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Abstract

In this article, we study the problem of stabilizing the traffic flow on a ring road to a uniform
steady-state using autonomous vehicles (AV). Traffic is represented at microscopic level via a Bando-
Follow-the-Leader model capable of reproducing phantom jams. For the single-lane case, a single AV can
stabilize an arbitrary large ring road with an arbitrary large number of cars. Moreover, this stabilization is
exponentially quick with a decay rate independent of the number of cars and control gain also independent
of the number of cars. On the other side, the stabilization domain and stabilization time depend on the
number of cars.
Two types of controller algorithms are proposed: a proportional control and a proportional-integral
control. In both cases, the measurements used by the controller only depend on the local data around
the AV, enabling an easy implementation. After numerical tests of the single-lane case, a multi-lane
model is described using safety-incentive mechanism for lane change. Numerical simulations for the
multi-lane ring road suggest that the control strategy is also very efficient in such setting, even with a
single AV.

1 Introduction

Ring-road systems are usually considered as a good first step to understand traffic flows behavior and design
efficient controllers to stabilize traffic flows. The underlying reason is that several experimental observations
have shown that this system can spontaneously generate stop and go waves [34, 36, 39, 33]. These stop
and go waves are at the origin of traffic congestion and prevent the system from reaching or staying in the
ideal case: a uniform-flow steady-state. Doing so, they drastically increase the energy consumption and CO2
emission as the drivers have to brake and accelerate continuously. They also have a negative psychological
impact on drivers and are mostly seen as a stressful driving situation [11]. Being able to smoothen and
stabilize the system when such stop and go waves occur is very interesting from an application perspec-
tive, and many studies have tried to tackle this problem with different controllers. For instance, a classical
strategy consists of using ramp metering or junctions as a boundary control on the system [35, 26, 4, 16]
or using variable speed limits as a means of control [18]. The rapid technological developments allow to
consider Autonomous Vehicles (briefly AVs) or Advanced Driver Assistance Systems (briefly ADAS) as ways
of influencing traffic. For our considerations, we assume that an automatic feedback can be implemented
by AVs of via ADAS, based on information available on board of the vehicles. In other words, the feedback
control act independently and in a distributed fashion, using only local information on a selected number of
vehicles. The percentage of these vehicles as part of the overall traffic is called penetration rate, and we aim
at using a low penetration rate not exceeding 5%. In all our results, we will use just one AV in a ring road
with N human-driven cars, thus the penetration rate will be 1/(N + 1).
The specific control problem we address is the stabilization of uniform-flow steady-state using an autonomous
vehicle as a controller. Using AVs to control traffic flows in the framework of mixed human-AV traffic has
emerged in the recent years [37, 38] (see for instance [10] for a more detailed review). Several approaches

1



have been studied: macroscopic [12, 9, 29], mean-field games [19], microscopic [10, 7], etc. In this paper, we
consider a microscopic approach with N + 1 cars. We assume that N cars are human-driven, while one of
the cars is an AV whose acceleration can be prescribed. The behavior of the human-driven cars is modeled
by the Bando-Follow The Leader (or Optimal Velocity-Follow The leader) model. This model combines an
optimal velocity part derived in [3] which represents the incentive of a driver to reach its “own” optimal
velocity depending of the space between his vehicle and the vehicle in front, and a “Follow the Leader” part
proposed in [13] which represent the incentive of the driver to mimic the vehicle in front. This model has
been shown to accurately reproduce stop and go waves for a ring-road in [7, 10], both theoretically and
numerically. Such problem on a ring road was considered in [10] where the authors proved the controllability
and stabilization of the system with local controls when the road had up to N = 9 cars. They designed a
proportional and proportional-integral feedback control that seemed efficient in numerical simulations and
suggested that the stabilization could also hold for around 20 vehicles. In [7], the authors proposed another
controller, and by carefully analyzing the transfer function, they showed that it asymptotically stabilizes
the system for any number of cars for arbitrarily large N . However, they were not in position of designing
explicit gains and showed that the control gain of their controller was scaling exponentially quickly with N ,
for N large. In [40] the authors study a similar problem but with a simpler microscopic model and reaches
similar conclusion, showing in addition the controllability of the linearized system. However, they were also
not in a position of designing explicit gains. In this article, we propose another control strategy to tackle
these limitations.

