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This article unveils a new relation between the Nishimori temperature parametrizing a distribution P and the Bethe free energy on random Erdős-Rényi graphs with edge weights distributed according to P . Estimating the Nishimori temperature being a task of major importance in Bayesian inference problems, as a practical corollary of this new relation, a numerical method is proposed to accurately estimate the Nishimori temperature from the eigenvalues of the Bethe Hessian matrix of the weighted graph. The algorithm, in turn, is used to propose a new spectral method for node classification in weighted (possibly sparse) graphs. The superiority of the method over competing state-of-the-art approaches is demonstrated both through theoretical arguments and real-world data experiments.

Introduction

1.1 From statistical physics ... The physics of disordered systems [START_REF] Binder | Spin glasses: Experimental facts, theoretical concepts, and open questions[END_REF] and Bayesian inference for graph learning [START_REF] Irwin | Learning in graphical models[END_REF] have long been shown to be tied by a deep connection that has given rise to a host of efficient physics-inspired algorithms [START_REF] Martin | Graphical models, exponential families, and variational inference[END_REF][START_REF] Opper | Advanced mean field methods: Theory and practice[END_REF][START_REF] Nishimori | Statistical physics of spin glasses and information processing: an introduction[END_REF]. A particularly telling example where this relation stands out is the so-called teacher-student scenario, in which a set of observed random variables are the outcome of a generative model (the teacher ) with some hidden parameters to be learned by the student [START_REF] Zdeborová | Statistical physics of inference: Thresholds and algorithms[END_REF].

As an instrumental example, we consider in this article the problem of statistical inference on a graph in which the random variable observed by the student is a weighted, undirected graph. Specifically, given a realization of an Erdős-Rényi graph G(V, E) with vertex set V and edge set E, 1 a random weighted adjacency matrix J ∈ R n×n , with J ij = J ji = 0 only if (ij) is an edge of G, is observed by the student whose task is to infer some latent variable of the generative model of J. The non-null entries of the matrix J are independently generated by the teacher according to the law

P (x) = p 0 (|x|)e β N x , (1) 
for an arbitrary non-negative function p 0 (•) and some β N > 0, which we from now on refer to as the Nishimori temperature 2 [START_REF] Nishimori | Internal energy, specific heat and correlation function of the bond-random ising model[END_REF]. The Nishimori temperature naturally appears in statistical physics in the random bond

... to Bayesian inference on weighted sparse networks

The importance of the Nishimori temperature in Bayesian inference was thoroughly discussed in [START_REF] Iba | The nishimori line and bayesian statistics[END_REF], where the author exhibits a correspondence between the optimal Bayes inference problem (i.e., when the student knows exactly the generative model of the teacher ) and the RBIM studied at β N .

As a practical and telling example of modern concern of the importance of the Nishimori temperature in Bayesian statistics, we here consider as a common thread the problem of binary node classification on a graph. Specifically, let σ ∈ {-1, 1} n be a label vector assigning each node to a "class". Further assume that a matrix J is drawn from the distribution [START_REF] Binder | Spin glasses: Experimental facts, theoretical concepts, and open questions[END_REF] and that the student has to infer the vector σ from the observation of the matrix J, defined by Jij = J ij σ i σ j . The matrix J has entries that, in expectation, are positive if nodes i and j have the same label and negative otherwise. As discussed extensively in Section 4, this quite elementary model can in fact be used to study correlation clustering over the p-dimensional feature vectors z 1 , . . . , z n ∈ R p of a dataset of size n [START_REF] Bansal | Correlation clustering[END_REF], with concrete application to image, sound, or sentence classification [START_REF] Langone | Kernel spectral clustering and applications[END_REF]. In this example, the weights J ij carried by the edges of G represent some affinity metric between the features z i and z j associated with nodes i and j (in essence, the larger J ij the closer z i and z j ).

From a Bayesian perspective, inferring σ from J reduces to computing the marginals of the distribution P(σ| J) = e -βNH J (σ) Z J,βN .

This thus coincides with computing the magnetizations m = σ βN of a RBIM on the graph J at the Nishimori temperature. However, assuming that the observing student knows the value of β N is often unrealistic (in effect, the student only sees J) and earlier works have resorted to studying the problem of mismatched inference (i.e., inference performed when the student uses a different parameter than the one assumed by the teacher ) [START_REF] Zdeborová | Statistical physics of inference: Thresholds and algorithms[END_REF].

Our contribution: relating Nishimori to Bethe

Our main result consists in going beyond mismatched inference by providing an efficient estimate to the Nishimori temperature. To this end, we first draw an explicit relation between the Nishimori temperature and the smallest eigenvalue of the Hessian matrix of the Bethe free energy associated to the RBIM, when set at the paramagnetic point m = 0 (this Hessian matrix is the so-called Bethe-Hessian matrix [START_REF] Watanabe | Graph zeta function in the bethe free energy and loopy belief propagation[END_REF]); this relation holds under the previously introduced setting, so in particular for a student observation matrix J supported over a (possibly sparse) Erdős-Rényi graph G. Besides, we observe and argue that, although the Bethe approximation is particularly adapted to sparse (locally tree-like) graphs G, the Nishimori-Bethe relation holds for any degree of sparsity (that is, even when G does not behave locally as a tree).

The main consequences of the Nishimori-Bethe relation, and our main contributions, consist in i) the design of a new efficient spectral algorithm which estimates the Nishimori temperature with asymptotically perfect accuracy (as n → ∞); the algorithm is based on an iterative fast search of a wellparametrized Bethe-Hessian matrix exhibiting a smallest amplitude eigenvalue close to zero;

ii) a new spectral algorithm to approximately solve the Bayesian node classification inference problem of Equation [START_REF] Martin | Graphical models, exponential families, and variational inference[END_REF], which outperforms commonly deployed state-of-the-art alternatives. We in particular claim that this spectral algorithm is capable of performing non trivial inference as soon as the Bayesian optimal solution can;

iii) although we claim that these algorithms are still valid under dense graphs G, they are specifically adapted to the sparse regime where |V| ∼ |E|; this practically allows for small computational and memory storage costs when applied to the classification of the nodes of possibly large graphs; we specifically support this fact by a concrete application to the classification of 40 000 high resolution images using our proposed sparse but extremely efficient spectral algorithm.

The remainder of the article is structured as follows. Section 2 introduces the RBIM together with some basic properties of the Nishimori temperature. These serve as the support for Section 3, which provides our main results: the Nishimori-Bethe relation, the aforementioned new algorithms to estimate the Nishimori temperature, and how it provides an approximate (but still accurate) solution to the Bayesian inference problem. To corroborate the claims made in this section, Section 4 applies the results to a concrete node classification problem involving realistic images produced by generative adversarial networks [START_REF] Brock | Large scale gan training for high fidelity natural image synthesis[END_REF]. Section 5 closes the article laying out some limitations and possible directions of improvement of the present analysis.

A Julia implementation of our proposed algorithm as well as the codes used to produce the results of this article is available at github.com/lorenzodallamico/NishimoriBetheHessian. Notation: Vectors are denoted in bold face. The notation 1 n indicates the all ones vector of size n. Scalar and matrices are in standard font, with matrices denoted by capital letters. The notation ' • ' indicates the Hadamard entry-wise product between two matrices of same size. The notation ∂i indicates the neighborhood of node i on the graph G(V, E): ∂i = {j ∈ V : (ij) ∈ E}.

Basic properties of the random bond Ising model

In this section we provide the basic language and properties necessary to define the Nishimori temperature. The results presented in this section do not all have a direct application to inference problems, which are discussed later in Section 4.

Phase diagram

Consider a realization of a Erdős-Rényi graph G(V, E) with expected average degree c. We will denote V the set of the n nodes of the graph and E the set of its edges. We further let J ∈ R n×n be a weighted adjacency matrix on G and distributed according to the following generative model.

Definition 1 (Generative model of J). For all edges (ij) ∈ G with i > j, the J ij are generated independently (with J ij = J ji ), for some β N > 0, referred to as Nishimori temperature, according to

∀ (ij) ∈ E, i < j, J ij i.i.d. ∼ P P (x) = p 0 (|x|) e βNx , (4) 
Figure 1: Phase diagram of the RBIM for J ij ∈ {-1, 1}. The x axis goes from 1 2 for β N = 0 to 1 for β N → ∞. The y axis represents T , the inverse of β. The dashed green line is the inverse of β F , the dash dotted blue line is the inverse of β SG and the solid red line is the inverse of β N .

where p 0 (•) is an arbitrary non-negative function satisfying the normalization condition

∞ -∞ dx p 0 (|x|)e βNx = 1. If (ij) / ∈ E, then J ij = 0.
Given a realization of J and a vector s ∈ {-1, 1} n , we define the Hamiltonian H J (s) of the RBIM as

H J (s) = - (ij)∈E J ij s i s j = -s T Js. (5) 
Note that, from Definition 1, the Nishimori temperature is defined independently of G, while the dependence of p 0 (•) on β N is relegated to its normalization constant. Two examples of distributions that fall under this definition are the ±J model

P (x) = pδ(x -J 0 ) + (1 -p)δ(x + J 0 ), for p ∈ [1/2, 1], J 0 ∈ R +
that can be rewritten as

P (x) = e βNx 2ch(β N J 0 ) , with β N = 1 2J 0 log p 1 -p ,
and the Edwards-Andersons model [START_REF] Samuel | Theory of spin glasses[END_REF] 

P (x) = 1 √ 2πν 2 exp - (x -J 0 ) 2 2ν 2 , for J 0 , ν ∈ R + for which p 0 (|x|) = 1 √ 2πν 2 exp - x 2 + J 2 0 2ν 2 β N = J 0 ν 2 .
Given a matrix J drawn from the generative model of Definition 1, Equation ( 5) and a temperature β ∈ R + , we now let s ∈ {-1, 1} n be a random vector, drawn from the Boltzmann distribution

µ(s) = e -βH J (s) Z J,β , (6) 
where Z J,β is the normalization constant. Averaging over the distribution (6) will be denoted with • β .

