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Abstract

In this paper, we consider a variant of the Inventory Routing Problem (IRP),
the Time-Dependent IRP (TD-IRP). The TD-IRP extends the routing component
of the IRP by making the travelling time between two locations no longer constant
but depending on the departure time. In order to investigate the relevance of con-
sidering time-dependent travelling time functions, a set of new benchmark instances
based on real-data is assumed. Numerical experiments show that optimising with
time-dependent travelling times is cost-efficient, but computationally challenging.
Thus, we propose a matheuristic that decomposes the problem, based on the ob-
servation of the structure of optimal TD-IRP solutions. The proposed matheuristic
defines the set of clients to visit and the quantity to deliver for each period first and
solves the routing problem second. Numerical experiments prove it to be very effi-
cient and yield solutions with small gaps to the best lower bounds found. Because
it separates the routing problem, the proposed matheuristic opens the possibility
to solve the TD-IRP very efficiently by taking advantage of the rich literature on
time-dependent routing problems.

Keywords: Logistics; inventory routing problem; time-dependent travelling
time; realistic benchmark; matheuristic

1 Introduction

The Inventory Routing Problem (IRP) is the integration of two sub-problems of the
supply chain: inventory management and transportation. It emerged in the context of
Vendor Managed Inventory (VMI), where the inventories of the clients are controlled
by the supplier. The objective of the IRP is to decide, for each period of the time
horizon, how much quantity to send to each client and following which sequences the
clients must be visited, minimising the total costs incurred by both inventory holding
and transportation while satisfying a set of constraints.
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During the last decades, the IRP literature has received a great deal of attention (Coelho
et al., 2014). In the pursuit of models that are more and more representative of real-life
situations, many variants emerged to cater for the requirements of the actors involved
and the challenges that real-life situations impose. A few examples of these variants
are: the IRP with time windows, where a client requires to be visited only within a
time interval; travel-time constrained IRP, where tours must be completed before a
certain time; IRP with transshipment, where one client can be replenished from the
inventory of another client rather than from the supplier. . . Another feature that real-
life situations impose is the volatility of the data. In the IRP, different parameters are
subject to data uncertainty, such as the demand of the clients or the travelling time
between two locations, especially in urban logistics, where traffic conditions are very
uncertain or when handling products that are perishable or clients with time windows. In
the literature, this problem is handled by considering stochastic parameters and solved
through stochastic and robust optimisation approaches (Rahimi et al., 2017; Lefever
et al., 2021; Rodrigues et al., 2019). However, when it comes to travelling time, a
deterministic way of taking into consideration this volatility is to consider it as time-
dependent.

Time-dependent problems consider that the travelling time between two locations does
not depend only on the departure and arrival locations, but depends on the time of
departure as well. The literature of time-dependent routing problems is quite rich (Gen-
dreau et al., 2015) and shows that time-dependent problems tend to be more complex
than their basic counterparts, so the literature is mainly focused on how to solve these
problems more efficiently. To the best of our knowledge, these problems have mostly
been considered for pure routing problems such as the Time-Dependent Travelling Sales-
man Problem (TD-TSP) or the Time-Dependent Vehicle Routing Problem (TD-VRP),
and only once for integrated problems such as IRP. As the time-dependent aspect can
be more representative of the volatility of real-life traffic conditions than considering the
travelling time as an uncertain quantity, we believe that the TD-IRP is worth investi-
gating.

In this paper, we therefore consider a variant of the IRP: the Time-Dependent Inventory
Routing Problem (TD-IRP) with travel-time constraints, where the travelling times
between locations are time-dependent and the length of tours is time-constrained. This
paper contributes to the literature by generating a new benchmark set for the TD-IRP,
based on real-life transportation data collected through 6 years in the city of Lyon.
Moreover, it investigates the relevance of considering time-dependent travelling times
for the IRP through computational experiments. Finally, it proposes a matheuristic
that can be used to solve large-sized instances.

The paper is presented as follows: Section 2 reviews the literature of the IRP, in general,
and the IRP when travelling times are the main focus, in particular. It shows that the
volatility of the travelling time in the IRP literature is mostly handled by considering
it as uncertain data. As a result, we turn to pure routing problems to investigate how
the time-dependent aspect is handled. In Section 3 the TD-IRP is described through
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a mathematical formulation and an illustrative example. In Section 4 a new realistic
benchmark for the TD-IRP is generated and the process of generation described. In
Section 5, the relevance of considering time-dependent travelling times for the IRP is
investigated. To that purpose, an exact branch-and-cut algorithm is presented, and a
comparison between optimal time-dependent solutions and optimal constant travel-time
solutions when re-solved in a time-dependent environment is proposed. The results show
that considering time-dependent travelling times can be beneficial cost-wise. However,
it also shows that solving TD-IRPs is extremely difficult, thus the need for new efficient
algorithms to solve them. Section 6 presents a matheuristic and discusses the results of
the numerical experiments, showing that our matheuristic performs very well and can
be used to solve large-sized instances. Finally, Section 7 concludes the paper with some
perspectives for future research.

2 Literature Review

The origin of IRP goes back to the paper of Bell et al. (1983) where the goal was to
automatise the process of delivering liquid gases for the company Air Product. Since
then, the interest for the IRP among scholars spiked and much work has been dedicated
to present new variants of the IRP, related to its different parameters. Due to the rich
literature on IRPs, scholars such as Moin and Salhi (2007), Andersson et al. (2010),
Coelho et al. (2014) and Cao et al. (2020) review the literature and propose future
perspectives in the area. Others, such as Malladi and Sowlati (2018) and Soysal et al.
(2019), focused on the sustainability aspect of the IRP, whereas Roldán et al. (2017)
review the literature of stochastic approaches. Bertazzi and Speranza (2012) focus on
the solving approaches and propose an overview of the heuristics and matheuristics used
for the IRP in the literature. As we do not aim to provide an exhaustive review of the
IRP literature, this paper proposes instead a review of IRP works where the travelling
time is the main focus.

2.1 Inventory Routing Problem with travelling time focus

In the IRP literature, the most common variants where the travelling time is the main
focus is the IRP with time windows. In this case, clients can only be served within a
certain time interval. Delgado et al. (2018) propose a review of the literature for the
IRP with time windows. In a recent work by Ortega et al. (2020), the authors propose
a matheuristic to solve the Consistent IRP with Time Windows and Split Deliveries.
This variant of the IRP arises from a real-world application, namely route planning
and inventory management for beer and other beverages companies. As the clients have
different opening times and time windows, satisfying the overall demand can only be done
by splitting the deliveries across more than one vehicle. Furthermore, the satisfaction
of the clients depends on the consistency in delivery times. The matheuristic builds an
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initial solution by using a constructive heuristic to decide which clients must be visited
for each period. Local search operators are then applied on this solution to improve
its quality, and then a MIP is solved to determine the timing and the quantities. This
solution goes through iterative improvements in a second phase, using an adaptive large
neighbourhood search algorithm. Most recently, Wu et al. (2021) extend the problem
to the location IRP with time windows and fuel consumption. The authors propose a
two-stage hybrid metaheuristic algorithm to address this problem where in the first stage
a customised genetic algorithm is solved and in the second, a gradient descent algorithm
is proposed.

Another variant in the literature is the travel time-constrained IRP. In this context, the
tours must be completed before a certain duration limit. This variant caters for some
legislation requirements where drivers are not allowed to drive for longer than a certain
duration in order to avoid traffic accidents. Lefever et al. (2021) present a Bender’s
decomposition algorithm to propose robust solutions where the travelling times evolve
in symmetric and bounded intervals around their mean values. Another work is pro-
posed by Coelho et al. (2020) in a Multi-Attribute Inventory Routing Problem context,
which is the integration of the Multi-Depot IRP and the travel-time constrained IRP. In
this paper, the authors propose a hybrid exact algorithm to solve the problem combin-
ing Mixed Integer Programming (MIP) and Variable Neighbourhood Search schemes.
Extensive experimental results prove the efficiency of the hybridisation process, as it
accelerates the resolution with respect to a branch-and-cut algorithm applied to the
regular MIP formulation.

