (u)-λ(θ)j f (-λ (θ)j + c j -V (u))
for sequences (c j ) converging to a finite limit. Last but not least, unlike in the cited results, the convergence dealt with here is uniform in y.

Proposition 3.4 given next is an a.s. central limit theorem for the random measure Z (j) θ as j → ∞. We recall that 'a.e.' is a shorthand for 'almost everywhere'. Proposition 3.4. Let θ ∈ (θ * , θ * ) and f : R → R be a bounded, a.e. continuous function. Then, for any C > 0, a.s.,

lim j→∞ sup |y|≤C |u|=j e -θV (u)-λ(θ)j f -λ (θ)j -V (u) j 1/2 +y -W (θ) R f (y-x)g θ (x)dx = 0.
If, in addition, f has a compact support, then the asymptotic relation holds uniformly in y ∈ R.

A specialization of Proposition 3.4 with f (x) = 1 (-∞, 0] (x) in combination with a simple additional argument yields the following corollary to be exploited in the proof of Lemma 4.2(2). All the statements of Theorem 2.1 will be proved along similar lines, with the help of a Poissonization method, that we now describe. We shall work with the random variables K

(j) t (k), t ≥ 0, k, j ∈ N defined in formula (1.
3). In other words, we shall investigate a nested occupancy scheme in random environment in which the number of balls has a Poisson distribution with mean t. By the thinning property of Poisson processes, conditionally on the BRW V, the numbers of balls in different boxes of the given level are independent, and the number of balls in the box u has a Poisson distribution of mean te -V (u) .

We shall write P(•) := P(•|V) for the conditional law given V and E and Var for the corresponding (conditional) mean and variance, respectively. It can be checked that

EK (j) t (k) = |u|=j φ k (te -V (u) )
and Var K (j)

t (k) = |u|=j φ k (te -V (u) )(1 -φ k (te -V (u) )), (4.1)
where

φ k (z) = e -z ∞ i=k z i i! = e -z e z -k-1 i=0 z i i! .
Invoking the results of Section 3 we shall provide the a.s. asymptotic behavior of these quantities as t → ∞. Then, using the Bienaymé-Tchebychev inequality and the Borel-Cantelli lemma, we shall prove SLLNs for K (j) t (k). At the last step called depoissonization, we shall get back to the original deterministic scheme and deduce the claimed SLLNs for K (j) n from the already proved SLLNs for K (j) t (k). The main technical tools for this final step is the SLLN for the Poisson process N t ∼ t a.s. as t → ∞ and the monotonicity properties of nested occupancy schemes.

Levels of the very low density. Proof of Theorem 2.1(I)

We consider in this section the number of occupied boxes in the levels of the very low density. Lemma 4.1. Let ε > 0 and t j := e a j-εj 1/2 for j ∈ N. Then

lim j→∞ K (j) t j (2) = 0 a.s. Proof. By (4.1), EK (j) t j (2) = |u|=j φ 2 (e a j-εj 1/2 -V (u) ), j ∈ N, where φ 2 (x) = 1 -e -x -xe -x for x ≥ 0. The inequality 1 -e -x ≤ x, x ≥ 0 implies that φ 2 (x) ≤ x 2 , x ≥ 0.
We first assume that θ * ≥ 2. Then 2a = -λ(2) and, as a consequence,

EK (j) t j (2) ≤ |u|=j e 2a j-2εj 1/2 -2V (u) = e -2εj 1/2 W j (2), j ∈ N.
Recall that (W j (2), F j ) j≥0 is a nonnegative martingale. Hence, W j (2) converges a.s. as j → ∞. This entails j≥1 EK (j)

t j (2) < ∞ a.s.
and thereupon lim j→∞ K (j)

t j (2) = 0 a.s.
by the Markov inequality and the Borel-Cantelli lemma. We now assume that θ * < 2, in which case a = v and EK (j)

t j (2) ≤ e -2εj 1/2 |u|=j e 2(vj-V (u)) , j ∈ N.
By Lemma 3.1 in [START_REF] Shi | Branching random walks[END_REF] applied to the BRW (V (u) -v|u|) u∈V , min |u|=j V (u) ≥ vj a.s. for all j large enough. Using it in combination with θ * < 2 and v = -λ(θ * )/θ * we conclude that EK (j)

t j (2) ≤ e -2εj 1/2 W j (θ * ) a.
s. for all j large enough.

As W j (θ * ) converges a.s. as j → ∞, we deduce once again that j≥1 EK (j) Proof of Theorem 2.1(I). Let (j n ) n∈N be a sequence of positive integers satisfying lim n→∞ (log n/j n ) = a with a ∈ (0, a ). Also, let (t j ) j∈N be the sequence defined in Lemma 4.1. Then lim n→∞ (t jn /n) = ∞, so that N t jn ≥ n a.s. for n large enough, by the SLLN for Poisson processes. Since, for each j ∈ N, the sequence (K (j) n (2)) n∈N is a.s. nondecreasing, we obtain a.s. for n large enough,

t j (2) < ∞ a.s.
K (jn) n (2) ≤ K (jn) Nt jn (2) = K (jn)
t jn [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF].

Invoking now Lemma 4.1 we infer lim n→∞ K (jn) n (2) = 0 a.s. and thereupon K (jn) n (2) = 0 a.s. for large enough n because, for each n ∈ N, the random variable K (jn) n (2) takes nonnegative integer values. Since, for each n ∈ N, the sequence (K (jn) n (k)) k∈N is a.s. nonincreasing, we infer that, for all k ≥ 2, K (jn) n (k) = 0 a.s. for n large enough. This in combination with the equality k≥1 K (jn) n (k) = n a.s. which holds for each n leads to the desired conclusion K (jn) n (1) = n a.s. for n large enough.

Presaturation levels. Proof of Theorem 2.1(II)

We consider in this section the number of occupied boxes in the presaturation levels. Since in these levels most balls fall into distinct boxes, it is natural to investigate the asymptotic behavior of the difference between the number of balls and the number of occupied boxes. (t j (y)) -2 e -λ(2)j E N t j (y) -K (j)

t j (y) - 1 2 W (2) = 0 a.s., lim j→∞ sup |y|≤Cj 1/2 (t j (y)) -2 e -λ(2)j Var N t j (y) -K (j) t j (y) - 1 2 W (2) = 0 a.s. and N t j (y) -K (j) t j (y) = W (2) 2 (t j (y)) 2 e λ(2)j (1 + o(1)) a.s. as j → ∞, uniformly in y satisfying |y| ≤ Cj 1/2 . ( 2 
) If a = -λ (2) (equivalently θ = 2), then, for any C > 0, lim j→∞ sup |y|≤Cj 1/2 (t j (y)) -2 e -λ(2)j E N t j (y) -K (j) t j (y) - 1 2 W (2)Φ -y(λ (2)j) -1/2 = 0 a.s., lim j→∞ sup |y|≤Cj 1/2 (t j (y)) -2 e -λ(2)j Var N t j (y) -K (j) t j (y) - 1 2 W (2)Φ -y(λ (2)j) -1/2 = 0 a.s.
and N t j (y) -K (j)

t j (y) = W (2) 2 Φ -y(λ (2)j) -1/2 (t j (y)) 2 e λ(2)j (1 + o(1)) a.s. as j → ∞, uniformly in y satisfying |y| ≤ Cj 1/2 . ( 3 
) If a > -λ (2) (equivalently θ < 2), then lim j→∞ sup y∈R j 1/2 (t j (y)) -θ e -λ(θ)j E N t j (y) -K (j) t j (y) - Γ(2 -θ) θ(θ -1) W (θ)g θ (yj -1/2 ) = 0 a.s., lim j→∞ sup y∈R j 1/2 (t j (y)) -θ e -λ(θ)j Var N t j (y) -K (j) t j (y) -(2θ -2 θ + 1) Γ(2 -θ) θ(θ -1) W (θ)g θ (yj -1/2 ) = 0 a.s.,
and

N t j (y) -K (j) t j (y) = Γ(2 -θ) θ(θ -1) W (θ)g θ (yj -1/2 )j -1/2 (t j (y)) θ e λ(θ)j (1 + o(1)) a.s.
as j → ∞, uniformly in y satisfying |y| ≤ Cj 1/2 , for any C > 0.