Let us now consider the phase diagram, depicted in Figure 1, of the model described by Equations (5, 6) and Definition 1. First consider the role played by the two parameters β and β N . For increasing values of β N , there is a larger probability for each edge J ij to carry a positive weight and the minimum of H J (s) is achieved for s = 1 n . For small values of β N , instead, multiple local minima appear. Concerning β, instead, for small values, the Boltzmann distribution (Equation ( 6)) tends towards a uniform distribution, while, for large values, the configurations with small energy H J (s) have a larger probability. Consequently, for large β and β N the average configuration of s tends to align towards 1 n : this corresponds to the ferromagnetic configuration. Conversely, for small values of β N , several edges carry a negative weight, introducing frustration in the system that is found in the spin-glass phase, for which local order of the spins may be observed (

1 n i s i 2 β = 0), but globally the magnetization is null ( 1 n i s i β = 0)
. Finally, at large values of β, the system is in the paramagnetic phase, for which the spins are randomly aligned and the magnetization is zero.

In the particular case where G is an Erdős-Rényi random graph, with expected average degree equal to c, the cavity method [START_REF] Mezard | Information, physics, and computation[END_REF] predicts the position of the transitions between the three phases: the paramagneticferromagnetic transition occurs at β = β F and the paramagnetic-spin glass transition occurs at β = β SG , also known as the de Almeida-Thouless transition [START_REF] Dj Thouless | Spin-glass on a bethe lattice[END_REF]. The values of β F , β SG are given as the solutions of the following equations [START_REF] Zdeborová | Statistical physics of inference: Thresholds and algorithms[END_REF] :

c • E[th(β F J ij )] := 1 (7) c • E[th 2 (β SG J ij )] := 1, (8) 
where we recall that E[•] denotes averaging over the distribution (4). Figure 1 precisely depicts the phase diagram for the ±J model. A qualitatively similar diagram can be obtained for different distributions, that follow the definition of Equation (1) [START_REF] Nishimori | Internal energy, specific heat and correlation function of the bond-random ising model[END_REF]. Given these premises, we now discuss some relevant properties valid on the Nishimori line, i.e. when β = β N .

Relevant properties at the Nishimori temperature

First of all, let us introduce the quenched internal energy density, defined as u(β)

:= 1 n E[ H J (s) β ]
, where we recall that • β denotes an average taken over the Boltzmann distribution [START_REF] Zdeborová | Statistical physics of inference: Thresholds and algorithms[END_REF] and E[•] is the average over the distribution of Equation [START_REF] Binder | Spin glasses: Experimental facts, theoretical concepts, and open questions[END_REF]. It was shown in [START_REF] Nishimori | Internal energy, specific heat and correlation function of the bond-random ising model[END_REF] that u(β N ) takes a particularly simple expression:

u(β N ) = 1 n E[ H J (s) βN ] = - 1 n (ij)∈E E [J ij s i s j βN ] = - 1 n (ij)∈E E[J ij th(β N J ij )].
The first two equalities are true by definition. The elegance of the result of [START_REF] Nishimori | Internal energy, specific heat and correlation function of the bond-random ising model[END_REF] lies in the last relation that identifies -inside the expectation E[•] -the term s i s j βN with th(β N J ij ). We will show in Section 3.3 that, for β sufficiently small, the system is in the paramagnetic phase s β = 0 and, under the Bethe approximation, the relation s i s j β = th(βJ ij ) is verified for any underlying β N . This informally introduces a relation between the Bethe free energy at the paramagnetic point and the Nishimori temperature, which is at the centre of Claim 1.

We introduce the following property of the probability distribution of Equation [START_REF] Binder | Spin glasses: Experimental facts, theoretical concepts, and open questions[END_REF]. This relation will be of fundamental use in the following and, in passing, allows us to rewrite u(β N ) as in [START_REF] Nishimori | Internal energy, specific heat and correlation function of the bond-random ising model[END_REF].

Property 1. Let f (x) be an arbitrary odd function. Then

E[f (x) • th(β N x)] = E[f (x)]. ( 9 
)
The proof is easily obtained by straightforward calculation. As a consequence of Property 1, the quenched internal energy density at the Nishimori temperature takes the simple expression:

u(β N ) = - 1 n (ij)∈E E[J ij ] = - d 2 • E[J ij ],
where d denotes the average node degree in the graph G.

Secondly, we recall a well celebrated property of the Nishimori temperature, which states the absence of replica symmetry breaking on the Nishimori line [START_REF] Nishimori | Absence of replica symmetry breaking in a region of the phase diagram of the ising spin glass[END_REF][START_REF] Zdeborová | Statistical physics of inference: Thresholds and algorithms[END_REF] or, equivalently, that the RBIM at the Nishimori temperature is never in the spin glass phase. This result can be visually understood in Figure 1 by noticing that the Nishimori temperature is either in the paramagnetic or ferromagnetic phase. Moreover, exploiting Property 1 and the definitions of β F , β SG in Equations [START_REF] Nishimori | Internal energy, specific heat and correlation function of the bond-random ising model[END_REF][START_REF] Nishimori | Absence of replica symmetry breaking in a region of the phase diagram of the ising spin glass[END_REF], on an Erdős-Rényi graph one finds that β SG = β N ⇐⇒ β F = β N . Consequently, there exists a tricritical point where

β F = β SG = β N .
Recalling the connection with statistical inference problems, such as inferring σ in Equation (3), first note that β N is the Bayes optimal inference temperature in the sense that there exists no other β that can asymptotically achieve better inference performance and, therefore, if inference cannot be performed at β = β N , then it is theoretically infeasible. This occurs when the marginals of Equation (3) asymptotically give equal probabilities for each σ i to take either values ±1. In terms of the phase diagram, this corresponds to being in the paramagnetic phase, so that β N < β F . In order for non-trivial reconstruction to be possible, the condition β N < β SG < β F must be imposed [START_REF] Saade | Clustering from sparse pairwise measurements[END_REF]. When the condition is met, the system is in the informative configuration in which each spin gets oriented towards its planted value σ i . This being said, replacing (or effectively, erroneously estimating) β N by β = β N in Equation (3), it may occur that, even though inference is theoretically possible (as β N < β SG < β F ), the estimated labels σ for the mismatched β are not aligned with the ground truth σ. This never happens at β = β N for which inference is achieved as soon as theoretically possible.

With this short introduction on the Nishimori temperature at hand, in the next section we present our main result which relates β N to the spectrum of the non-backtracking and Bethe-Hessian matrices of the underlying graph G.

A relation between β N and the Bethe free energy

This section introduces our main theoretical result, which draws a connection between the Nishimori temperature and the variational free energy under the Bethe approximation, computed at the paramagnetic point s β := m = 0. To this end, Section 3.1 introduces two fundamental matrices, namely the non-backtracking and the Bethe-Hessian matrices of the graph G and recalls the known connections between the spectra of these two matrices. Section 3.2 then introduces our main result, precisely consisting in (i) a claim on the location of the eigenvalues of the non-backtracking matrix and, as a result of the claim, (ii) an explicit relation between the underlying Nishimori temperature and a specific eigenvalue of the non-backtracking matrix. We further provide both theoretical arguments and numerical simulations in support of the result. As a corollary of the identities listed in Section 3.1 and Section 3.2, we finally obtain an explicit relation between the smallest eigenvalue of the Bethe-Hessian matrix and the Nishimori temperature. Section 3.3 relates this central link to the phase diagram of Figure 1, in passing connecting the results to the expression of the Bethe free energy. Based on these findings, Section 3.4 elaborates an algorithm to estimate β N , which finds significant importance in statistical inference problems.

Preliminaries

Let us first introduce the weighted non-backtracking matrix of any arbitrary graph G.

Definition 2 (Weighted non-backtracking matrix). Given a graph G(V, E) and a function f : E → R, so that ∀ e ∈ E, f (e) = ω e is the weight corresponding to the edge e, the weighted non backtracking matrix B ∈ R 2|E|×2|E| is defined on the set of directed edges of G as

B (ij),(k ) = δ jk (1 -δ i )ω k . ( 10 
)
The non-backtracking matrix plays an important role in inference and graph mining problems [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF][START_REF] Zhang | Nonbacktracking operator for the ising model and its applications in systems with multiple states[END_REF][START_REF] Aleja | Nonbacktracking pagerank: From the classic model to hashimoto matrices[END_REF][START_REF] Torres | Non-backtracking cycles: length spectrum theory and graph mining applications[END_REF][START_REF] Torres | Node immunization with nonbacktracking eigenvalues[END_REF][START_REF] Arrigo | Beyond non-backtracking: non-cycling network centrality measures[END_REF][START_REF] Shi | Weighted community detection and data clustering using message passing[END_REF] and naturally comes into play from the linearization of the belief propagation (or cavity) equations [START_REF] Mezard | Information, physics, and computation[END_REF] for the RBIM. These equations are particularly adapted to dealing with locally tree-like structured graphs (such as sparse Erdős-Rényi graphs).

The eigenvalues of the matrix B are strongly related to the eigenvalues of the Bethe-Hessian matrix.

Definition 3 (Bethe-Hessian matrix). Given a graph G(V, E), a function f : E → R so that ∀ e ∈ E, f (e) = ω e and a parameter x ∈ C \ {±ω ij } (ij)∈E , the Bethe-Hessian matrix H(x) ∈ C n×n is defined as

H ij (x) = 1 + k∈∂i ω 2 ik x 2 -ω 2 ik δ ij - x ω ij x 2 -ω 2 ij . ( 11 
)
Since G is an undirected graph, H(x) is symmetric but not Hermitian, unless x ∈ R. The relation between the spectra of the matrices B and H(x) is given by the Watanabe-Fukumizu formula [START_REF] Watanabe | Loopy belief propagation, bethe free energy and graph zeta function[END_REF][START_REF] Sato | A matrix-weighted zeta function of a graph[END_REF].

Property 2 (Watanabe-Fukumizu). Let H(x) and B be defined as per [START_REF] Ilya A Gruzberg | Random-bond ising model in two dimensions: The nishimori line and supersymmetry[END_REF][START_REF] Parisen Toldin | Strong-disorder paramagneticferromagnetic fixed point in the square-lattice±j ising model[END_REF] on the same graph G and for the same weighting function f . Further let

x ∈ C \ {±ω ij } (ij)∈E . Then, det xI 2|E| -B = det H(x) (ij)∈E x 2 -ω 2 ij , (12) 
so that, for all x in the spectrum of B, det[H(x)] = 0.