Other scholars focus on the sustainability of the transportation component of the IRP. In
Alkaabneh et al. (2020), the authors propose a mathematical formulation that optimises
the costs due to fuel consumption, inventory holding, and greenhouse gas emissions.
Greenhouse gas emissions are computed as a function of fuel consumption levels that are
calculated from the vehicle speed, load and travelled distance. As the travelling time is
computed by vehicle speed and travelled distance, this paper is relevant for our literature.
To solve the problem efficiently, the authors propose a Bender’s decomposition approach
with several acceleration strategies such as valid inequalities and efficient upper bounds.

In Li et al. (2014), an original way of handling travelling time in the IRP is proposed.
Instead of optimising the classic inventory and transportation costs, the authors minimise
the maximum travel time among all vehicles. The problem is set for a large petroleum
and petrochemical Chinese enterprise group that is responsible for the distribution of
gasoline to gas stations. The authors argue that in this context, avoiding stock out is
more important than focusing on transportation cost minimisation, as running out of
stock might not only be viewed as a business problem, but also a social problem by the
local community. The authors propose a tabu-search algorithm to solve the problem,
and propose a Lagrangian relaxation formulation to produce tight lower bounds in order
to assess the efficiency of their algorithm.

In all the works cited above, the travelling time is an important parameter of the problem.
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Most of these works model the travelling time between two locations as a constant
value, which does not take into account the volatility of the travelling time, especially
in urban logistics where traffic conditions can have a huge impact. However, in works
such as Rahimi et al. (2017); Dong et al. (2018); Lefever et al. (2021), it is taken into
consideration by modelling the travelling time as uncertain data. One other way to take
this volatility into consideration is to consider time-dependent travelling times.

To the best of our knowledge, only one paper tackles the TD-IRP. In Cho et al. (2014), the
authors propose a variant of the IRP where the speed of the vehicles is time-dependent.
In order to model the volatility of the speed throughout the day, an artificial benchmark
is generated where the day is decomposed into three main time intervals: morning rush
hours, off-peak hours and evening rush hours. The speed is different from one interval
to another and the authors assume that these assumptions are sufficient to mimic the
traffic conditions during the day. Moreover, the authors propose a genetic algorithm to
solve the problem. However, since this paper, no scholars have taken interest in the TD-
IRP, thus we turn to pure routing problems to better understand how time-dependent
travelling times are handled.

2.2 Time-dependent routing problems

In time-dependent routing problems, the travelling time between two locations does not
only depend on the departure and arrival locations but also on the time of departure.
Gendreau et al. (2015) propose an extensive review of the literature. They show that
the time-dependent aspect is only considered for pure routing problems such as the
Time-Dependent Travelling Salesman Problem (TD-TSP) or the Time-Dependent Ve-
hicle Routing Problem (TD-VRP). The paper concludes that time-dependent problems
are harder to solve than their basic counterparts. Moreover, although the literature is
substantial, it is still quite recent and the resolution aspect can be further investigated,
thus the need for new efficient approaches. The remainder of this section focuses only
on work published subsequently to the review by Gendreau et al. (2015).

As time-dependent routing problems are hard to solve, most of the recent work on the
TD-VRP and TD-TSP consists in proposing new efficient algorithms for their different
variants. New exact algorithms are proposed to solve time-dependent routing problems
using the most common approaches such as integer linear programming (Montero et al.,
2017; Hansknecht et al., 2018; Arigliano et al., 2019), dynamic programming (Lera-
Romero et al., 2020) and constraint programming (Melgarejo et al., 2015). The authors
of Minh Vu et al. (2018) propose a novel approach based on the dynamic discretisation
discovery framework that, instead of generating a time-expanded network in a static
fashion, does so in a dynamic and iterative manner. The results show that the algorithm
outperforms those of the literature and that it is robust with respect to all instance
parameters, particularly the degree of travel time variability. However, although the
performances of exact approaches are rapidly increasing, solving large-sized problems
is still a computational challenge. Therefore, scholars propose algorithms based on
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local search procedures to solve such instances, such as adaptive large neighbourhood
search (Franceschetti et al., 2017; Rincon-Garcia et al., 2020; Pan et al., 2020), ant
colony algorithm (Deng et al., 2018; Liu et al., 2020), tabu search (Ban, 2019), variable
neighbourhood search (Lu et al., 2020), or genetic algorithms such as NSGA-II (Zhao
et al., 2019).

Another part of the time-dependent literature focuses on generating time-dependent
travelling time functions. A recent work in this area is proposed by Rifki et al. (2020),
where the authors propose a new real-life benchmark for routing problems based on the
traffic conditions of the city of Lyon in France, using a dynamic microscopic simulator
of traffic flow. The purpose of their study is to show the impact of space granularity, i.e.
the number of sensors deployed to monitor the traffic flow, and time granularity, i.e. the
number and length of time steps, on the quality of the solutions for pick-up and delivery
optimal tours. Other scholars take the volatility of travelling time functions further by
expanding it to an uncertain time-dependent environment using fuzzy logic to model
such uncertainties (Gambuzza et al., 2018; Koczy et al., 2019; Almahasneh, 2020).

This rich time-dependent routing literature provides benchmarks to experiment on and
ideas on how to model and solve the TD-IRP that will be exploited throughout this
paper.

3 Problem description and modelling

The IRP is set in a network where a supplier is responsible for managing the inventory
and organising the replenishment of a set of clients over a time horizon. The supplier has
a production rate whereas the clients have a demand to satisfy, a capacitated inventory
and a service time in which the products are unloaded. The objective is to decide,
for each period of the time horizon, the replenishment quantities as well as planning
routing sequences, in order for the clients to satisfy their demand, while minimising the
total costs incurred by both inventory holding and transportation. The TD-IRP is an
extension of the IRP on its transportation component, where the travelling time between
two locations does not only depend on the departure and arrival locations, but on the
time of departure as well. In this paper, we consider that a period represents a day of
the week. Each day is discretised into small time intervals for which the travelling time
between two locations are different from one time interval to another, and are constant
within one time interval. These time intervals are called time steps. Moreover, in this
paper, we consider that the cost of transport incurs only when the vehicle is moving.
Therefore, a tour can contain waiting times, as it may sometimes be more efficient to
leave later to improve the cost of the tour. However, in order for the waiting times to
not be exaggerated, a travel-time constraint is imposed on the duration of the tours.
Finally, we consider that all tours start at the beginning of the period. This assumption
may seem counterproductive in the case of TD-IRP, since leaving later may reduce the
cost of the tour. Note however that in real-life situations, the working hours of the
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drivers are generally fixed beforehand. In such a case, starting at a different time than
the beginning of the period would amount to adding a waiting time at the depot.

3.1 Mathematical formulation

Let G = (V,A) be a graph where vertex 0 ∈ V represents the supplier, V ′ = V\{0} is the
set of clients and A is a set of arcs linking them. H = {1, 2, ..., |H|} is the scheduling time
horizon and H′ = {0} ∪ H is the horizon including period 0 which represents the initial
state. p ∈ H′ represents the index of the period. M is a set of time steps where m ∈M
represents the index of the time step and L its duration. |M| represents the number of
time intervals into which a period p ∈ H is discretised. Finally,M′ is the subset of time
steps which satisfy the travel-time constraint, i.e. all tours must be completed before
the end of time step |M′|.
Each client i ∈ V ′ has a demand Dp

i for period p ∈ H, an initial inventory I0i , a maximal
inventory level Imax

i and a service time si. The supplier has an unlimited inventory
capacity, an initial inventory I00 , Rp products available at each period p ∈ H and a
vehicle with a maximal capacity C. Keeping one item in inventory for a period incurs a
holding cost hi for each actor i ∈ V. Finally f(i, j,m) is a travelling time function that
represents the duration of travelling through arc (i, j) ∈ A when leaving i ∈ V at time
step m and c is the cost of one unit of time travelled.