Proof. Let η λ be a random variable with the Poisson distribution of mean λ > 0. Then

E(η λ -1 {η λ ≥1} ) = m(λ) and Var(η λ -1 {η λ ≥1} ) = v(λ),
where m(x) := x -1 + e -x and v(x) := x + e -x -e -2x -2xe -x for x ≥ 0. In view of these formulas, for j ∈ N and y ∈ R,

E N t j (y) -K (j) t j (y) = |u|=j m e aj+y-V (u) (4.2) 
and Var N t j (y) -K (j)

t j (y) = |u|=j v e aj+y-V (u) . (4.3)
Case θ ≥ 2. For typographical ease, we write ϑ for the integer part of θ. We start with

E N t j (y) -K (j) t j (y) = ϑ-1 i=2 |u|=j (-1) i e i(aj+y-V (u)) i! + |u|=j m ϑ (e aj+y-V (u) ) = ϑ-1 i=2 (-1) i i! e i(aj+y)+λ(i)j W (i) + |u|=j m ϑ (e aj+y-V (u) ), (4.4) 
where m ϑ (x) := e -xϑ-1 i=0

(-x) i i!
for x ≥ 0. By convention, the empty sum 1 i=2 . . . is equal to 0, if θ ∈ (2, 3). Further, |u|=j m ϑ (e aj+y-V (u) ) = (-1) ϑ ϑ! e ϑ(aj+y)+λ(ϑ)j |u|=j e -ϑV (u)-λ(ϑ)j 1 {V (u)≥aj+y} + e θ(aj+y)+λ(θ)j |u|=j e -θV (u)-λ(θ)j m ϑ (e aj+y-V (u) ),

where

m ϑ (x) := x -θ e -x -ϑ-1 i=0 (-x) i i! -(-1) ϑ x ϑ ϑ! 1 [0,1] (x) for x > 0. The function x → m ϑ (e x ) is Lebesgue integrable on R. For instance, 0 ≤ 0 -∞ (-1) ϑ+1 m ϑ (e x )dx = 1 0 (-1) ϑ+1 x -θ-1 e -x - ϑ i=0 (-x) i i! dx < ∞ because (-1) ϑ+1 x -θ-1 e -x - ϑ i=0 (-x) i i! ∼ 1 (ϑ + 1)!x {θ} , x → 0+,
where {θ} is the fractional part of θ. Further, the function x → (-1) ϑ e θx m ϑ (e x ) is nonnegative and increasing on [0, ∞), and the function x → (-1) ϑ+1 e θx m ϑ (e x ) is nonnegative and increasing on (-∞, 0]. Hence, we conclude with the help of Lemma 9.1 in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] that the functions x → (-1) ϑ m ϑ (e x ) and x → (-1) ϑ+1 m ϑ (e x ) are dRi on [0, ∞) and (-∞, 0], respectively. An application of Proposition 3.2 with

f (x) = (-1) ϑ m ϑ (e x ) 1 [0,∞) (x) and then with f (x) = (-1) ϑ+1 m ϑ (e x ) 1 (-∞,0) (x) yields lim j→∞ sup y∈R j 1/2 |u|=j e -θV (u)-λ(θ)j m ϑ (e aj+y-V (u) ) -W (θ)g θ (y) ∞ 0 m ϑ (e -x )dx = 0 a.s. (4.5)
Assume that θ is integer, so that ϑ = θ. Then, by Proposition 3.4 applied to

f (x) = 1 (-∞,0] (x), x ∈ R, for any C > 0, lim j→∞ sup |y|≤Cj 1/2 |u|=j e -ϑV (u)-λ(ϑ)j 1 {V (u)≥aj+y} -W (ϑ)Φ -y(λ (ϑ)j) -1/2 = 0 a.s. (4.6)
Assume now that θ is not integer, so that ϑ < θ and thereupon -λ (ϑ) > -λ (θ) = a > 0. Here, the left-hand inequality is justified by the fact that -λ is a decreasing function on (θ * , ∞). Invoking Corollary 3.5 with δ = a = -λ (θ) ∈ (0, -λ (ϑ)) we obtain, for any C > 0, lim j→∞ sup |y|≤Cj 1/2 |u|=j e -ϑV (u)-λ(ϑ)j 1 {V (u)≥aj+y} -W (ϑ) = 0 a.s. e -2(aj+y)-λ(2)j E N t j (y) -K (j) t j (y) -W (2)Φ -y(λ (2)j) -1/2 /2 = 0 a.s.

Assume now that θ ∈ (2, 3) in which case the first summand on the right-hand side of (4.4) still vanishes. Invoking (4.9) with ϑ = 2 we arrive at lim j→∞ sup |y|≤Cj 1/2 e -2(aj+y)-λ(2)j E N t j (y) -K (j) t j (y) -W (2)/2 = 0 a.s.

(4.10)

Finally, if θ ≥ 3, then the first summand on the right-hand side of (4.4) is nonzero. Furthermore, in view of the already mentioned monotonicity of s → as + λ(s) on [2, θ], its first term which corresponds to i = 2 dominates. As a consequence, relation (4.10) holds but the driving forces behind this convergence are different from those in the case θ ∈ (2, 3).

Passing to the analysis of the variance we write v(x) = m(x) + w(x), where w(x) := 1 -e -2x -2xe -x for x ≥ 0. Using now (4.2) and (4.3) we conclude that

Var N t j (y) -K (j) t j (y) = E N t j (y) -K (j) t j (y) + |u|=j w e aj+y-V (u) .
Hence, in order to show that the variance exhibits (uniformly) the same asymptotics as the mean it is enough to check that, for any C > 0, Thus, given ε > 0 there exists x 0 ∈ R such that w(e x ) ≤ εm(e x ) whenever x ≤ x 0 .

