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Abstract

The inventory routing problem (IRP) is an optimisation problem that integrates trans-

portation and inventory management decisions. When subjected to unexpected events such

as demand changes, the a posteriori approach consists in re-optimising including the data

related to this event; the challenge is to ensure that the obtained solution does not deviate

too much from the original one, lest that creates important organisational issues. Therefore,

a stability metric is needed when re-optimising IRP models. This article proposes a panel of

stability metrics adapted from the scheduling, routing and inventory management literature

to fit the requirements of the IRP and proposes mathematical formulations for the most

relevant ones. A framework of comparison is proposed to validate and compare these met-

rics over a benchmark of 3000 instances generated from the literature. A strong correlation

between the metrics is observed. Moreover, the results show that ensuring the stability of

the re-optimised solutions has little impact on the initial objective, the total cost.

Keywords: inventory routing problem; transportation; inventory; re-optimisation; stability

metrics; metrics comparison framework

1 Introduction

The inventory routing problem (IRP) integrates two operational problems of the supply chain:

inventory management and routing. In the IRP network, a supplier is responsible for managing

the inventory and the distribution of a set of clients, to satisfy their demands on a given time
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horizon. The objective of the decision-maker is to decide, for each period, whether a client

should be replenished, with which quantity and following which route, optimising both the

inventory and transportation costs.

A common challenge faced by all supply chain operations is the management of uncertainty; this

also applies to the IRP. Indeed, the multiplicity of actors and parameters of the IRP makes the

range of uncertainty wide, as they can be related to both inventory management and routing

components. The clients’ demand may change unexpectedly; a driver may be confronted to an

unexpected traffic jam, or when arriving at a client’s location, the delivery parking slot might

be unavailable. By drastically increasing the travelling and service time, such situations may

render the plans of the decision-maker unfeasible. Andersson et al. (2010) state that “researchers

should focus on development of models and methods that match the industries’ need of robust

and flexible plans to handle the uncertainties.”

Uncertainties can either be handled in an a priori or an a posteriori fashion. The a priori

approaches manage the uncertainties in a proactive way by making robust replenishment plans,

that will be feasible even when faced with a wide range of events. Their main drawback is

usually the cost of protection. As an illustration, note that the most common robust approach

makes plans that resist to the worst case scenario. In the IRP, if the clients’ demand is uncertain,

robust plans can yield a large safety stock which can be very costly. In general with a priori

approaches, the plans that resist uncertainties are conservative, which makes them expensive,

especially when the range of variability of the uncertain parameter is wide.

Due to these limitations, we adopt a different approach by handling uncertainties a posteriori :

the decision-maker adapts its plan to unexpected events after their occurrence is revealed. One

strategy is to repair the initial solution by making small modifications to turn the solution

into a feasible one. The difficulty here is the trade-off between the feasibility of the solutions

and its cost-efficiency; when more changes occur, the set of possibilities increases exponentially,

making repair strategies hard to develop. Another approach is a full re-optimisation of the initial

solution, from the time the unexpected event is revealed until the end of the time horizon. The

drawback of this approach is that the new solution can be completely different from the initial

one. This creates organisational issues: for example, if the new plan requires more vehicles,

and therefore more drivers, they might be difficult to find at short notice – also, if the supplier

keeps changing his delivery date, the client can lose trust and look for a different supplier. Such
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situations lead to additional costs that are very difficult to quantify: the decision maker may

therefore favour “stable” solutions when re-optimising.

But how to know a solution is stable? Herroelen and Leus (2005) define a stable plan as one

that “deviates as little as possible from the original one”. This definition being very general,

its application in the case of IRP is not straightforward. For example, let us consider a plan

which replenishes five clients in a certain sequence on a given day; two solutions are proposed

to deal with a demand increase from one client. The first solution keeps the same set of clients

in the same sequence but replenishes them with quantities that differ from the initial solution.

Another solution removes one client from the route and changes the sequence. Which of these

solutions provides the smallest deviation, thus is the most stable? There is no straightforward

answer.

This leads to our research question: how to measure stability in the IRP under demand uncer-

tainty? Our study focuses on demand uncertainty because it can impact both routing and inven-

tory decisions; this uncertainty is handled in an a posteriori approach, through re-optimisation.

For this approach to make sense from a practical point of view, it is necessary to define met-

rics that can adequately quantify stability for the IRP. Since the actors and parameters of the

IRP are multiple, a single stability metric can only cover a part of the full range of stability.

Therefore, ensuring overall stability requires a careful choice of metrics. The correlation of the

stability metrics should thus be studied in relation to each other, and to the initial objective –

namely, the cost.

The main contributions of this article are threefold. First, we present an exhaustive review of

stability metrics in different fields such as routing, inventory management and scheduling. We

adapt seven stability metrics for the IRP and propose a mathematical formulation for three of

these metrics. Finally, we conduct a comparison of the three formulated stability metrics to

investigate the correlation between them and the impact of ensuring stability on the cost of the

solutions.

This article is therefore organised as follows. In section 2, we review the different manners found

in the IRP literature to deal with uncertainty and stability metrics applied to different opera-

tional problems. In section 3, a mathematical formulation of the IRP is proposed. Moreover,

show how to re-optimise our model when faced with unexpected events, without stability con-

cerns at this point. In section 4, the proposed stability metrics are presented and the advantages
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and drawbacks of adapting these measures to the IRP are discussed. Numerical experiments are

performed in section 5 to test the proposed mathematical formulations of the stability metrics

and compare them after defining a dominance function. The experiments are conducted over

a large set of instances adapted to our re-optimisation settings, from benchmarks available in

the IRP literature. Finally, section 6 concludes the study and proposes some perspectives for

future research.

2 Literature Review

In this paper, we do not pretend to do an exhaustive review of the IRP literature. Therefore, we

refer the interested reader to Andersson et al. (2010), Bertazzi and Speranza (2013) and Coelho

et al. (2014) for IRP literature reviews that present the different variants and optimisation

approaches used.

In this section, we focus on the literature of IRPs under uncertainty and stability metrics in

re-optimisation approaches.

2.1 Uncertainty in the IRP literature

We identified 46 articles dealing with uncertainty in IRP, using the keywords uncertainty,

stochastic, re-optimisation, robust combined to inventory routing problem; the corresponding

references are summarised in Table 1. The following paragraphs aim at explaining the columns

appearing in Table 1. The main sources of uncertainties for the IRP encountered in the literature

are listed below.

Demand variation. The demand of the client can change : this source of uncertainty is con-

sidered in a vast majority of the articles reviewed, namely 38 out of 46 articles. It is also

the case in this paper, that focuses on demand uncertainty because it can have an impact

in both inventory and routing decisions.

Vehicle availability variation. A dysfunction of one of the vehicles of the fleet or the unavail-

ability of one of the drivers can occur. Jafarian et al. (2019) and Dong et al. (2018) address

this source of uncertainty.

Supplier quantity variation. The quantity available to the supplier at the beginning of each

period can change. Dong et al. (2018) addresses this uncertainty.

Travelling time variations. Since routing is a part of the IRP, all the disruptions faced in urban
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delivery are possible, especially traffic jams or time-dependant travelling times. 11 articles

take interest of this source of uncertainty.

Travelling time windows variations. Weather conditions can result in a disruption of the trav-

elling time windows, especially when delivering liquid gases(Cho et al., 2018) and/or in

the context of maritime IRP

Many scholars have tackled the different uncertainties of the IRP in an a priori manner, as shown

in Table 1; However, although re-optimisation has been used for the IRP in a deterministic

rolling horizon context (Al-Ameri et al., 2008; Rakke et al., 2011), only Dong et al. (2018) used

it to cater for uncertainty issues. In Al-Ameri et al. (2008) and Rakke et al. (2011), the rolling

horizon decomposition is used as a matheuristic in order to solve large-sized instances. For

Dong et al. (2018) the process is slightly different. The first iteration solves the IRP under

stochastic parameters using a stochastic MIP over the whole horizon. Then, for each period of

the horizon, new information is revealed. If the solution of the stochastic problem is infeasible

given the new information, a full re-optimisation is conducted over the whole horizon, modelling

the new information as deterministic parameters while keeping the others stochastic. Once the

re-optimised solution is obtained, the horizon is rolled The procedure is then iterated until the

end of the horizon. It is worth noting that the re-optimised solution does not take any stability

constraints into consideration and can therefore be subject to huge disruptions.

The lack of work in re-optimisation for the IRP might be explained by the fact that re-

optimisation can be ill-suited to routing problems. In the case of the VRP, Salavati-Khoshghalb

et al. (2019) state that from a cost perspective, re-optimising routing decisions once uncertainties

are revealed is a better theoretical alternative to a priori approaches. However, re-optimisation

yields problems that are computationally challenging to solve and might not preserve consis-

tency in routing operations. However, although routing is an important component of the IRP,

its other components provide adjustment variables that are not available in the VRP, such as its

multi-period dimension, the availability of an inventory, or possible transshipment. Therefore,

we believe the re-optimisation approach for the IRP is a relevant one to investigate, that fills a

gap in the existing literature.
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Trudeau and Dror (1992) X x x x x X x x
Nori and Savelsbergh (2002) X x x x x X x x
Kleywegt et al. (2004) X x x x x X x x
Christiansen and Nygreen (2005) X x x x x x X x
Aghezzaf (2008) X X x x x x X x
Hvattum and Løkketangen (2009) X x x x x X x x
Chen and Lin (2009) X x x x x X x x
Huang and Lin (2010) X x x x x X x x
Yu et al. (2012) X x x x x X x x
Solyalı et al. (2012) X x x x x x X x
Karoonsoontawong and Unnikrishnan (2013) X x x x x X x x
Rahim et al. (2014) X x x x x X x x
Juan et al. (2014) X x x x x X x x
Nolz et al. (2014) X x x x x X X x
Bertazzi et al. (2015) X x x x x X x x
Niakan and Rahimi (2015) X X x x x X x x
Agra et al. (2015) x X X x x X x x
Malekly (2015) X X x x x X x x
Zhang et al. (2015) x X x x x x X x
Soysal et al. (2015) X x x x x X x x
Soysal (2016) X x x x x X x x
Chow (2016) X x x x x X x x
Bertsimas et al. (2016) X x x x x x X x
Yang et al. (2016) X x x x x x X x
Li et al. (2016b) X x x x x X x x
Li et al. (2016a) X x x x x x X x
Ercan and Cinar (2017) X x x x x X x x
Kazemi et al. (2017) X x x x x x X x
Rahbari et al. (2017) X X x x x x X x
Rahimi et al. (2017) X X x x x X x x
Agra et al. (2018) x x X x x x X x
Cho et al. (2018) x x X x x X x x
Hu et al. (2018) X x x x x X x x
Micheli and Mantella (2018) X x x x x X x x
Gruler et al. (2018) X x x x x X x x
Ghasemi and Bashiri (2018) X x x x x X x x
Soysal et al. (2018) X x x x x X x x
Lefever (2018a) x X x x x X X x
Dong et al. (2018) X X X X X X x X
Jafarian et al. (2019) x x x X x X x x
Nikzad et al. (2019) X x x x x X x x
Rodrigues et al. (2019) x X x x x X X x
Fardi et al. (2019) X x x x x x X x
Diz et al. (2019) x x X x x x X x
Mirzapour Al-e-hashem et al. (2019) X x x x x X x x
Lefever et al. (2019) x X x x x x X x

Table 1: IRP under uncertainty literature overview
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2.2 Stability as a re-optimisation criterion

The definition of stability in re-optimisation problems has been tackled for different fields, but

not for the IRP, as shown in subsection 2.1. However, since the problem under consideration

is an integration of two sub-problems, respectively, inventory management and routing, we can

look at the definition of stability in these component problems. The following sections present

the related works dedicated to stability in these two fields, in addition to scheduling problems,

which are commonly used as reductions for routing problems. Within these fields, a special care

is given to problems modelled over a rolling horizon: while they do not carry out re-optimisation

as such, they often deal with uncertainty with a real concern for stability.