1.1 Contribution of the paper

Adding a single AV could seem to be a very weak action on the system, especially if the number of human-
driven vehicles N is arbitrary and could become very large. In this case, the penetration rate (i.e. the
percentage of AVs in bulk traffic) would become as small as desired. However, we show that, as in [33], this
very weak action is enough to get the exponential stability of all steady-states when using a proportional or
a PI controller. More suprisingly, the maximal exponential decay rate is uniform, irrespective of the total
number of cars N , and the control amplitude can also be chosen independently of the number of cars. This
last point is of paramount importance when dealing with practical system as the AV presents a physical
bound on achievable accelerations (both positive and negative). Also, the condition we give on the proposed
proportional and PI controllers are optimal (necessary and sufficient).
We then provide an estimation of the basin of attraction, which decays as the number of vehicle increases,
as expected. Finally, the time needed to stabilize the system increases with the number of cars: this seems
hard to avoid due to the finite propagation speed of the information in the system. However, we show that it
scales linearly with time, which is what would be intuitively hoped for in ideal cases. When a non-constant
disturbance occurs and prevent the existence of a steady-state, we show that we can still derive an expo-
nential Input-to-State Stability estimate. Input-to-State stability is a more generic notion than exponential
stability which measures the resilience of the stability of a system to external and time varying disturbances
(see Section 2 or [32] more details). This notion is important as external disturbances to the model always
happen in practical applications. In traffic for instance they could represent defect of the model compared
with a real or particular individual driver’s behavior, measurements error, etc.
We also test our controller in a multi-lane setting. More precisely, we consider a ring road with three lanes,
where the vehicles can change lanes according to some lane-changing rules. There is a large literature on
how to model lane changing mechanism and its impact on the traffic [22, 24, 20, 21], and here we use a
modification of the model proposed in [22]: a vehicle changes lane when three conditions are satisfied: it
is safe to do so (changing lane will not produce a strong braking) ; its acceleration in the new lane will
be higher than in its original lane ; it has not changed lane in a reasonable amount of time. We provide
numerical simulations showing that, interestingly, we can considerably stabilize the three lanes with a single
AV, that is allowed to change lanes with a lateral control law that we give in Section 4. This lateral control
is designed to create an incentive for the AV to be in the lane of higher speed variance, while making sure
that the AV does not change lane to often. Because of the possibility to lane-change the system is hybrid,
which makes its theoretical study largely open [15, 14, 27]. This is an incentive for more theoretical studies
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on these controllers in a multilane setting as well as implementations on a multilane road.

This paper is organized as follows: in Section 2 we state the main results, which are proved in Section 3.
Finally, in Section 4 we provide numerical simulations.

2 AV stabilizing controllers for a ring road

We consider a ring road of length L with N vehicles and one AV, and we denote by (xi, vi)i∈{1,...,N} the
position and velocities of the vehicles and (xN+1, vN+1) the position and velocity of the AV. The vehicles
are modeled by the following combined Bando (or Optimal Velocity) - Follow The Leader Model [3, 13]:

ẋi = vi,

v̇i = a
vi+1 − vi

(xi+1 − xi)2
+ b[V (xi+1 − xi)− vi],

1 ≤ i ≤ N (2.1)

where a and b are two positive parameters weighting respectively the strength of the Follow The Leader
part and the Bando part of the model, and V is the optimal velocity of the Bando model. A way to choose
realistic coefficients a and b were studied in detail in [28]. Usually V is taken as an increasing function of
the form of a ratio of hyperbolic tangents. However, we will not make any such assumptions here and only
assume that V is a differentiable, nonnegative and increasing function. The increasing assumption is dictated
by the physical fact that the more distance there is between the vehicles, the more likely the vehicles try
to have a large speed. We aim at stabilizing the system to a steady-state in speed, with all cars moving at
same speed v̄. From (2.1), the only steady-state is v̄ = V (L/N). Without controller, the system is closed by
considering that the N + 1-th vehicle is the first vehicle, due to the ring road structure and therefore taking
vN+1 = v1 and xN+1 = x1 in (2.1). This system can have both stable and unstable regime depending on the
parameters a, b, and V , and the car density d−1 = N/L. In particular, the following was shown in [7].