Using this x 0 we write

|u|=j w e aj+y-V (u) = |u|=j w e aj+y-V (u) 1 {aj+y-V (u)≤x 0 } + |u|=j w e aj+y-V (u) 1 {aj+y-V (u)>x 0 } .
We shall investigate the summands separately:

|u|=j w e aj+y-V (u) 1 {aj+y-V (u)≤x 0 } ≤ ε |u|=j m e aj+y-V (u)
∼ εW (2)c j e 2(aj+y)+λ(2)j , j → ∞, (

uniformly in |y| ≤ Cj 1/2 , for any C > 0. Here, c j = 1/2 if θ = 2 and c j = Φ(-y(λ (2)j) -1/2 )/2 if θ = 2, and the last limit relation follows from the already proved part for the mean. To analyze the second summand, put w(x) :=

x -θ w(x) 1 (e x 0 ,∞) (x) for x > 0. The function x → w(e x ) is nonnegative. Further, since w(e x ) ∼ e -θx as x → ∞, it is Lebesgue integrable on R. As x → e θx w(e x ) is increasing on R, using again Lemma 9.1 in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF], we conclude that x → w(e x ) is dRi on R. Noting that |u|=j w e aj+y-V (u) 1 {aj+y-V (u)>x 0 } = e θ(aj+y)+λ(θ)j |u|=j w e aj+y-V (u) , an application of Proposition 3.2 with f (x) = w(e x ) yields

lim j→∞ sup y∈R j 1/2 e -θ(aj+y)-λ(θ)j |u|=j w e aj+y-V (u) 1 {aj+y-V (u)>x 0 } -W (θ)g θ (yj 1/2 ) R
w(e x )dx = 0 a.s.

Recalling that the function s → as + λ(s) is decreasing on [2, θ] we conclude that lim j→∞ sup y∈R e -2(aj+y)-λ(2)j |u|=j w e aj+y-V (u) 1 {aj+y-V (u)>x 0 } = 0 a.s.

This in combination with (4.12) proves (4.11).

Case θ ∈ (1, 2). We use a representation |u|=j m e aj+j-V (u) = e θ(aj+y)+λ(θ)j |u|=j e -θV (u)-λ(θ)j m e aj+y-V (u) e θ(aj+y-V (u)) .

Observe that the function x → e -θx m(e x ) is nonnegative and that

R e -θx m(e x )dx = ∞ 0 x -θ-1 (x -1 + e -x )dx = Γ(2 -θ) θ(θ -1)
which can be checked by repeated integration by parts. Since x → m(e x ) is an increasing function on R, we conclude that the function x → e -θx m(e x ) is dRi on R by Lemma 9.1 in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF]. Invoking Proposition 3.2 with f (x) = e -θx m(e x ) we obtain, a.s.

lim j→∞ sup y∈R j 1/2 |u|=j e -θV (u)-λ(θ)j m e aj+y-V (u) e θ(aj+y-V (u)) -W (θ)g θ (yj -1/2 ) R m(e x )
e θx dx = 0 and thereupon, a.s. lim j→∞ sup y∈R j 1/2 e -θ(aj+y)-λ(θ)j E N t j (y) -K (j)

t j (y) - Γ(2 -θ) θ(θ -1) W (θ)g θ (yj -1/2 ) = 0.
Recalling the representation v(x) = m(x) + w(x) for x ≥ 0 and noting that the

function x → e -θx w(x) is dRi on R with R e -θx w(e x )dx = ∞ 0 x -θ-1 (1 -e -2x -2xe -x )dx = 2 ∞ 0 x -θ (1 -e -x )dx - ∞ 0 x -θ-1 (2x -1 + e -2x )dx = (2θ -2 θ ) Γ(2 -θ) θ(θ -1) ,
another appeal to Proposition 3.2 yields lim j→∞ sup y∈R j 1/2 e -θ(aj+y)-λ(θ)j Var N t j (y) -K (j)

t j (y) (1) 
-W (θ)g θ (yj -1/2 ) R e -θx (m(e x ) + w(e x ))dx = 0 a.s.

It remains to prove the SLLNs. To this end, we treat the three cases simultaneously and write, for any > 0 and y satisfying |y| ≤ Cj 1/2 , for any fixed C > 0 when θ ≥ 2 and y = y j ∈ R when θ ∈ (1, 2),

P N t j (y) -K (j) t j (y) -E N t j (y) -K (j) t j (y) > E N t j (y) -K (j) t j (y)

≤

Var (N t j (y) -K (j)

t j (y) ) 2 (E(N t j (y) -K (j) t j (y) )) 2 ∼ C θ 2 (E(N t j (y) -K (j) t j (y) )) , j → ∞. (4.13)
We have used the Bienaymé-Chebyshev inequality and then the already proved asymptotics of the (conditional) mean and variance. Here, C θ = 1 when θ ≥ 2 and C θ = 2θ -2 θ + 1 when θ ∈ (1, 2). Invoking once again the already proved part of the lemma we conclude that in either of the three cases the right-hand side in (4.13) is the general term of a convergent series in j. Hence, by the Borel-Cantelli lemma, the strong laws of large numbers hold conditionally on the BRW V, hence also unconditionally.

The SLLNs for the Poissonized version given in Lemma 4.2 will now be used to prove the SLLNs for the number of occupied boxes in the presaturation levels of the nested occupancy scheme with n balls.

Proof of Theorem 2.1(II).

Let a ∈ (a , -λ (1)), b ∈ R. Fix δ > 0 and note that, for each j ∈ N, the sequence (n -K (j) n ) n∈N is a.s. nondecreasing. Moreover, by the SLLN for Poisson processes, N (1-δ)n ≤ n ≤ N (1+δ)n a.s. for n large enough. As a consequence, a.s. for n large enough,

N (1-δ)n -K (jn) (1-δ)n ≤ n -K (jn) n ≤ N (1+δ)n -K (jn) (1+δ)n . (4.14)
From now on, we investigate the three cases separately. Fix any γ > 0.

Case a < -λ (2). We shall apply the SLLN from part (1) of Lemma 4.2 with j = j n = a -1 log n + O((log n) 1/2 ) and y = log γ -(j n -a -1 log n). The so defined y satisfies |y| ≤ Cj 1/2 n for some C > 0 and large n and t jn (y) = γn. Thus,

lim n→∞ N γn -K (jn) γn n 2 e λ(2)jn = γ 2 2 W (2) a.s.
Using this in combination with (4.14) we arrive at (2.2).

Case a = -λ (2). We shall apply the SLLN from part (2) of Lemma 4.2 with

j = j n = a -1 log n + a -1 b(log n) 1/2 + o((log n) 1/2 ) and y = log γ + b(log n) 1/2 -(j n -a -1 log n -a -1 b(log n) 1/2 ).
The so defined y = y n satisfies |y| ≤ Cj 1/2 n for some C > b and large n and t jn (y) = γn. Furthermore, lim n→∞ (y

n j -1/2 n ) = a 1/2 b. Hence, lim n→∞ N γn -K (jn) γn n 2 e λ(2)jn = γ 2 2 W (2)Φ(-b(a/λ (2)) 1/2 ) a.s.
This together with (4.14) proves (2.4). Case a > -λ (2). Using (4.14) in combination with the SLLN from part (3) of Lemma 4.2 with the same j and y as in the previous case yields (2.5).

Saturation levels. Proof of Theorem 2.1(III)

We investigate in this section the a.s. asymptotic behavior of the number of occupied boxes in the saturation levels. More precisely, the number n of balls thrown and the levels j = j n satisfy log n ∼ -λ (1)j n as n → ∞. In this case, a positive fraction of balls share the same box, and the variables K (jn) n are no longer proportional to n. Levels around the saturation levels of order log n/(-λ (1)) form a transition for the nested occupancy scheme, between the sparse phases (I) and (II) and the dense phase (IV).