2.2.1 Stability concerns in scheduling

Stability when re-optimising was first tackled in the scheduling field by Wu et al. (1993). In this

work, heuristics are proposed to re-schedule jobs on one machine when a disruption occurs, e.g. a

machine failure, with two objectives: efficiency (i.e. makespan) and stability. Two strategies are

conducted: first, a full re-optimisation of the unfinished tasks before the disruption. Second,

a “right-shift” strategy, where the exact sequence that was to be performed in the original

schedule is performed after the disruption, absorbing the idle times if possible in the process.

In this context, a stable schedule is one that minimises the sum of the absolute difference of

starting times for all tasks as well as preserving the sequence between the re-optimised and the

original schedule.

Several articles extend the work done by Wu et al. (1993). Cowling and Johansson (2002)

present a bi-objective study that takes utility and stability as optimisation criteria. The utility

is defined as the deviation in completion time between the original schedule and the re-optimised

one. Stability takes, in addition to the deviation of the starting time, the deviation of the

completion time of each task separately. This is because the disruption in this case is not

only a machine dysfunction, but can be, among others, a change in the processing time as well.

Rangsaritratsamee et al. (2004) present a dynamic job shop rescheduling. policy called “discrete

event driven rescheduling” At each rescheduling point, the jobs to be scheduled are the ones

that are not scheduled at the previous rescheduling point or the ones that arrived afterwards.

The multi-objective efficiency/stability is reconsidered, and in addition to the starting time

deviation, a new stability metriccalled “the total deviation penalty”. It associates a penalty,
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restrictively, to jobs rescheduled earlier: the earlier the job is rescheduled, the bigger the penalty.

Curry and Peters (2005) present a simulation study that investigates the trade-off between two

conflicting objectives, respectively, a step-wise increasing tardiness cost function and a metric of

stability, defined by the proportion of rescheduled jobs that change machine assignment during

rescheduling.

Pfeiffer et al. (2007) present a simulation-based stability evaluation of different rescheduling

policies, such as: right-shift schedule, complete re-scheduling. Both single and multi-machine

job-shop problems are investigated and an industrial application is presented. In this case,

the stability metrics considered are the ones presented in Rangsaritratsamee et al. (2004), i.e.

starting time deviation and total deviation penalty.

2.2.2 Stability concerns in routing

Sörensen (2006) proposes a bi-objective approach to ensure the stability of the route in a vehicle

routing problem. The stability of a route is assessed by the adaptation of the “edit distance”

approach introduced by Levenshtein (1966). The idea is to minimise the number of steps to

transform a string into another string by a set of operators: addition, deletion and substitution.

In the case of the VRP, the strings are the set of routes of the solution.

Schönberger and Kopfer (2008) tackle the problem of “nervousness”, defined as “the symptom

appearing during the transition from the so far followed schedule to an updated schedule after

additional requests appeared”. Nervousness problems are classified into two types: external

nervousness which affects the client (e.g. a change in the arrival time) and internal nervousness

which does not matter for the client (e.g. a re-assignment to another vehicle) Three metrics

are used to assess the nervousness, two external and one internal. Mode Selection Nervousness

represents the ratio of the clients visited with a different transport mode compared to the

original schedule; Resource Assignment Nervousness represents the ratio of the clients that are

re-assigned to a different vehicle. The internal metric, Arrival Time Nervousness, represents

the ratio of clients for which the arrival time has been modified.

Zhang and Tang (2007) and Wang et al. (2011) take interest in the VRP with time windows

under uncertainty. Disruptions for Zhang and Tang (2007) are the unavailability of a vehicle for

an interval of time due to vehicle failure or traffic conditions. In Wang et al. (2011), possible

disruptions are a modification of the delivery address of a client, a deviation in its time window,
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a perturbation of its demand, a deletion of a request or any combination of these disruptions.

To ensure the stability of the re-optimised solution, both articles use a metric on customer

service time where a penalty is applied if the client is served in a time that is outside of its

time window. Wang et al. (2011) extend the stability metrics with two other criteria. First, a

metric on driving paths where a penalty is applied if an arc that did not exist in the original

solution appears in the re-optimised one and vice versa. Second, a metric on delivery costs is

the deviation between the costs of the original and the re-optimised solution.

Dettenbach and Ubber (2015) present a mathematical model to re-optimise tours in last mile

distribution with electric vehicles fleet. The network is in this case decomposed into multiple

districts and all clients of one district are assigned to a vehicle. In case of a failure, which is

presented as a dysfunction of one of the electric vehicles or the absence of a driver, the model

is supposed to select a back-up district whose clients are to be dispatched and added to the

other districts. The stability is modelled as constraints. Each time a district is dispatched,

it is decomposed into a certain number of paths, this number being smaller or equal to the

number of operational vehicles, i.e. the number of non-dispatched districts. These paths are

then inserted in other districts, in the place of one and only one edge, keeping the sequence the

same as in the original route.

2.2.3 Stability concerns in inventory management

Uncertainty is a key component in inventory management. Usually, it is tackled using stochastic

formulations and/or by sizing a safety stock, which are a priori methods.

Re-optimisation is not a field of work in inventory management, because the problem of when

and how much to order when demand changes is rather easy : a typical example is Wilson’s

model (Harris, 1919) whose complexity is in O(1).

Many scholars take interest on problems of inventory management by assessing the impact on the

cost while comparing different replenishment strategies or when considering a bad evaluation

of the holding cost, referring to it as a “robustness study”. Inderfurth (1994) is the first to

tackle the problem of “nervousness” in inventory management. In this paper, the nervousness

in the context of a rolling planning horizon is shown to be heavily affected by the choice of the

inventory policy. A comparison between the (s, S) and (s, nQ) policies is presented. In this

context, a robust/stable solution is one that minimises the deviation in the solution cost.
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However, what interests us is a solution that minimises the deviation in the solution structure,

i.e. the order quantity and order frequency. This definition of stability is implicitly implied in

well known replenishment strategies (such as fixed order quantity, economic order quantity, or

order up-to-levels) that set replenishment at fixed intervals and/or in fixed quantity. Here the

stability is ensured by the solution structure itself, i.e. the fact that we are looking for a fixed

interval and/or a fixed quantity. Therefore a stability metric does not seem necessary.

However, in the context of production planning with problems such as Lot Sizing, Master

Production Schedule (MPS), Material Requirements Planning (MRP) or Capacity Expansion

Planning (CEP), where the notion of inventory management is a key element, stability in the

sense of solution structure has been of interest. The work in Sridharan et al. (1988) is the

first to tackle the problem of quantifying stability under rolling horizon planning In this paper,

stability is quantified by the difference between the quantity planned originally and the re-

optimised quantity for the MPS. They propose to weight the metric in order to prioritise the

stability of closer periods. This metric has been adapted to other problems (Herrera et al.,

2016; Kadipasaoglu and Sridharan, 1997; Kimms, 1998; Narayanan and Robinson, 2010; Sahin

et al., 2008).

Kadipasaoglu and Sridharan (1997) adapt the same metric for the MRP and propose a new one

based on the deviation in frequency of replenishments. Kimms (1998) adapts the metric to CEP

and Lot Sizing. Sahin et al. (2008) extend the work of Kadipasaoglu and Sridharan (1997) and

propose a new metric that quantifies the number of deviations in replenishments: a deviation

occurs if a client is replenished at a period when it was not supposed to be in the initial plan,

and vice versa. Narayanan and Robinson (2010) combine the metrics of Sridharan et al. (1988)

and Sahin et al. (2008) for the joint replenishment lot sizing problem. The authors investigate

the trade-off between stability and the cost of the obtained solutions. Finally, Herrera et al.

(2016) extend the work of Sridharan et al. (1988) for the MPS by proposing sub-metrics of

stability that quantify the deviation of the quantity for each period and not only for the whole

horizon. Their experiments show that an improvement in stability does not lead to a significant

cost increase.
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2.2.4 Literature review synthesis

A summary of the conducted literature review of the stability metrics is presented in Table 2.

The rows of this table use the names of the stability metrics proposed for the IRP in section 4,

and link them to their counterpart in the literature review of the different fields – namely,

scheduling, routing and inventory management. The names given in the table cells are those

used by the authors, when they differ from the name we use. This shows the terminology

appears to depend on the fields, although the metrics are quite similar: hence the need for us

to propose names for the IRP metrics.

Scheduling Routing Inventory management

Sequence
preservation

Dettenbach and Ubber
(2015); Wang et al. (2011)

Visit
deviation

Replenishment deviation
(Narayanan and Robinson,
2010; Sahin et al., 2008)

Quantity
deviation

Herrera et al. (2016); Kadi-
pasaoglu and Sridharan
(1997); Kimms (1998);
Narayanan and Robinson
(2010); Sahin et al. (2008);
Sridharan et al. (1988)

Edit distance Sörensen (2006)

Client
re-allocation

Machine re-assignment
(Curry and Peters, 2005)

Resource re-assignment ner-
vousness (Schönberger and
Kopfer, 2008)

Delivery
system
modification

Mode selection nervousness
(Schönberger and Kopfer,
2008)

Visiting time
deviation

Starting time deviation
(Cowling and Johansson,
2002; Pfeiffer et al., 2007;
Rangsaritratsamee et al.,
2004; Wu et al., 1993)

Arrival time deviation
(Schönberger and Kopfer,
2008; Wang et al., 2011;
Zhang and Tang, 2007)

Table 2: A summary of the stability metrics in the literature

3 Mathematical formulation

Prior to the re-optimisation problem, a mathematical formulation of the IRP is presented, based

on the work of Archetti et al. (2007).
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3.1 Notations

The following notations are used for the formulation of the IRP and throughout the rest of this

article:

Definition sets:

• G = (V, E) is a graph where vertex 0 ∈ V represents the supplier, V\{0} the set of

clients and E the set of edges.

• H = {0, 1, ..., |H|} is a time horizon where t ∈ H represent the index of the period.