Variables: let xpij be a binary variable that equals 1 if arc (i, j) ∈ A is travelled in
period p, 0 otherwise. xpmij is a binary variable that is equal to 1 if (i, j) ∈ A is travelled
in period p and the departure from i to j is in time step m, 0 otherwise. It is the same
variable as xpij , only with a different granularity since if |M| = 1, xpij = xpmij . ypi is a
binary variable that is equal to 1 if location i ∈ V is visited in period p, 0 otherwise.
Ipi ∈ R represents the inventory level of actor i ∈ V at the end of period p ∈ H′ and
qpi ∈ R is the quantity sent from the supplier to client i ∈ V ′.

Model: The mathematical model (TD-IRP) is a generic model inspired by the one
presented in Archetti et al. (2007) which is widely used in the IRP literature. The
objective computes the total holding cost for each location i ∈ V and time period p ∈
H′ and the total travelling cost for all time periods p ∈ H. Constraints (1) are flow
conservation constraints that compute the inventory level of the supplier at each period
p ∈ H from its previous inventory level, the quantity produced at p and the quantities
sent to the clients at p. Similarly, constraints (2) state the flow conservation constraints
regarding the clients. They compute the inventory level of each client i ∈ V ′ for each
period p ∈ H from its previous inventory level, the quantity received from the supplier
and its demand for period p. The inventory capacity is enforced through several sets of
constraints: Constraints (3) state that the inventory level of client i ∈ V ′ at any period
p ∈ H must be lower than Imax

i , and constraints (4) state that a replenishment of this
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TD-IRP

min obj = c
∑

(i,j)∈A

∑
p∈H

∑
m∈M

f(i, j,m)× xpm
ij +

∑
i∈V

∑
p∈H′

hi × Ipi

s.t Ip0 = Ip−1
0 − ∑

i∈V′
qpi +Rp ∀p ∈ H (1)

Ipi = Ip−1
i + qpi −Dp

i ∀i ∈ V ′ , ∀p ∈ H (2)

Ipi ≤ Imax
i ∀i ∈ V ′ , ∀p ∈ H (3)

qpi + Ip−1
i ≤ Imax

i ∀i ∈ V ′ , ∀p ∈ H (4)

qpi ≤ yp
i × Imax

i ∀i ∈ V ′ , ∀p ∈ H (5)

qp0 ≤ C × yp
0 ∀p ∈ H (6)

∑
j∈V′

xp
ij = yp

i ∀i ∈ V , ∀p ∈ H (7)

∑
j∈V′

xp
ji = yp

i ∀i ∈ V , ∀p ∈ H (8)

∑
(i,j)∈S

xp
ij ≤ |S | − 1 ∀S ⊆ A , p ∈ H (9)

∑
m∈M

xpm
ij = xp

ij ∀(i, j) ∈ A, ∀p ∈ H (10)

∑
j∈V′

xp0
0j = yp

0 ∀p ∈ H (11)

∑
vk∈P\{vn}

∑
mk∈T

x
p,mk
vk,vk+1 ≤ |P | − 2 ∀[P, T ] infeasible, p ∈ H (12)

yp
i ∈ {0, 1} ∀i ∈ V , ∀p ∈ H (13)

qpi ≥ 0 ∀i ∈ V ′ , ∀p ∈ H (14)

Ipi ≥ 0 ∀i ∈ V , ∀p ∈ H (15)

xp
ij ∈ {0, 1} ∀(i, j) ∈ A , ∀p ∈ H (16)

xpm
ij ∈ {0, 1} ∀(i, j) ∈ A, m ∈ M′,

∀p ∈ H
(17)

client at period p ∈ H cannot exceed its maximal inventory level. Constraints (5) link
variables ypi with qpi , stating that a client i ∈ V ′ who receives a quantity at period p ∈ H,
is necessarily visited at p. Imax

i is used here as an upper bound for qpi . Constraints (6)
work similarly for the supplier, stating that the quantity leaving supplier 0 at period
p ∈ H is limited by the vehicle capacity C. Constraints (7) and constraints (8) are flow
conservation constraints for the routing component for each i ∈ V ′ and respectively state
that if a client is visited, one arc arrives to it and another leaves from it. Constraints (9)
eliminate sub-tours, where S is a set of sub-tours. Constraints (13) to (16) enforce
integrality and non-negativity conditions on the IRP variables.

The time-dependent aspect of the IRP is ensured by constraints (10) to (12) and (17).
Constraints (10) link variables xpmij with variables xpij and state that if an arc (i, j) ∈ A
is travelled in period p, it leaves i at one and only one time step m ∈ M. Con-
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straints (11) state that routing starts at the beginning of period p ∈ H, i.e. m = 0. Con-
straints (12) eliminate time-dependent infeasible paths, where [P, T ] is a time-dependent
infeasible path (see definition below). Finally, constraints (17) enforce integrality and
non-negativity conditions on the TD-IRP variables.

Constraints (9) and Constraints (12) are exponential constraints. However, only a part of
them will be dynamically generated in a branch-and-cut procedure that will be described
in subsection 5.1. There are various strategies to express the sub-tour constraint in a
MILP (Orman and Williams, 2006), however none would yield a model that could be
solved in a reasonable amount of time by a MILP solver.

The definition of a time-dependent infeasible path, with allowed waiting times, is pre-
sented below, as described in Miranda-Bront et al. (2010).

Time-dependent infeasible path

Let P =< v1, ..., vk−1, vk, vk+1, ..., vn > where vk ∈ V ′ and v1 = vn = 0 the supplier.
Let T =< m1, ...,mk−1,mk,mk+1, ..., vn−1 > be a set of departure time steps. A time-
dependent path [P, T ] is a combination of P and T where T represents the departure
time steps of vk ∈ P\{vn}.
Let tvk be the earliest departure time, svk the service time at location vk ∈ P and tmin

mk

the beginning of time step mk:

• tvk =

{
0 + svk vk = 0

max{tvk−1
+ f(vk−1, vk, b

tvk−1

L c) + svk , t
min
mk
} ∀k ∈ P\{vn, v1}

• [P, T ] is infeasible ⇐⇒ ∃vk ∈ P : tvk /∈ [tmin
mk

; tmin
mk+1[

3.2 An illustrative example

Let us consider an example of the TD-IRP where the network is composed of a supplier
and three clients V = {0, 1, 2, 3}, a time horizon |H| = 3 and a vehicle capacity C = 20.
Each period p ∈ H is decomposed into |M| = 3 time steps with a length L = 10 time
units. Table 1 and Figure 1 present all the data related to instance w. The columns of
Table 1 represent, respectively, the indices i of the supplier/clients, their initial inventory
I0i and maximum inventory Imax

i , the production rate Rp of the supplier, the demand
Dp

i of the clients and finally the holding costs. Figure 1 illustrates the travelling times
between each couple of locations for every time step. Arcs going from client i to i
represent the service time at the client. An example of the form of the travelling time
function f between the supplier 0 and client 1 is presented in Figure 2. The figure shows
that the travelling time between 0 and 1 is of f(0, 1, 1) = 8 for the first time step, 12 for
the second and 10 for the third.

9



i I0i Imax
i

Rp Dp
i hi

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0 30 +∞ 30 30 30 - - - 0.1
1 15 20 - - - 8 12 10 0.15
2 10 25 - - - 15 11 19 0.18
3 5 10 - - - 8 4 3 0.13

Table 1: A representation of the data for the example

(a) m = 1 (b) m = 2 (c) m = 3

Figure 1: Time-dependent graphs for each time step of the example

A solution for the example is represented in Table 2 and Figure 3. Table 2 presents
the inventory levels at the end of each period of each location Ipi and the quantities qpi
sent from the supplier to each client i for the whole time horizon. Figure 3 shows the
sequence of the routing component through a Gantt chart.

As we can see from Table 2, clients 2 and 3 are replenished in period p = 1, all clients
are replenished in period p = 2 and clients 1 and 2 are visited in period p = 3. Figure 3
shows that in period p = 1, the vehicle leaves the supplier, visits client 2 and then client
3 in the first time step. In the beginning of the second time step, it leaves client 3 to
return to the supplier without waiting at any node. In period p = 3 on the other hand,
the vehicle visits client 1 in the first time step. It waits until the beginning of the second

i
Ipi qpi

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0 40 50 60
1 7 8 0 0 13 2
2 10 1 0 15 2 18
3 2 3 0 5 5 0

Table 2: Values of variables Ipi and qpi for a solution of the example
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Figure 2: A representation of the travelling time function between the supplier 0 and
client 1.

