
HAL Id: hal-03354316
https://hal.science/hal-03354316

Submitted on 24 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PWGL EDITORS: 2D-EDITOR AS A CASE STUDY
Mikael Laurson, Mika Kuuskankare

To cite this version:
Mikael Laurson, Mika Kuuskankare. PWGL EDITORS: 2D-EDITOR AS A CASE STUDY. Journées
d’informatique musicale, 2004, Paris, France. �hal-03354316�

https://hal.science/hal-03354316
https://hal.archives-ouvertes.fr


PWGL EDITORS: 2D-EDITOR AS A CASE STUDY

Mikael Laurson
CMT

Sibelius Academy
laurson@siba.fi

Mika Kuuskankare
DocMus

Sibelius Academy
mkuuskan@siba.fi

ABSTRACT

This paper presents some of the main concepts behind
PWGL editors. PWGL is an OpenGL based visual pro-
gramming language specialized in computer aided com-
position and sound synthesis. Editors have a central role in
PWGL as they allow to investigate and manipulate com-
plex objects. We first describe some of the general de-
sign issues behind PWGL editors. We will use one of the
main editors, the 2D-editor, as a case study. The 2D-editor
allows to combine and synchronize visually various 2D-
objects within one editor.

1. INTRODUCTION

Recent development in computer hardware and opera-
tion systems has made it possible to reconsider the basic
concepts behind music related software development for
computer aided composition and sound synthesis. Typ-
ically this kind of software has to deal with complex
and demanding problems such as real-time sound synthe-
sis, complex representation of musical data, large data-
bases, and search problems. One of the key issues is how
these various tools and approaches can interact with each
other. Previous successful efforts in this direction, such
as PatchWork (PW, [2]) and OpenMusic [1], have proved
that combining a high-level programming language (such
as Common Lisp and CLOS) with visual programming
results in an environment that can be used to solve a
wide and challenging area of compositional and analyti-
cal problems.

Our research team at Sibelius Academy has recently
introduced a new visual programming environment, called
PWGL [3]. It is a new version of PW and aims to modern-
ize and improve many of the useful concepts behind PW.
PWGL is completely redesigned and is currently based on
LispWorks and OpenGL which allows to develop platform
independent code that runs in all major operating systems.

PWGL provides a direct interface to its base languages
Common Lisp and CLOS. Besides a large library of kernel
boxes, the system includes also complex editors, such as
a 2D-editor, Score-editor and Chord-editor, which allow
to present, inspect and modify musical structures. PWGL
editors have their roots in PW editors [2].

PW contains several editors for music notation and
break-point functions. A PW editor consists of two main
components. A PW editor is represented in a patch by

a specialized (1) editor-box that in turn contains an (2)
editor-window. Editor-boxes typically have one or several
inputs for incoming data and one output that returns an
object contained in the editor-box. The inputs are used
to feed either objects (generated elsewhere in the patch)
or textual formats that allow to build chord-sequences,
rhythmical structures, break-point functions, etc. The user
can open the editor-box with a double-click or a keyboard
shortcut. This operation opens an editor-window which
allows the user to edit visually various aspects of the ob-
ject such as rhythm, timing, pitch, position, etc. Typically
the music notation related PW editor-boxes do not show
the contents contained in the box (the chord-editor hav-
ing a visual iconic representation of the chord-object is
an exception). If the user wants to inspect the contents
of a PW music notation editor-box the respective editor-
window must be opened.

Although the PW editor concept has proven to be use-
ful in many practical applications, there are several limi-
tations in the system. PW has suffered from several hand-
icaps both from the user and from the programmers point
of view. In the next sections we will discuss some of the
problems related to PW editors and how they are solved in
PWGL: in the case of music notation related editors PW
contains a large number of different box options that leads
to patches that are difficult to understand and to maintain;
the PW box design scheme makes it difficult (or impossi-
ble) to combine different editor types within one box; the
PW BPF-editor is limited to only one object type; a PW
editor-box can have only one output; the contents of sev-
eral of the editor-boxes cannot be seen nor manipulated
directly in the patch, and so on.

The rest of this paper is organized as follows. We start
by discussing in general terms the main PWGL editors,
the Score-editor and the 2D-editor. We will compare the
former PW editors with the new ones, show how their vi-
sual outlook differ, how the new box design affects the use
of PWGL editors in complex application boxes, etc. Af-
ter this we will focus on the case study of this paper, the
2D-editor. We first discuss in more detail the components
of the 2D-editor. We describe the various 2D-objects that
are currently available in PWGL. We also discuss the grid
and patch-level editing options. We finish with some con-
cluding remarks.