Note that t = 0 represent the initial state.

Client data:

• Dt
i is the demand of client i ∈ V\{0} at period t ∈ H.

• s0
i represents the initial inventory (at period t = 0) of client i ∈ V\{0}.

• Smax
i is the maximum inventory level for client i ∈ V\{0}.

Supplier data:

• Rt is the quantity of products available or produced at supplier 0 ∈ V for period

t ∈ H.

• s0
0 represents the initial inventory of the supplier.

• C represents the capacity of the vehicle.

Costs:

• hi is the holding cost paid for each product in the inventory of the client/supplier

i ∈ V at the end of period t ∈ H.

• ci,j is the cost of travelling edge (i, j) ∈ E .

The mixed integer linear programs that follow use the decision variables listed below:

• xti,j = 1 if edge (i, j) ∈ E is travelled by vehicle at period t ∈ H, 0 otherwise.

• yti = 1 if client i ∈ V\{0} is visited at period t ∈ H, 0 otherwise.

• sti ∈ R is the inventory level of client i ∈ V\{0} at the end of period t ∈ H.

• qti ∈ R is the quantity sent to client i ∈ V\{0} at period t ∈ H.

12



IRP

min objIRP = ci,j
∑
i∈V

∑
j∈V,i<j

∑
t∈H\{0}

xt
i,j + hi

∑
i∈V

∑
t∈H

sti

s.t st0 = st−1
0 −

∑
i∈V\{0}

qti + Rt ∀t ∈ H\{0} (1)

sti = st−1
i + qti −Dt

i ∀i ∈ V\{0} , ∀t ∈ H\{0} (2)

sti ≤ Smax
i ∀i ∈ V\{0} , ∀t ∈ H\{0} (3)

qti + st−1
i ≤ Smax

i ∀i ∈ V\{0} , ∀t ∈ H\{0} (4)

qti ≤ Smax
i × yt

i ∀i ∈ V\{0} , ∀t ∈ H\{0} (5)

qt0 ≤ C × yt
0 ∀t ∈ H\{0} (6)

∑
j∈V\{0}

xt
i,j +

∑
j∈V\{0}

xt
j,i = 2× yt

i ∀i ∈ V , ∀t ∈ H\{0} (7)

∑
i∈S

∑
j∈S ,i<j

xt
i,j ≤ |S | − 1 ∀S ⊆ V\{0} , t ∈ H\{0} (8)

xt
i,j ∈ {0, 1} ∀i, j ∈ V , ∀t ∈ H\{0} (9)

yt
i ∈ {0, 1} ∀i ∈ V , ∀t ∈ H\{0} (10)

qti ≥ 0 ∀i ∈ V\{0} , ∀t ∈ H\{0} (11)

sti ≥ 0 ∀i ∈ V , ∀t ∈ H\{0} (12)

3.2 Mathematical formulation of the IRP

The objective computes the total travelling cost and the total holding cost for i ∈ V for the

whole time horizon H.

Constraints (1) are flow conservation constraints that compute the inventory level of the supplier

at each period t ∈ H\{0} from its previous inventory level, the quantity produced at t and

the quantities sent to the clients at t. Similarly, Constraints (2) state the flow conservation

constraints regarding the clients. They compute the inventory level of each client i ∈ V\{0} for

each period t ∈ H\{0} from its previous inventory level, the quantity received from the supplier

and its demand for period t.

The inventory capacity is enforced through several constraints: Constraints (3) state that the

inventory level of client i ∈ V\{0} at any period t ∈ H must be lower than Smax
i , and Con-

straints (4) state that a replenishment of this client at period t ∈ H\{0} cannot exceed its

maximal inventory level.

13



Constraints (5) link variables yti with qti , stating that a client i ∈ V\{0} which receives a quantity

at period t ∈ H\{0}, is necessarily visited at t. Smax is used here as an upper bound for qti .

Constraints (6) works similarly for the supplier, stating that the quantity leaving supplier 0 at

period t ∈ H\{0} is limited by the vehicle capacity C.

Constraints (7) state that if a location is visited, it is entered and left once. Constraints (8)

eliminates sub-tours. Finally, constraints (9) to (12) enforce integrality and non-negativity con-

ditions on the variables.

In order to solve the IRP and the different re-optimisation models of the IRP that will be pro-

posed in the next sections, a branch-and-cut algorithm is used. The mathematical formulation

presented previously is strengthened with additional valid inequalities presented in Archetti

et al. (2007), Coelho and Laporte (2014) and Desaulniers et al. (2016). The bounds are im-

proved and the routing component of the IRP re-formulated according to the work of Lefever

(2018b). Finally, the subtour elimination constraints are added dynamically into a branch-and-

cut procedure.

It is worth noting that our contribution does not lie in the solving method, as the branch-and-

cut procedure used only combines state-of-the-art cuts and reformulations of the IRP in order

to solve the problem efficiently.

3.3 An illustrative example

Let us consider a small instance w of the IRP where V = {0, 1, 2, ..., 5} is constituted of five

clients besides supplier 0, time horizon |H| = 3 and vehicle capacity C = 150. Table 3 lists

all data related to instance w. The columns represent, respectively, the indices i of the sup-

plier/clients, the coordinates (xi; yi), the initial inventory s0
i , the maximum inventory Smax

i , the

quantity Rt available to supplier 0 at each time period of horizon H, the demand dti of clients

{1, 2, ..., 5} for each time period of horizon H, and finally the holding costs. The length of each

edge approximates the cost of travelling the edge. This Euclidean distance is computed from

the coordinates of the locations.

Table 4 and Figure 1 present an optimal solution for instance w. Table 4 presents the inventory

levels at the end of each period of each location and the quantities sent from the supplier to

each client for the whole time horizon, and Figure 1 gives a graphical overview of the same

14



i (xi; yi) s0
i Smax

i
Rt Dt

i hi
t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

0 (154;417) 510 +∞ 193 193 193 0.03
1 (172;334) 40 130 65 65 65 0.02
2 (267;87) 20 70 35 35 35 0.03
3 (148;433) 58 116 58 58 58 0.03
4 (355;444) 24 48 24 24 24 0.02
5 (38;152) 11 22 11 11 11 0.02

Table 3: A representation of the data of instance w

solution. In period t = 1, deliveries are made to clients 1, 2 and 5 in this order. For t = 2, the

supplier replenishes clients 1, 3 and 4. Finally, for period t = 3, clients 1, 2, 3 and 5 are visited.

Note that in Table 4 the inventory level is given at the end of the period, whereas Figure 1

shows it at the beginning of the period. This choice was made to improve the figure readability;

the inventory level at the end of the period in Figure 1 can be computed by adding the quantity

received to the inventory level at the beginning of the period, minus the demand of the client

for that period.

i
sti qti

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

0 553 596 639
1 64 43 24 89 44 46
2 35 0 0 50 0 35
3 0 0 0 0 58 58
4 0 24 0 0 48 0
5 11 0 0 11 0 11

Table 4: An optimal solution of instance w

This example will be used in the rest of the article to illustrate the applicability of some of the

stability metrics proposed.

3.4 Cost-based re-optimisation

Let us now consider that the demand of the clients are subject to unexpected changes. Each

of such changes is modelled as a deterministic event E = {p,DE} where p ∈ H represents the

period for which the event happens and DE represents a set of modified demands. Note that

the event always occurs at the beginning of period p.

An example of an event for instance w is presented in Table 5. Event E in this case occurs

15
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Figure 1: A representation of an optimal solution of instance w

at period p = 2. Therefore, a re-optimisation is needed for the second and third periods. The

demands that are modified compared to Table 3 are shown with bold characters. For example,

for client 4, demands in periods t = 2 and t = 3 increased to 48 instead of 24, whereas for client

1, demand for period t = 2 turned to 0 instead of 65.

i
Dt

i

t = 1 t = 2 t = 3

1 65 0 65
2 35 35 70
3 58 0 58
4 24 48 48
5 11 0 11

Table 5: A representation of an event for instance w

In order to adapt to these new demands, a re-optimisation is needed for horizon Hnew = {p, p+

1, ..., |H|}. To mathematically formulate the re-optimisation problem, let S = {Xt
i,j , Y

t
i , Q

t
i, S

t
i}

and Snew = {xti,j , yti , qti , sti} be, respectively, a set of data representing the original solution for

the deterministic problem and a set of decision variables for the re-optimisation problem.

Compared to the original model, the cost-based re-optimisation problem time horizon H is
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Cost-based re-optimisation (IRPR)

min objIRP = ci,j
∑
i∈V

∑
j∈V,i<j

∑
t∈H\{0}

xt
i,j + hi

∑
i∈V

∑
t∈H

sti

s.t st0 = st−1
0 −

∑
i∈V\{0}

qti + Rt ∀t ∈ Hnew (13)

sti = st−1
i + qti −Dt

i ∀i ∈ V\{0} , ∀t ∈ Hnew (14)

sti ≤ Smax
i ∀i ∈ V\{0} , ∀t ∈ Hnew (15)

qti + st−1
i ≤ Smax

i ∀i ∈ V\{0} , ∀t ∈ Hnew (16)

qti ≤ Smax
i × yt

i ∀i ∈ V\{0} , ∀t ∈ Hnew (17)

qt0 ≤ C × yt
0 ∀t ∈ Hnew (18)

∑
j∈V\{0}

xt
i,j +

∑
j∈V\{0}

xt
j,i = 2× yt

i ∀i ∈ V , ∀t ∈ Hnew (19)

∑
i∈S

∑
j∈S ,i<j

xt
i,j ≤ |S | − 1 ∀S ⊆ V\{0} , t ∈ Hnew (20)

(9) to (12)

xt
i,j = Xt

i,j ∀(i, j) ∈ E , ∀t ∈ Hfixed (21)

yt
i = Y t

i ∀i ∈ V , ∀t ∈ Hfixed (22)

sti = St
i ∀i ∈ V , ∀t ∈ Hfixed (23)

qti = Qt
i ∀i ∈ V , ∀t ∈ Hfixed (24)

decomposed in two parts: Hfixed = {0, 1, . . . , p − 1} and Hnew = {p, p + 1, ..., |H|}. In the first

part of this time horizon, i.e. before the occurrence of the event, constraints (21) to (24) are

added. They fix the decision variables of Snew to the values taken by the decision variables in

S. For the second part of the time horizon, i.e. after the event, the constraints are kept the

same as in the IRP model.

Figure 2 shows an optimal solution for instance w faced with the event presented in Table 5.

This solution is obtained using the model formulated above. The variables regarding period 1

in Snew are fixed to the values determined in S, since the event occurs at period 2. During

t = 2, client 1 is no longer visited in comparison to the initial solution S. Finally, for t = 3,

clients 1, 2 and 4 are visited in this order, instead of 1, 2, 5 and 3.

The problem with this new solution Snew is that it can be perceived as too different from

solution S in terms of solution structure. Therefore, stability metrics are needed to reduce this
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Ré-optimisation: coût
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Figure 2: A representation of an optimal solution for the re-optimised instance w

difference.