Figure 3: A representation of the transportation component for a solution of the example

time step to visit client 2 and then waits for the third time step to get back to the
supplier.

4 A Time-Dependent Inventory Routing benchmark

Since the TD-IRP literature is rather sparse, benchmarks for the TD-IRP are almost
nonexistent. In this section, we thus propose a new benchmark set for the TD-IRP,
combining an IRP benchmark proposed in Archetti et al. (2007) with a TD-TSP bench-
mark proposed in Rifki et al. (2020). Both benchmarks are first modified and adapted to
better fit our needs, the main objective being of mimicking real-life conditions as closely
as possible.
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4.1 Inventory management data

The inventory-related data of the benchmark is generated using the benchmark proposed
in Archetti et al. (2007). Although this benchmark is the most commonly used in the
IRP literature, it is generated following rather strong assumptions:

• the demand of the clients is constant for the whole horizon;
• the vehicle’s capacity is large enough to replenish all clients in one period;
• initial inventories are such that no replenishment is needed for the first period of

the horizon;
• the holding cost of some clients is inferior than the one of the supplier.

These assumptions are rarely met in real-life instances. Furthermore, they lead to opti-
mal solutions in which the clients are all replenished in a single period. Such structures
rarely reflect real-life solutions, especially in urban logistics where the size of vehicles is
small and the inventory capacities at the delivery points are not large enough to ensure
demand satisfaction for a large period of time. Moreover, if all the clients are replenished
in a single period over the time horizon, the problem is almost no longer an IRP but
rather a TSP or a VRP.

Therefore, modifications are performed on a subset of the instances proposed, in order
to provide a more realistic benchmark. The generation of the new values is done for
instances with |H| = {3, 6}, a number of clients |V ′|H|=3| = {5, 10, 15, 20, 25, 30} when

|H| = 3 and |V ′|H|=6| = {5, 10, 15, 20} when |H| = 6. For each combination of these
parameters, 5 different instances are generated, which yields a total of 50 instances.
Algorithm 1 presents the generation process.

The demand of the new benchmark is no longer constant, but varies from one period
to another by ±[−0.25, 0.25] of the initial value Dold

i . The value of 0.25 in this case
is arbitrary. The production rate of the supplier is set such that it is possible to meet
the demand of all the clients for each period. The inventory capacity of the clients can
cover the demand for up to two periods on average whereas the one of the supplier is
unlimited. The initial inventory levels of the clients follow a uniform distribution over
the set {0, 0.25, 0.50, 0.75, 1} × Imax

i . The initial inventory of the supplier can cover the
inventory capacity of all the clients once. The vehicle capacity is set such that it can
only cover up to 90% of the demand average for one period. Finally, we assume that the
holding cost of the supplier should be inferior to the one of the clients and set it to 2/3
of the smallest holding cost of the clients. This assumption is made from the realistic
hypothesis that the supplier is able to handle its inventory more efficiently than its
clients. Furthermore, clients in this case are situated in urban areas, where the holding
costs tend to be higher.
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Algorithm 1: Inventory management component generation

1: input: an instance from the benchmark of Archetti et al. (2007)
2: for i ∈ V ′ do
3: for p ∈ H do
4: generate a random δ ∈ [−0.25, 0.25]
5: Dp

i = bDold
i × (1 + δ)e

6: end for
7: Imax

i = 2
|H|

∑
p∈H

Dp
i

8: generate a random number ρ ∈ [0, 1[

9: I0i =





0 if ρ ∈ [0, 0.2[

Imax
i × 0.25 if ρ ∈ [0.2, 0.4[

Imax
i × 0.5 if ρ ∈ [0.4, 0.6[

Imax
i × 0.75 if ρ ∈ [0.6, 0.8[

Imax
i if ρ ∈ [0.8, 1[

10:

11: end for
12: C = 0.9

|H|×|V ′|
∑
i∈V ′

∑
p∈H

Dp
i

13: h0 = 2
3 min
i∈V ′

hi

14: Rp = 1.25
|H|×|V ′|

∑
i∈V ′

∑
p∈H

Dp
i

15: I00 =
∑
i∈V ′

Imax
i

4.2 Time-dependent travelling time functions

In the benchmark of Archetti et al. (2007), the distance travelled between two locations
is defined by the euclidean distance. This data is disregarded and replaced by time-
dependent travelling time functions.

Producing time-dependent functions for routing problems is a productive field in trans-
portation literature. A variety of functions exist in the literature (Rifki et al., 2020):
some are artificial while others are based on real traffic data. Rifki et al. (2020) propose
a benchmark based on the traffic conditions of the city of Lyon in France, using a dy-
namic microscopic simulator of traffic flow. Based on data collected from sensors placed
in the axes of the city, a time-dependent travelling time function is defined for a time
interval of 12 hours and is decomposed into time steps. For each time step, a consis-
tent spatio-temporal mean formulation is used to compute the travelling time for each
segment of the network. Afterwards, the shortest path is computed between each two
different locations for each time step. The benchmark yields a set of constant piece-wise
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travelling time functions between each two different locations with different time granu-
larity/time steps |M| = {1, 12, 30, 60, 120} of respective lengths L = {720, 60, 24, 12, 6}
minutes, for an instances total of 250. An example of these travelling time functions
between two random locations is presented in Figure 4. It shows the travelling time
function, as explained in Figure 2, but with different time steps |M|. The figure shows
that the travelling time functions are highly volatile which can seem unrealistic. How-
ever, in the case of urban transportation, the travelling times is indeed volatile, because
traffic congestion can have a big impact on travelling times, especially small ones that
can double or triple.

Figure 4: A travelling time function between two random locations for |M| =
{1, 12, 30, 60, 120}

For all instances described in section 4.1, a set of locations are randomly picked from
Rifki et al. (2020)’s benchmark and matched to each location from Archetti et al. (2007)’s
benchmark. The time-dependent travelling time functions corresponding to this set of
locations are added to the instance.

4.3 First In First Out (FIFO) property

The problem of such constant piece-wise functions is that they do not necessarily satisfy
the FIFO property.

Definition: Let [tmin
m , tmin

m+1[ be the time interval of time step m, tmin
m is the beginning

of time step m. A travelling time function f that satisfies the FIFO property is
such that:

t′+f(i, j,m′) ≥ t+f(i, j,m) ∀(i, j) ∈ A, ∀t ∈ [tmin
m , tmin

m+1[, ∀t′ ∈ [tmin
m′ , t

min
m′+1[ where m′ ≥

14



m

In other words, when leaving i to j at t′, the arrival time must be greater than the one
when leaving i to j at t, where t′ ≥ t. This property is violated for every decreasing
discontinuity in f , i.e. for all m ∈ M where f(i, j,m) > f(i, j,m + 1). However, since
f(i, j,m) represents, by definition, the shortest path possible between i and j when
leaving at m, and since, in urban transportation, the travelling speed is approximately
constant, the FIFO property must be at all times satisfied for our benchmark. One way
to ensure that the FIFO property is enforced when handling constant step-wise travel-
ling time functions is to transform such functions into linear step-wise functions that we
will call fFIFO. Ichoua et al. (2003) apply this procedure for functions that represent
the speed between two locations. However, since we do not have time-dependent travel
speeds at our disposal but travelling times instead, our transformation is based on the
work of Fleischmann et al. (2004). This transformation smooths the function by mimick-
ing waiting at nodes for the next time step. Figure 5 shows how the transformation from
a constant step-wise function to a linear one is made. For a more detailed description of
the transformation algorithm, please refer to Touzout et al. (2020).