With this preliminary information, we now proceed to the formulation of our main result which first consists in a conjecture on the spectrum of B, and which we then relate to the spectrum of H(x) through Property 2. Choosing f (e) = th(βJ e ) in the definition of B, where the weights J e are distributed according to Equation (4), we finally unfold the relation between the spectra of B, H(x) and the Nishimori temperature.

Main result

We now proceed to studying the spectrum of the matrix B in the case where G is a Erdős-Rényi graph and its weights ω e (Equation ( 10)) are drawn i.i.d. satisfying |ω e | < 1 with E[ω] > 0 sufficiently large. The interest of this setting in relation to the RBIM and the Nishimori temperature is to consider ω e = th(βJ e ) for β N > β SG and J as per Definition 1. In this particular case, one of the eigenvalues of B -and, as a consequence of Property 2, a corresponding (more easily estimated) eigenvalue of the Bethe-Hessian matrix -has a direct relation with β N .

The matrix B is not symmetric, hence its eigenvalues are not necessarily real. Since B is real though, the non-real eigenvalues come in complex-conjugate pairs. When weights are assigned independently at random in the interval (-1, 1), we observe, in agreement with the theoretical results obtained on the spectrum of B [START_REF] Gulikers | Non-backtracking spectrum of degree-corrected stochastic block models[END_REF][START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF][START_REF] Stephan | Non-backtracking spectra of weighted inhomogeneous random graphs[END_REF][START_REF] Coste | Eigenvalues of the non-backtracking operator detached from the bulk[END_REF], that in the n → ∞ limit, the non-real eigenvalues of B are bounded by a circle on the complex plane and are separated by a vanishing distance from one another. These eigenvalues form the bulk of the spectrum of B (see Figure 2). There further exists one real eigenvalue which is instead isolated, i.e., it is found at a macroscopic (not decreasing with n) distance from all other eigenvalues. This eigenvalue has a modulus greater than the radius of the bulk: its existence and position are known and have been thoroughly investigated [START_REF] Stephan | Non-backtracking spectra of weighted inhomogeneous random graphs[END_REF][START_REF] Coste | Eigenvalues of the non-backtracking operator detached from the bulk[END_REF]. There however exists another real isolated eigenvalue with modulus smaller than the radius of the bulk, the existence and importance of which were first evidenced in [START_REF] Dall | Revisiting the bethe-hessian: improved community detection in sparse heterogeneous graphs[END_REF] in the case of unweighted graphs with a community structure. After [START_REF] Dall | Revisiting the bethe-hessian: improved community detection in sparse heterogeneous graphs[END_REF], a similar phenomenon has also been observed in [START_REF] Maillard | Construction of optimal spectral methods in phase retrieval[END_REF] in the context of phase retrieval, relating the Hessian of the TAP free energy and the Bayes optimal inference temperature. This isolated eigenvalue inside the bulk of B received less theoretical attention and it is the main object of our central result.

Figure 2: Spectrum of the matrix B in the complex plane. The entries J ij are generated independently according to N (J 0 , ν 2 ). The weights appearing in Equation ( 10) are defined as

ω ij = th(βJ ij ). Left, dense regime: n = 250, c = 2 log 2 (n), J 0 = 1, ν = 4, β = 1. Right, sparse regime: n = 3 000, c = 5, J 0 = 1, ν = 1, β = 10.
For both plots, the dashed blue line corresponds to cE[th(βJ)], the dash-dotted green line to E[th 2 (βJ)]/E[th(βJ)], while the black continuous line is the circle in the complex plane centered at the origin and of radius cE[th 2 (βJ)].

Claim 1. Let G(V, E) be a realization of an Erdős-Rényi random graph with n nodes (n → ∞) and expected average degree c. For each undirected edge

(ij) ∈ E a weight ω ij = ω ji ∈ (-1, 1) is assigned independently at random. Further assume that E[ω 2 ij ]/E[ω ij ] ≥ 1 and E[ω 2 ij ]/E 2 [ω ij ] < c.
Then, the spectrum of B, with high probability, can be described as follows:

• there exist only two real eigenvalues in the spectrum of B with modulus greater or equal to one:

λ 1 = cE[ω] + o(c) , λ -1 = E[ω 2 ] E[ω] + o(1). ( 13 
)
The eigenvalue λ 1 is the largest in modulus in the spectrum of B;

• all eigenvalues with non-zero imaginary part have a modulus bounded by

R = cE[ω 2 ] + o( √ c).
Note that Claim 1 does not make the assumption that c → ∞ as n → ∞, nor that c = O n (1). Extensive simulations indeed concur in suggesting that the claim holds in both dense and sparse graph regimes. The claim is thus stated for any average degree, so long that the underlying graph is of the Erdős-Rényi type. In detail, the technical condition

E[ω 2 ij ]/E 2 [ω ij ] < c
is set to enforce that the leading eigenvalue λ 1 is greater than the radius of the bulk spectrum (hence that it is isolated) and that λ -1 is smaller than the radius of the bulk: a transition occurs at

E[ω 2 ij ]/E 2 [ω ij ] = c
where both eigenvalues coincide: λ 1 = λ -1 . This inequality condition will thus ensure, when it comes to statistical inference, that non-trivial σ ∈ {±1} n configurations can be theoretically recovered (i.e., that the inference problem is feasible). As a practical support to Claim 1, Figure 2 displays the spectrum of the matrix B in both moderately dense (c ∼ log 2 (n)) and sparse (c = O n (1)) regimes.

The fundamental corollary of Claim 1 is that, in the case of present interest where ω e = th(βJ e ), from Equation ( 13), the inner eigenvalue λ -1 of B is equal to

λ -1 = E[th 2 (βJ)] E[th(βJ)] + o(1).
Exploiting Property 1, it follows immediately that, at

β = β N , λ -1 = β=βN 1 + o(1).
Tuning the value of β until λ -1 = 1 thus provides a method to estimate β N . The question on how to efficiently exploit this essential remark from an algorithmic standpoint will be further discussed in Section 3.4.

Before pushing further our main line of deductions, we first introduce some arguments in support of Claim 1, which we provide first in the dense and then in the sparse regimes. These are "arguments" in the sense that they lack of full mathematical rigour and do not provide a formal proof of Claim 1. Specifically, for the dense regime, we adopt a perturbative approach in which we heuristically show that the eigenvalues of B with modulus greater than one are close to the eigenvalues of the (easy to study) matrix M 0 appearing in Equation [START_REF] Samuel | Theory of spin glasses[END_REF]. In the sparse regime, instead, we note that the position of the largest isolated eigenvalue and the radius of the bulk of B obtained in the dense case match the rigorous results of [START_REF] Stephan | Non-backtracking spectra of weighted inhomogeneous random graphs[END_REF] proved for the sparse regime. With the support of extensive numerical simulations, we conjecture that the same result obtained in the dense regime to describe the inner isolated eigenvalue holds in the sparse regime as well.

Arguments in support of Claim 1

Dense graphs

We first consider a dense graph regime, i.e., when the average degree c goes to infinity faster than log(n). This argument is inspired from the proof provided in [START_REF] Coste | Eigenvalues of the non-backtracking operator detached from the bulk[END_REF] for unweighted dense graphs with a community structure. The proof of [START_REF] Coste | Eigenvalues of the non-backtracking operator detached from the bulk[END_REF] can be straightforwardly adapted to the binary case in which f (e) ∈ {±ω}, but does not unfold so directly for generic functions f .

The main advantage of the dense regime follows from the fact that the degree distribution of G is almost regular and the Erdős-Rényi graph is close to a c-regular graph [START_REF] Bollobás | Random graphs[END_REF], the analysis of which is easier to handle. This makes it possible to relate the eigenvalues of B to those of W ∈ R n×n , defined as W ij = ω ij if (ij) ∈ E and zero otherwise. The idea is to create a sequence of matrices M (g) ∈ R 2n×2n (one for each eigenvector g of B), in the spirit of a proof proposed by Bass of the celebrated Ihara-Bass formula [START_REF] Matthew D Horton | What are zeta functions of graphs and what are they good for?[END_REF], and to show that all the eigenvalues of M (g) can be approximated, in the large n limit, by the eigenvalues of a common matrix M 0 independent of g, so long that g is an eigenvector corresponding to an eigenvalue λ of B for which |λ| ≥ 1. It is the precise study of the spectrum of the limiting M 0 which induces the results of Claim 1.

More specifically, let g ∈ C 2|E| be an eigenvector of B with eigenvalue λ, satisfying |λ| ≥ 1 and let ω ∈ R 2|E| be the vector containing the weights of the non-zero entries of the matrix B (and recall that ω ij = ω ji ). Then define the vectors ψ(g), ψ(g) ∈ C n as

ψ i (g) = j∈∂i ω ij g ij , ψi (g) = j∈∂i ω 2 ij g ji (14) 
and F (g) ∈ C 2n×2n be any matrix satisfying

F (g)ψ(g) i = j∈∂i ω 3 ij g ij . ( 15 
)
We now wish to relate the quantities ψ(g), ψ(g), F (g) to the eigenvalues of B. In particular,

λψ i (g) = ψ i (Bg) = j∈∂i ω ij (k ) δ jk (1 -δ i )ω kl g k = j∈∂i ω ij   l∈∂j ω j g j -ω ji g ji   = [W ψ(g)] i -ψi (g)
and, similarly,

λ ψi (g) = ψi (Bg) = j∈∂i ω 2 ij (k ) δ ik (1 -δ j )ω k g k = j∈∂i ω 2 ij ∈∂i ω i g i -ω ij g ij = [D W ψ(g)] i -[F (g)ψ(g)] i ,
where

D W ∈ R n×n is the diagonal matrix with [D W ] ii = j∈∂i ω 2 ij .
Thus, the eigenvalue λ is also an eigenvalue of the matrix