2. PWGL EDITOR OVERVIEW

2.1. Integration of editors

One of the main design issues in PWGL is to develop and
to improve the former PW editors. A typical example of
this trend is to reduce the number of editors that existed in
PW. For instance, PW music notation editors contained at
least five options to present musical notation data: non-
mensural monophonic MN-editor, non-mensural poly-
phonic MN-editor, mensural monophonic RTM-editor,
mensural polyphonic RTM-editor and Chord-editor.

The current PWGL score-editor, by contrast, aims to
simplify this scheme by combining the first four options
into one editor, called Score-editor. The Score-editor al-
lows to present a large number of different musical ma-
terial types within one editor, such as chord sequences,
melodic lines, time notation (timing information is given
in seconds), frame notation (used in both mensural and
non-mensural context and is indicated in the score by en-
closing a group of pitches or gestures inside a rectangle)
and traditional western metric notation. Different mate-
rial types can even be mixed (for instance frame notation
with metric notation). The reduced number of music nota-
tion editors simplifies greatly the complex issue of how to
process, present and manage musical data within a visual
programming language.

A similar approach has been taken with the PWGL
2D-editor which is based on the former PW BPF-editor.
The BPF-editor allowed the user to generate, inspect and
edit only one type of objects, i.e. break-point functions
(bpfs). It was used for various purposes such as defining
abstract musical shapes and gestures and to control sound
synthesis. The main difference between the BPF-editor
and the current 2D-editor is that the latter one supports
any collection of objects that have two dimensions, such
as bpfs, sound samples, chord-sequences, Bezier func-
tions, markers, scrap-objects, spectrographs, and so on.
This scheme allows to combine and synchronize visually
various 2D-objects within one editor. The 2D-editor can
be used for a wide area of tasks such as sound synthesis
control, visualization of mathematical functions, compo-
sitional sketches, musical processes, and analysis results.

Occasionally the 2D-editor applications resemble
somewhat the OpenMusic tool called maquette, which
allows to organize the musical materials computed in
patches or built in the editors into higher level, time ori-
ented structure [1]. This similarity is quite obvious for
example in the bottom part of Figure 7 (see Appendix),
where the user has applied a user-grid that allows to syn-
chronize various materials with a complex metric time
structure. There are, however, cases (see for instance Fig-
ures 4, 5 and 8) where the OpenMusic maquette and the
PWGL 2D-editor approaches are quite different: maquette
is more specialized in handling time oriented tasks, while
the 2D-editor has a more abstract flavor as it can represent
any data with two dimensions.

PWGL provides a programming template that allows
the user/programmer to define new 2D-objects. This pro-

gramming interface is discussed shortly in Section 3.2.
Example 2D-editors containing several 2D-object types
are given below in Figures 2, 4, 5, 7 and 8.

2.2. Editor input-boxes

In PW, an editor-box typically can contain only one editor-
window as the editor-window is associated directly with
the editor-box. PWGL, by contrast, is based on a more
uniform and flexible box design scheme where all boxes
consists of a main-box. A main-box in turn can include
one or several input-boxes. Even recursive boxes are pos-
sible (i.e. a box can contain instances of itself). PWGL
supports several types of input-boxes: input-boxes for tex-
tual Lisp expressions (numbers, lists, strings, etc.), menu-
input-boxes (both simple and hierarchical menus are sup-
ported), buttons, sliders, and editor-input-boxes. The lat-
ter input-box type typically owns a specialized editor-
window which can be opened and manipulated by the user.
Figures 1, 2 and 3 show several PWGL box examples with
different input-box types:

Figure 1. PWGL box examples, to the left: textual input-
boxes and menu-input-boxes; to the right: slider-bank
boxes with slider-input-boxes.

Figures 2 and 3, in turn, show the three main editors
of PWGL. Each of them is a PWGL box containing one
editor-input-box.

Figure 2. PWGL editor box examples, left: a 2D-editor;
right: Chord-editor.

Thus at the patch level all PWGL editors are repre-
sented as input-boxes. This scheme has several advan-
tages as it allows to build boxes with arbitrary number



Figure 3. PWGL editor box examples: Score-editor.

of input-boxes that can vary by type and layout options
(layout of PWGL boxes is discussed in more detail in
[5]). Figure 4 shows a complex PWGL box with several
input-boxes. Of special interest are the two music nota-
tion related editors (the box contains a Score-editor input-
box and a Chord-editor input-box), and the two 2D-editor
input-boxes found at the bottom part of the box. The first
one contains a 2D-bpf and a 2D-marker, while the second
one contains a 2D-sound-sample.