4 Adaptation and mathematical formulation of stability metrics

In this section, we discuss the relevance for the IRP of the stability metrics found in the literature

review carried out in subsection 2.2. The advantages and drawbacks of these each are analysed.

Only those that are judged relevant for the IRP are mathematically formulated and illustrated

using the example of subsection 3.3.

There are several ways to include these metrics in the mathematical formulation of the cost-

based re-optimisation presented in subsection 3.4: either as a single objective, as hard con-

straints or as soft constraints, i.e. integrated to the objective as penalties to be paid each

time the metric is violated. In this section, the former option is used: the objectives of the

mathematical formulations proposed aim at minimising the violations of the metrics.

4.1 Sequence preservation

Description: Sequence preservation is an important stability metric used in both scheduling

(Wu et al., 1993) and routing problems (Dettenbach and Ubber, 2015). In the literature, it is

used as an additional constraint where the sequence (or part of the sequence) of an original
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solution must be preserved in the re-optimised solution (Dettenbach and Ubber, 2015).

Let us consider an example where clients {a, b, c} are visited in the original solution S at time

t with route R = {a− b− c}. The event adds two more clients that should be visited at time t,

thus the set of clients to visit in this route becomes {a, b, c, d, e}. A subset of possible solutions

for the re-optimised case would be routes: Rnew
1 = {a− b− c−d− e}, Rnew

2 = {a− b− c− e−d}

and Rnew
3 = {a − d − b − e − c}. A stable solution in this case can be defined by one that

minimises the number of violations of the sequence. To compute this number, the edges taken

in solution S are compared with the ones taken in solution Snew. For example, for Rnew
1 and

Rnew
2 the number of violations of the sequence would be equal to 0 since the edges between a

and b and between b and c exist in Snew. However, for Rnew
3 it would be equal to 2 since both

edges are missing.

Advantages: In urban delivery the products to deliver are generally stored inside the truck

following the sequence of the solution so that the products of the first client to visit are the most

accessible. Disturbing the original sequence when re-optimising would result in an increase of the

visiting time and therefore the duration of the route. Preserving the sequence avoids such issues.

However, this is only relevant for the period of occurrence of event p. Another advantage is that,

as drivers are given the initial plans, they may plan other operations accordingly. Changing the

sequence may have an impact on these operations. Finally, the other advantage is implicit, as

preserving the sequence can preserve the visiting times of the clients as well.

Drawbacks: A sequence changes only when clients are added to or removed from a route,

compared to the original solution. Re-optimising the IRP with sequence preservation therefore

implies solving a travelling salesman problem (TSP) when a vertex is inserted, removed or

substituted. Because it is well known that an efficient solution of such a modified TSP can be

completely different from a solution of the original one (Archetti et al., 2003), preserving the

sequence can have a huge impact on the cost of the solution. Another drawback of this metric

is that it is mainly external since it has no effect whatsoever on the client.

Mathematical formulation: Let us now mathematically formulate the sequence preserva-

tion metric for the IRP. Let zti,j be a binary variable that is equal to 1 if there is a sequence

violation, i.e. if edge (i, j) ∈ E is used in a route at time t in solution S but not in Snew, or if

it is used in Snew but not in S.
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Sequence preservation-based re-optimisation (IRPR-SP)

min
∑

t∈Hnew

∑
i∈V

∑
j∈V,i<j

zti,j

s.t. (9) to (24)

zti,j = |Xt
i,j − xt

i,j | ∀t ∈ Hnew , ∀i ∈ V , ∀j ∈ V, i < j (25)

zti,j ∈ {0, 1} ∀t ∈ Hnew , ∀i ∈ V , ∀j ∈ V, i < j (26)

The IRPR-SP model modifies the formulation of the IRPR by changing the objective function

(which becomes the minimisation of the number of sequence violations) and extending it with

constraints (25) and (26). Constraints (25) count one violation of sequence if an edge (i, j) is

taken in S and not in Snew and vice versa; they are not linear, but we note that a constraint

z = |x− y| can be linearized as follows if z appears in the minimization objective:

z = |x− y| ⇔


z ≥ x− y

z ≥ y − x

Constraints (26) ensure the binarity of variables zti,j .

Figure 3 represents an optimal solution using the model IRPR-SP. As in Figure 2, the re-

optimisation process starts at the second period. In period t = 2, the same sequence is preserved.

However, for t = 3, there is one sequence violation, due to the addition of client 4 to the tour.

Indeed, in this case, the arc 1− 2 is no longer taken and is replaced by the sequence 1− 4− 2.

4.2 Visit deviation

Description: Visit deviation is a metric we adapt for the IRP and based on the metric

presented in Sahin et al. (2008). This metric is not applicable to purely routing problems such

as TSP and VRP. Indeed, due to the time dimension of the IRP, it is possible not to visit a client

for a certain period, as long as its demand is satisfied, which is not the case for the problems

cited previously. The visit deviation quantifies the number of clients that are visited in the

re-optimised solution whereas they were not supposed to be in the original one and vice-versa.

This metric is mainly external according to Schönberger and Kopfer (2008)’s classification, i.e.

it is designed to cater for clients satisfaction.
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Préservation de la séquence
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<latexit sha1_base64="Fpre3ksk5H4ljSEdtKhQ/xhVUq4=">AAACAHicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6EUIevEY0TwgWcLsZDYZMju7zPQKIeTi3av+gjfx6p/4B36Gs8keNLGgoajqprsrSKQw6Lpfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN5nfeuTaiFg94DjhfkQHSoSCUbTSPV5Ve6WyW3FnIMvEy0kZctR7pe9uP2ZpxBUySY3peG6C/oRqFEzyabGbGp5QNqID3rFU0YgbfzI7dUpOrdInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvaaLzFIJZJs1rx3Ip3d16uXechFeAYTuAMPLiAGtxCHRrAYADP8AKvzpPz5rw7H/PWFSefOYI/cD5/AJeOlt4=</latexit><latexit sha1_base64="Fpre3ksk5H4ljSEdtKhQ/xhVUq4=">AAACAHicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6EUIevEY0TwgWcLsZDYZMju7zPQKIeTi3av+gjfx6p/4B36Gs8keNLGgoajqprsrSKQw6Lpfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN5nfeuTaiFg94DjhfkQHSoSCUbTSPV5Ve6WyW3FnIMvEy0kZctR7pe9uP2ZpxBUySY3peG6C/oRqFEzyabGbGp5QNqID3rFU0YgbfzI7dUpOrdInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvaaLzFIJZJs1rx3Ip3d16uXechFeAYTuAMPLiAGtxCHRrAYADP8AKvzpPz5rw7H/PWFSefOYI/cD5/AJeOlt4=</latexit><latexit sha1_base64="Fpre3ksk5H4ljSEdtKhQ/xhVUq4=">AAACAHicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6EUIevEY0TwgWcLsZDYZMju7zPQKIeTi3av+gjfx6p/4B36Gs8keNLGgoajqprsrSKQw6Lpfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN5nfeuTaiFg94DjhfkQHSoSCUbTSPV5Ve6WyW3FnIMvEy0kZctR7pe9uP2ZpxBUySY3peG6C/oRqFEzyabGbGp5QNqID3rFU0YgbfzI7dUpOrdInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvaaLzFIJZJs1rx3Ip3d16uXechFeAYTuAMPLiAGtxCHRrAYADP8AKvzpPz5rw7H/PWFSefOYI/cD5/AJeOlt4=</latexit><latexit sha1_base64="Fpre3ksk5H4ljSEdtKhQ/xhVUq4=">AAACAHicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6EUIevEY0TwgWcLsZDYZMju7zPQKIeTi3av+gjfx6p/4B36Gs8keNLGgoajqprsrSKQw6Lpfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN5nfeuTaiFg94DjhfkQHSoSCUbTSPV5Ve6WyW3FnIMvEy0kZctR7pe9uP2ZpxBUySY3peG6C/oRqFEzyabGbGp5QNqID3rFU0YgbfzI7dUpOrdInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvaaLzFIJZJs1rx3Ip3d16uXechFeAYTuAMPLiAGtxCHRrAYADP8AKvzpPz5rw7H/PWFSefOYI/cD5/AJeOlt4=</latexit>

t = 3
<latexit sha1_base64="Al6WdAyBWsV+HJM7Cgwsz3VTsP0=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70GhBQ1HVTXdXkEhh0HU/ncLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG15nfeuDaiFjd4zjhfkQHSoSCUbTSHV6e9soVt+rOQP4SLycVyFHvlb+6/ZilEVfIJDWm47kJ+hOqUTDJp6VuanhC2YgOeMdSRSNu/Mns1Ck5skqfhLG2pZDM1J8TExoZM44C2xlRHJpFLxP/9TJFm9As7Mfwwp8IlaTIFZuvD1NJMCZZGqQvNGcox5ZQpoX9gLAh1ZShzaxko/EWg/hLmidVz616t2eV2lUeUhEO4BCOwYNzqMEN1KEBDAbwBM/w4jw6r86b8z5vLTj5zD78gvPxDZkolt8=</latexit><latexit sha1_base64="Al6WdAyBWsV+HJM7Cgwsz3VTsP0=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70GhBQ1HVTXdXkEhh0HU/ncLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG15nfeuDaiFjd4zjhfkQHSoSCUbTSHV6e9soVt+rOQP4SLycVyFHvlb+6/ZilEVfIJDWm47kJ+hOqUTDJp6VuanhC2YgOeMdSRSNu/Mns1Ck5skqfhLG2pZDM1J8TExoZM44C2xlRHJpFLxP/9TJFm9As7Mfwwp8IlaTIFZuvD1NJMCZZGqQvNGcox5ZQpoX9gLAh1ZShzaxko/EWg/hLmidVz616t2eV2lUeUhEO4BCOwYNzqMEN1KEBDAbwBM/w4jw6r86b8z5vLTj5zD78gvPxDZkolt8=</latexit><latexit sha1_base64="Al6WdAyBWsV+HJM7Cgwsz3VTsP0=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70GhBQ1HVTXdXkEhh0HU/ncLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG15nfeuDaiFjd4zjhfkQHSoSCUbTSHV6e9soVt+rOQP4SLycVyFHvlb+6/ZilEVfIJDWm47kJ+hOqUTDJp6VuanhC2YgOeMdSRSNu/Mns1Ck5skqfhLG2pZDM1J8TExoZM44C2xlRHJpFLxP/9TJFm9As7Mfwwp8IlaTIFZuvD1NJMCZZGqQvNGcox5ZQpoX9gLAh1ZShzaxko/EWg/hLmidVz616t2eV2lUeUhEO4BCOwYNzqMEN1KEBDAbwBM/w4jw6r86b8z5vLTj5zD78gvPxDZkolt8=</latexit><latexit sha1_base64="Al6WdAyBWsV+HJM7Cgwsz3VTsP0=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70GhBQ1HVTXdXkEhh0HU/ncLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG15nfeuDaiFjd4zjhfkQHSoSCUbTSHV6e9soVt+rOQP4SLycVyFHvlb+6/ZilEVfIJDWm47kJ+hOqUTDJp6VuanhC2YgOeMdSRSNu/Mns1Ck5skqfhLG2pZDM1J8TExoZM44C2xlRHJpFLxP/9TJFm9As7Mfwwp8IlaTIFZuvD1NJMCZZGqQvNGcox5ZQpoX9gLAh1ZShzaxko/EWg/hLmidVz616t2eV2lUeUhEO4BCOwYNzqMEN1KEBDAbwBM/w4jw6r86b8z5vLTj5zD78gvPxDZkolt8=</latexit>
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Figure 3: An optimal solution for instance w with minimum sequence violations

Advantages: A client which is visited when it was not supposed to be may face some planning

issues related to the unavailability of resources such as the human workforce, machinery, parking

slots. . . Conversely, expecting a visit that does not actually occur causes a waste of time and

resources. Therefore, minimising the visits violation minimises the disruptions for the client

and increases the reliability of the supplier from the clients’ point of view.