M (g) = W -I n D W -F (g) 0 . ( 16 
)
The main difficulty of the analysis is of course introduced by the matrix F (g) which is different for each eigenvector of B associated to |λ| > 1. In the binary case in which W ij ∈ {±ω} for all (ij) ∈ E, this term simplifies: combining Equations ( 14) and ( 15), we get F (g)ψ = ω 2 ψ and F (g) thus simplifies for all g into F (g) = ω 2 I n ; this allows for a straightforward adaptation of the proof of [START_REF] Coste | Eigenvalues of the non-backtracking operator detached from the bulk[END_REF]. The non-binary case is, however, more involved, but the term D W -F (g) ψ is still dominated by the action of D W :

[F (g)ψ(g)] i ψ i (g) = j∈∂i ω 3 ij g ij j∈∂i ω ij g ij = o(c).
For the last equality, we exploited the fact that ω ij and ω 3 ij are both bounded in (-1, 1) and have the same sign: this step is reasonable but non-rigorous, the main theoretical difficulty arising from the dependence between ω ij and g ij . Consequently, F (g) can be regarded as a small perturbation of D W . Further exploiting the concentration of the degrees, one may thus write

D W -F (g) -cE[ω 2 ]I n = o(c).
The eigenvalues of M (g) can therefore be approximated by those of the matrix

M 0 = W -I n cE[ω 2 ]I n 0 . ( 17 
)
The spectrum of M 0 is trivially related to the spectrum of W . Letting {µ i } i=1,...,n be the eigenvalues of W and {λ 0,i } i=±1,...,±n those of M 0 , by the block determinant formula [START_REF] Silvester | Determinants of block matrices[END_REF]Section 5], it comes that

λ 0,±i = µ i ± µ 2 i -4cE[ω 2 ] 2 . ( 18 
)
In particular, it unfolds that

µ 2 i ≥ 4cE[ω 2 ] =⇒ λ 0,-i = cE[ω 2 ] λ 0,i ≡ R 2 λ 0,i µ 2 i < 4cE[ω 2 ] =⇒ |λ 0,±i | = cE[ω 2 ] ≡ R.
Applying successively Wigner's semi-circle theorem [START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF] and Bauer-Fike's theorem [START_REF] Friedrich | Norms and exclusion theorems[END_REF], we thus have that

µ 1 = cE[ω] + o( √ c), |µ i | i≥2 ≤ cE[ω 2 ] + o( √ c). (19) 
Combining Equation ( 18) and ( 19), along with the fact that the eigenvalues {λ 0,±i } i=1,...,n are a close approximation to the eigenvalues of B with modulus greater than one, we obtain the formulation of Claim 1. Figure 3 compares the spectra of the matrices M (g) and M 0 , which should be themselves compared to the left display in Figure 2. Appendix A provides the explicit expressions of the matrix F (g) used in Figure 3. 16) with g, one of the eigenvectors of B attached to a complex eigenvalue. Right: Spectrum of M 0 , defined in Equation [START_REF] Samuel | Theory of spin glasses[END_REF]. The graph considered is the same for the two matrices, with n = 1 500, c = log 2 (n). The matrix W = th(βJ), with β = 1 and the entries J ij are i.i.d. normal variable with J 0 = 1 and ν = 3. The blue dotted line is the position of cE[th(βJ)], the green dash-dotted line is the position of E[th 2 (βJ)]/E[th(βJ)], while the black solid line is the circle in the complex plane of radius cE[th 2 (βJ)].

This technical argument provides important intuitions on the spectrum of B: i) the leading eigenvalue of B (the largest in modulus) is determined by the expectation of the entries of W ; ii) the radius of the bulk of B is determined by the expectation of the squared entries of W ; iii) all eigenvalues of B with modulus greater than one come in pairs (see Equation ( 18)): they are complex conjugates if their imaginary part is non-zero or harmonic conjugate if they are real. This last observation justifies the existence of a real isolated eigenvalue inside the bulk of B, the importance of which will be further discussed in Section 3.3.

As a downside, the setting considered in this section is, somehow, too simplistic. The analysis allowed us to neglect the term F (g), which plays the role of the Onsager reaction term [START_REF] Mézard | Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications[END_REF] which does not appear in the naïve mean-field approximation but plays a crucial role in the Bethe approximation. The fact that F (g) can be neglected thus indicates that the regime under consideration is somehow too simple, the spectral behavior of B being fully determined by W .

Consequently, we next discuss the far more interesting sparse regime in which the Onsager reaction term plays a fundamental role and in which the Bethe approximation brings a decisive advantage over the naïve mean-field approximation. In the sparse regime, the structure of the spectrum of the matrix B is essentially preserved, as well as the fact that all its eigenvalues all come in real harmonic or complex conjugate pairs.

Sparse graphs

The Bethe approximation is exact on trees [START_REF] Mezard | Information, physics, and computation[END_REF] and asymptotically yields (in the large n limit) exact results on locally tree-like graphs. This is precisely the case of sparse Erdős-Rényi graphs, in which the average degree is of order c = O n (1). In this case, the spectrum of the matrix W is no longer formed by an isolated eigenvalue (the largest in modulus) and a bulk of eigenvalues close to each other that follow the semi-circle law, as it happens in the dense regime discussed in the previous paragraph. Here the eigenvalues of W are known to have an unbounded support (little else is in fact theoretically known about this spectrum).

The non-backtracking matrix B, instead, essentially preserves the same spectral structure as in the dense regime, in which the bulk eigenvalues are bounded by a circle in the complex plane, as shown in Figure 2. This result was recently proved in [START_REF] Stephan | Non-backtracking spectra of weighted inhomogeneous random graphs[END_REF] in which the authors showed that, under the assumptions of Claim 1, the matrix B has an isolated eigenvalue equal to

λ 1 = cE[ω] + o n (1), (recall that c = O n (1)) while all other eigenvalues satisfy |λ i≥2 | ≤ cE[ω 2 ] + o(1)
. The result of [START_REF] Stephan | Non-backtracking spectra of weighted inhomogeneous random graphs[END_REF] however does not mention the existence of inner real eigenvalues in the spectrum of B and, to best of our knowledge, no mathematical tool has been developed yet to rigorously address this question in the sparse regime. Yet, the position of the leading eigenvalue of B and the radius of its bulk spectrum are the same as in the dense graph case. We then conjecture, supported by extensive simulations, that also the inner isolated eigenvalue has the same position as in the dense regime, given by the square radius of the bulk, divided by the leading eigenvalue of B.

We take the opportunity of the reference to [START_REF] Stephan | Non-backtracking spectra of weighted inhomogeneous random graphs[END_REF] to generalize the central claim of the article to their richer context. This result is of independent interest, particularly for more structured graph models.

Remark 1 (Random sparse graphs with independent entries). Note that the result of [START_REF] Stephan | Non-backtracking spectra of weighted inhomogeneous random graphs[END_REF] is given under more general hypotheses than those discussed here. Specifically, the authors of [START_REF] Stephan | Non-backtracking spectra of weighted inhomogeneous random graphs[END_REF] consider a setting in which each edge of the graph G is created independently at random with probability p ij . The Erdős-Rényi graph falls into the particular case in which

P = {p ij } n i,j=1 = c n 1 n 1 T n .
The leading (real) eigenvalues of B are determined from the leading eigenvalues of P • E[W ], and the bulk radius by the leading eigenvalue of

P • E[W • W ].
Based on this result, we conjecture that the real eigenvalues of B come in harmonic pairs precisely determined by

λ ±i = ρ (P • E[W • W ]) γ i (P • E[W ]) ,
where ρ(•) indicates the largest eigenvalue in modulus, and

γ i (P • E[W ]) are the eigenvalues of P • E[W ], greater than ρ (P • E[W • W ]).
A particular case of this setting is the degree-corrected stochastic block model which reproduces a kclass structure on an unweighted graph. In this case, the matrix

E[W ] has a low rank factorization E[W ] = 1 n k i=1 α i u i u T
i , with α 1 = c. Furthermore P = θθ T , where θ T 1 n = n and 1 n θ T θ := Φ. Then, in agreement with [START_REF] Gulikers | Non-backtracking spectrum of degree-corrected stochastic block models[END_REF] and the conjecture of [START_REF] Dall | Revisiting the bethe-hessian: improved community detection in sparse heterogeneous graphs[END_REF], the eigenvalues of B can be described as follows

λ i = α i Φ + o n (1) for 1 ≤ i ≤ k λ -i = c α i + o n (1) for 1 ≤ i ≤ k |λ i>k | ≤ √ cΦ + o n (1).
Returning to the implications of Claim 1 of immediate interest, recall that the claim makes it possible to relate the Nishimori temperature to the specific eigenvalue λ -1 of the matrix B. From a numerical standpoint though, λ -1 is not easily accessible for two reasons: i) the matrix B is non-symmetric and large, slowing down eigenvalue computations; ii) since λ -1 is smaller in modulus than most of the complex eigenvalues of B, while not being the smallest in modulus (see Figure 2), one needs to compute all the bulk eigenvalues of B in order to access λ -1 : this comes at an impractical computational cost of O(cn 3 ) with state of the art methods [42, see for example]. We next show that, as a consequence of Claim 1 and Property 1, the (symmetric) Bethe-Hessian matrix H(x) (11) can be efficiently used to estimate β N in the RBIM with a computational cost scaling as O(nc).

The relation between β N and the Bethe-Hessian matrix

This section elaborates on our final relation between the Bethe-Hessian matrix and the Nishimori temperature, as well as on how the respective spectra of the matrices H(x) and B can be related to the phase diagram of Figure 1.

The Bethe free energy

Let us first recall the basics of a variational approach, and specifically of the Bethe approximation. For µ(s) the Boltzmann distribution (6), the free energy F J,β and the variational free energy FJ,β (q) (given for an arbitrary set of parameters q), are defined through

F J,β = s µ(s) βH J (s) + log µ(s) (20) 
FJ,β (q) = s p q (s) βH J (s) + log p q (s) .

The function F J,β is a moment generating function for the Boltzmann distribution of Equation (2) but, in general, cannot be computed exactly. The variational free energy FJ,β (q) represents a tractable approximation of F J,β . From a straightforward calculation it can in particular be shown that FJ,β (q) -F J,β = D KL (µ||p q ) ≥ 0, where D KL (•||•) is the Kullback-Leibler divergence between two distributions. For a parametrized family of distributions p q , minimizing the variational free energy with respect to q provides the Kullbach-Liebler optimal approximation of F J,β . The variational Bethe approximation considers a meanand covariance-parametrized distribution p q = p m,χ defined as

p m,χ (s) = (ij)∈E 1 + m i s i + m j s j + χ ij s i s j 4 • n i=1 1 + m i s i 2 1-di , (22) 
where m i and χ ij are the average of s i and s i s j according to p m,χ (s), respectively. Here d i denotes the degree of node i (d i = |{j : (ij) ∈ E}|). The approximation turns out to be the exact factorization of µ(s) when G is a tree, and is thus often claimed a good approximation of it in sparse, tree-like graphs.