Proposition 2.1. If
b

2
+ (

a

d2
) < V ′(d) (2.2)

then the system (2.1) is unstable.

Remark 2.1. In particular this implies that there exists there exists N1 > 0 such that if N > N1 the
steady-state of the uncontrolled system (2.1) is unstable.

This theoretical proposition explains the instabilities that are observed both in numerical simulations (see
Section 4) and in experimental results [34]. Adding an AV to the system, and controlling its acceleration,
the dynamics is given by

ẋN+1 = vN+1

v̇N+1(t) = u(t),
(2.3)

where u is the control. We will use u as a feedback control. Using a feedback control means that the controller
has to depend on the current state of the system. For instance it can depend on the current velocity of the
AV as we do later on. One could why not using an open-loop control instead, where u would depend only
on time and the initial conditions of the system. This would avoid having to know the state of the system
at each timestep. However, this might not be robust to small perturbations on the state of the system or on
the model. This last point is quite important as traffic models are only imperfect approximation of the real
behaviors of drivers. This motivates our choice of using a feedback controller. In addition we are aiming to
design a very simple feedback control, depending only on local measurements around the AV, in order to
enable a practical and decentralized implementation. Therefore, we look for a proportional feedback of the
form

u(t) = k(v̄ − vN+1), (2.4)
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where k is a tuning parameter. We later extend this control and consider a proportional-integral (PI) feedback
law, see Section 2.1. Finally, in Section 4, we modify this controller to account for larger perturbations. The
system with control (2.4) presents several admissible steady states given by

(A1) The steady speed v̄ is admissible if and only if there exists a constant d ≤ L/N such that v̄ = V (d)
and for any i ∈ {1, ..., N}, d = xi+1 − xi.

Thus each steady-state can be identified by the couple (v̄, d). Since V is an increasing function, the steady-
state with highest speed v̄ is given by v̄ = V (L/N) or equivalently d = L/N . We set v = (v1, ..., vN+1) and
x = (x1, ..., xn), and we define D(v,x) the distance between the solution and a target steady-state (v̄, d)
given by

D(v,x) :=

N+1∑
i=1

|vi(t)− v̄|+
N∑
i=1

|xi+1(t)− xi(t)− d|. (2.5)

Our main result is the following

Theorem 2.2. Let (v̄, d) be an admissible steady-state as in (A1). If k > 0 then the system (2.1), (2.3) with
control feedback (2.4) is locally exponentially stable around (v̄, d).
Moreover, the supremum value of the achievable decay rate is

γmax = min

(
k,

1

2

(
a

d2
+ b− Re

(√( a
d2

+ b
)2

− 4bV ′(d)

)))
, (2.6)

and for any γ ∈ (0, γmax), there exists a characteristic time τ > 0, independent of N , and ε > 0 such that
for any initial conditions (v0,x0) with D(v0,x0) ≤ ε, we have

D(v(t),x(t)) ≤ eNτe−γtD(v0,x0). (2.7)

Remark 2.2 (Uniform bounds in N). Note that this result holds for any number of cars N while there is
always a single AV. Besides, note that the largest achievable decay rate does not depend on N . Therefore,
the value of the gain k to obtain the largest decay rate is also independent of N .

Remark 2.3 (Relaxation time). As it could be expected the total relaxation time Nτ – which can be seen
as the characteristic time needed to stabilize the system – is not uniform in N . However, it is proportional
to N , which can be seen as an optimal estimate due to the finite speed of propagation of the information in
the system.

Remark 2.4 (Basin of attraction). Whereas the the largest accessible decay rate does not depend on N , the
size of the basin of attraction likely decreases as the number of cars N increase. We can find a lower bound
η on the basin of attraction which satisfies:

η < η0e
−αN , (2.8)

where η0 and α are constants independent of N . A more detailed estimate is given in Section 3.

We prove Theorem 2.2 in Section 3. The optimality of the condition k > 0 in Theorem 2.2 is given by the
following Proposition.