Let k ∈ N, k ≥ 2 and assume that λ (k) is finite. More generally, a similar transition occurs in the levels of order log n/(-λ (k)) for the number of boxes containing at least k balls. The precise statement is given in Theorem 2.4.

For θ ∈ (θ, θ * ), put ϕ(θ) := λ(θ) -θλ (θ). Recall that the covariance of square integrable random variables X and Y is given by Cov (X, Y ) = E XY -E X E Y . We write Cov for the conditional covariance given the BRW V. Formula (4.16) which describes the a.s. asymptotic behavior of the conditional covariance is not used in the present paper. It is given for completeness.

Lemma 4.3. Let k ∈ N such that k ∈ (θ, θ * ) and put t (k) j (y) = -λ (k)j + y. Then, for any C > 0, lim j→∞ sup |y|≤Cj 1/2 e -(ϕ(k)j+y) EK (j) t (k) j (y) (k) -(k!) -1 Φ -y(jλ (k)) -1/2 W (k) = 0 a.s., lim j→∞ sup |y|≤Cj 1/2 e -(ϕ(k)j+y) Var K (j) t (k) j (y) (k) -(k!) -1 Φ -y(jλ (k)) -1/2 W (k) = 0 a.s. and K (j) t (k) j (y) (k) = (k!) -1 W (k)Φ -y(jλ (k)) -1/2 e ϕ(k)j+y (1 + o(1)) a.s. as j → ∞ (4.15) uniformly in y satisfying |y| ≤ Cj 1/2 .
Let positive integers < k be such that , k ∈ (θ * , θ * ). Then, for any C > 0,

lim j→∞ sup |y|≤Cj 1/2 e -(ϕ(k)j+y) Cov (K (j) t (k) j (y) ( ), K (j) t (k) j (y) (k)) -(k!) -1 Φ -y(jλ (k)) -1/2 W (k) = 0 a.s. (4.16) Proof. Recall that, for k ∈ N, φ k (x) = 1 -e -x k-1 i=0 x i i! , x ≥ 0 and put h k (x) := e -kx φ k (e x ) for x ∈ R.
While dealing with the mean we always assume that integer k ∈ (θ, θ * ). Invoking (4.1) we obtain

EK (j) t (k) j (y) (k) = |u|=j φ k (e -λ (k)+y-V (u) ) = e ϕ(k)j+y × |u|=j e -kV (u)-λ(k)j h k (-λ (k) + y -V (u)) 1 {V (u)≤-λ (k)+y} - |u|=j e -kV (u)-λ(k)j 1 k! -h k (-λ (k) + y -V (u)) 1 {V (u)>-λ (k)+y} + 1 k! |u|=j e -kV (u)-λ(k)j 1 {V (u)>-λ (k)+y} .
The function h k is nonincreasing on R because h k (log x) = (k -1)! 1 0 e -xy y k-1 dy for x > 0. Since h k (x) ∼ e -kx as x → ∞, it is Lebesgue integrable on R + , hence dRi on R + . An application of Proposition 3.2 with

f (x) = h k (x) 1 [0,∞) (x) yields lim j→∞ sup y∈R j 1/2 |u|=j e -kV (u)-λ(k)j h k (-λ (k)j + y -V (u)) 1 {V (u)≤-λ (k)j+y} -W (k)g k (yj -1/2 ) ∞ 0 h k (x)dx = 0 a.s. Further, the function (k!) -1 -h k is nonnegative and nondecreasing on (-∞, 0). In view of (k!) -1 -h k (x) ∼ ((k -1)!(k +1)) -1 e x as x → -∞, it is Lebesgue integrable on (-∞, 0), hence dRi on (-∞, 0). By another appeal to Proposition 3.2, this time with f (x) = ((k!) -1 -h k (x)) 1 (-∞,0) (x), lim j→∞ sup y∈R j 1/2 |u|=j e -kV (u)-λ(k)j ((k!) -1 -h k (-λ (k)j + y -V (u)) 1 {V (u)>-λ (k)j+y} -W (k)g k (yj -1/2 ) 0 -∞ ((k!) -1 -h k (x))dx = 0 a.s.
Finally, by Proposition 3.4 with f (x) = 1 [0,∞) (x), for any C > 0, a.s.

lim j→∞ sup |y|≤Cj 1/2 |u|=j e -kV (u)-λ(k)j 1 {V (u)>-λ (k)j+y} -W (k)Φ -y(jλ (k)) -1/2 = 0.
Combining fragments together we arrive at the claimed asymptotic relation for EK

(j) t (k) j (y) (k). For positive integer ≤ k, put ψ , k (x) := φ k (x)(1 -φ (x)), x ≥ 0 and m , k (x) := e -kx ψ , k (e x ), x ∈ R.
Passing to the analysis of the covariance (and the variance) we assume that there exist positive integer ≤ k such that , k ∈ (θ * , θ * ). We start with

Cov (K (j) t (k) j (y) ( ), K (j) t (k) j (y) (k)) = |u|=j ψ , k (e -λ (k)j+y-V (u) ) = e ϕ(k)j+y × |u|=j e -kV (u)-λ(k)j m , k (-λ j + y -V (u)) 1 {V (u)≤-λ (k)j+y} - |u|=j e -kV (u)-λ(k)j 1 k! -m , k (-λ (k)j + y -V (u)) 1 {V (u)>-λ (k)j+y} + 1 k! |u|=j e -kV (u)-λ(k)j 1 {V (u)>-λ (k)j+y} .
Note that m , k (x) = h k (x)(1 -φ (e x )) for x ∈ R. We already know that h k is nonnegative and nonincreasing on R. Since φ is the distribution function of a gamma distribution with parameters and 1 (a.k.a. Erlang's distribution) we conclude that x → 1 -φ (e x ) is nonnegative and nondecreasing on R, too. Hence, m , k is a nonincreasing function on R. Since

m , k (x) ∼ ((k -1)!) -1 exp(-((k -+ 1)x + e x )), x → ∞, it is Lebesgue integrable on R + , hence dRi on R + . By Proposition 3.2 with f (x) = m , k (x) 1 [0,∞) (x), lim j→∞ sup y∈R j 1/2 |u|=j e -kV (u)-λ(k)j m , k (-λ (k)j + y -V (u)) 1 {V (u)≤-λ (k)j+y} -W (k)g k (yj -1/2 ) ∞ 0 m , k (x)dx = 0 a.s. The function (k!) -1 -m , k is nonnegative and nondecreasing on (-∞, 0). In view of (k!) -1 -m , k (x) ∼ c , k e x as x → -∞, where c 1, k = (2k + 1)((k + 1)!) -1 and c , k = ((k -1)!(k + 1)) -1 for ≥ 2, it is Lebesgue integrable on (-∞, 0), hence dRi on (-∞, 0). Invoking Proposition 3.2 once again (with f (x) = ((k!) -1 - m , k (x)) 1 (-∞,0) (x)) we infer lim j→∞ sup y∈R j 1/2 |u|=j e -kV (u)-λ(k)j ((k!) -1 -m , k (-λ (k)j+y-V (u))) 1 {V (u)≤-λ (k)j+y} -W (k)g k (yj -1/2 ) 0 -∞ ((k!) -1 -m , k (x))dx = 0 a.s.
Finally, by Proposition 3.4 with f (x) = 1 [0,∞) (x), for any C > 0, a.s.