A complete derivation of the Bethe-Hessian matrix from the Bethe free energy is proposed in [START_REF] Watanabe | Graph zeta function in the bethe free energy and loopy belief propagation[END_REF]. It is instructive though to recall its main steps which allow one to relate the Bethe-Hessian matrix eigenvalues to the phase diagram of Figure 1. From the expression of F Bethe J,β (m, χ), obtained combining Equations [START_REF] Krzakala | Spectral redemption in clustering sparse networks[END_REF][START_REF] Zhang | Nonbacktracking operator for the ising model and its applications in systems with multiple states[END_REF], one obtains that ∇ m F Bethe J,β (m, χ)| m=0 = 0, i.e., the paramagnetic point is always an extremum of the Bethe free energy. In order to study the stability of this solution, we consider the Hessian matrix of the variational free energy, computed at the paramagnetic point: the smallest eigenvalues of this matrix are associated to the local directions along which the paramagnetic solution may get unstable and non-trivial order in the spin configurations can be observed. This Hessian matrix explicitly reads:

∂ 2 F Bethe J,β (m, χ) ∂m i ∂m j m=0 = δ ij 1 + k∈∂i χ 2 ik 1 -χ 2 ik - χ ij 1 -χ 2 ij . (23) 
By further computing the gradient of F Bethe J,β (m, χ) with respect to χ, one next obtains χ ij = th(βJ ij ) (as already mentioned in the Section 2 where we pointed that, in the paramagnetic phase, s i s j β = th(βJ ij ) under the Bethe approximation). Setting ω ij = th(βJ ij ), the matrix of Equation ( 23) precisely corresponds to H(1) defined in Equation [START_REF] Parisen Toldin | Strong-disorder paramagneticferromagnetic fixed point in the square-lattice±j ising model[END_REF]. We denote this matrix H β,J , which explicitly reads:

(H β,J ) ij = δ ij 1 + k∈∂i th 2 (βJ ik ) 1 -th 2 (βJ ik ) - th(βJ ij ) 1 -th 2 (βJ ij ) . ( 24 
)
We may now relate the Bethe approximation to the phase diagram of Figure 1.

Phase diagram

Let us move back to the system described by Equations [START_REF] Nishimori | Statistical physics of spin glasses and information processing: an introduction[END_REF][START_REF] Zdeborová | Statistical physics of inference: Thresholds and algorithms[END_REF] and Definition 1, first set at sufficiently high temperature (small β). In this case, for all β N the system is in the paramagnetic phase, for which s i β = 0. The paramagnetic solution m = 0 is a minimum of F Bethe J,β (m, χ), H β,J is positive definite. Consider now β N to be sufficiently large, so that the system undergoes to a paramagnetic-ferromagnetic phase transition (see Figure 1). For β = β F defined as cE[th(β F J)] = 1, the leading eigenvalue of B is equal For all matrices, the same graph was used with n = 1 000, c = 10. The weights of the edges are ω ij = th(βJ ij ) for the different values of β just described. The J ij are drawn independently from a Gaussian distribution with J 0 = 1 and ν = 1.5. The blue lines in the first row is the vertical line at x = 1, while the purple line in the second row is the vertical line at x = 0. to 1 and one of the eigenvalues of H β,J is equal to zero. This eigenvalue is necessarily the smallest, since for β < β F all the eigenvalues are positive.

For small values of β N , the system undergoes the paramagnetic-spin glass phase transition (see Figure 1) at the temperature β = β SG defined so that cE[th 2 (β SG J)] = 1. For this value of β, the radius of the bulk of the matrix B is equal to one and the bulk of H β,J is asymptotically close to zero.

Finally, further decreasing the temperature, at β = β N defined by E[th 2 (β N J)] = E[th(β N J)], the eigenvalue λ -1 is equal to one and the smallest eigenvalue of H β,J reaches zero for the second time. In Figure 4 we show the spectra of the matrices B and H β,J at β < β F , β = β F , β SG , β N that confirm the relation between the spectra of these two matrices and the phase diagram.

Having established in depth the relation between the matrices B and H(x), and their relations to the phase diagram, we now show how one can efficiently estimate β N , exploiting the smallest eigenvalue of H β,J .

Estimation of β N from H β,J

The present section provides a numerically efficient estimator βN of the Nishimori temperature, first defined formally and then under the form of the output of a practical algorithm.

The proposed value of βN , estimate of the genuine Nishimori temperature β N , reads βN = max

β {β : γ min (H β,J ) = 0} , (25) 
where γ min (•) indicates the smallest eigenvalue of a matrix. Under this definition, not only does βN provides a consistent estimate of β N for J distributed as Definition 1, this being a consequence of Claim 1, but it also provides the "best guess" of an hypothetically corresponding β N for matrices J which would follow a different distribution from the model of Definition 1. Indeed, βN has the advantage of always being defined, even for arbitrary matrices J, while having a clear interpretation for the class of matrices that fall under Definition 1. This definition is particularly reminiscent of the algorithm proposed in [START_REF] Dall | A unified framework for spectral clustering in sparse graphs[END_REF] for community detection over sparse heterogeneous graphs, and which demonstrates a robust behavior on applications to real-world graphs.

To best understand the rationale behind the definition of βN , first observe that H β,J is positive definite for all small values of β (lim β→0 H β,J = I n ). By increasing β, the smallest eigenvalue eventually hits zero a first time before turning negative: the zero-crossing occurs precisely at β = β F . Then, continuing increasing β, at β = β SG , the second smallest eigenvalue of H β,J is asymptotically equal to zero and γ min (H β,J ) is now negative. Finally, for β → ∞, H β,J is again positive definite (the result can be easily obtained using Gershgorin's circle theorem). Therefore, there must exist a value β > β SG for which γ min (H β,J ) = 0 for a second time. This second zero-crossing occurs precisely when β = βN . The right display of Figure 5 visually explains this behavior.

The basic idea of the proposed algorithm to compute βN precisely consists in starting from β = β SG to then find the value of β > β SG for which γ min (H β,J ) = 0. Following this argument, we propose an iterative algorithm based on Courant-Fischer theorem to compute βN . The output of Algorithm 1 is depicted in the left display of Figure 5. Note in particular that, as long as β SG < β N , i.e., so long that E[th 2 (βJ ij )]/E 2 [th(βJ ij )] < c, the value of βN is a good estimate of β N . When the condition is instead not met, βN simply coincides with β SG . A more detailed analysis of Algorithm 1 is provided in Appendix B. The numerical advantage of exploiting the Bethe-Hessian matrix is decisive. First H β,J is symmetric and of size n × n regardless of the average node degree. Most importantly, the only eigenvalue of H β,J that needs be computed is the one of smallest amplitude, so that βN can be estimated at a O(nc) computational cost (using the Arnoldi method [START_REF] Saad | Numerical methods for large eigenvalue problems[END_REF]). Compute H βt,J (Equation ( 24)) ; Compute γ min,t , the smallest eigenvalue of H βt,J , as well as its associated eigenvector x t ; Define the function

While from a purely physics standpoint, Claim 1 is an elegant theoretical relation between the Nishimori

f t (β ) = x T t H β ,J x t , for β ∈ R + ; Compute β t+1 by solving f t (β t+1 ) = 0 ; Update δ ← |γ min,t | ; Increment t ← t + 1 ; return: β t-1
temperature and the Bethe-Hessian matrix, when it comes to machine learning applications, estimating β N may have practical impact on algorithm performance. In particular, βN may be used as an approximation of β N when solving statistical inference on σ (for instance, via an optimal linearization of the Bayes optimal solution) in the absence of knowledge of the parameters in the generative model (3).

Application to node classification

This section discusses one of the immediate applications of the results introduced in the previous sections to the context of Bayesian statistical inference, and specifically to the problem of unsupervised node clustering on a graph. To this end, we first establish the relation between the Bayesian optimal inference and the Nishimori temperature, specific to the node classification problem; this then allows us to particularize Algorithm 1 to this setting. Possibly most importantly, we conclude by commenting on how the considered model may be extrapolated to perform clustering on (possibly sparse) adjacency matrices of real data and relate our resulting proposed algorithm to commonly used competing spectral algorithms.

A generative model for node classification

Let G be the realization of an Erdős-Rényi graph whose nodes are divided in two non-overlapping classes, labelled via the vector σ ∈ {-1, 1} n . Associated to G is a weighted adjacency matrix J ∈ R n×n with probability distribution:

P( J|σ) = (ij)∈E p 0 (| Jij |)e βN Jij σiσj , ( 26 
)
for an arbitrary non negative function p 0 (•) and for some β N > 0. According to this model, the edges connecting nodes in the same community are more likely to be positive, while those connecting nodes in opposite communities are instead more likely to be negative. Given a realization of J, the task of the experimenter (who only has access to J) is to infer the vector σ. We can formulate this problem in terms of a Bayesian inference:

P(σ| J) = P( J|σ)P(σ) P( J) = 1 Z J exp    (ij)∈E β N Jij σ i σ j    . (27) 
Algorithm 2: The Nishimori-Bethe relation for node classification input : Weighted adjacency matrix of a graph J ∈ R n×n , precision error ∈ R; output: Value of βN ∈ R + , estimated label vector σ ∈ {-1, 1} n ; Shift the non-zero Jij as: Jij ← Jij -1 2|E| 1 T n J1 n ; Compute βN ← Compute βN (Algorithm 1) ; Compute H βN, J (Equation ( 24)) ; Compute x ← the eigenvector associated to γ min (H βN, J ) ; Estimate σ as the output of 2-class k-means on the entries of x ; return: β t , σ.