(a) constant step-wise function
(b) linear step-wise function

Figure 5: Transformation of a constant step-wise to a linear step-wise function

It is worth noting that our transformation is made only for time steps where a decreasing
discontinuity happens just as in Melgarejo et al. (2015), as opposed to Fleischmann et al.
(2004), where the function is smoothed for each increasing or decreasing discontinuity.
This choice was made to ensure that the FIFO property is enforced, but at the same
time stay as faithful as possible to the benchmark. Moreover, we believe that this makes
the travelling time functions more realistic as when a congestion appears, the travelling
time does not evolve in a smooth manner but evolves as sharply as shown in Figure 4.

A problem that arises when using fFIFO is that in order to compute the cost of travelling
between two locations i and j, knowing the time step of departure is not enough. Instead,
the exact second of the departure is needed since fFIFO is linear step-wise. This means
that in order to use such a function, the length of a period needs to be discretised into
very small granularities, i.e. of the order of the seconds, which yields models with an
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extremely high number of variables. Another way is to formulate the problem in another
manner. Sun et al. (2018) propose a flow formulation referred to in the literature as the
“time-dependent ready function formulation”. This formulation is proposed for the TD-
TSP with time windows. However, the formulation is based on big-M constraints. As
we do not tackle the TD-IRP with time windows, such constraints are known to be
highly inefficient for problems where the M cannot be well-restricted, which is the case
of this paper. Such models are unsolvable even for the smallest instances. Therefore,
in this paper we enforce the FIFO property by using a constant piece-wise function and
allowing waiting at nodes. This procedure emulates the transformation algorithm.

4.4 Travel-time constraint

In section 3.1, we state that travelling cost incurs only when the vehicle is moving from
one location to another. Therefore, since waiting at nodes does not incur any cost, it
is unrestricted and can occur as long as it is profitable to wait. However, this can yield
solutions where the waiting time is extremely high in comparison to the travelling time.
This is unrealistic as one cannot ask a driver to park and wait for hours in order to
optimise the cost. In order to restrict this waiting time, we propose to limit the total
duration of a tour with travel time constraints.

Since our benchmark is set in an urban distribution context, and since a day is long
enough to visit a high number of clients in one period, we propose travel time constraints
that allow the visit of all clients in one period as long as the capacity of the vehicle is not
exceeded, while ensuring the FIFO property and at the same time restrict the waiting
times. To generate such values, a TD-TSP is solved through an iterated local search
heuristic presented in Algorithm 2, using fFIFO. The objective value of the TD-TSP
will be the travel-time constraint for which the tour must be completed, thus minimising
the waiting at nodes. Note that any heuristic that can solve the TD-TSP can provide a
value for M′.
The obtained benchmark set is readily available at https://github.com/faycalt/

TDIRP.

5 Investigating the relevance of TD-IRP

In this section, we investigate the relevance of using time-dependent travelling time
functions instead of constant ones on the objective function as well as the structure of
optimal solutions. In order to do so, we compare optimal time-dependent solutions to
constant travelling time solutions re-solved in a time-dependent environment. To that
purpose, all time-dependent instances, i.e. with |M| > 1, are solved twice. The two
phases are described in Figure 6. In the first phase, the instances are solved optimally.
Afterwards, the solutions of instances with constant travelling time, i.e. with |M| = 1,
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Algorithm 2: TD-TSP: ILS

1: input: fFIFO, a set of locations to visit and an empty solution STDTSP

2: while A time limit is not exceeded and the local optimal is not reached do
3: generate a random sequence and set it to STDTSP if it is better or is still empty
4: apply local search operations such as movements and swaps
5: Movements:
6: for k, k′ ∈ V, k 6= k′ do
7: slide the vertex at the kth position and slide it to position k′ leaving the rest of

the sequence unchanged
8: end for
9: Swaps:

10: for k, k′ ∈ V, k 6= k′ do
11: swap the vertex at the kth position with the vertex of position k′ and vice versa
12: end for
13: set STDTSP to the obtained solution if it is better
14: end while

15: |M′| = dS
TDTSP
objective

L e
16: return M′

are re-solved in time-dependent instances, where |M| ∈ {12, 30, 60, 120}. As we can see
from Figure 6b, by solving the problem with constant travelling time, we fix the inventory
management variables Ipi , qpi , which state the inventory levels and the quantities sent
for each client, and the routing variables xpij which state the clients to be visited and
in which order they should be visited. Afterwards, the time steps of departure from
each location are determined subsequently by solving the TD-IRP in a time-dependent
environment.

5.1 A Branch & Cut procedure

In order to solve the different TD-IRPs optimally, a branch-and-cut algorithm is used.
The mathematical formulation presented in Section 3.1 is strengthened with additional
valid inequalities presented in Archetti et al. (2007), Coelho and Laporte (2014) and
Desaulniers et al. (2016). Archetti’s valid inequalities are “logical inequalities” and are
inspired by logical cuts introduced for problems such as the Orienteering Problem and the
Undirected Selective TSP. Coelho’s valid inequalities determine the minimum number of
routes in the planning horizon, whereas Desaulniers’s valid inequalities determine “the
minimum number of sub-deliveries per demand”. Moreover, the bounds are improved
and the routing component of the IRP re-formulated according to the work of Lefever
(2018). Finally, sub-tour and time-dependent infeasible path elimination constraints are
added dynamically into the procedure as described in Algorithm 3.

It is worth noting that the contribution in relation to the solving approach lies on
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(a) Procedure for optimal TD-IRP solutions

(b) Procedure for constant travelling time solutions re-solved in a time-dependent environment

Figure 6: Comparison procedure
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Algorithm 3: Branch-and-cut procedure

1: input: an empty set of nodes Q and an empty solution S
2: add the root node to Q and set the upper bound b = +∞
3: while Q is not empty do
4: solve the linear relaxation of the first node
5: if the solution of the linear relaxation is fractional then
6: branch on fractional variables, add the resulting nodes to Q and delete the

first node
7: else
8: if subtours S exist then
9: add corresponding constraints (9)

10: else
11: if time-dependent infeasible paths [P, T ] exist then
12: add corresponding constraints (12)
13: else
14: update b and S if needed and delete the node from Q
15: end if
16: end if
17: end if
18: end while
19: return S

combining cuts and reformulations from the literature of the IRP and extending them
with the time-dependent infeasible paths elimination constraints (12).

5.2 Numerical experiments

All experiments are conducted on a CPU Intel Xeon E5-1620 v3 @3.5Ghz with 64GB
RAM in a Java-Gurobi environment. Gurobi 9.0.2 is used as a solver and the dynamic
constraints are added using the lazyConstraints parameter. The experiments are con-
ducted on all 250 instances generated in Section 4 with a time limit of 3600 seconds.

The results are presented in table 3 as follows: Columns |H|, |V ′|, and |M| present,
respectively, the length of the horizon, the number of clients in the network and the
number of time steps of the travelling time function. Columns z, g and CPU present,
respectively, the objective value, the gap to the best lower bound found and the execution
time of the solution of the TD-IRP. These values are average values over five instances of
each combination of parameters H, V ′ andM. Columns z|M|=1, g|M|=1 and CPUM = 1
represent, respectively, the objective value, the gap to the best lower bound and the
execution time, on average, of the TD-IRP when the solution with constant travelling
time is re-solved in a time-dependent environment. Finally, column gzz|M|=1

represents

the gap between z and z|M|=1 where gzz|M|=1
=

z|M|=1−z
z
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Table 3: Results

|H| |V ′| |M| z g% CPU z|M|=1 g|M|=1% CPU|M|=1g
z
z|M|=1

%

3

5

1 3790.27 0.00 0.00
12 3387.27 0.00 0.00 3398.27 0.00 0.00 0.32
30 3136.02 0.00 0.01 3136.47 0.00 0.00 0.02
60 2916.07 0.00 0.02 2926.07 0.00 0.00 0.34
120 2584.09 0.00 0.05 2611.27 0.00 0.00 1.25

10

1 5544.34 0.00 0.04
12 4906.04 0.00 0.06 4927.14 0.00 0.00 0.44
30 4579.25 0.00 0.55 4628.34 0.00 0.01 1.09
60 4183.26 0.00 1.10 4237.14 0.00 0.02 1.25
120 3752.34 0.00 45.97 3829.54 0.00 0.05 2.02