Figure 4. A complex application box with textual input-
boxes, buttons, menu-input-boxes, a Score-editor input-
box, a Chord-editor input-box, and two 2D-editor input-
boxes.

2.3. Visual appearance of editor input-boxes

All editor input-boxes are able to draw directly the con-
tents of their editor-windows on a patch level (see for in-
stance Figures 2, 3, 4 and 5). This means that the user can
have a very precise overview of the patch and the contents
of the editors contained in the main window without hav-
ing to open the respective editor-windows. If necessary,
this information can be zoomed and/or hidden either by
resizing the box or by using a special minimize-button in
the top-left corner of the box.

2.4. Local pan and zoom of editor-input-boxes

PWGL provides a uniform way of handling pan and zoom
operations using a 3-button mouse. Pan is accomplished

by dragging a mouse while pressing the scroll-wheel (sec-
ond) button, and zoom is achieved with the scroll-wheel.
These operations are typically global, i.e. they affect
the complete contents of a patch window or an editor-
window. PWGL editor input-boxes also support local pan
and zoom. This is accomplished by moving the cursor
above an editor-input-box. The visual appearance can
then be locally manipulated either by dragging the scroll-
wheel button (for pan) and/or with the scroll-wheel (for
zoom). Figure 5 shows two examples where the user has
used both the pan and zoom operations to achieve close-up
views of the contents of editor-input-boxes.

Figure 5. Two local zoom/pan examples: top: a 2D-editor
input-box containing 50 2D-bezier functions before and
after pan and zoom; bottom: a Score-editor input-box be-
fore and after pan and zoom.

3. 2D-EDITOR

3.1. 2D-editor components

This section presents the main components of a PWGL
patch containing a 2D-editor. Figure 6 shows a patch win-
dow (see the arrow with the label 1) containing a box,
called 2D-editor, which in turn contains one 2D-editor



input-box (arrow 3). The user has opened the 2D-editor-
window (arrow 2), which shows the actual contents of the
editor. It consists of two rulers, y-ruler (arrow 5) and x-
ruler (arrow 6), allowing a constrained pan or zoom either
along the x-axis (x-ruler) or y-axis (y-ruler) utilizing the
scroll-wheel as described in Section 2.4. Unconstrained
pan/zoom operations (i.e. the operation occurs both along
the x- and y-axis simultaneously) are accomplished by uti-
lizing the scroll-wheel in the editor-view area (arrow 4).
When the user moves the mouse above the editor-view
area the mouse co-ordinates are shown in a text display
area (arrow 7). While the editor can contain several 2D-
objects simultaneously only one of them can be active at a
time. The active object is drawn with a darker color while
the inactive ones are drawn with lighter colors. Further-
more, any edition operations, such as clicks, double clicks,
keyboard events, and menu actions, affect typically only
the active object. Arrow 8 points to a text display area that
contains information of the 2D-type of the active object
(in this case BPF) and its number plus the total number of
2D-objects present in the editor (these numbers are given
as a ratio, in this case 1/2). The editor view can have a grid
(arrow 9) which can either be automatic or defined by the
user. The example contains two 2D-bpf objects (see arrow
10 and arrow 11).

Figure 6. A 2D-editor patch with its main components 1)
PWGL patch window, 2) 2D-editor window, 3) 2D-editor
input-box containing two bpf-objects, 4) 2D-editor-view,
5) x-ruler, 6) y-ruler, 7) mouse co-ordinates, 8) active 2D-
object type, index, name 9) grid, 10) 2D-bpf object no 1
(the active 2D-object), 11) 2D-bpf object no 2.

3.2. 2D-objects

PWGL contains currently the following library of 2D-
objects: bpf (break-point function, a collection of time-
ordered points connected with linear line segments),

bezier (a collection of Bezier functions with two end
points and two control points), scrap (a collection of la-
beled polygons), marker (a collection of labeled vertical
marker-lines) and sound sample. In the near future the list
will be augmented at least with the following 2D-objects:
envelope, spectrogram and point collection.

The system includes a programming protocol that al-
lows the user/programmer to add new 2D-objects. Due to
space limitations we can only give here a very brief and
simplified description of the protocol. First, the generic
class definition, called 2D-object, is to be subclassed.
Then at least the following methods should to be special-
ized for the new class:

- drawing methods: draw-2D-object, draw-active-
2D-object
- drag method: drag-selected-2D-subobjects
- editing methods: remove-subobject, add-subobject
- miscellaneous: get-class-name-label, min-x, min-y,
max-x, max-y, add-to-menu