Computing the marginals of P(σ| J) is equivalent to computing the average magnetization of an Ising model on J at the Nishimori temperature. However, the value of β N cannot be easily inferred from J without knowing σ: one would indeed need to solve

E[th(β N Jij σ i σ j )] = E[th 2 (β N Jij σ i σ j )].
To progress further, let us next introduce the matrix J = J • σσ T . Given the probability distribution of J ( 26), the matrix J is exactly defined as per Definition 1. The key result to proceed consists in observing that the matrices H β,J and H β, J have the same eigenvalues and, up to a gauge transformation, the same eigenvectors. This then enables the use of Algorithm 1 to estimate β N directly from J. Let indeed x ∈ R n be an eigenvector of H β, J with eigenvalue λ and let y have entries y i = x i σ i . Then

λy i = λx i σ i = σ i j H β, J ij x j = σ i j (H β,J ) ij σ i σ j x j = (H β,J y) i
so that λ is an eigenvalue of H β,J with eigenvector y. Consequently, the smallest eigenvalue of H βN, J is asymptotically close to zero and Algorithm 1 can be used to estimate β N .

The Nishimori temperature-based node classification algorithm

For the purpose of node clustering though, the knowledge of β N is a necessary prerequisite to obtain a precise estimate of the genuine node classes σ. We indeed show next that a powerful estimator of σ is obtained directly from the signs of the entries of the eigenvector x of the Bethe-Hessian matrix H βN, J (so β N needs be known) associated to its smallest amplitude eigenvalue (which we now know is close to zero).

To this end, let us first consider y, the eigenvector associated to the smallest eigenvalue of H βN,J . Denote with A ∈ {0, 1} n×n the symmetric adjacency matrix of G, defined by A ij = 1 if (ij) ∈ E, and A ij = 0 otherwise, and let D ∈ N n×n be the diagonal degree matrix D = diag(A1 n ). Then, applying Property 1, one easily obtains that

E [H βN,J ] = I n + E th(βJ ij ) 1 -th 2 (βJ ij ) (D -A) . (28) 
From a straightforward calculation (see Proposition 1 of [START_REF] Von | A tutorial on spectral clustering[END_REF]), the vector 1 n is the eigenvector of E[H βN,J ] associated to its eigenvalue of smallest amplitude. As a consequence, from the relation between x and y (or equivalently between J and J) in the previous section, the vector σ is the eigenvector of E[H β N , J ] associated with its eigenvalue of smallest amplitude. Consequently, the eigenvector with zero eigenvalue of H βN, J is a close approximation4 of σ.

Figure 6: Overlap performance as a function of β N /β SG and three different values of the expected average degree, c. For β N < β SG inference is asymptotically unfeasible. Two classes of equal size are considered and the entries of J are generated independently according to a Gaussian with mean J 0 σ i σ j . In the examples, n = 30.000 and n average is taken over 10 simulations.

This conclusion immediately translates into Algorithm 2, a numerical method to infer the genuine node classification σ. Further detail on the practical implementation of this algorithm are provided in Appendix B.

Having established a "Nishimori-optimal" version of the Bethe Hessian-based spectral clustering for node classification, the next section discusses the relation between the proposed algorithm and other commonly used kernel matrices in the spectral clustering literature.

Relation to other spectral methods

In the following, we use the overlap

Overlap = 2 1 n n i=1 δ σi,σi - 1 2 . ( 29 
)
as a measure of comparison of the inference performance of various node classification algorithms, where σi is the estimated label of node i. The overlap ranges from 0 (random assignment) to 1 (perfect assignment). Figure 6 compares the overlap achieved by Algorithm 2 versus the naïve mean field approach, consisting in estimating the labels from the dominant eigenvector of J, and versus the popular legacy spectral clustering algorithm based on the weighted graph Laplacian matrix L = D-J, where D = diag(| J|1 n ) [START_REF] Kunegis | Spectral analysis of signed graphs for clustering, prediction and visualization[END_REF]. 5 The figure browses several values of β N (the larger β N , the easier the detection problem) and of the average degree c. For c = 3, 15 the output of the asymptotically optimal belief propagation (BP) algorithm is further shown, evidencing that Algorithm 2 achieves an almost optimal performance. Due to its computational complexity, we chose not to run belief propagation for c = 50, but we expect to observe a similar result to the one obtained for c = 3, 15. Before discussing the achieved results, let us first justify our comparison choice by recalling the rationale behind the Laplacian and naïve mean-field approaches.

The weighted Laplacian matrix

A very classical spectral clustering method in weighted graphs (dating back from the earliest works on the subject [START_REF] Von | A tutorial on spectral clustering[END_REF]) exploits the weighted Laplacian matrix L = D -J, where D = diag(| J|1 n ). As shown in [START_REF] Von | A tutorial on spectral clustering[END_REF][START_REF] Kunegis | Spectral analysis of signed graphs for clustering, prediction and visualization[END_REF], the eigenvector attached to the smallest eigenvalue of L provides a (discrete to continuous) relaxed solution of the NP-hard optimization signed ratio-cut graph clustering problem. The idea underlying the signed ratio-cut procedure consists in inferring the label assignments σ by maximizing the number of edges with positive weights connecting nodes in the same community, while minimizing the number of edges with negative weights connecting nodes in opposite communities: this is however a discrete optimization problem, a continuous relaxation of which coincides with a minimal eigenvector problem for L.

A particularly immediate and best understood scenario is the case of signed graphs, in which the entries of J assume values in ±1. For this class of graphs, an explicit relation between the matrices L and H βN, J arises in the limit of trivial clustering, i.e., as β N → ∞. For signed graphs, a slightly different definition of H β, J than ( 24) is most appropriate:

H signed β, J = (1 -th 2 (β))I n + th 2 (β)D -th(β) J. ( 30 
)
It is straightforward to notice that the signed and unsigned versions of the Bethe-Hessian matrix share the same set of eigenvectors on a signed graph while their eigenvalues only differ by a multiplicative constant.

One then immediately finds that lim βN→∞ H signed βN, J = L. The signed Laplacian may then be seen as the zero temperature limit of the Bethe-Hessian matrix. From a Bayesian inference standpoint ( 27), H signed βN,

J is a linear approximation of the exact inference problem, while L is only an approximation for the maximum a posteriori probability problem. 6 Far from the limit of trivial recovery, our proposed Bethe-Hessian matrixbased method is thus expected to accomplish better inference performance when compared to the weighted Laplacian approach. This is indeed confirmed by Figure 6, which evidences a striking performance gap between both methods. The reconstruction performance achieved through the matrix L is in particular severely compromised in the sparse regime in which J only has O n (n) non-zero entries.

The naïve mean field approach

The "Nishimori Bethe-Hessian" matrix is built from the Bethe approximation of the Bayes optimal problem formulation. We now show that a similar approximation procedure could have been performed using a naïve mean field approximation instead. This leads to a different -much less efficient as we will see -spectral clustering algorithm. Recalling the procedure of Section 3.3.1, we define the naïve mean field free energy from the probability distribution

p m (s) = i∈V 1 + m i s i 2 , (31) 
where m i is the average of s i over the distribution [START_REF] Bordenave | Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs[END_REF]. The associated variational free energy reads

F MF J,β (m) = - (ij)∈E β Jij m i m j + i∈V si 1 + m i s i 2 log 1 + m i s i 2 .
Computing the gradient of F MF J,β (m), one finds that, also in this case, the paramagnetic point m = 0 is an extreme. Computing the Hessian of the free energy at the paramagnetic point leads instead to

H MF β, J = I n -β J. ( 32 
)
As a consequence, despite the presence of β in the formulation of H MF β, J , the eigenvectors of H MF β, J are simply the eigenvectors of J so that, in this case, β plays no role. Under the sparse regime, where c = O n (1), using the eigenvector associated to the smallest (resp., largest) eigenvalues of H MF β, J (resp., J) as an estimator for σ does not allow to make non-trivial reconstruction as soon as theoretically possible, i.e., whenever β N > β SG > β F : in this case indeed, the asymptotic spectrum of J is unbounded and no isolated eigenvalue of H MF β, J is to be found. This explains the poor performance depicted in Figure 6 for small average degrees c. On the opposite, as already observed in Section 3.2, for sufficiently large degrees c, the naïve mean field approximation essentially yields the same result as the Bethe approximation.

Figure 7: First row: random graphs with an underlying power law degree distribution. Second row: Erdős Rényi random graphs. First column: overlap performance obtained exploiting the eigenvector associated to the smallest eigenvalue of H βN, J (red circles) H βSG, J (blue squares). The entries of J are distributed according to a Gaussian measure as in Equation [START_REF] Arrigo | Beyond non-backtracking: non-cycling network centrality measures[END_REF]. Averages are taken over 10 realizations. Second column: histogram of the entries of the informative eigenvector of H βN, J for β N /β SG ≈ 3.6 in the first plot. Third column: histogram of the entries of the informative eigenvector of H βSG, J for the same configuration as the second plot. For all plots: the graphs have n = 30 000 nodes and expected average degree c = 10.

The "spin glass Bethe-Hessian"

We conclude this section by presenting an alternative use of the Bethe-Hessian matrix, inspired by the work of [START_REF] Saade | Clustering from sparse pairwise measurements[END_REF], that we name here the spin glass Bethe-Hessian. Algorithm 2 represents an optimal relaxation of the Bayes optimal solution, capable of performing better than random inference as soon as theoretically possible. The parametrization β = β N is not the only possible choice of β able to reach this threshold. It was indeed shown, under different settings, in [START_REF] Saade | Spectral clustering of graphs with the bethe hessian[END_REF][START_REF] Saade | Clustering from sparse pairwise measurements[END_REF][START_REF] Dall | Community detection in sparse timeevolving graphs with a dynamical bethe-hessian[END_REF][START_REF] Shi | Weighted community detection and data clustering using message passing[END_REF] that choosing the temperature β = β SG allows one also to achieve non-trivial clustering as soon as theoretically possible.