Drawbacks: Because the visit deviation metric is mainly external, i.e. favours the client’s

point of view, it does not explicitly ensure any internal stability. Therefore, it cannot guarantee

an efficient routing. However, it is worth noting that the visit deviation metric does ensure

internal and external stability in inventory management in an implicit way, since not visiting

a client that was supposed to be resupplied, or visiting a client that was not supposed to be

resupplied, has a negative impact on the stability of the inventory of both the supplier and the

client.

Another drawback of the metric is that, in some cases, it can be counterproductive: minimising

the visit deviation can lead to a client being visited for no reason (no product being delivered)

other than to keep it visited.
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Mathematical formulation: Let zti be a binary variable that is equal to 1 if there is a visit

deviation for client i at period t, i.e. if it is visited while it was not supposed to be, or if it is

not visited while it was supposed to be.

Visit deviation-based re-optimisation (IRPR-VD)

min
∑

t∈Hnew

∑
i∈V\{0}

zti

s.t. (9) to (24)

zti = |Y t
i − yt

i | ∀t ∈ Hnew , ∀i ∈ V\{0} (27)

zti ∈ {0, 1} ∀t ∈ Hnew , ∀i ∈ V\{0} (28)

The objective of the IRPR-VD is the minimisation of the number of visit deviations. It extends

the IRPR with constraints (27) and (28). Constraints (27) define a deviation for a client i

in period t as happening if it is visited in S and not visited in Snew or vice-versa. It can be

linearized as explained before. Constraints (28) ensure the binarity of variables zti .

An optimal solution of the IRPR-VD on our example instance w is presented in Figure 4. In

period 2 the same clients are visited as in S. For period 3, client 4 is visited in addition to

clients 1, 2, 3 and 5. Therefore, there is one visit deviation in total, the objective is 1.
Déviation sur les visites
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t = 1
<latexit sha1_base64="En3hRtnqXxrWu60cM7hqzVwKc0U=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70MSChqKqm+6uIJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbjK/9ci1EbF6wHHC/YgOlAgFo2ile7zyeuWKW3VnIMvEy0kFctR75e9uP2ZpxBUySY3peG6C/oRqFEzyaambGp5QNqID3rFU0YgbfzI7dUpOrNInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvZaLzFIJZJ86zquVXv7rxSu85DKsIRHMMpeHABNbiFOjSAwQCe4QVenSfnzXl3PuatBSefOYQ/cD5/AJX0lt0=</latexit><latexit sha1_base64="En3hRtnqXxrWu60cM7hqzVwKc0U=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70MSChqKqm+6uIJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbjK/9ci1EbF6wHHC/YgOlAgFo2ile7zyeuWKW3VnIMvEy0kFctR75e9uP2ZpxBUySY3peG6C/oRqFEzyaambGp5QNqID3rFU0YgbfzI7dUpOrNInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvZaLzFIJZJ86zquVXv7rxSu85DKsIRHMMpeHABNbiFOjSAwQCe4QVenSfnzXl3PuatBSefOYQ/cD5/AJX0lt0=</latexit><latexit sha1_base64="En3hRtnqXxrWu60cM7hqzVwKc0U=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70MSChqKqm+6uIJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbjK/9ci1EbF6wHHC/YgOlAgFo2ile7zyeuWKW3VnIMvEy0kFctR75e9uP2ZpxBUySY3peG6C/oRqFEzyaambGp5QNqID3rFU0YgbfzI7dUpOrNInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvZaLzFIJZJ86zquVXv7rxSu85DKsIRHMMpeHABNbiFOjSAwQCe4QVenSfnzXl3PuatBSefOYQ/cD5/AJX0lt0=</latexit><latexit sha1_base64="En3hRtnqXxrWu60cM7hqzVwKc0U=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70MSChqKqm+6uIJHCoOt+OYWV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbjK/9ci1EbF6wHHC/YgOlAgFo2ile7zyeuWKW3VnIMvEy0kFctR75e9uP2ZpxBUySY3peG6C/oRqFEzyaambGp5QNqID3rFU0YgbfzI7dUpOrNInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvZaLzFIJZJ86zquVXv7rxSu85DKsIRHMMpeHABNbiFOjSAwQCe4QVenSfnzXl3PuatBSefOYQ/cD5/AJX0lt0=</latexit> t = 2

<latexit sha1_base64="Fpre3ksk5H4ljSEdtKhQ/xhVUq4=">AAACAHicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6EUIevEY0TwgWcLsZDYZMju7zPQKIeTi3av+gjfx6p/4B36Gs8keNLGgoajqprsrSKQw6Lpfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN5nfeuTaiFg94DjhfkQHSoSCUbTSPV5Ve6WyW3FnIMvEy0kZctR7pe9uP2ZpxBUySY3peG6C/oRqFEzyabGbGp5QNqID3rFU0YgbfzI7dUpOrdInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvaaLzFIJZJs1rx3Ip3d16uXechFeAYTuAMPLiAGtxCHRrAYADP8AKvzpPz5rw7H/PWFSefOYI/cD5/AJeOlt4=</latexit><latexit sha1_base64="Fpre3ksk5H4ljSEdtKhQ/xhVUq4=">AAACAHicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6EUIevEY0TwgWcLsZDYZMju7zPQKIeTi3av+gjfx6p/4B36Gs8keNLGgoajqprsrSKQw6Lpfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN5nfeuTaiFg94DjhfkQHSoSCUbTSPV5Ve6WyW3FnIMvEy0kZctR7pe9uP2ZpxBUySY3peG6C/oRqFEzyabGbGp5QNqID3rFU0YgbfzI7dUpOrdInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvaaLzFIJZJs1rx3Ip3d16uXechFeAYTuAMPLiAGtxCHRrAYADP8AKvzpPz5rw7H/PWFSefOYI/cD5/AJeOlt4=</latexit><latexit sha1_base64="Fpre3ksk5H4ljSEdtKhQ/xhVUq4=">AAACAHicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6EUIevEY0TwgWcLsZDYZMju7zPQKIeTi3av+gjfx6p/4B36Gs8keNLGgoajqprsrSKQw6Lpfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN5nfeuTaiFg94DjhfkQHSoSCUbTSPV5Ve6WyW3FnIMvEy0kZctR7pe9uP2ZpxBUySY3peG6C/oRqFEzyabGbGp5QNqID3rFU0YgbfzI7dUpOrdInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvaaLzFIJZJs1rx3Ip3d16uXechFeAYTuAMPLiAGtxCHRrAYADP8AKvzpPz5rw7H/PWFSefOYI/cD5/AJeOlt4=</latexit><latexit sha1_base64="Fpre3ksk5H4ljSEdtKhQ/xhVUq4=">AAACAHicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6EUIevEY0TwgWcLsZDYZMju7zPQKIeTi3av+gjfx6p/4B36Gs8keNLGgoajqprsrSKQw6Lpfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN5nfeuTaiFg94DjhfkQHSoSCUbTSPV5Ve6WyW3FnIMvEy0kZctR7pe9uP2ZpxBUySY3peG6C/oRqFEzyabGbGp5QNqID3rFU0YgbfzI7dUpOrdInYaxtKSQz9ffEhEbGjKPAdkYUh2bRy8R/vUzRJjQL+zG89CdCJSlyxebrw1QSjEmWBukLzRnKsSWUaWE/IGxINWVoMyvaaLzFIJZJs1rx3Ip3d16uXechFeAYTuAMPLiAGtxCHRrAYADP8AKvzpPz5rw7H/PWFSefOYI/cD5/AJeOlt4=</latexit>

t = 3
<latexit sha1_base64="Al6WdAyBWsV+HJM7Cgwsz3VTsP0=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70GhBQ1HVTXdXkEhh0HU/ncLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG15nfeuDaiFjd4zjhfkQHSoSCUbTSHV6e9soVt+rOQP4SLycVyFHvlb+6/ZilEVfIJDWm47kJ+hOqUTDJp6VuanhC2YgOeMdSRSNu/Mns1Ck5skqfhLG2pZDM1J8TExoZM44C2xlRHJpFLxP/9TJFm9As7Mfwwp8IlaTIFZuvD1NJMCZZGqQvNGcox5ZQpoX9gLAh1ZShzaxko/EWg/hLmidVz616t2eV2lUeUhEO4BCOwYNzqMEN1KEBDAbwBM/w4jw6r86b8z5vLTj5zD78gvPxDZkolt8=</latexit><latexit sha1_base64="Al6WdAyBWsV+HJM7Cgwsz3VTsP0=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70GhBQ1HVTXdXkEhh0HU/ncLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG15nfeuDaiFjd4zjhfkQHSoSCUbTSHV6e9soVt+rOQP4SLycVyFHvlb+6/ZilEVfIJDWm47kJ+hOqUTDJp6VuanhC2YgOeMdSRSNu/Mns1Ck5skqfhLG2pZDM1J8TExoZM44C2xlRHJpFLxP/9TJFm9As7Mfwwp8IlaTIFZuvD1NJMCZZGqQvNGcox5ZQpoX9gLAh1ZShzaxko/EWg/hLmidVz616t2eV2lUeUhEO4BCOwYNzqMEN1KEBDAbwBM/w4jw6r86b8z5vLTj5zD78gvPxDZkolt8=</latexit><latexit sha1_base64="Al6WdAyBWsV+HJM7Cgwsz3VTsP0=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70GhBQ1HVTXdXkEhh0HU/ncLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG15nfeuDaiFjd4zjhfkQHSoSCUbTSHV6e9soVt+rOQP4SLycVyFHvlb+6/ZilEVfIJDWm47kJ+hOqUTDJp6VuanhC2YgOeMdSRSNu/Mns1Ck5skqfhLG2pZDM1J8TExoZM44C2xlRHJpFLxP/9TJFm9As7Mfwwp8IlaTIFZuvD1NJMCZZGqQvNGcox5ZQpoX9gLAh1ZShzaxko/EWg/hLmidVz616t2eV2lUeUhEO4BCOwYNzqMEN1KEBDAbwBM/w4jw6r86b8z5vLTj5zD78gvPxDZkolt8=</latexit><latexit sha1_base64="Al6WdAyBWsV+HJM7Cgwsz3VTsP0=">AAACAHicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoBch6MVjRPOAZAmzk9lkyOzsMtMrhJCLd6/6C97Eq3/iH/gZziZ70GhBQ1HVTXdXkEhh0HU/ncLS8srqWnG9tLG5tb1T3t1rmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG15nfeuDaiFjd4zjhfkQHSoSCUbTSHV6e9soVt+rOQP4SLycVyFHvlb+6/ZilEVfIJDWm47kJ+hOqUTDJp6VuanhC2YgOeMdSRSNu/Mns1Ck5skqfhLG2pZDM1J8TExoZM44C2xlRHJpFLxP/9TJFm9As7Mfwwp8IlaTIFZuvD1NJMCZZGqQvNGcox5ZQpoX9gLAh1ZShzaxko/EWg/hLmidVz616t2eV2lUeUhEO4BCOwYNzqMEN1KEBDAbwBM/w4jw6r86b8z5vLTj5zD78gvPxDZkolt8=</latexit>