Proposition 2.3. Let (v̄, d) be an admissible steady-state as in (A1). If k ≤ 0, then the system (2.1), (2.3)
with control feedback (2.4) is not locally asymptotically stable around (v̄, d).

This is straightforward and proved in detail in Section Section 3.
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2.1 Disturbances and proportional integral controllers

Due to disturbances in the AVs speed measurements, there may be a persistent and constant error occurring
in the control (2.4). In this case, the disturbance prevents the feedback control from efficiently steering the
system to the steady state. To represent this situation, we consider the equation

v̇N+1 = k(v̄ − vN+1) + δ, (2.9)

where δ 6= 0 is a constant unknown disturbance. The convergence of vN+1 to v̄ would imply v̇N+1 → 0 and
δ = 0, which is a contradiction. To tackle this issue and recover the exponential stability, a classical approach
is used to robustify the control law by using a proportional integral (PI) controller. PI controllers are well-
established tools, first used by the Perier brothers [8, Pages 50-51 and figure 231, Plate 26] and mathematized
by Minorsky [25]. They have been well studied in the last decades for finite dimensional systems [1, 2]. The
idea consists of adding a part proportional to the integration over time of the difference between the state
and the target. Its robustness to small perturbations makes this type of controllers more adapted to practical
implementations (see [6, 17] for more details). The only price to pay is that the mathematical analysis may
sometimes be more complicated [6]. With this in mind, we consider a new control law of the following type:

u(t) =k(v̄ − vN+1(t)) + kIZ(t),

Ż(t) =(v̄ − vN+1(t)).
(2.10)

The quantity Z is the integral part. The only measurement used by this controller is still the speed of the
AV. We show that we can achieve exponential stability also with this controller.

Theorem 2.4. Let (v̄, d) be an admissible steady-state, if k > 0 and kI > 0 then the system (2.1), (2.3)
with control feedback (2.10) is locally exponentially stable around (v̄, d).
Moreover, the supremum value of the achievable decay rate is

γmax =
1

2
min

(
k − Re

(√
k2 − 4k2

I

)
,

(
a

d2
+ b− Re

(√( a
d2

+ b
)2

− 4bV ′(d)

)))
, (2.11)

and for any γ ∈ (0, γmax), there exists a characteristic time τ > 0 independent of N and ε > 0 such that for
any initial conditions (v0,x0) such that D(v0,x0) ≤ ε,

D(v(t),x(t)) + |Z(t)| ≤ eNτe−γt (D(v0,x0) + |Z(0)|) . (2.12)

The proof is very similar to the proof of Theorem 2.2 and is given in Appendix A.

We conclude by giving an Input-to-State Stability (ISS) estimate with respect to perturbations for a time-
varying disturbance δ(t). In this case, the equation on the control (2.10) is replaced by

u(t) =k(v̄ − vN+1(t)) + kIZ(t) + δ(t),

Ż(t) =(v̄ − vN+1(t)),
(2.13)

where δ ∈ L∞([0,+∞),R) is the time-varying disturbance. In this case, it is impossible to stabilize a
steady-state by designing k and kI , but we show the following

Theorem 2.5. Let (v̄, d) be an admissible steady state of the system without disturbance. If k > 0 and
kI > 0 then there exists η > 0 such that, for any initial condition (x0,v0, Z0) satisfying D(x0,v0) < η, and
for ‖δ‖L∞ < η the system (2.1), (2.3), (2.13) has a unique solution (x,v) ∈ C1([0,+∞),R2N+2) and the
following ISS estimate holds for any γ ∈ (0, γmax)

D(v(t),x(t)) + |Z(t)| ≤ C1e
Nτe−γt (D(v0,x0) + |Z0|) + CN2 sup

s∈[0,t]

|δ(t)| , ∀ t ≥ 0, (2.14)

where C1 and C2 are constants independent of N .
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The notion of ISS, first introduced by Sontag in 1989 for finite dimensional systems [31], measures the
resilience of the exponential stability property to unknown perturbations. In other words, it ensures that
the exponential stability is not too perturbed by an unknown disturbances, and this “not too much” is
quantified in by the ISS gain that is here CN2 . This notion is more general than the notion of exponential
stability and coincide when the disturbance is zero. Looking at this notion is relevant as a system could
be exponentially stable but not ISS. From an application perspective this notion is more relevant than the
exponential stability as there are always some perturbations in real life. In our case, as C2 > 1 a priori we
see, as it could be expected, that the system is more sensitive when the number of car increases.