The value β SG , unlike β N , can be easily estimated from the matrix J solving cE[th 2 (β SG Jij σ i σ j )] = cE[th 2 (β SG Jij )] = 1. However, it was proved in [START_REF] Dall | Revisiting the bethe-hessian: improved community detection in sparse heterogeneous graphs[END_REF] that for community detection in realistic heterogeneous (thus not Erdős-Rényi-like) graphs, this may be a quite suboptimal choice in terms of the raw (say, overlap) classification performance. The main difference between the spin glass Bethe-Hessian and the Nishimori Bethe-Hessian is thus observed when the underlying graph is not of an Erdős-Rényi type. This can be understood by a closer inspection of Equation [START_REF] Watanabe | Loopy belief propagation, bethe free energy and graph zeta function[END_REF], which shows that the vector σ is an approximate eigenvector of H βN, J for any underlying degree distribution of the graph. This would not be true in general for any other value of β = β N , hence in particular not for β SG .

As a visual confirmation, Figure 7 displays the overlap performance and the histograms of the entries of the informative eigenvector of H βN, J versus H βSG, J for a matrix J generated according to Equation [START_REF] Arrigo | Beyond non-backtracking: non-cycling network centrality measures[END_REF], considering on the top row graphs with an underlying power-law degree distribution (this thus goes beyond the assumption of the present article, yet is typical of real-world graph models [START_REF] Barabási | Emergence of scaling in random networks[END_REF]) and on the bottom row Erdős-Rényi graphs. The loss in precision of the spin glass Bethe-Hessian is best understood by comparing the two histograms which evidence that, unlike H βN, J , the underlying node classes seen by H βSG, J is much spoiled by the heterogeneous degree distribution. This is also observed to some extent on Erdős Rényi graphs, but here the performance achieved by H βSG, J is essentially the same as the one obtained with H βN, J .

The use of H βN, J should thus be privileged when the input weighted graph G may be far from an Erdős-Rényi random graph generation, such as in the case of a real-world weighted social graph. Besides, one can envision to extend Algorithm 2 beyond two-class node clustering, as proposed in [START_REF] Dall | A unified framework for spectral clustering in sparse graphs[END_REF], where the authors show that the proper parametrization of the Bethe-Hessian matrix (specifically using multiple rather than a single value for β) brings a decisive advantage on real datasets.

On the opposite, if the input graph is of the Erdős-Rényi type, the performances of both algorithms are observed to be similar, with a slight computational as numerical stability advantage for H βSG, J . We nonetheless underline that the estimation of β N may be of independent interest: if one uses the solution of spectral clustering as the initialization to an algorithm seeking the actual Bayes optimal solution, then the initialization provided by H βSG, J would likely be of good quality, although β N would still remain unknown.

Application to real data classification

We complete the article by a robustness test of our proposed algorithm under a real-world machine learning classification problem. Specifically, we consider a sparse (and thus cost-efficient) version of the problem of correlation clustering such as met in image classification and show how Algorithm 2 can be adopted to accomplish this task with higher performance than with competing spectral methods of the literature.

Let {z i } i=1,...,n be an n-vector dataset with z i ∈ R p . These vectors represent discriminating features of some two-class data (say images) to be clustered in a fully unsupervised manner. In typical modern machine learning, p is of the order of a few thousands for images and a few hundreds for natural language text representations, and it is not rare to try and classify up to millions of data vectors z i .

The most elementary unsupervised machine learning classification approach consists in running the popular k-means algorithm in the ambient p-dimensional feature space. K-means is however known to fail for large p [START_REF] Kriegel | Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering[END_REF] and is ruled out as soon as p exceeds the order of a few tens. A classical workaround is to embed the feature vectors z i in a lower dimensional space on which to run k-means clustering. The most popular embedding exploits a spectral approach: one starts by defining a kernel matrix K({z}) ∈ R n×n , the entry K ij ({z}) of which evaluates some affinity metric between z i and z j ; running a principal component analysis on K({z}), one then extracts a collection of eigenvectors x 1 , . . . , x for some of the order of the presumed number of classes; the rows x1 , . . . , xn ∈ R of the resulting "tall" matrix X = [x 1 , . . . , x ] ∈ R n× form the embedding of the original features from R p into R over which k-means clustering is finally run. A popular affinity function is merely the correlation K ij ({z}) = z T i z j , which we shall consider here.7 For large dimensional datasets though (i.e., for p, n beyond a few thousands), the O(pn 2 ) cost of building K({z}) added to the (at least) O(n 2 ) cost of the principal component analysis step makes spectral clustering hardly achievable on a modern home computer. To drastically decrease the computational complexity one may proceed to a two-level sparsification as recently proposed in [START_REF] Zarrouk | Performance-complexity trade-off in large dimensional statistics[END_REF][START_REF] Couillet | Two-way kernel matrix puncturing: towards resource-efficient pca and spectral clustering[END_REF]: by randomly discarding elements of the p-dimensional features z i and by randomly dropping a number of evaluations of the correlations z T i z j . This operation of course impedes the clustering performance, but, as surprisingly proved in [START_REF] Zarrouk | Performance-complexity trade-off in large dimensional statistics[END_REF][START_REF] Couillet | Two-way kernel matrix puncturing: towards resource-efficient pca and spectral clustering[END_REF] under a "still rather dense graph" regime, the performance loss is negligible for a wide range of sparsity levels. To this end, let S ∈ {0, 1} n×p and M ∈ {0, 1} n×n (symmetric) be Bernoulli masks with parameters κ/p and c/n,8 respectively. The resulting sparsified kernel matrix then becomes

J = K({ x}) • M, where xi,l = x i S i,l . (33) 
i.e., each entry of each of the feature vectors z i is kept only with probability κ/p, while each measurement K ij ({ z}) is only performed with probability c/n. The computational complexity to build J is thus scaled down to O(κcn), i.e., to linear time complexity with respect to the size of the original dataset (which is the best one can hope for without completely dropping part some of the data z i ).

As a major consequence of the sparsification procedure, the non-zero entries of J can be considered asymptotically independent due to the asymptotic absence of short loops in the underlying sparse Erdős-Rényi graph. As a result, Equation ( 26) provides a good approximation for the generative model of J and for a two-class correlation clustering problem, Algorithm 2 can be efficiently used on the matrix J.

We thus practically tested Algorithm 2 against the naïve mean field approach which in this setting happens to coincide with the algorithm proposed in [START_REF] Zarrouk | Performance-complexity trade-off in large dimensional statistics[END_REF] when applied to the zi vectors, and against the weighted Laplacian matrix approach. As a telling modern data classification context, we chose to cluster two classes of high-resolution extremely realistic images randomly produced by generative adversarial networks (the now quite popular GANs) [START_REF] Brock | Large scale gan training for high fidelity natural image synthesis[END_REF]; the interest of using GAN images rather than real images lies in that GAN images can be produced "on-the-fly" and in arbitrary numbers. Specifically, we considered n = 40 000 images divided into two groups of equal size, representing collie dogs and tabby cats. A representative example of the input images generated by the GAN is given in Figure 8. For each of these images we extracted discriminating features using an off-the-shelf convolutional neural network (VGG) which produces p = 512-dimensional feature vectors z i . 9 We then measured the overlap performance as a function of the average node degree c of the ensuing graph and for different values of κ. The results are reported in Figure 8 which strikingly evidences that Algorithm 2 can achieve almost perfect reconstruction already for c = 5 when the feature vectors z i are not sparsified (κ = p): so, in clearer terms, out of the 40k × 40k = 1.6 • 10 9 correlations needed to evaluate the full K({z}) matrix, only ≈ 6 × 40k = 2.4 • 10 5 is enough to achieve almost optimal performance, thus corresponding to a striking 10 4 -fold gain in complexity for a rather marginal performance loss! Figure 8 also reports that the performance of the naïve mean-field and weighted Laplacian matrix approaches, currently the legacy methods in the literature, severely suffer in the low-c end. These observations perfectly adhere with the conclusions drawn so far in the article and thus turns our up-to-here formal Nishimori-optimized algorithm into a concrete powerful method for cost-efficient classification of large dimensional datasets.

Conclusion

The central contribution of the article is of a theoretical nature and aims at introducing an elegant explicit relation between the Bethe-Hessian matrix and the Nishimori temperature. Yet, beyond this statistical physics endeavor, which will surely find further independent theoretical interests, the result finds fundamental direct applications to Bayesian statistical inference; this is strikingly evidenced by the image clustering application devised in Section 4.4. Specifically, one may anticipate an important impact in more involved applications than those considered in this article, such as in restricted Boltzmann machines (RBM) whose goal is to learn a generative model from a set of examples [START_REF] David H Ackley | A learning algorithm for boltzmann machines[END_REF]: the Bethe approximation has recently been adopted to study the RBM from a Bayesian perspective [START_REF] Huang | Unsupervised feature learning from finite data by message passing: discontinuous versus continuous phase transition[END_REF] so that one may envision that the explicit relation between the Bethe free energy and the Bayes optimal (Nishimori) condition presented in this article would lead to a better understanding and improvement of state-of-the-art algorithms. Similarly, the Bethe and TAP approximations have recently been exploited to devise efficient spectral algorithms for phase retrieval, based on statistical physics intuitions similar to the ones detailed in this article [START_REF] Luo | Optimal spectral initialization for signal recovery with applications to phase retrieval[END_REF][START_REF] Ma | Spectral method for phase retrieval: an expectation propagation perspective[END_REF][START_REF] Maillard | Construction of optimal spectral methods in phase retrieval[END_REF]. The extension of our results to this more involved setting is a promising line of exploration.

On the side of complexity reduction, exploiting high levels of sparsification of data measurements, we showed that our proposed algorithm is capable of accomplishing high quality unsupervised classification on very large datasets. This result is all the more fundamental that future machine learning data treatment will call for increasingly larger datasets which cannot be possibly manually labelled and for which unsupervised (or possibly semi-supervised) approaches must be adopted. 10 As a downside though, the generative model we considered for the data affinity (kernel) matrix takes the strong assumption that its entries are drawn from the same probability distribution and only the average (and not the variance, or the distribution itself) embeds information on the node labels. This setting might be too simplistic on generic real data that would require more realistic probability distributions for the generative model of the kernel matrix, considering, for instance, asymmetrical [START_REF] Saade | Clustering from sparse pairwise measurements[END_REF], multi-cluster [START_REF] Shi | Weighted community detection and data clustering using message passing[END_REF] or multi-dimensional distributions.