15

1 6822.30 0.00 0.07
12 6169.50 0.00 0.32 6230.70 0.00 0.01 0.99
30 5823.55 0.00 4.46 5963.70 0.00 0.04 2.45
60 5346.01 0.00 70.24 5470.30 0.00 0.23 2.37
120 4701.56 0.45 1610.18 4885.90 0.00 1.17 3.94

20

1 8588.07 0.00 0.28
12 7699.65 0.00 4.87 7833.87 0.00 0.02 1.68
30 7198.26 0.00 782.55 7375.67 0.00 0.13 2.43
60 6622.56 0.75 2240.37 6900.47 0.00 2.78 4.18
120 6025.68 4.47 3600.03 6285.47 0.00 2.02 4.42

25

1 9246.05 0.00 0.78
12 8426.63 0.00 160.87 8536.65 0.00 0.04 1.32
30 7864.11 0.80 2308.50 8025.05 0.00 0.41 2.05
60 7378.17 4.16 3600.03 7547.05 0.00 26.22 2.35
120 6807.12 9.92 3600.04 6870.65 0.00 430.99 0.94

30

1 10611.99 0.00 0.73
12 9615.59 0.29 2397.94 9710.79 0.00 0.15 0.97
30 9160.58 2.85 3600.02 9220.39 0.00 4.81 0.63
60 8599.19 6.21 3600.03 8606.79 0.19 1232.12 0.10
120 7761.99 8.21 3600.10 7820.39 0.24 1825.42 0.76

6

5

1 8385.85 0.00 0.04
12 7514.45 0.00 0.03 7520.65 0.00 0.00 0.09
30 6941.13 0.00 0.07 6942.45 0.00 0.00 0.02
60 6448.17 0.00 0.21 6460.05 0.00 0.00 0.19
120 5740.21 0.00 0.26 5796.45 0.00 0.01 1.04

10

1 11040.83 0.00 0.11
12 9856.17 0.00 0.27 9968.03 0.00 0.00 1.15
30 9209.18 0.00 13.60 9344.03 0.00 0.01 1.52
60 8496.00 0.00 47.21 8604.63 0.00 0.05 1.32
120 7532.50 0.39 1074.80 7777.83 0.00 0.21 3.30

15

1 13923.93 0.00 0.47
12 12564.94 0.00 3.05 12683.13 0.00 0.02 0.91
30 11923.00 0.00 495.22 12134.93 0.00 0.09 1.82
60 10912.59 0.95 2929.27 11158.33 0.00 1.53 2.24
120 9760.72 4.45 3600.02 9980.93 0.00 3.79 2.25

20

1 17726.17 0.00 2.16
12 15905.55 0.02 1143.01 16034.57 0.00 0.04 0.78
30 14821.00 1.28 3600.01 15030.17 0.00 0.59 1.39
60 13695.51 3.52 3600.03 13945.17 0.01 72.53 1.80
120 12501.52 7.31 3600.04 12641.77 0.06 1535.07 1.11
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5.3 Discussion

The results presented in Table 3 yield the following three observations:

Observation 1: TD-IRPs are difficult to solve. Indeed, instances with |V ′| ≥ 20 and
|M| ≥ 30, among others, are not optimally solved within the time limit. Although the
TD-IRP is not strictly a routing problem, routing problems of the order of 20, 25 and
30 clients are generally considered, in the VRP and TSP literature, as small instances.
However, in a time-dependent context, for an instance where |M| = 120, all the routing
variables are multiplied by |M| which makes the problem 120 times bigger. Furthermore,
the periodicity aspect adds to the difficulty by multiplying all variables by |H|. Finally,
since the problem is an integrated one, inventory decisions have a big impact on the size
of the feasible solutions area, which adds another layer of difficulty to the TD-IRP.

Observation 2: Solutions of constant travelling time functions make good solutions in
a time-dependent environment. As we can see from column gzz|M|=1

, the maximal gap

between z and z|M|=1 is of 4.42%.

Observation 3: Observation 2 should be nuanced. Indeed, although the solutions of
constant travelling time functions in a time-dependent environment are indisputably
good, they can be nuanced with the following considerations:

• the values of gzz|M|=1
are average values over only 5 values, which can be misleading

if the standard deviation is high enough. Figure 7 shows the interval of distribution
of these gaps through a line where in one end, the minimum is displayed, on the
other end, the maximum and the dot represent the average values on all instance
sets for each time step. We can see from the figure that gaps can go up to 8.2%
when |V ′|=20 and |M| = 120.
• As stated in the first observation, the TD-IRP is difficult to solve. Therefore, for

instances when |V ′| ≥ 25, the values of z are not optimal and have gaps up to
8.21% to the best lower bound found. On the other hand, the values of z|M|=1

are mostly optimal and have a maximal gap to the best lower bound of 0.24%.
Therefore, to have a better idea of how the gap is evolving, a comparison between
z|M|=1 and the best lower bound found when solving the time-dependent problem

zLB is needed. Figure 8 presents the distribution of these gaps. We can see from
the figure that the gaps can go up to 13.63% when |V ′| = 25 and |M| = 120.
• When looking closely at the structure of the optimal time-dependent solutions, we

notice that the inventory levels of the clients and the supplier are not extremely
different from the solutions of when |M| = 1. Therefore, the gaps presented in
Table 3 are mostly transportation costs, as the inventory costs are almost equal.
In this case, the gain in transportation cost by optimising with time-dependent
travelling time functions is more important than indicated in Table 3.
• Finally, in our model, we made the hypothesis that all tours start at the beginning

of period p, i.e. at time step m = 0. This hypothesis can be very restrictive in
a time-dependent environment as the departure time can have a big influence on
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(a) |M| = 12

(b) |M| = 30

(c) |M| = 60

(d) |M| = 120

Figure 7: Distribution of gzz|M|=1
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(a) |M| = 12

(b) |M| = 30

(c) |M| = 60

(d) |M| = 120

Figure 8: Distribution of gz
LB

z|M|=1
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the optimal tour.

For all these reasons, we believe that optimising with time-dependent functions can
be beneficial in order to have cost-efficient solutions. However, solving large TD-IRP
instances seems to be a computational challenge. Therefore, it is necessary to propose
new algorithms to solve the TD-IRP more efficiently.

6 A matheuristic for the TD-IRP

In Section 5.3, we studied the structure of optimal TD-IRP solutions in comparison
to solutions of constant travelling time functions when re-solved in a time-dependent
environment. This comparison showed that the difference between the two solutions
lies mostly in the sequence in which the clients are visited, and rarely in the set of
clients visited at each period p or the quantities sent and inventory levels of said clients.
Therefore, we propose a matheuristic to solve the TD-IRP by decomposing the problem
into two parts: First, defining the inventory level, the quantities to send for each client
and the clients to visit for each period. Second, defining the sequence in which the clients
will be visited and the departure time steps from each location.

6.1 Matheuristic decomposition procedure

The results in Section 5 show that optimal constant travelling time solutions when re-
solved in a time-dependent environment yield time-dependent solutions that differ from
optimal time-dependent solutions, mostly in the routing component, and particularly
the sequence of visiting the clients rather than the set of clients visited. Based on these
observations, we propose a matheuristic that decomposes the problem into two parts:
First, we define the inventory level, the quantities to send for each client and the clients
to visit for each period by solving the problem using constant travelling time functions.
Afterwards, for each period p ∈ H, the sequence in which the clients are visited and the
departure time steps from each location are defined by solving an independent TD-TSP.
A mathematical formulation for the TD-TSP is presented below. Vp represents the set
of locations to visit for each period p and Ap is a set of arcs linking them. Variables
xij and xmij represent the same variables as, respectively, xpij and xpmij – but the index of
period p is no longer needed, as the TD-TSPs of each period are solved independently.

The full decomposition procedure is described in detail in Figure 9.