150193

510

Re-optimised inventory
Re-optimised quantity
New demand

65
89

40

130
35

50

20

70

24

0

24
48

58

0

58
116

111111
22

65
44

64
130

35

0

35
70

11
0

11
22

24

48

0

48
5858

0

116

150193

553

Initial inventory
Initial quantity
Initial demand

150193

596

654643

130

3535

0

70

1111
0

22

24

0

24
48

5858

0

116

150193

553
0

6564
130

35

0

35
70

0
37

0

116

4848

0

48

00
11

22

150193

596

65

1

129
130 7070

0

70

58
2137

116

4848

0

48

111011
22

5

1

3
4

2

5

1

3

4

2

5

1

3

4

2

Initial route Re-optimised route

visit deviation = 1 
cost = 2621.74€

Figure 4: An optimal solution for instance w with minimum visit deviations
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4.3 Quantity received deviation

Description: We propose the quantity received deviation as a stability metric for the IRP, in

order to address the lack of stability metrics in inventory management previously emphasised

in the literature review. This metric computes the difference between the quantity that was

supposed to be sent in the original solution and the quantity received in the re-optimised one.

This metric is meant to improve the service quality, i.e. it is mainly external.

Advantages: A good point is that when the quantity received deviation is kept at a minimum,

fewer planning issues are faced. Indeed, a client receiving less quantity than planned has

uselessly mobilised costly resources for this process. Conversely, if the client receives more

products than planned, there might be a shortage of resources which may increase the service

time, thus disrupting the entire delivery plan.

This metric is the only one that handles explicitly the inventory management component of the

IRP.

Drawbacks: The logic behind VMI is to let the decision maker, who has the best overview of

the network, decide whom to serve and with which quantity. However, when limiting the value

of the quantity deviation metric, such flexibility is somewhat constrained. Note that, although

this drawback exists for all the metrics proposed, we believe that it is much more significant in

the case of quantity deviation.

Mathematical formulation: let q̃ti ∈ R be the quantity received deviation, i.e. the difference

of quantity received by client i at time t, between the original solution and the re-optimised

one.

Quantity deviation-based re-optimisation (IRPR-QD)

min
∑

t∈Hnew

∑
i∈V\{0}

q̃ti

s.t. (9) to (24)

q̃ti = |Qt
i − qti | ∀t ∈ Hnew , ∀i ∈ V\{0} (29)

q̃ti ≥ 0 ∀t ∈ Hnew , ∀i ∈ V\{0} (30)

The objective of the IRPR-QD is to minimise the total quantity deviations. Compared to the

IRPR, it adds constraints (29) and (30). Constraints (29) compute the difference between the
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quantity planned in solution S and received in Snew. These constraints can easily be linearised

as mentioned before. Constraints (30) ensure the non-negativity of variables q̃ti .

An optimal solution of the IRP-QD on instance w is presented in Figure 5. The differences in

quantity occur in period t = 3 just as in SP and V D. For example, client 1 receives 22 instead

of 46. The total amount of the differences over all the clients sums up to 166.
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Figure 5: An optimal solution for instance w with minimum quantity deviation

4.4 Clients re-allocation

Description: When re-optimising, a way to achieve stability is to minimise the re-allocations

of clients to drivers from other areas. The computation of the number of re-allocations is as

follows: one occurs for each visited client in S, if the driver is no longer the same in Snew. This

metric is an adaptation of the “Resource Assignment Nervousness” presented in Schönberger

and Kopfer (2008).

Advantages: When the clients re-allocation metric is kept at a minimum, the driver is less

disturbed by the events, which enhances his/her performance as well as the satisfaction of the

client.
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Drawbacks: In the IRP, clients that were not visited in the original plan can be added to a

route in the re-optimised solution, or clients that were previously visited can be removed from

the route. This will not affect the clients re-allocation metric at all, since the clients re-allocation

metric changes only when a client is visited in both S and Snew but with different vehicles. For

example, let K1 = {a, b, c, d} and K2 = {e, f, g} be the sets of clients visited by vehicle 1 and

2, respectively, in S. If in Snew, Knew
1 = {a, b, c} and Knew

2 = {e, f, g, h}, the number of visited

clients that are allocated to different vehicles is equal to zero, even if client d has been removed

and client h added. This example shows the limitations of this metric, that does not detect

some big differences between S and Snew.

We do not propose a mathematical formulation for the client re-allocation metric because we

chose to focus on a variant of the IRP where only one vehicle is used (see model in subsection 3.4),

whereas the client re-allocation metric is only compatible with multi-vehicle variants.

4.5 Edit distance

Description: As mentioned in subsection 2.2, the idea behind the edit distance in Sörensen

(2006) is to minimise the number of operations (addition, deletion, substitution) that transform

the original solution into the re-optimised one. This metric is easily adapted to the case of the

IRP.

Advantages: The advantage of this stability metric is mostly computational: the operators

used to compute the edit distance (addition, deletion and substitution) could be used within

a local search procedure. Local search algorithms are known to be very efficient heuristics for

sequencing problems, therefore they can help solving routing component of the IRP.

Drawbacks: Let us take the example of a time period in which to visit client {a, b, c} should

be visited, with route R = {a− b− c} as initial solution. Considering the addition of two clients

{d, e}, routes Rnew
1 = {a− b− c−d− e} and Rnew

2 = {a−d− b− e− c} can both be obtained by

performing two addition operations. For Rnew
1 , d and e are inserted to the end of the sequence,

whereas for Rnew
2 , d and e are inserted, respectively, between a− b and b− c. One could argue

that Rnew
1 represents a more stable solution than Rnew

2 as it does not change the initial sequence.

However, the edit distance metric cannot differentiate between them.

Another drawback of the edit distance metric is that it is generally considered as an indicator of
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stability and not an active optimisation criterion. This is due to the NP-hardness of defining the

optimal edit distance for Snew in relation to S (Sörensen, 2006). Therefore, we do not see how

to propose a linear model that optimises the edit distance and do not propose a mathematical

formulation for the edit distance metric.

4.6 Delivery system modification

Description: Delivery system modification as a metric can be considered only when deliveries

can be subcontracted, e.g. for the IRP with transshipment. It is adapted from the “Mode Selec-

tion Nervousness” metric presented in Schönberger and Kopfer (2008). It quantifies variations

in the mode of delivery between the original solution and the re-optimised one by counting the

number of clients that are visited by the supplier’s own fleet in Snew rather than a subcontractor,

or that are visited by a subcontractor instead of the supplier’s fleet.

Advantages: This metric helps limiting the changes in resources between the original and the

re-optimised solutions. Indeed, the decision maker has to determine how many drivers/owned

vehicles he/she will need to perform the routes of the solution, as well as the number of trans-

shipments. Minimising the modifications in the delivery system should avoid contractual issues

with the transportation provider if deliveries that were supposed to be outsourced are actually

managed internally, or vice versa.

Drawbacks: The main drawback of the delivery system modification metric is that it can

only be considered within a variant of the IRP, i.e. when transshipment is possible. In addition,

it does not ensure any external stability. Indeed, it does not usually matter for a client whether

the delivery is made by a subcontractor or an owned vehicle, as long as the right quantity is

received.

The delivery system modification metric is compatible only with variants of the IRP where

transshipment is considered. Therefore, no mathematical formulation is proposed for this met-

ric.

4.7 Visiting time deviation

Description: The visiting time deviation metric can be considered when time-related consid-

erations, such as travel times, arrival times, etc, are explicitly modelled in the IRP. This metric
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sums the differences, for each client, between the time of visit in the initial solution and the

re-optimised one.

Advantages: The advantage of this metric is twofold. First, when the visiting time deviations

are at a minimum, the client is more satisfied, since the resulting plan does not disturb too

much its schedule regarding closing time, other deliveries, unavailability of resources. . . Second,

it ensures, indirectly, some internal stability. Indeed, in order to minimise the deviations in the

time of visit, the paths of the drivers must not undergo heavy changes.

Drawbacks: The only drawback of this metric is that it does not ensure any stability in terms

of inventory management. However, it is very efficient for the routing component of the IRP

since it ensures both internal and external stability.

The visiting time deviation as a metric is only relevant when the time aspect is considered for

the routing component. Therefore, we do not propose a mathematical formulation due to its

incompatibility with our variant of the IRP.

4.8 A qualitative discussion

The panel of stability metrics presented in this section ensure a large range of stability for

the IRP and are compatible with different variants. As a summary, Table 6 shows, for each

stability metric proposed, if an internal or external stability in both routing and inventory

management is ensured, if it is compatible with the three most commonly used variants of

the IRP in the literature, respectively, IRP (multi-vehicle included), IRP with transshipment

(IRPT) and IRP with time windows (IRPTW) and finally, if a Mixed Integer Linear Programm

(MILP) is proposed for the metric. For example, visit deviation ensures external stability in

both routing and inventory management and internal stability in inventory management. It

is also compatible with every variant of the IRP. For the sequence preservation on the other

hand, although it can be compatible with all the variants of the IRP, it only ensures internal

routing stability. The last column shows that MILP models are proposed for three metrics

only, namely, sequence preservation, visit deviation and quantity deviation. This is due to the

incompatibility of some of the metrics with the variant of the IRP proposed in this paper (client

re-allocation, delivery system modification and visiting time deviation) or to their non linearity

(edit distance).
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Routing Inv. management Problem variants Proposed

Internal ExternalInternal External IRP IRPT IRPTW MILP model

Sequence preservation X x x x X X X X
Visit deviation x X X X X X X X
Quantity received deviation x x X X X X X X
Clients re-allocation x X x x X X X x
Edit distance X x x x X X X x
Delivery system modification X x x x x X x x
Visiting time deviation X X x x x x X x

Table 6: Categorisation of the IRP stability metrics

It appears from Table 6 that no stability metric is able to ensure internal and external stability

in both routing and inventory management. Therefore, ensuring the full range of stability for a

certain variant of the IRP can be a tedious task. For example, combining sequence preservation,

visit deviation and quantity deviation does ensure the full range of stability. However, including

all of them to an optimisation model comes with its challenges. If the metrics are considered as

hard constraints, it is very complicated to determine a thresh-hold of stability for the metrics

that ensures that a feasible solution can be obtained. On the other hand, if they are considered

as soft constraints, it is difficult to define an appropriate weight for each metric. Therefore,

in the next section, we propose a way to compare the stability metrics by investigating their

behaviour in relation to each other and to the initial objective function, the cost. The objective

of this comparison is to determine if there is a dominance relationship between the metrics in

order to eliminate the dominated or the redundant ones.