3 Exponential stability of the steady-state

In this section, we prove Theorem 2.2. Let us consider the system (2.1), (2.3), (2.4), and let (v̄, d) be an
admissible steady-state. We rewrite the 2N + 1 components of the system using the following change of
variables,

y2p+1 = xp+2 − xp+1 − d, 0 ≤ p ≤ N − 1

y2p = vp+1 − vp, 1 ≤ p ≤ N
y2N+1 = v̄ − vN+1.

(3.1)

In these variables, the dynamics become
ẏ = f(y, k), (3.2)

where f is given by

f2p+1(y, k) = y2p+2, 0 ≤ p ≤ N − 1

f2p(y, k) = a

[
y2p+2

(d+ y2p+1)2
− y2p

(d+ y2p−1)2

]
+ b[V (d+ y2p+1)− V (d+ y2p−1)− (y2p)], 1 ≤ p ≤ N − 1,

f2N (y, k) = ky2N+1 − a
[

y2N

(d+ y2N−1)2

]
− b[V (d+ y2N−1) + y2N + y2N+1 − v̄]

f2N+1(y, k) = −ky2N+1.

(3.3)

The stability of the steady-state (v̄, d) for the system (2.1), (2.3), (2.4) is equivalent to the stability of the
steady state y = 0 for the system (3.2)–(3.3). Before going any further, observe that, looking at (3.3),
for any p ∈ {0, ..., N − 2}, the dynamics of (y2p+1, y2p+2) only depends on (y2p+1, y2p+2, y2p+3, y2p+4), and
the dynamics of (y2N−1, y2N ) depends only on (y2N−1, y2N , y2N+1). This comes from the fact that the
acceleration of a vehicle only depends on its state and the state of the car in front. The system has therefore
a cascade structure, that we will use in the following, and the Jacobian matrix ∂yf(0, k) writes

∂yf(0, k) =



A1 B1 0 ... 0
0 A1 B1 0 ...
... ... ... ... ...
0 ... 0 A1 B1 0

0 ... 0 0 A1

(
0

k − b

)
0 ... 0 0 0 −k


, (3.4)

where A1 and B1 are 2× 2 block matrices given by

A1 =

(
0 1

−bV ′(d) −( ad2 + b)

)
,

B1 =

(
0 0

bV ′(d) a
d2

)
.

(3.5)
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Note that A1 has eigenvalues λ1 and λ2 given by

λ1 =
−(a+ bd2)−

√
(a+ bd2)2 − 4bV ′(d)d4

2d2
,

λ2 =
−(a+ bd2) +

√
(a+ bd2)2 − 4bV ′(d)d4

2d2
.

(3.6)

Here
√
z refers to i

√
|z| when z < 0. Therefore, A1 is diagonalizable as long as (a+ bd2)2 6= 4bV ′(d)d4. We

assume this for now. In the special case where (a + bd2)2 = 4bV ′(d)d4 the same result would still hold by
trigonalizing the matrix A1 in C instead of diagonalizing it. Then there exists S1 such that

S−1
1 A1S1 =

(
λ1 0
0 λ2

)
=: Λ1. (3.7)

We define now the matrix of change of variables S by

S =


S1 0 0 ... 0
0 S1 0 ... 0
... ... ... ... ... 0
0 ... 0 0 S1 0
0 ... 0 0 0 1

 . (3.8)

We have

S−1∂yf(0, k)S =



Λ1 B2 0 ... 0
0 Λ1 B2 0 ...
... ... ... ... ...
0 ... 0 Λ1 B2 0

0 ... 0 0 Λ1

(
c1
c2

)
0 ... 0 0 0 −k


, (3.9)

where B2 is a 2 × 2 block matrix and c1, c2 are two real numbers. As Λ1 is diagonal, S−1∂yf(0, k)S is
triangular, which implies that its only eigenvalues are λ1, and λ2 and −k. From the change of variables,
∂yf(0, k) has the same eigenvalues. As V ′ > 0, λ1 and λ2 have both negative real parts. This implies that,
for any k > 0, the linearized system

ż = ∂yf(0, k)z (3.10)

is exponentially stable and therefore the nonlinear system (3.2) is locally exponentially stable [5, Theorem
10.10], which means that (v̄, d) is a locally exponentially stable steady-state for the original system (2.1),
(2.3), (2.4).