Possibly most importantly, we worked here under the assumptions that the edges maintained in the sparsified graph are drawn independently at random. When dealing with actual kernel matrices, this cost-efficient measure is quite suboptimal: in [START_REF] Liao | Sparse quantized spectral clustering[END_REF], a more efficient sparsification procedure is used which maintains the entries of K({z}) of largest amplitude. In [START_REF] Liao | Sparse quantized spectral clustering[END_REF], this comes at the cost of computing all the entries of K({z}) but, surely, a more efficient nearest neighbors-type procedure could be implemented as a good performancecomplexity compromise [START_REF] Muja | Fast approximate nearest neighbors with automatic algorithm configuration[END_REF]. Yet, in this setting, although stronger sparsity levels can surely be achieved for the same performance, the key independence property of the entries of K({z}) which we exploited here can no longer be assumed, so that one needs to carefully handle the hard problem of dependencies. There lies the main objectives of our follow-up investigations.

Figure 3 :

 3 Figure 3: Left: spectrum of the matrices M (g) defined in Equation (16) with g, one of the eigenvectors of B attached to a complex eigenvalue. Right: Spectrum of M 0 , defined in Equation[START_REF] Samuel | Theory of spin glasses[END_REF]. The graph considered is the same for the two matrices, with n = 1 500, c = log 2 (n). The matrix W = th(βJ), with β = 1 and the entries J ij are i.i.d. normal variable with J 0 = 1 and ν = 3. The blue dotted line is the position of cE[th(βJ)], the green dash-dotted line is the position of E[th 2 (βJ)]/E[th(βJ)], while the black solid line is
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 4 Figure 4: First row: spectrum of the matrix B in the complex plane for different values of β; Second row: histogram of the eigenvalues of H β,J (zoomed in on the smallest eigenvalues) for different values of β. First column: β = 0.5β F , paramagnetic phase; Second column: β = β F paramagnetic-ferromagnetic transition; Third column: β = β SG paramagnetic-spin glass phase transition; Fourth column: β = β N , Nishimori temperature. For all matrices, the same graph was used with n = 1 000, c = 10. The weights of the edges are ω ij = th(βJ ij ) for the different values of β just described. The J ij are drawn independently from a Gaussian distribution with J 0 = 1 and ν = 1.5. The blue lines in the first row is the vertical line at x = 1, while the purple line in the second row is the vertical line at x = 0.
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 5 Figure5: Left: computation of βN for different values of β N . The blue dots represent the ratio between βN , computed with Algorithm 1 and the analytical value of β N . The purple hexagons are the value of β SG /β N , while the orange line is at y = 1. For these plots, n = 10 000 and c = 5. The weights of the non-zero entries of J are distributed i.i.d. according to N (J 0 , ν 2 ) for J 0 ranging from J 0 = 0.5 to J 0 = 4 and ν = 3.5. Averages are taken over ten samples. Right: behavior of the two smallest eigenvalues of H β,J as a function of β. The solid line indicates the smallest eigenvalue, while the dotted line is the second smallest. The vertical lines are set at β F < β SG < β N . For this simulation, n = 30 000 and c = 10. The weights of the matrix J are distributed i.i.d. according to a N (J 0 , ν 2 ) with J 0 = 1 and ν = 1.5.

Algorithm 1 :

 1 Compute βN input : Weighted adjacency matrix of a graph J ∈ R n×n , precision error ∈ R; output: Value of βN ∈ R + ; Compute c, the average degree of the underlying unweighted graph: c = 1 n i j I(J ij = 0) ; Compute βSG by solving cE[th 2 ( βSG J ij )] = 1; Set t = 1 and β t ← βSG ; Initialize δ ← +∞ ; while δ > do

Figure 8 :

 8 Figure 8: Left plot: example of random generations of GAN images representing collie dogs and tabby cats used for the experiment. Right plots: overlap classification performance of 40 000 GAN images, as a function of the expected average underlying graph degree c. Here, we consider K ij ({x}) = 1 p x T i x j and we take either κ = p: all features of the images are kept, or κ = 20: on average, only κ/p features (out of the original p = 512) are used. Simulation performances are themselves averaged over 10 realizations.

We underline here that, to be fully rigorous, β N is not, by definition, a temperature, but rather a parameter of the generative model of J, i.e., a hidden parameter of the teacher's generative model.

Rigorously, it is not so straightforward to move from E[H β N ,J ] to H β N ,J . In[START_REF] Dall | Revisiting the bethe-hessian: improved community detection in sparse heterogeneous graphs[END_REF], a similar setting is considered in which the eigenvector x is studied in depth. The article argues that the relation indeed holds.

Here | • | is the entry-wise absolute value.

Taking the limit β N → ∞ in Equation (27) is equivalent to looking for the maximum a posteriori solution.

Other choices exist, such as the more popular heat kernel K ij ({z}) = exp(-z i -z j 2 /2ν 2 ) for some ν > 0.

The choice of c is not a coincidence: M will enforce an average node degree of c to the resulting graph.

The p = 512 figure is on the low-hand of typical image vector representations: this number today may rise to 4k or even to 20k when much more than two classes of images are to be classified.

A configuration which, in passing, even modern so-called deep neural networks struggle to correctly handle.

Note that the inference problem of Equation[START_REF] Shi | Weighted community detection and data clustering using message passing[END_REF] does not make any assumption on the respective sizes of the classes that can therefore be arbitrary. In the case of asymmetric classes, however, the term E[J ij ] = 0 depends on the sizes of the two classes. In order to do the proper shift, one would then need additional information on the class sizes.

The detectability condition we recall to imposed by β N > β SG . While β N is independent of the average degree, β SG is a decreasing function of the average degree, as it can be easily obtained from its definition in Equation[START_REF] Nishimori | Absence of replica symmetry breaking in a region of the phase diagram of the ising spin glass[END_REF].
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A An explicit expression for the matrix F (g)

We here provide one of the possible explicit expressions that the matrix F (g) can have. In particular, this is the expression used in our simulations. Let us recall the definition of the matrix F (g).

Let g ∈ R 2|E| be an eigenvector of the matrix B with weight vector ω ∈ R 2|E| . Let λ be the eigenvalue corresponding to g, with |λ| ≥ 1. The matrix F (g) is any matrix satisfying the relation

where we recall that

A possible definition of the matrix F (g) is to consider a diagonal matrix, satisfying

This matrix depends however explicitly on g. We here describe an alternative expression in which the dependence on g is manifested only through λ. More explicitly, the following relation holds

Considering the same equation for g ji , we can easily write the following system

For |λ| ≥ 1 and |ω ij | < 1, the matrix on the left hand-side can be inverted, leading to the following relation

Plugging Equation [START_REF] Maillard | Construction of optimal spectral methods in phase retrieval[END_REF] into Equation [START_REF] Dall | Revisiting the bethe-hessian: improved community detection in sparse heterogeneous graphs[END_REF], the following expression of F (g) ≡ F (λ) can be obtained:

This expression of the matrix F (g) ≡ F (λ) is the one considered in our simulations.

B Algorithm implementation

In this appendix we discuss more extensively some details concerning a practical and efficient implementation of Algorithm 2. For reference, our codes are available at github.com/lorenzodallamico/NishimoriBetheHessian. We now proceed to a detailed analysis of each step of Algorithm 2.

The first step of Algorithm 2 consists in the following operation:

The rationale of this operation is to consider an input matrix J as close as possible to a realization of the distribution of Equation ( 26) that satisfy, for two classes of equal size 11 , the condition E[ Jij ] = 0. By shifting the empirical average of Jij to zero for the input of Algorithm 2, we are willing to reproduce this property. Note that only the non-zero entries of J are shifted, while for all the (ij) / ∈ E the Jij = 0.

Once a proper input matrix J is obtained, the value of β SG and then the smallest eigenvalue of H βSG, J are computed: if the latter is positive, one cannot proceed any further to the computation of βN and the algorithm is stopped. In the spirit of correlation clustering, discussed in Section 4, the condition γ min (H βSG, J ) < 0 imposes the minimal average degree to perform non-trivial reconstruction. 12 At this point, we get to the core of Algorithm 2 that consists in the computation of βN . The first thing to do is to determine if G is a signed graph (with only ±J 0 entries). If this is the case, the signed representation of H β, J introduced in Equation ( 30) should be adopted. We consider first this easier case.

For notation convenience, we introduce r = [th(βJ 0 )] -1 (r ≥ 1) and define H r, J = (r 2 -1)I n + D -r J. Furthermore, let x r be the eigenvector of H r, J associated to its smallest eigenvalues. We look for r so that γ min H r, J = 0.

In order to do so, consider r t > rN = [th( βN J 0 )] -1 . The following relation is true for any r,

where d rt = x T rt Dx rt and j rt = x T rt Jx rt . Defining r t+1 as the solution to f rt (r t+1 ) = 0, one immediately obtains from Equation ( 36) that γ min (H rt+1, J ) < 0. One can show [47, Appendix F] that |r t+1 -r N | < |r t -r N |, hence, that at each iteration the value of r t approaches rN . In practice, convergence is typically achieved in less than 10 iterations. A good initialization is r 0 = [th(β SG J 0 )] -1 > rN (recall that β N > β SG ), ensuring the algorithm convergence.

We now consider graphs with non-binary weights that introduce additional complications. The entries of H β, J grow exponentially, with β, making the eigenvalue computation potentially unstable. In order to work with a matrix with entries of order 1, we introduce the following weighted regularized Laplacian [START_REF] Dall | Optimal laplacian regularization for sparse spectral community detection[END_REF]:

where J x. The matrix L β, J hence allows to compute βN and x in a more efficient way, since it is more suited to eigenvalue computations. We can define in this case f βt (β) = v T t L β, J v t and update β t+1 as the solution to f βt (β t+1 ) = 0. In any case, for very large values of β N (hence for very easy clustering problems) numerical instabilities may occur. In order to avoid this problem, we allow a "maximal value" β th for βN beyond which the algorithm is stopped. The main reason that allows us to do so is that if β N > β th we are practically in a easy detection regime, for which the knowledge of the exact value of β N is less relevant and can be otherwise achieved first estimating the labels σ (the estimation of which will be very accurate) and then solving E[th(β N Jij σ i σ j )] = E[th 2 (β N Jij )]. We empirically observed that a good stopping criterion is obtained imposing β th ∼ √ cβ SG .