5 Comparison of the stability metrics

In this section, experiments are conducted in order to compare the stability metrics. To that

purpose, the benchmark used is described in subsection 5.1, a dominance function is introduced

in subsection 5.2, then experimental results are presented and discussed in subsection 5.3.

All experiments are conducted on a CPU Intel Xeon E5-1620 v3 @3.5Ghz with 64GB RAM

with a 600 seconds time limit. The subtour elimination constraints are added dynamically

using Gurobi 9.0.0 as a solver with the lazyConstraints parameter. All models are implemented

with Java in Eclipse IDE.

Note that only three metrics here are compared, namely, sequence preservation, visit deviation

and quantity deviation. As explained in section 4 and shown in Table 6, these metrics are the
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only ones judged both relevant and compatible with the IRP variant considered in this paper.

5.1 Benchmark

To model the initial problem before unexpected events happen, we use the benchmark proposed

by Archetti et al. (2007), which is the most commonly used in the literature. Table 7 describes

the characteristics of the instances used. There are two different time horizons (|H| = 3 and

6 periods), and different possible numbers of clients |V| for each time horizon. The holding

cost h is significantly higher in half of the instances. For each combination (|H|, |V|, h), five

(#instances) instances exist, on which ten (#events) events are generated for three different

sets of scenarios. For example, for |H| = 3 and |V| = 5, there are 5 different instances when the

holding cost h is low and 5 others when it is high. For each one of these 10 different instances,

10 events for each scenario are generated, which makes the total number of instances for |H| = 3

and |V| = 5 equal to 10× 10× 3 = 300. With all combinations considered, the total number of

instances is equal to 3000.

|H| |V| h #instances Scenarios #events per scenario

3 {5, 10, 20, 30, 40, 50} {high, low} 5 {1, 2, 3} 10
6 {5, 10, 20, 30}

Table 7: Benchmark for the experimental results

The three different scenarios considered to generate the events are presented in Table 8. The

table gives the percentage of clients that change their demand in each scenario; the columns

shows the demand variation in each case. For example, in scenario 1, the demand of each client

have a probability of 0.1 to become 0, a probability of 0.8 to stay the same and a probability

of 0.1 to double. These variations are rather drastic to ensure that significant changes can be

observed in the structure of the re-optimised solution. The procedure to generate an event is

presented in algorithm 1.

Scenario
Demand

= 0 ×0.5 == ×1.5 ×2

1 10% - 80% - 10%
2 15% 10% 50% 10% 15%
3 30% - 40% - 30%

Table 8: Event scenarios
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Algorithm 1: Generation of an event

1: input: Instance w, u index of the scenario
2: randomly generate a period p where p ∈ H
3: for t ∈ {p, p + 1, ..., |H|} do
4: for i ∈ V\{0} do
5: Depending on the scenario u, Dt

i is modified according to Table 8
6: end for
7: end for
8: return

5.2 A dominance function

Let w be an instance of the problem, W a set of instances, and F = {f1, f2, ..., f|F|} a set of

metrics. An optimal solution of instance w with the metric fv ∈ F as an objective function is

denoted by f∗v (w). We denote by f∗v′(w|f∗v (w)) the optimal solution of instance w with metric

fv′ as objective function, metric fv being kept at its optimal value f∗v (w) through an added

constraint.

The dominance of metric fv over metric fv′ for set W is denoted as fv �W fv′ . A metric

fv dominates a metric fv′ for set W if and only if for all instances w ∈ W it is possible

to find the optimal solution for metric fv′ when metric fv is fixed to its optimal value, i.e.

f∗v′(w) = f∗v′(w|f∗v (w)).

Let us now set |F| = 4 and f1 = Ĉ , f2 = SP , f3 = V D and f4 = QD where Ĉ is the cost,

SP the sequence preservation, V D the visit deviation and QD the quantity deviation. In order

to compare these metrics, the instances of the benchmark need to be solved to optimality for

each metric, and then for each metric fixed to its optimal value through an added constraint,

the other metrics are solved to optimality. The procedure for one instance and one event is

presented in algorithm 2 and Table 9: it starts by solving the initial problem and obtaining

the initial solution S. Afterwards, for each metric fv ∈ F the re-optimisation solution Snew
fv

is

obtained from the initial solution S and the event Ew and the optimal value of the metric f∗v

is obtained. For the remaining metrics fv′ , a new re-optimisation problem is solved, where the

value of metric fnew
v of index v is fixed to its optimal value f∗v . The results of this procedure is

a matrix M of dimensions |F| × |F| (Table 9).

As an illustration, in Table 9, cell SP ∗ contains the optimal solution when the objective is

to minimise the sequence preservation, cell SP ∗(V D∗) contains the optimal solution when the

objective is to minimise the sequence preservation while keeping the visit deviation at its optimal

30



value V D∗, and finally, V D∗(SP ∗) contains the optimal solution of the visit deviation when

the sequence preservation is kept at its optimal value.

Algorithm 2: Solving procedure for an instance w ∈ W
1: input: An instance w ∈ W, one of its events Ew, an empty matrix M of |F| × |F|

dimension
2: solve the initial problem to get S as optimal solution
3: for fv ∈ |F| do
4: solve to get Snew

fv
(Ew,S) and set Mfv ,fv to f∗v (w)

5: for fv′ ∈ |F|, fv′ 6= fv do
6: add the constraint fnew

v (w) = f∗v (w)
7: solve to get Snew

fv′
(Ew,S|f∗v (w)) and set Mfv ,fv′ to f∗v′(w)|f∗v

8: end for
9: end for

10: return M

Ĉ SP V D QD

Ĉ Ĉ∗ SP ∗(Ĉ∗) V D∗(Ĉ∗) QD∗(Ĉ∗)

SP Ĉ∗(SP ∗) SP ∗ V D∗(SP ∗) QD∗(SP ∗)

V D Ĉ∗(V D∗) SP ∗(V D∗) V D∗ QD∗(V D∗)

QD Ĉ∗(QD∗) SP ∗(QD∗) V D∗(QD∗) QD∗

Table 9: Structure of matrix M for one instance and one of its events

An example for an instance where |H| = 6 and |V| = 30, subjected to an event drawn from

the probability distribution of scenario 1, is presented in Table 10. It shows that V D �w SP ,

since SP ∗ = SP ∗(V D∗) = 0 and that SP �w V D, since V D∗ = V D∗(SP ∗) = 3. Therefore, a

dominance relation exists between SP and V D in both ways, thus it is not a strict one. These

two metrics can be said to be equivalent, i.e. optimising the sequence preservation first does

not keep us from finding the optimal solution for visit deviation and vice-versa. Furthermore,

observation of metrics QD and V D shows these metrics to be divergent, i.e. optimising one

deteriorates the other.

Ĉ SP V D QD

Ĉ 8328.03 7 8 1334
SP 8456.58 0 3 468
V D 9016.52 0 3 764
QD 9399.88 0 6 468

Table 10: Results for an instance where |H| = 6 and |V| = 30
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5.3 Results and discussion

Comparison of SP , V D and QD. All 3000 instances of setW are subjected to the procedure

described in algorithm 2, solving |F| × |F| = 16 MILPs for each instance. The results are

presented in Table 11 where each cell represents the ratio of instances where fv dominates fv′ .

�W Ĉ SP V D QD

Ĉ - 31.77 % 20.87 % 13.12 %
SP 31.77 % - 95.33 % 95.19 %
V D 20.87 % 95.33 % - 89.04 %
QD 13.12 % 95.19 % 89.04 % -

Table 11: Dominance results

Table 11 shows a high rate of equivalence between the stability metrics, namely, sequence

preservation, visit deviation and quantity deviation. Indeed, for sequence preservation, there is

an equivalence rate of 95% with both visit deviation and quantity deviation. This means that

divergences happen in only 5% of the cases: in these cases, optimising sequence preservation

deteriorates visit deviation and/or quantity deviation (and vice-versa). Moreover, although the

rate of equivalence between visit deviation and quantity deviation drops to 89% it is still very

strong. This amount of equivalence was intuitively expected due to the interrelationship of the

mathematical formulations of the stability metrics.

Since keeping a plan stable is supposed to be costly, low equivalence rates were intuitively

expected between the cost and the stability metrics. Yet, the results show the cost to be

equivalent for, respectively, 31.77%, 20.87% and 13.12% of the cases for sequence preservation,

visit deviation and quantity deviation. To deepen this analysis, we thus take a closer look at

the evolution of the cost in comparison to the stability metrics when they are divergent. For

each instance w ∈ W, the gap between the optimal cost and the optimal cost when a stability

metric is kept at its optimal value gĈfv is computed. For example, for the case of cost and

sequence preservation: gĈSP = Ĉ∗(SP ∗)−Ĉ∗

Ĉ∗
. Figure 6 represent the distribution of these gaps for,

respectively, sequence preservation, visit deviation and quantity deviation when the cost and

these metrics are divergent, i.e. 68.23% of the instances for SP , 79.13% for V D and 86.88% for

QD.