lim j→∞ sup |y|≤Cj 1/2 |u|=j 1 {V (u)>-λ (k)j+y} e -kV (u)-λ(k)j -W (k)Φ -y(jλ (k)) -1/2 = 0.
Combining fragments together we obtain the claimed formula for the covariance when < k and that for the variance when = k. Formula (4.15) is an immediate consequence of the already proved asymptotics of EK

(j) t (k) j (y) (k) and Var K (j) t (k) j (y)
(k), the Bienaymé-Chebyshev inequality and the Borel-Cantelli lemma in conjunction with the a.s. convergence of the series j≥1 (EK

(j) t (k) j (y) (k)) -1 .
With Lemma 4.3 at hand, we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Let b ∈ R and (j n ) n∈N be a sequence of positive integers satisfying, as n → ∞, j n = (-λ (k)) -1 log n -b(log n) 1/2 + O((log n) 1/2 ). For each j ∈ N and each ∈ N, the sequence (K (j) n ( )) n∈N is nondecreasing. Fix δ > 0. Invoking the SLLN for Poisson processes and the aforementioned monotonicity we conclude that a.s. for n large enough,

K (jn) (1-δ)n (k) ≤ K (jn) n (k) ≤ K (jn) (1+δ)n (k). (4.17) 
Fix γ > 0. We intend to apply formula (4.15) with j

= j n = (-λ (k)) -1 log n + (-λ (k)) -1 b(log n) 1/2 + o((log n) 1/2 ) and y such that t (k) jn (y) = γn. The so defined y = y n satisfies |y| ≤ Cj 1/2 n for some C > b and large n. Also, lim n→∞ (y n j -1/2 n ) = (-λ (k)) 1/2 b. Hence, by (4.15), as n → ∞, K (j) γn (k) = γ(k!) -1 W (k)Φ -b((-λ (k))/λ (k)) 1/2 ne (λ(k)-(k-1)λ (k))jn (1+o(1)) a.s.
This in combination with (4.17) proves Theorem 2.4.

Part (III) of Theorem 2.1 is a particular case of Theorem 2.4 with k = 1. Note that λ(1) = 0 and W (1) = 1 a.s.

Postsaturation levels. Proof of Theorem 2.1(IV)

We now turn to the investigation of the number of occupied boxes K (j) n in the postsaturation levels j. In this setting, the a.s. asymptotics of K (j) n is driven, for the most part, by the number of 'large' enough boxes. More precisely, assuming that n balls are being thrown, there are jth level boxes of three types: (a) boxes with sizes (hitting probabilities) of order smaller than 1/n contain 0 or 1 ball with high probability; (b) boxes with sizes of order 1/n contain a Poisson number of balls with high probability; and (c) boxes with sizes of order larger than 1/n. In the levels of low density, most boxes are of size o(1/n), whence K (jn) n ≈ n. In the postsaturation levels, the sum of sizes of the aforementioned boxes is asymptotically very small, and most boxes are of large sizes. As a result, most balls fall into the same collection of boxes, and the number of occupied boxes is small with respect to n.

The results obtained in this section are an extension of Theorem 1 in [START_REF] Bertoin | Asymptotic regimes for the occupancy scheme of multiplicative cascades[END_REF], in which the case aj n = log n + b + o( 1) is analyzed. We shall treat a more general case 1)), with -λ (1) < a < a. Lemma 4.4. Let a ∈ (a c , a) and t j (y) = e aj+y for j ∈ N and y ∈ R. Pick θ ∈ (0, 1) satisfying a = -λ (θ). The following asymptotic relations hold a.s.

aj n = log n + b(log n) 1/2 (1 + o(
lim j→∞ sup y∈R j 1/2 (t j (y)) -θ e -λ(θ)j EK (j) t j (y) - Γ(1 -θ) θ W (θ)g θ (yj -1/2 ) = 0 lim j→∞ sup y∈R j 1/2 (t j (y)) -θ e -λ(θ)j Var K (j) t j (y) - (2 θ -1)Γ(1 -θ) θ W (θ)g θ (yj -1/2 ) = 0 and K (j) t j (y) = Γ(1 -θ) θ W (θ)g θ (yj -1/2 )j -1/2 (t j (y)) θ e λ(θ)j (1 + o(1)) (4.18)
as j → ∞, uniformly in y satisfying |y| ≤ Cj 1/2 , for any C > 0.

Proof. We start by noting that, for j ∈ N and y ∈ R, EK

t j (y) = |u|=j 1 -e -t j (y)e -V (u) .

We intend to apply Proposition 3.2. To this end, we use an alternative representation EK (j)

t j (y) (1) = e λ(θ)j e θ(aj+y) |u|=j e -θV (u)-λ(θ)j m(aj + y -V (u)),
where m(x) := (1 -e -e x )e -θx for x ∈ R. Integration by parts yields

R m(x)dx = ∞ 0 x -θ-1 (1 -e -x )dx = Γ(1 -θ) θ ,
where the assumption θ ∈ (0, 1) has to be recalled. Since the function x → e θx m(x) is increasing on R, we conclude with the help of Lemma 9.1 in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] that m is dRi on R. Hence, by Proposition 3.2 with f = m, the asymptotic formula for EK (j) t j (y)

holds.

The argument for the variance is similar. We start with

Var K (j)

t j (y) = |u|=j
1 -e -t j (y)e -V (u) e -t j (y)e -V (u)

= e λ(θ)j e θ(aj+y) |u|=j e -θV (u)-λ(θ)j v(aj + y -V (u)),

where v(x) := e -e x (1 -e -e x )e -θx for x ∈ R.

Write v = v 1 -v 2 , where v 1 (x) := (1 -e -2e
x )e -θx and v 2 (x) := (1 -e -e x )e -θx for x ∈ R. According to the previous part of the proof the functions v 1 and v 2 are dRi on R. Furthermore,

R v(x)dx = R (v 1 (x) -v 2 (x))dx = (2 θ -1)Γ(1 -θ) θ .
Another application of Proposition 3.2 to f = v 1 and then f = v 2 enables us to conclude that the asymptotic formula for Var K (j) t j (y) holds. SLLN (4.18) follows by the same reasoning as given in the proof of Lemma 4.3. We only state explicitly that j≥1 (EK (j) t j (y) ) -1 < ∞ a.s. which is the most important ingredient of the proof.

We are ready to prove part (IV) of Theorem 2.1.

Proof of Theorem 2.1(IV).

Let a ∈ (a c , a) and b ∈ R. Fix γ > 0. We shall use relation (4.18) with j = j n = a -1 log n + a -1 b(log n) 1/2 + o((log n) 1/2 ) and y = log γ + b(log n) 1/2 -o((log n) 1/2 ). Then t jn (y) = γn and lim n→∞ (y n j -1/2 n ) = a 1/2 b. Hence, by (4.18), as n → ∞,

K (j) γn (k) = γ θ Γ(1 -θ) θ W (θ)g θ (a 1/2 b)j -1/2 n n θ e λ(θ)jn (1 + o(1)) a.s.
This in combination with the k = 1 version of (4.17) proves part (IV) of Theorem 2.4.