To optimally define the set of clients to be visited at each period p ∈ H, the mathematical
formulation presented in Section 3.1 is paired to the branch-and-cut procedure presented
in Section 5.1. For the TD-TSP, the same branch-and-the cut procedure is used paired
to the TD-TSP mathematical formulation presented above.

The choice to use the same algorithms and mathematical formulations to solve the
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TD-TSP

min obj = c
∑

(i,j)∈Ap

∑
m∈M

f(i, j,m)× xm
ij

s.t
∑

j∈Vp 6=i

xij = 1 ∀i ∈ Vp (18)

∑
j∈Vp 6=i

xji = 1 ∀i ∈ Vp (19)

∑
(i,j)∈S

xij ≤ |S | − 1 ∀S ⊆ Ap (20)

∑
m∈M

xm
ij = xij ∀(i, j) ∈ Ap (21)

∑
j∈V′

p

x0
0j = 1 (22)

∑
vk∈P\{vn}

∑
mk∈T

x
mk
vk,vk+1 ≤ |P | − 2 ∀[P, T ] infeasible (23)

xij ∈ {0, 1} ∀(i, j) ∈ Ap (24)

xm
ij ∈ {0, 1} ∀(i, j) ∈ Ap, m ∈M′ (25)

Figure 9: A description of the matheuristic procedure

decomposition process enables a fairer comparison between the exact approach and the
matheuristic, in order to show more clearly the advantage of using such a decomposition.
Indeed, better approaches in the literature exist that solve the TD-TSP more efficiently.
But by using such state-of-the-art algorithms to solve the TD-TSP, the difference in
performances would not be directly related to the decomposition approach but would
instead be credited (at least partially) to the efficiency of the algorithms in question.

6.2 Numerical experiments

In order to efficiently compare the performances of the proposed matheuristic compared
to the exact approach, both approaches will be solved in the same time limit of 3600
seconds. For the exact approach, and since there is only one branch-and-cut algorithm
to solve, the Gurobi time limit parameter is used. However, for the matheuristic, for
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instances with |H| = 3 and |H| = 6, there are, respectively, 4 and 7 different models
to solve: A TD-IRP when |M| = 1, then independent TD-TSPs for each period p ∈
H. Therefore, it is necessary to distribute the available computing time between these
models in a way that ensures that all models are solved. In this case, the problem of
defining the set of clients to visit is solved first with a 3600 seconds time limit, which
is amply sufficient for this first step. The remaining time is then distributed equally
between the different TD-TSPs. Afterwards, for each period p ∈ H, if the TD-TSP is
solved before its time limit, the remaining time is equally distributed on the not yet
solved TD-TSPs. Algorithm 4 presents the full procedure of the matheuristic.

Algorithm 4: matheuristic for the TD-IRP

1: input: instance I , a number of time steps M , an empty solution S, and a time
limit TL = 3600

2: solve I for |M| = 1
3: fix the variables ypi , qpi and Ipi of S.
4: remaining time: RT = TL− CPUS|M|=1

5: for p ∈ H do
6: TLTD-TSP

p = RT
|H|

7: end for
8: for p ∈ H do
9: a set of locations to visit Vp where Vp ⊆ V

10: solve the TD-TSP for Vp with |M| = M and a time limit TLTD-TSP
p

11: remaining time from the TD-TSP of period p:
RTTD-TSP

p = TLTD-TSP
p − CPUTD-TSP

p

12: if RTTD-TSP
p > 0 then

13: remaining set of unsolved TD-TSP Hremaining = H\{1, ..., p}
14: for p′ ∈ Hremaining do

15: TLTD-TSP
p′ =TLTD-TSP

p′ +
RTTD-TSP

p

|Hremaining|
16: end for
17: end if
18: set the values of variables xpij and xpmij for period p
19: end for
20: return S

The results of the comparison are shown in Table 4 as follows: Columns |H|, |V ′|, and
|M| present, respectively, the length of the horizon, the number of clients in the network
and the number of time steps of the travelling time function. Columns z, g%, CPU
and zLB present, respectively, the objective value, the gap to the best lower bound
found, the execution time and the best lower bound found for the exact approach.
These values are average values over five instances of each combination of parameters
|H|, |V ′| and |M|. Columns zMH , and CPUMH represent, respectively, the objective
value and the execution time, on average, of the matheuristic. Finally, columns gzzMH

,

gz
LB

zMH
and gCPU

CPUMH
represent, respectively, the gap between z and zMH , the gap between
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zMH and zLB and finally the gap between CPUMH and CPU where: gzzMH
= zMH−z

z ,

gz
LB

zMH
= zMH−zLB

zLB and gCPU
CPUMH

= CPUMH−CPU
CPU . The values indexed with an asterisk

represent the ones for which at least one TD-TSP is not optimally solved.

6.3 Discussion

The results of Table 4 show that the matheuristic performs very well. These perfor-
mances are discussed first in comparison to the best solutions found by the exact ap-
proach in Section 5.2. In a second phase, they are compared to the best lower bounds
found by the exact approach.

For all instances solved optimally with the exact approach, the maximal average gap
between zMH and z is of 0.63%, when |H| = 3, |V ′| = 15 and |M| = 60. Figure 10
presents a more detailed look at how gzzMH

is distributed. As we can see in Figure 10c,
the largest gap for instances |H| = 3, |V ′| = 15 and |M| = 60 is of 1.51% and one
instance is solved optimally. Now for all instances, the maximal gap goes up to 2.47%
when |V ′| = 30 and |M| = 120 (Figure 10d) whereas the minimum gap goes down to
−3.57% when |V ′| = 30 and |M| = 60 (Figure 10c). This means that the matheuristic
is able to improve the best solution found by the exact approach within the time limit.
Moreover, it does so in a shorter time, as shown by the gap in time gCPU

CPUMH
which in

this case is of −35.33%.

Since not all instances can optimally be solved with the exact approach, we compare the
performances of the matheuristic to the best lower bounds found by the exact approach
in order to have a more accurate idea of how it is performing. Figure 11 presents a more
detailed look at the distribution of gz

LB

zMH
. The largest gap gz

LB

zMH
of the instances for which

all the TD-TSPs in the matheuristic are solved optimally, i.e. the ones not indexed with
an asterisk in Table 4, is observed for instances where |H| = 6, |V ′| = 20 and |M| = 120.
The average gap is of 5.12% whereas the maximal and minimal gaps are of, respectively,
6.29% and 2.68%. For instances for which all the TD-TSPs are not optimally solved, e.g.
|V ′| = {25, 30} and |M| = 120, the maximal gap goes up to 11.45%. However, for these
instances, the gaps can be reduced by improving the TD-TSPs that are not optimal, as
the largest gap of these TD-TSPs to their best lower bound can go up to 22%. This can
be done by exploiting the literature of TD-TSP which is getting increasingly richer, in
comparison to the literature of TD-IRP which is sparse.

Moreover, it is worth noting that the values of zLB are obtained using a branch-and-cut
procedure. Therefore, the lower bound solutions have a high probability of containing
sub-tours and time-dependent infeasible paths. In this context, the gaps gz

LB

zMH
that

are observed when TD-IRPs are not optimally solved can be nuanced, as zLB can be
improved, which makes the real gap between zMH and the optimal TD-IRP solutions
even closer than gz

LB

zMH
.