Estimation of the decay rate To obtain the decay rate, we look again at the linearized system (3.10).
Using Jordan-Chevalley decomposition, there exist matrices S2, D and L, such that ∂yf(0, k) = D + L, D
and L commute, L is nilpotent of order N and

S−1
2 DS2 = Λ2, (3.11)

where Λ2 is the diagonal matrix diag(Λ1, ....,Λ1,−k). We denote L2 = S−1
2 LS2, which is still a nilpotent

matrix of order N . From this decomposition, the solution z of the system (3.10) is

z(t) = S2e
Λ2t

(
N−1∑
i=0

(L2t)
i

i!

)
S−1

2 z(0). (3.12)

Therefore, as 0 > Reλ2 > Reλ1, for any ε > 0, Λ2 + (min(k, |λ2|)− ε)Id is still diagonal and its eigenvalues
still have negative real parts. The largest real parts of its eigenvalue is −ε. This implies that

C1 := sup
t∈[0,+∞)

∣∣∣∣∣S2e
(Λ2+(min(k,|λ2|)−ε)Id)tS−1

2

(
N−1∑
i=0

(Lt)i

i!

)∣∣∣∣∣ < +∞, (3.13)
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and together with (3.10), we get
|z(t)| ≤ C1e

−(min(k,|λ2|)−ε)t|z(0)|. (3.14)

We show next that the total relaxation time is linear in N , or in other words, that there exists a characteristic
time τ independent of N such that C1 ≤ eNτ .

Estimation of relaxation time One approach could be to estimate C1 by carefully studying how L and
S2 are constructed in the Jordan-Chevalley decomposition, using the Chinese remainder theorem. However,
we detail here a more intuitive approach, linked to the cascade structure of the system. The idea is the
following: we will consider each 2×2 block corresponding to a vehicle as a system with a dynamic depending
on itself and some external inputs that are given by the vehicle in front. For each of these blocks, we provide
an Input to State Stability estimate with respect to these external inputs. Finally, using the exponential
stability of the AV trajectory, we can recover the exponential stability of the entire system with an explicit
estimate on the relaxation time. Let us now consider the following system

d

dt

(
q1

q2

)
= Λ1

(
q1

q2

)
+B2

(
w1

w2

)
. (3.15)

As the eigenvalues of Λ1 are strictly negative, the solution q = (q1, q2)T of this system satisfies the following
ISS estimate

|q(t)| ≤ |q(0)|e−Re(|λ2|)t +

∫ t

0

∣∣∣eΛ(t−s)B2w(s)
∣∣∣ ds

≤ |q(0)|e−Re(|λ2|)t + 2‖B2‖∞
∫ t

0

e−|Re(λ2)|(t−s) |w(s)| ds, ∀ t ≥ 0,

(3.16)

where w = (w1, w2)T . Let us now set γmax := min(k, |Re(λ2)|), which coincide with the definition given in
Theorem 2.2. As γmax ≤ |Re(λ2)|, (3.16) implies in particular that for any t ≥ 0,

|q(s)|eγmaxt ≤ |q(0)|+ 2‖B2‖∞
∫ t

0

eγmaxs |w(s)| ds. (3.17)

This is the estimate that we will use in the following. Let us come back to the system (3.10) and denote
ξ = S−1z, where S is the matrix of change of variables given by (3.8). From (3.10), ξ is solution to

ξ̇ =



Λ1 B2 0 ... 0
0 Λ1 B2 0 ...
... ... ... ... ...
0 ... 0 Λ1 B2 0

0 ... 0 0 Λ1

(
c1
c2

)
0 ... 0 0 0 −k


ξ. (3.18)