Number of empty boxes at freezing

We assume in this section that λ(0) < ∞, that is, the mean number of boxes in the first level is finite. As a consequence, E Z j = e -λ(0)j for j ∈ N. Furthermore,

W j (0) = e -λ(0)j Z j → W (0), j → ∞ a.s.
If the number of balls thrown is n = e aj+y with a > -λ(0), then most available boxes in the jth level will be occupied. Hence, to obtain a tight estimate on the number of occupied boxes in the jth level, one has to investigate the asymptotic behavior of L (j) n the number of empty boxes in the jth level. Put L (j) t

:= L (j)
Nt , where (N t ) t≥0 is the same Poisson process as before. Lemma 4.5. Let a ∈ (-λ (0), a -) and t j (y) = e aj+y for j ∈ N and y ∈ R. Pick θ ∈ (θ * , 0) satisfying a = -λ (θ). Then lim j→∞ sup y∈R j 1/2 (t j (y)) -θ e -λ(θ)j EL (j) t j (y) -Γ(-θ)W (θ)g θ (yj -1/2 ) = 0 a.s., lim j→∞ sup j 1/2 (t j (y)) -θ e -λ(θ)j Var L (j)

t j (y) -(1 -2 θ )Γ(-θ)W (θ)g θ (yj -1/2 ) = 0 a.s.
and L (j) t j (y) = Γ(-θ)W (θ)g θ (yj -1/2 )j -1/2 (t j (y)) θ e λ(θ)j (1 + o( 1)) a.s. as j → ∞, uniformly in y satisfying |y| ≤ Cj 1/2 , for any C > 0.

Proof. Observe that, for j ∈ N and y ∈ R, EL (j) (u) and

t j (y) = |u|=j exp -e aj+y-V
Var L (j)

t j (y) = |u|=j
exp -e aj+y-V (u) 1 -exp -e aj+y-V (u) .

We represent the mean in an equivalent form EL x -θ-1 e -x dx = Γ(-θ) < ∞.

Recalling that θ < 0 we conclude that m is dRi on R by Lemma 9.1 in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF]. Using Proposition 3.2 with f = m yields lim j→∞ sup y∈R j 1/2 (t j (y)) -θ e -λ(θ)j EL (j)

t j (y) -W (θ)g θ (yj -1/2 ) R m(x)dx = 0 a.s.,
thereby proving the claim concerning the (conditional) mean. As far as the (quenched) variance is concerned, we write Var L (j) t j (y) = e θ(aj+y)+λ(θ)j |u|=j e -θV (u)-λ(θ)j v(aj + y -V (u)),

where v(x) = e -e x (1 -e -e x )e -θx for x ∈ R. The function v is dRi on R as the difference of two dRi functions and

R v(x)dx = (1 -2 θ )Γ(-θ) < ∞.
Hence, by Proposition 3.2 with f = v, lim j→∞ sup y∈R j 1/2 (t j (y)) -θ e -λ(θ)j Var L (j)

t j (y) -W (θ)g θ (yj -1/2 ) R v(x)dx = 0 a.s.
The SLLN for L (j) t j (y) is secured by the already proved uniform asymptotic estimates for the (conditional) mean and variance of L (j) t j (y) . See the proof of Lemma 4.2 for details. Theorem 2.5 will now be proved with the help of Lemma 4.5.

Proof of Theorem 2.5. Let a ∈ (-λ (0), a -) and b ∈ R. Fix δ > 0 and note that, for each j ∈ N, the sequence (L (j) n ) n∈N is a.s. nonincreasing. By the SLLN for Poisson processes, N (1-δ)n ≤ n ≤ N (1+δ)n a.s. for n large enough. Hence, a.s. for n large enough, L

(1+δ)n ≤ L (jn) n ≤ L (jn) (1-δ)n . ( (jn) 
Fix any γ > 0. We shall apply the SLLN for L We prove in this section a uniform central limit theorem and a uniform local limit theorem for the sequence of random measures (Z

(j) θ ) j∈N defined, for θ ∈ (θ * , θ * ), by Z (j) θ = |u|=j e -θV (u)-λ(θ)j δ V (u) , j ∈ N.

A.1 Proof of Proposition 3.2

For j ∈ N, θ ∈ (θ * , θ * ) and y ∈ R, we write β j (θ, y) := -λ (θ)j + y, so that

j 1/2 |u|=j e -θV (u)-λ(θ)j f (-λ (θ)j + y -V (u)) = j 1/2 R + f (β j (θ, y) -x)Z (j) θ (dx).
Our argument is similar to the proof of the key renewal theorem as given on pp. 241-242 in [START_REF] Resnick | Adventures in stochastic processes[END_REF]. We proceed via three steps, complicating successively the structure of f .

Step 1. Suppose first that, for fixed integer n and fixed h > 0,

f (t) = 1 [(n-1)h, nh) (t), t ∈ R.
Then f (β j (θ, y) -x) = 1 if, and only if, x ∈ (β j (θ, y) -nh, β j (θ, y) -(n -1)h] which entails, for large j,

j 1/2 R + f (β j (θ, b) -x)Z (j) θ (dx) = j 1/2 Z (j) θ ((β j (θ, y) -nh, β j (θ, y) -(n -1)h]).
Replacing in (3.1) h with h/2, then putting x = y -nh + h/2 and exploiting the uniform continuity of g θ we conclude that, according to Lemma 3.1,

lim j→∞ sup y∈R j 1/2 R + f (β j (θ, y) -x)Z (j) θ (dx) -W (θ)g θ (j -1/2 y)h = 0 a.s. Since R f (x)dx = h, we have proved that lim j→∞ sup y∈R j 1/2 R + f (β j (θ, y) -x)Z (j) θ (dx) -W (θ)g θ (j -1/2 y) R f (x)dx = 0 a.s.
Step 2. Suppose now that

f (t) = n∈Z c n 1 [(n-1)h, nh) (t), t ∈ R,
where (c n ) n∈Z is a sequence of nonnegative numbers satisfying n∈Z c n < ∞. Then

j 1/2 R + f (β j (θ, y) -x)Z (j) θ (dx) = j 1/2 n≤β j (θ,y)/h c n Z (j) θ ((β j (θ, y) -nh, β j (θ, y) -(n -1)h]).
Combining the conclusion of Step 1 and the triangular inequality we obtain, for each m ∈ N,

lim j→∞ sup y∈R j 1/2 m n=-m c n Z (j) θ ((β j (θ, y) -nh, β j (θ, y) -(n -1)h]) -W (θ)g θ (j -1/2 y) mh -(m+1)h f (x)dx = 0 a.s.
Given ε > 0 choose m ∈ N so large that |n|>m c n ≤ ε. Using this together with the previous limit relation yields lim sup

j→∞ sup y∈R j 1/2 m n=-m c n Z (j) θ ((β j (θ, y) -nh, β j (θ, y) -(n -1)h]) -W (θ)g θ (j -1/2 y) R f (x)dx ≤ εW (θ)g θ (0) a.s. (A.1)
Invoking Lemma 3.1 with the same h and x as at Step 1 we conclude that a.s. there exists j 0 (ε) ∈ N such that, for all j ≥ j 0 (ε) and n ∈ N,

j 1/2 Z (j) θ ((β j (θ, y) -nh, β j (θ, y) -(n -1)h]) ≤ hW (θ)g θ (0) + ε.
As a consequence, lim sup

j→∞ sup y∈R |n|>m c n Z (j) θ ((β j (θ, y) -nh, β j (θ, y) -(n -1)h]) ≤ |n|>m c n (hW (θ)g θ (0) + ε) ≤ ε(hW (θ)g θ (0) + ε) a.s. (A.2)
Letting in (A. 