Although we cannot generalise these results to all instances but only to the benchmark
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Table 4: Results

|H| |V ′| |M| z g% CPU zLB zMH CPUMH gzzMH
% gz

LB

zMH
% gCPU

CPUMH
%

3

5

1 3790.27 0.00 0.00
12 3387.27 0.00 0.00 3387.27 3387.27 0.01 0.00 0.00 0.00
30 3136.02 0.00 0.01 3136.02 3136.47 0.01 0.02 0.02 0.00
60 2916.07 0.00 0.02 2916.07 2916.07 0.02 0.00 0.00 -15.00
120 2584.09 0.00 0.05 2584.09 2597.47 0.03 0.57 0.57 -37.67

10

1 5544.34 0.00 0.04
12 4906.04 0.00 0.06 4906.04 4907.54 0.07 0.03 0.03 25.43
30 4579.25 0.00 0.55 4579.25 4584.74 0.22 0.13 0.13 -59.89
60 4183.26 0.00 1.10 4183.26 4188.54 0.46 0.13 0.13 -51.96
120 3752.34 0.00 45.97 3752.34 3756.54 1.14 0.12 0.12 -76.48

15

1 6822.30 0.00 0.07
12 6169.50 0.00 0.32 6169.50 6198.90 0.40 0.50 0.50 37.14
30 5823.55 0.00 4.46 5823.55 5852.10 1.14 0.51 0.51 -68.28
60 5346.01 0.00 70.24 5346.01 5377.70 2.68 0.63 0.63 -94.91
120 4701.56 0.45 1610.18 4681.23 4740.70 7.73 0.85 1.31 -97.62

20

1 8588.07 0.00 0.28
12 7699.65 0.00 4.87 7699.65 7734.47 1.29 0.43 0.43 -40.81
30 7198.26 0.00 782.55 7198.10 7230.07 6.25 0.43 0.43 -96.85
60 6622.56 0.75 2240.37 6574.74 6675.07 10.63 0.78 1.53 -98.64
120 6025.68 4.47 3600.03 5756.28 6035.87 74.80 0.23 4.70 -97.92

25

1 9246.05 0.00 0.78
12 8426.63 0.00 160.87 8426.63 8463.05 8.23 0.43 0.43 -88.87
30 7864.11 0.80 2308.50 7798.68 7909.45 70.73 0.58 1.38 -96.03
60 7378.17 4.16 3600.03 7063.85 7357.05 826.04 -0.24 3.88 -77.05
120 6807.12 9.92 3600.04 6132.34 6649.05* 2153.25 -2.30* 7.39* -40.19

30

1 10611.99 0.00 0.73
12 9615.59 0.29 2397.94 9587.89 9648.99 79.33 0.35 0.64 -96.57
30 9160.58 2.85 3600.02 8901.15 9143.19 1035.16 -0.20 2.64 -71.25
60 8599.19 6.21 3600.03 8062.89 8427.79 1351.96 -1.95 4.13 -62.45
120 7761.99 8.21 3600.10 7122.38 7752.59* 3600.03 -0.11* 8.10* 0.00

6

5

1 8385.85 0.00 0.04
12 7514.45 0.00 0.03 7514.27 7514.45 0.04 0.00 0.00 68.33
30 6941.13 0.00 0.07 6940.97 6941.85 0.05 0.01 0.01 0.48
60 6448.17 0.00 0.21 6448.17 6449.45 0.10 0.02 0.02 -32.19
120 5740.21 0.00 0.26 5740.00 5741.25 0.12 0.02 0.02 -43.81

10

1 11040.83 0.00 0.11
12 9856.17 0.00 0.27 9855.96 9870.23 0.22 0.14 0.14 5.65
30 9209.18 0.00 13.60 9209.18 9235.43 0.77 0.29 0.29 -86.55
60 8496.00 0.00 47.21 8495.84 8525.23 1.35 0.35 0.35 -93.95
120 7532.50 0.39 1074.80 7505.65 7578.83 3.16 0.64 1.02 -96.22

15

1 13923.93 0.00 0.47
12 12564.94 0.00 3.05 12564.94 12586.33 1.15 0.18 0.18 -51.14
30 11923.00 0.00 495.22 11922.77 11948.73 3.56 0.23 0.23 -96.89
60 10912.59 0.95 2929.27 10812.31 10947.33 7.25 0.33 1.28 -99.00
120 9760.72 4.45 3600.02 9324.18 9721.13 26.58 -0.40 4.02 -99.26

20

1 17726.17 0.00 2.16
12 15905.55 0.02 1143.01 15902.29 15947.17 5.84 0.26 0.28 -94.54
30 14821.00 1.28 3600.01 14636.60 14846.97 17.90 0.17 1.45 -99.50
60 13695.51 3.52 3600.03 13216.30 13654.37 48.41 -0.28 3.22 -98.66
120 12501.52 7.31 3600.04 11593.15 12251.17 205.82 -2.03 5.12 -94.28
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(a) |M| = 12

(b) |M| = 30

(c) |M| = 60

(d) |M| = 120

Figure 10: Distribution of gzzMH
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(a) |M| = 12

(b) |M| = 30

(c) |M| = 60

(d) |M| = 120

Figure 11: Distribution of gzLB
zMH
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used in this paper, intuitively speaking, if we are comparing an IRP with a TD-IRP
with two travelling time functions that are generated from the same data and the only
difference between them is the time granularity, it is not unreasonable to imagine that
this difference will not amount in an extreme change in the clustering problem, i.e. which
clients to visit for each period. However, changes in the sequence of visiting these clients
is highly expected. Therefore, the difference in the objective values of the IRP and the
TD-IRP would mostly be the result of transportation cost.

As a conclusion, the decomposition procedure of our matheuristic proves to be very effi-
cient. The strengths of this matheuristic lie in the fact that it is inspired by observations
of optimal TD-IRP solutions. Moreover, it has the capacity of scaling as its improvement
depends on the efficiency of the formulations and algorithms of IRP and TD-TSP, on
which the literature is exponentially increasing.

7 Conclusions & perspectives

This paper considers a variant of the IRP, the TD-IRP. In this variant, the travelling time
does not only depend on the departure and arrival locations, but on the time of departure
as well. In order to include the time-dependent aspect to the IRP, a review of the TD-
IRP is conducted. The review shows that the literature of TD-IRP is rather sparse and
only one paper handles it. As a result, we turn to pure time-dependent routing problems.
The rich literature of time-dependent routing problems shows that these problems are
harder to solve than their basic counterparts, thus the need for new efficient approaches
in order to solve real-sized instances. Moreover, it gives insight on how to incorporate
the time-dependent aspect for the IRP and benchmarks for experimentation.. Inspired
by this literature, a mathematical formulation for the TD-IRP is proposed and a new
benchmark is generated. This benchmark is based on benchmarks from the literature
of IRP and TD-TSP in order to provide more realistic instances for the community of
researchers. In order to investigate the impact of inventory decisions on the structure of
optimal time-dependent tours, a branch-and-cut procedure is proposed and a comparison
between optimal TD-IRPs and optimal IRPs computed in a time-dependent environment
is carried out. The results show that optimising in a time-dependent environment can
be beneficial, cost-wise. Based on the observations made on these results, a matheuristic
that decomposes the problem into a problem of defining the set of clients to visit for
each period first and routing second, is proposed. The results show that the proposed
matheuristic is very efficient. Furthermore, its performances can be improved by taking
advantage of the rich literature of time-dependent routing problems in comparison to
the sparse literature of TD-IRP.

Future works on this topic can take advantage of the time-dependent environment by
considering the departure time as a decision variable rather than imposing it at the
beginning of the period. Such a hypothesis can have a huge impact on the improvement
of the cost of the time-dependent solutions, as it is sometimes more efficient to leave
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later in order to avoid congestion. Another perspective would be to extend the problem
to the TD-IRP with time windows, since waiting at nodes can be of great relevance
in this context. To solve the problem more efficiently, we can take advantage of the
rich literature of TD-TSPs to improve the matheuristic performances by implementing
or proposing new exact approaches such as dynamic programming for instances up to
30 clients, or the dynamic discretisation discovery framework proposed by the authors
of Minh Vu et al. (2018) for larger instances. In parallel, it is necessary to propose
new formulations or valid inequalities for the TD-IRP that provide tighter lower bounds
in order to efficiently assess the performances of the matheuristic. Finally, another
perspective would be to consider that the service time is no longer constant but can
depend on the time of visit and the quantity that needs to be unloaded. This can be
very important for products that require a long unloading time, such as fuel in gas
stations.
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Highlights

• A MILP formulation for the inventory routing problem with time-dependent
travelling times

• A novel TD-IRP benchmark based on real-life routing data

• Showing the relevance of optimising the IRP with time-dependent travel-
ling times

• A matheuristic determining clients to visit and quantity to deliver first
and routing second

• The matheuristic proves very efficient with small gaps to the best lower
bounds found
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