3.3. Grids

Besides the abililty to combine various 2D-objects, the
2D-editor also has a grid option that allows to utilize ei-
ther automatic grids or to define user-grids. Automatic
grids are simple Cartesian grids that give a visual clue of
the position of the objects in the co-ordinate system. This
grid type is automatic as the system attempts to fill the
editor view and rulers with evenly spaced help lines and
co-ordinate values dependent on the current pan and zoom
state of the editor. Figure 6 gives an example of an au-
tomatic grid. User-grids or structured grids, by contrast,
are used to define grids that have a set of help lines and
co-ordinate values that are fixed. User-grids are useful
as they allow to synchronize various 2D-objects with the
help of a so called snap to grid option (i.e. a 2D-object,
when dragged, is moved to the nearest grid x-y-position).
The user-grid can be either regular or irregular and can
be defined independently both for grid x-values and y-
values. These values can either be delta values (such as
0.1) - defining a constant distance value - or a list of ab-
solute co-ordinate values, for example (0 100 300 550).
Furthermore, the grid values for the x-values can be given
as an ENP-score-notation expression. This notation is an
enhanced version of the PW RTM-notation and it can be
used among others to define complex metric rhythms (for
more detailed discussion see [4]). The latter option al-
lows to use user-grids that are calculated out of the start-
times of the attack points of an arbitrary metric rhythm.
Figure 7 (given in the last page of this article) shows a
score (top) with its rhythmic ENP-score-notation expres-
sion (middle). At the bottom of Figure 7 we give a 2D-
editor having a user-grid where the y-values are defined as
a constant delta value (1.0) and the x-values are calculated
from the start-times of an ENP-score-notation expression.
The measure start-times are indicated with a darker ver-
tical line and labeled with the respective time signature
(5/4) . The attack points are shown with light-gray vertical



lines. The 2D-editor contains two 2D-object types (a 2D-
scrap object and a 2D-bpf object) that are synchronized to
the rhythmic structure given in the top part of Figure 7.

3.4. Patch-level editing

The contents of a 2D-editor input-box can be edited di-
rectly on the patch level (i.e. the user operates directly
with the editor-box) without having to open the actual
editor-window. This kind of editing allows typically to
make some rudimentary editing operations such moving
an object in the co-ordinate system. While offering only a
subset of the editing capabilities of the editor-window this
feature can be useful in many situations. For instance, in
real-time synthesis control 2D-objects can give valuable
visual information of parameter changes. Our final exam-
ple (see Figure 8 in the last page) shows a 2D-editor-box
that contains a sound sample and a 2D-marker object (i.e.
a collection of vertical marker-lines). The user is moving
one marker-line horizontally above the underlying sound
sample. To the right of the cursor there is also a small help
window displaying the horizontal position of the marker-
line in samples.

4. CONCLUSIONS

We have presented some important design efforts dealing
with PWGL editors. These improvements include: in-
tegration of available editor-boxes, complex box design,
multi-object 2D-editor, visual control of editor-boxes, 2D-
object programming protocol, grid options, and patch-
level editing.

5. ACKNOWLEDGEMENTS

The work of Mikael Laurson has been financed by the
Academy of Finland within the project “CLARA–Control
Language for Audio Related Applications”.

6. REFERENCES

[1] Gerard Assayag, Camillo Rueda, Mikael Laurson,
Carlos Agon, and Olivier Delerue. Computer Assisted
Composition at IRCAM: From PatchWork to Open-
Music. Computer Music Journal, 23(3):59–72, Fall
1999.

[2] Mikael Laurson. PATCHWORK: A Visual Program-
ming Language and some Musical Applications. Stu-
dia musica no.6, Sibelius Academy, Helsinki, 1996.

[3] Mikael Laurson and Mika Kuuskankare. PWGL:
A Novel Visual Language based on Common Lisp,
CLOS and OpenGL. InProceedings of Interna-
tional Computer Music Conference, pages 142–145,
Gothenburg, Sweden, September 2002.

[4] Mikael Laurson and Mika Kuuskankare. From
RTM-notation to ENP-score-notation. InJourńees
d’Informatique Musicale, Montb́eliard, France, 2003.

[5] Mikael Laurson and Mika Kuuskankare. Some Box
Design Issues in PWGL. InProceedings of Interna-
tional Computer Music Conference, pages 271–274,
Singapore, 2003.



-> (((2 (1)) (1 (1.0 1 1 1)) (1 (1 1 1 1 1)) (1 (1 1 6))) ((1 (1.0 -1)) (2 (-1 1 1 1 1 1)) (1 (1 1)) (1 (1))))

Figure 7. A user-grid example where a metric structure (top and middle) defines the grid x-values of a 2D-editor (bottom).

Figure 8. An example with real-time synthesis control using a marker-object in combination with a sound sample.