sup y∈R R + f h (β j (θ, y) -x)Z (j) θ (dx) -W (θ)g θ (yj -1/2 ) R f h (x)dx = 0 a.s. and lim j→∞ sup y∈R R + f h (β j (θ, y) -x)Z (j) θ (dx) -W (θ)g θ (yj -1/2 ) R f h (x)dx = 0 a.s. Now (3.
2) follows from these limit relations and the inequality

R + f (β j (θ, y) -x)Z (j) θ (dx) ≤ R + f (β j (θ, y) -x)Z (j) θ (dx) ≤ R + f (β j (θ, y) -x)Z (j) θ (dx), after noting that R f h (x)dx = h n∈Z sup (n-1)h≤y<nh f (y) → R f (x)dx, h → 0+ and R f h (x)dx = h n∈Z inf (n-1)h≤y<nh f (y) → R f (x)dx, h → 0 + .

A.2 Proof of Proposition 3.4

The proof will be divided into three steps. First, we treat indicator functions, second, Riemann integrable functions of compact supports and third, general bounded, a.e. continuous functions.

Step

1. Assume that f (t) = 1 [a,b) (t), t ∈ R for fixed a, b ∈ R, a < b. We intend to show that lim j→∞ |u|=j e -θV (u)-λ(θ)j f -λ (θ)j -V (u) j 1/2 + y = W (θ) b-a 0 g θ (y -a -x)dx = W (θ) R f (y -x)g θ (x)dx a.s. (A.3) uniformly in y ∈ R. Note that |u|=j e -θV (u)-λ(θ)j f -λ (θ)j -V (u) j 1/2 + y = R f -λ (θ)j -x j 1/2 + y Z (j) θ (dx).
We shall work with the integral on the right-hand side of this equality and start with a representation (-λ (θ)j + yj 1/2 -t (j) n , -λ (θ)j + yj 1/2 -t

(j) n-1 ] ,
where t (j) n := aj 1/2 + n (b-a)j 1/2 (b-a)j 1/2 for n ∈ N 0 . Using Lemma 3.1 with x = yj 1/2 -(t (j) n + t (j) n-1 )/2 and h = (t (j) n -t (j) n-1 )/2 in combination with uniform continuity of g θ and noting that 2h = t (j) n -t (-λ (θ)j + yj 1/2 -t (j) n , -λ (θ)j + yj 1/2 -t

(j) n-1 ]
-W (θ)g θ (y -t (j) n /j 1/2 ) = 0 a.s.

Therefore, given ε > 0 there exists an a.s. finite j 0 such that, for all j ≥ j 0 and all y ∈ R, R f -λ (θ)j -x j 1/2 + y Z e -θV (u)-λ(θ)j f n ( -jλ (θ)-V (u)

j 1/2
-y) -W (θ) R f n (x)g θ (y -x)dx = 0 a.s.

Using |u|=j e -θV (u)-λ(θ)j f n ( -λ (θ)j-V (u)

j 1/2
+ y) ≤ |u|=j e -θV (u)-λ(θ)j f ( -λ (θ)j-V (u)

j 1/2
+ y)

≤ |u|=j e -θV (u)-λ(θ)j f n ( -λ (θ)j-V (u)

j 1/2
+ y), we infer |u|=j e -θV (u)-λ(θ)j f ( -λ (θ)j-V (u)

j 1/2 + y) -W (θ) R f (x)g θ (y -x)dx
≤ |u|=j e -θV (u)-λ(θ)j f n ( -jλ (θ)-V (u)

j 1/2 -y) -W (θ) R f n (x)g θ (y -x)dx
+ |u|=j e -θV (u)-λ(θ)j f n ( -jλ (θ)-V (u) e -θV (u)-λ(θ)j f A ( -λ (θ)j-V (u) 

A.3 Proof of Corollary 3.5

On the one hand, 

Corollary 3 . 5 .

 35 Let θ ∈ (θ * , θ * ) and δ ∈ (0, -λ (θ)). Then, for any C > 0, lim j→∞ sup |y|≤Cj 1/2 |u|=j e -θV (u)-λ(θ)j 1 {V (u)≥δj+y} -W (θ) = 0 a.s. The proofs of Propositions 3.2 and 3.4 and of Corollary 3.5 are given in Appendix A. 4 Results for the Poissonized version. Proof of Theorem 2.1

  Finally, another application of the Markov inequality and the Borel-Cantelli lemma yields lim j→∞ K (j) t j (2) = 0 a.s. Using Lemma 4.1 we now prove that a.s. no two balls fall into the same box in the low density regime.

Lemma 4 . 2 . 1 )

 421 Let a ∈ (a , -λ (1)) and t j (y) = e aj+y for j ∈ N and y ∈ R. Pick θ > 1 satisfying a = -λ (θ). (If a < -λ (2) (equivalently θ > 2), then, for any C > 0, lim j→∞ sup |y|≤Cj 1/2

(4. 7 ) 2 e

 72 Combining (4.5) and (4.6) we obtain in the case of integer θ (ϑ = θ) -ϑ(aj+y)-λ(ϑ)j |u|=j m ϑ (e aj+y-V (u) )-(-1) ϑ ϑ! W (ϑ)Φ -y(λ (ϑ)j) -1/2 = 0 a.s. (4.8)If θ is not integer, we conclude with the help of (4.5) and (4.7) that lim j→∞ sup |y|≤Cj 1/2 e -ϑ(aj+y)-λ(ϑ)j |u|=j m ϑ (e aj+y-V (u) ) -(-1) ϑ ϑ! W (ϑ) = 0 a.s. (4.9) having utilized the fact that the function s → as + λ(s) is decreasing on [2, θ]. Getting back to (4.4) we first analyze the case θ = 2 in which the first summand on the right-hand side of (4.4) vanishes. Appealing to (4.8) with ϑ = 2 we obtain lim j→∞ sup |y|≤Cj 1/2

lim j→∞ sup |y|≤Cj 1 / 2 e

 12 -2(aj+y)-λ(2)j |u|=j w e aj+y-V (u) = 0 a.s. (4.11) Since, as x → 0+, m(x) ∼ x 2 /2 and w(x) ∼ x 3 /3, we infer lim x→0+ (w(x)/m(x)) = 0.

  j (y) = e θ(aj+y)+λ(θ)j |u|=j e -θV (u)-λ(θ)j m(aj + y -V (u)), where m(x) = e -e x e -θx for x ∈ R. The function x → e θx m(x) is decreasing on R and R m(x)dx = R e -e x e -θx dx = ∞ 0

2 n

 2 j(y) from Lemma 4.5 with j= j n = a -1 log n + a -1 b(log n) 1/2 + o((log n) 1/2 ) and y = log γ + b(log n) 1/2 -o((log n) 1/2 ).The so defined y = y n satisfies |y| ≤ Cj 1/for some C > b and large n and t jn (y) = γn. Also, lim n→∞ (y n j -1/2 n ) = a 1/2 b. Hence, as n → ∞,L (jn) γn = γ θ Γ(-θ)W (θ)g θ (a 1/2 b)j -1/2 n n θ e λ(θ)jn (1 + o(1)) a.s.This in combination with (4.19) completes the proof of the theorem.