Therefore, for any j ∈ {0, ..., N − 2}, the function (ξ2j+1, ξ2j+2)T is solution to (3.15) with disturbances
w = (ξ2(j+1)+1, ξ2(j+1)+2)T . From (3.17),

eγmaxt|(ξ2j+1(t), ξ2j+2(t))T | ≤ |(ξ2j+1(0), ξ2j+2(0))T |

+ 2‖B2‖∞
∫ t

0

eγmaxs
∣∣(ξ2(j+1)+1(s), ξ2(j+1)+2(s))T

∣∣ ds. (3.19)

By iterating, we are in position to obtain an estimate on (ξ2j+1(t), ξ2j+2(t))T for any i ∈ {0, ..., N − 2} as a
function only of the initial conditions and (ξ2N−1(t), ξ2N (t))T . Thus, we would like to have an estimate on
(ξ2N−1(t), ξ2N (t)). From (3.18), (ξ2N−1, ξ2N )T is solution to the following system

d

dt

(
ξ2N−1

ξ2N

)
= Λ1

(
ξ2N−1

ξ2N

)
+

(
c1
c2

)
ξ2N+1. (3.20)
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Reasoning as above, we get

eγmaxt |(ξ2N−1(t), ξ2N (t))| ≤
∣∣(ξ2N−1(0), ξ2N (0))T

∣∣+ max(|c1|, |c2|)
∫ t

0

eγmaxs|ξ2N+1(s)|ds. (3.21)

From (3.8), ξ̇2N+1 = −kξ2N+1, thus, for any 0 ≤ s ≤ t, as γmax ≤ k,

|ξ2N+1(t)|eγmaxt ≤ |ξ2N+1(0)|. (3.22)

We can now back propagate the exponential stability of ξ2N+1 using the ISS estimates (3.19) and (3.21). By
recursion, the following holds for j ∈ {0, ..., N − 1},

eγmaxt|(ξ2j+1(t), ξ2j+2(t))T | ≤
N−1∑
i=j

(2‖B2‖∞t)i−j

(i− j)!
|(ξ2i+1(0), ξ2i+2(0))T |

+
(2‖B2‖∞t)(N−1)−j

(N − 1− j)!
max(|c1|, |c2|)

t

(N − j)
|ξ2N+1(0)|.

(3.23)

Indeed, for j = N−1, this comes directly from (3.21) and (3.22). Assuming (3.23) is true for j ∈ {1, ..., N−1},
then for (j − 1), we have, from(3.19),

e−γmaxt|(ξ2(j−1)+1(t), ξ2(j−1)+2(t))T | ≤ |(ξ2(j−1)+1(0), ξ2(j−1)+2(0))T |

+ 2‖B2‖∞
∫ t

0

N−1∑
i=j

(2‖B2‖∞s)i−j

(i− j)!
|(ξ2i+1(0), ξ2i+2(0))T |ds

+ 2‖B2‖∞
∫ t

0

(2‖B2‖∞s)(N−1)−j

(N − 1− j)!
max(|c1|, |c2|)

s

(N − j)
|ξ2N+1(0)|ds

≤
N−1∑

i=(j−1)

(2‖B2‖∞t)i−(j−1)

(i− (j − 1))!
|(ξ2i+1(0), ξ2i+2(0))T |

+
(2‖B2‖∞t)(N−1)−(j−1)

(N − j)!
max(|c1|, |c2|)

t

(N − (j − 1))
|ξ2N+1(0)|,

(3.24)

which is exactly (3.23). Summing this estimate for j ∈ {0, ..., N − 1}, we have|ξ2N+1(t)|+
N−1∑
j=0

|(ξ2j+1(t), ξ2j+2(t))T |

eγmaxt ≤
N−1∑
j=0

N−1∑
i=j

(2‖B2‖∞t)i−j

(i− j)!
|(ξ2i+1(0), ξ2i+2(0))T |

+

1 +

N−1∑
j=0

(2‖B2‖∞t)(N−1)−j

(N − 1− j)!
max(|c1|, |c2|)

t

(N − j)

 |ξ2N+1(0)|

≤
N∑
i=0

|(ξ2i+1(0), ξ2i+2(0))T |

 i∑
j=0

(2‖B2‖∞t)j

j!