Figure 6a shows the distribution of the gap in the cost regarding SP . We can see that almost

37% of the instances have a gap in the cost inferior to 2.5% and almost 25% when the gap is

between 2.5% and 5%. Therefore, for 60% of the instances, the cost is deteriorated only up to
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(a) Sequence preservation SP

(b) Visit deviation V D

(c) Quantity deviation QD

Figure 6: A representation of the distribution of the gap in the cost when the cost and the
stability metrics SP , V D and QD are divergent
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5% when SP is optimal. Furthermore, almost 20% of the instances have a gap within 5% and

10%. On the other hand, less than 1% of the instances have a gap superior to 30%. A similar

distribution is observed for both V D and QD for the cost gap interval ]5,+∞[. However, for

the interval ]0, 10] it goes up to 66% for V D and up to 70% for QD. It is worth noting that the

choice was made not to include the ratio of the instances where there is an equivalence between

the cost and the stability metrics to show that the histograms have the same shape when there

is divergence. Table 12 shows the distribution of the gap in cost in relation to the stability

metrics for all the instances, including when there is an equivalence, i.e. gĈfv = 0.

gĈfv%

= 0 ]0, 2.5] ]2.5, 5] ]5, 7.5] ]7.5, 10] ]10, 12.5] ]12.5, 15] ]15, 17.5] ]17.5, 20] ]20, 30] ≥ 30

SP 31.77 25.16 15.60 10.13 6.32 3.49 2.73 1.69 1.04 1.55 0.57
V D 20.87 34.07 18.43 10.53 5.75 3.43 2.75 1.57 0.89 1.29 0.46
QD 13.12 40.59 20.53 10.46 5.51 3.10 2.56 1.14 0.82 1.57 0.64

Table 12: Distribution of the gap in the cost

Two conclusions can be drawn from Table 12. First, the difference in equivalence rate between

the stability metrics and the cost is due to very small deviations in the cost. Indeed, the

distribution of the gap in the cost for interval ]5,+∞[ is the same for all three metrics. The

only difference is observed in interval [0, 5] where the difference in equivalence rate between SP

and V D is shifted to a gap smaller than 5%. The other conclusion is that the performance of

re-optimising with the stability metrics depend on the decision maker. If the decision maker

accepts the deterioration of the cost of the solution up to a certain threshold in order to ensure

the stability of the solutions, the results show that if the threshold is fixed to 5%, in almost

75% of the instances optimising stability yields an acceptable cost. This rate goes up to almost

90% when the threshold is fixed to 10%.

To ensure that these results can be generalised, at least for set W, a decomposition of the

results is performed for the different parameters of the benchmark: number of clients |V|, event

scenario (1, 2 or 3) and the size of horizon |H|. For the equivalence rates presented in Table 11,

the results stay the same no matter which event scenario is performed. On the other hand, the

number of clients and the horizon size have an impact on the equivalence rates between the

cost and the stability metrics. For example, when |V| = 5, for |H| = 3 the equivalence rates

between cost and SP , V D and QD are, respectively, 52%, 53% and 40% and drop to 31%, 37%

and 27% for |H| = 6. When |V| = 30, for |H| = 3, the equivalence rates are 28%, 11% and
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4% and drop to 20%, 5% and 2% for |H| = 6. This means that the larger the instances get, in

terms of number of clients or size of the time horizon, the smaller the equivalence rate becomes.

However, these two parameters do not have any impact on the distribution of the cost, as 90%

of the solutions lead to a solution with a gap in the cost inferior to 10%.

On the hardness of the re-optimisation problem. Another observation that is worth

mentioning is the difficulty of solving the re-optimisation problems. Because the re-optimisation

problems lead to models that are smaller than the original ones, part of the variables being fixed,

we intuitively expected them to be easier to solve. However, Table 13 shows that, contrary to

the original MILPs, some re-optimisation MILPs are not solved to optimality in the given time

limit (600 seconds). For example, when the objective of the re-optimisation is to minimise cost

Ĉ, 2884 instances out of 3000 are solved to optimality.

Ĉ SP V D QD

Ĉ 2884 2841 2841 2832
SP 2830 2941 2941 2940
V D 2945 2945 2945 2945
QD 2945 2945 2945 2945

Table 13: Number of optimal solutions (out of 3000 instances)

We believe this difficulty of solving the re-optimisation problem comes from the demand change

rather than from the stability measures added to the problem. To validate this intuition,

the instances of the benchmark are solved when the demand is constant (as defined in the

benchmark of Archetti et al. (2007)), and then when the demand is modified for the whole

horizon H according to scenario 1 presented in Table 8. The performances for both cases are

compared in Table 14 where column |V| represents the number of clients, |H| the horizon, hi

indicates whether the holding cost is low (-) or high (+). Columns ĈLR, ĈMILP, g, cpu(s), g

represent, respectively, the linear relaxation at the root node, the objective value of the MILP,

the gap between the optimal solution and the best bound found, the execution time and finally

the gap between the optimal solution and the bound at the root node, i.e. g = ĈMILP−ĈLR

ĈLR
,

for the instance with constant demand. The next columns, marked with exponent .new, display

those same indicators for the instance with modified demands.

Table 14 shows that the model performs better with constant demand as the linear relaxations

are tighter. Indeed, the instances of the benchmark provided by Archetti et al. (2007) are

generated so that for each t ∈ H:
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|V | |H| hi ĈLR ĈMILP g cpu(s) g Ĉnew
LR Ĉnew

MILP gnew cpunew(s) gnew

5
3

- 1192.57 1275.86 0.00 0.02 6.98% 1233.02 1262.30 0.00 0.00 2.37 %
+ 2117.02 2199.90 0.00 0.02 3.91% 2199.98 2233.86 0.00 0.00 1.54%

6
- 2931.20 3136.90 0.00 0.12 7.02% 2984.02 3252.84 0.00 0.09 9.01%
+ 5122.98 5354.20 0.00 0.12 4.51% 5102.35 5465.49 0.00 0.08 7.12%

10
3

- 1880.44 1910.93 0.00 0.02 1.62% 2017.66 2143.10 0.00 0.01 6.22%
+ 4310.50 4337.97 0.00 0.02 0.64% 4647.16 4830.34 0.00 0.01 3.94%

6
- 4468.22 4612.50 0.00 0.30 3.23% 4709.40 5394.20 0.00 0.14 14.54%
+ 8404.77 8601.92 0.00 0.32 2.35% 8494.23 8950.21 0.00 0.23 5.37%

20
3

- 2466.49 2665.58 0.00 0.22 8.07% 2964.06 3436.15 0.00 0.39 15.93%
+ 7024.92 7225.70 0.00 0.21 2.86% 7435.82 7951.09 0.00 0.25 6.93%

6
- 5944.06 6625.35 0.00 2.06 11.46% 6430.98 7740.53 0.00 4.31 20.36%
+ 13802.36 14602.14 0.00 1.93 5.79% 14326.88 15792.94 0.00 7.73 10.23%

30
3

- 3145.54 3292.93 0.00 0.43 4.69% 3542.42 4301.27 0.00 0.88 21.42%
+ 10756.72 10918.31 0.00 0.66 1.50% 11058.58 11804.55 0.00 2.32 6.75%

6
- 7196.83 7709.87 0.00 9.60 7.13% 7544.74 8994.14 0.98 127.61 19.21%
+ 19687.36 20410.65 0.00 8.69 3.67% 20132.57 21853.02 0.03 145.77 8.55%

40 3
- 3488.61 3703.82 0.00 0.91 6.17% 4066.86 4840.78 0.19 124.36 19.03%
+ 12299.81 12541.06 0.00 1.02 1.96% 12650.32 13574.11 0.29 126.75 7.30%

50 3
- 4203.41 4397.15 0.00 2.15 4.61% 5097.13 6135.14 3.24 324.43 20.36%
+ 15178.98 15410.82 0.00 3.41 1.53% 15694.28 16707.32 1.01 431.92 6.45%

Table 14: Constant demand vs. Scenario 1 demand

1. the demand for a client i ∈ V\{0} is constant: ∀t ∈ H\{0}Dt
i = Di

2. the vehicle capacity is three halves of the total demand for a period t: C = 3
2 ×

∑
i∈V\{0}

Dt
i

3. the quantity produced by the supplier for a period t is equal to the total demand for that

period: Rt =
∑

i∈V\{0}
Dt

i

4. the inventory capacity is equal to twice or three times the demand for a period t: Smax
i =

{2, 3} ×Dt
i

5. the initial inventory is equal to the inventory capacity minus the demand for one period:

S0
i = Smax

i −Di

Assumption 2 combined with assumption 3 makes it possible to replenish all clients at any period

of the horizon H at least to satisfy their demands for the period in question. Assumptions 4

and 5 on the other hand ensure that when |H| = 3 for example, only one delivery for each client

can satisfy its demand for the whole horizon. All of the above make Archetti et al. (2007)’s
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instances easier to solve. However, in the case where the demand is not constant anymore, as it

is the case in the re-optimisation problem, these assumptions do not hold anymore. Therefore,

we believe that it is necessary to propose a new benchmark of the IRP that is more realistic,

the assumptions cited above being rarely met in a real-life instances.

6 Conclusion and perspectives

This article tackles the inventory routing problem under uncertainty by proposing stability

metrics to be used when re-optimising the IRP. Re-optimisation is considered as an approach to

deal with unexpected events for two reasons. First, the literature lacks “a posteriori” methods

in the context of IRP. Second, the parameters of the IRP themselves (time dimension, flexibility

brought by the inventory) make re-optimisation a relevant approach to investigate. When re-

optimising, new objectives appear, besides the cost, to define the performance of the solution.

Indeed, it might not be desirable for the new solution to be radically different from the original

one – in other words, the stability of the re-optimised solutions compared to the original ones

needs to be ensured. To determine how to ensure this stability and due to the lack of agreed-

upon definition of the concept, we carried out a literature review of the stability metrics used

for components problems of the IRP, respectively, routing and inventory management, and

sequencing problems such as scheduling. The stability metrics resulting from this literature

review are then adapted to the IRP, their advantages and drawbacks presented, and their

mathematical formulations proposed. A framework of comparison validates the mathematical

formulations of these metrics as well as investigates their behaviour in relation to each other and

to the initial objective function, the cost. We show that the metrics have a tight relationship

to each other and are equivalent in most cases. Furthermore, we show that their impact on the

cost of the solution seem to be rather small. Finally, by investigating the hardness of solving

the re-optimisation models, we show that the benchmark of the literature is easy to solve due

to the way it is generated, hence the need of proposing new benchmarks that are compatible

with real-life situations.

A future work on this topic is to extend the numerical evaluation to the rest of the proposed

stability metrics. As some of these metrics are only compatible with richer variants of the

IRP, in addition to comparing a larger panel of stability metrics, it would also help assess-

ing the effectiveness of the three formulated stability metrics in a richer context (multi-depot
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(Bertazzi et al., 2019), multi-echelon (Guimarães et al., 2019) or the multi-attribute (Coelho

et al., 2020). . . ) rather than the basic IRP. Other works could focus on investigating the impact

of other sources of uncertainty, such as travelling times, on the stable solutions. Furthermore, it

would be interesting to confront the re-optimisation approach with stability metrics to real-life

instances. This can reinforce the efficiency of the approach if the same results are obtained.

Another perspective would be to compare re-optimisation to “a priori” methods such as robust

and stochastic optimisation. The proposed comparison framework could be used by scholars of

other fields to compare different metrics related to various OR problems.

Moreover, we believe that scholars should ponder on the applicability of re-optimisation for

other problems, and especially integrated ones, such as the Integrated Process Planning and

Scheduling (IPPS), the Location Routing Problem (LRP), the Vehicle Routing Scheduling prob-

lem (VRSP). Re-optimisation can be especially relevant for such integrated problems because

the existence of different sub-problems brings extra flexibility: the optimisation of one problem

can benefit to the other one in the face of disruptions. Future works could therefore focus on

adapting the stability metrics presented in this paper, or proposing new relevant ones, for these

problems.
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