θ 2 g 2 ≤ 1 / 2 +

 2212 (dx) ≤ ε(b -a) + W (θ)j -1/2 (b-a)j 1/2 n=1 g θ y -a -n(b -a) (b -a)j 1/2 . (A.4)Plainly, by the definition of the Riemann integral,lim j→∞ j -1/2 (b-a)j 1/2 n=1 g θ y -a -n(b -a) (b -a)j 1/2 = b-a 0 g θ (y -a -x)dx.However, we still have to prove the uniformity. To this end, we exploit uniform continuity of g θ . Putting, for δ > 0, ω(δ) := sup x,y∈R,|x-y|≤δ |g θ (x) -g θ (y)|, we writesup y∈R b-a 0 g θ (y -a -x)dx -j -1/2 (b-a)j 1/2 n=1 g θ y -a -n(b -a) (b -a)j 1/2 = sup y∈R (b-a)j 1/2 n=1 n(b-a) (b-a)j 1/2 (n-1)(b-a) (b-a)j 1/2 g θ (y -a -x)dx -j -1/2 g θ y -a -n(b -a) (b -a)j 1/2 θ (y -a -x) -g θ y -a -n(b -a) (b -a)j 1/2 dx + b -a (b -a)j 1/2 -1 j 1/2 g θ y -a -n(b -a) (b -a)j 1/(b -a)ω b -a (b -a)j 1/2 + b -a (b -a)j 1/2 -1 j 1/2 sup x∈R g θ (x) → 0, j → ∞.This in combination with (A.4y -a -x)dx a.s. uniformly in y ∈ R. An analogous argument proves the converse inequality for the limit inferior, whence (A.3).Step 2. Assume that f is a Riemann integrable function on[a, b] which is equal to 0 outside[a, b]. We claim that relation (A.3) also holds for such f .To prove this, we note that given ε > 0 there exist n ∈ N and a partitiona = x 0 < x 1 < . . . < x n = b such that b a (f n (x) -f (x))dx ≤ ε and b a (f (x) -f n (x))dx ≤ ε, (A.5)where, for x ∈ [a, b),f n (x) := n i=1 max x i-1 ≤z≤x i f (z) 1 [x i-1 , x i ) (x) and f n (x) := n i=1 min x i-1 ≤z≤x i f (z) 1 [x i-1 , x i ) (x).According to the result of Step 1, uniformly in y ∈ R, lim j→∞ |u|=j e -θV (u)-λ(θ)j f n ( -λ (θ)j-V (u) j y) -W (θ) R f n (x)g θ (y -x)dx = 0 a.s. and lim j→∞ |u|=j

j 1/ 2 -

 2 y) -W (θ) R f n (x)g θ (y -x)dx + R (f n (x) -f (x))g θ (y -x)dx + R (f (x) -f n (x))g θ (y -x)dx. (A.6) Observe that (A.5) entails R (f n (x)-f (x))g θ (y-x)dx ≤ g θ (0)ε and R (f (x)-f n (x))g θ (y-x)dx ≤ g θ (0)ε.With this at hand, letting in (A.6) j → ∞ and then ε → 0+ we arrive at (A.3) with the present f .Step 3. To treat arbitrary bounded, a.e. continuous functions f , we fix A > 0, C ∈ (0, A) and put, for x ∈ R,f A (x) := f (x) 1 [-A, A] (x) and f A (x) := f (x) -f A (x) = f (x) 1 R\[-A, A] (x).According to the result of Step 2,lim j→∞ sup y∈R |u|=j e -θV (u)-λ(θ)j f A ( -λ (θ)j-V (u) j 1/2 -y)-W (θ) R f A (y-x)g θ (x)dx = 0 a.s. Since R f A (y -x)g θ (x)dx = y+A y-A f (y -x)g θ (x)dx → R f (y -x)g θ (x)dx, A → ∞,and the last integral is convergent, it suffices to show that lim A→∞ lim sup j→∞ sup |y|≤C |u|=j

j 1/ 2 - 1 / 2 -

 212 y) = 0 a.s. (A.7) Observe that, for y ∈ [-C, C],|f A ( -λ (θ)j-V (u) j y)| ≤ sup x∈R |f (x)| 1 {|-λ (θ)j-V (u)-yj 1/2 |>Aj 1/2 } ≤ sup x∈R |f (x)| 1 {|-λ (θ)j-V (u)|>(A-C)j 1/2 } . (A.8) Further, since (W j (θ), F j ) j∈N 0 is a nonnegative martingale, |u|=j e -θV (u)-jλ(θ) = W j (θ) → W (θ), j → ∞ a.s. Also, according to the result of Step 1, lim j→∞ |u|=j 1 {|-λ (θ)j-V (u)|≤(A-C)j 1/2 } = W (θ)P{|N θ | ≤ A -C} a.s.,where N θ is a random variable with density g θ . Hence,lim j→∞ |u|=j e -θV (u)-λ(θ)j 1 {|-λ (θ)j-V (u)|>(A-C)j 1/2 } = W (θ)P{|N θ | > A -C} a.s.This in combination with (A.8) proves (A.7).

|u|=je

  -ϑV (u)-λ(ϑ)j 1 {V (u)≥δj+yj 1/2 } ≤ |u|=j e -ϑV (u)-λ(ϑ)j = W j (ϑ) → W (ϑ), j → ∞ a.s.uniformly in y ∈ R. On the other hand, given A > 0, for j ≥ (A/(-λ (ϑ) -δ))2 , we infer|u|=j e -ϑV (u)-λ(ϑ)j 1 {V (u)≥δj+yj 1/2 } ≥ |u|=j e -ϑV (u)-λ(ϑ)j 1 {V (u)≥-λ (ϑ)j+(y-A)j 1/2 } → W (ϑ) ∞ y-A g ϑ (x)dx, j → ∞ a.s.uniformly in |y| ≤ C for any C > 0. The last limit relation is ensured by Proposition 3.4 with f (x) = 1 (-∞, 0] (x), x ∈ R. It remains to send A to ∞.

  Thus, the functions f h and f h have the same structure as the functions discussed in Step 2. According to the result of Step 2, for h > 0,

	lim j→∞

1) and (A.2) ε → 0+ we arrive at (3.2), with f considered at this step.

Step 3. Let now f be an arbitrary nonnegative dRi function on R. For each h > 0, put

f h (t) := n∈Z sup (n-1)h≤y<nh f (y) 1 [(n-1)h, nh) (t), t ∈ R and f h (t) := n∈Z inf (n-1)h≤y<nh f (y) 1 [(n-1)h, nh) (t), t ∈ R.

By the definition of direct Riemann integrability, n∈Z sup (n-1)h≤y<nh f (y) < ∞ and n∈Z inf (n-1)h≤y<nh f (y) < ∞ for each h > 0.

That is, (a 1 , . . . a j ) ≺ (b 1 , . . . b j ) if there exists i ≤ j such that a i < b i and a r = b r for all r < i.
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