+

N∑
j=0

(max(2‖B2‖∞, |c1|, |c2|)t)j

j!
|ξ2N+1(0)|

≤

(
|ξ2N+1(0)|+

N∑
i=0

|(ξ2i+1(0), ξ2i+2(0))T |

)

×

 N∑
j=0

(max(2‖B2‖∞, |c1|, |c2|)t)j

j!

 .

(3.25)
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To conclude, let us now set γ ∈ (0, γmax), ε = γmax − γ > 0, and C1 := 2 max(‖B2‖∞, |c1|, |c2|) > 0. We

define gj(t) =
Cj

1t
j

j! e−εt,

g′j(t) =
Cj1
j!

(j − εt)tj−1e−εt, ∀ j ∈ {1, ..., N} (3.26)

so that gj is minimum for t = j/ε. Thus,

e−εt

∣∣∣∣∣∣
N∑
j=0

(2 max(‖B2‖∞, |c1|, |c2|)t)j

j!

∣∣∣∣∣∣ ≤ 1 +

N∑
j=1

Cj1j
j

j!εj
e−j . (3.27)

From the Stirling formula, j! ∼
√

2πj(j/e)j which implies that there exists a numerical constant C0 inde-
pendent of N , j and the system, such that

sup
t∈[0,+∞)

∣∣∣∣∣∣e−εt
N∑
j=0

(2 max(‖B2‖∞, |c1|, |c2|)t)j

j!

∣∣∣∣∣∣ ≤ 1 + C0

N∑
j=1

1√
2πj

(
C1

ε

)j
≤ C0e

τN (3.28)

where τ = ln(C1/ε) = ln(2 max(‖B2‖∞, |c1|, |c2|)/(γmax − γ)). Using this in (3.25), we get|ξ2N+1(t)|+
N−1∑
j=0

|(ξ2j+1(t), ξ2j+2(t))T |

 ≤ C0e
τNe−γt

(
|ξ2N+1(0)|+

N∑
i=0

|(ξ2i+1(0), ξ2i+2(0))T |

)
. (3.29)

Using the inverse change of variable z = Sξ, there exists CS > 0 depending only on S such that

|z(t)| ≤ CSeτNe−γt|z(0)|. (3.30)

From (3.8) and (3.7), B2, c1 and c2 are independent of N , which implies that CS and τ is independent of N
as well. This is true for the linear system for any γ < γmax, therefore locally also for the nonlinear system
(3.2), (3.3), and, finally, for the original system (2.1), (2.3), (2.4).

Estimation of the basin of attraction Let us complete the analysis by giving an estimate of the basin of
attraction. Fix T > 0 and consider the nonlinear system (3.2), (3.3) on [0, T ]. Using the change of variables
ξ = S−1y, we get the nonlinear system

ξ̇ = g(ξ), (3.31)

where ∂ξg(0) is the triangular matrix given in (3.18). We assume now that |ξ(0)| < η where η will be the
bound on the basin of attraction of ξ will be chosen later on. Our goal will be first to show that there exists
a lower bound for the basin of attraction η = ηN0 , where η0 is a constant that depends on the final time T
but not on N . Of course it would not be enough to stop here as η0 could go to 0 where T goes to infinity
and therefore there would be no uniform bound in time. Therefore, we will then show how to extend this to
get a bound η = ηN0 where η0 do not depend on T and such that the stability also holds on [0,+∞).

a) Existence of trajectories for the nonlinear system
First of all, we need to show that for such η = ηN0 , the nonlinear system (3.31) (or equivalently (3.2), (3.3))
is well-posed on [0, T ] for any initial condition |ξ(0)| < η. Since f still has a cascade structure and is C2, we
now have for any j ∈ {0, ..., N − 1}

d

dt

(
ξ2i+1

ξ2i+2

)
= Λ1

(
ξ2i+1

ξ2i+2

)
+B2

(
ξ2(i+1)+1

ξ2(i+1)+2

)
+ g (ξ2i+1, ξ2i+2, ξ2i+3, ξ2i+4) , (3.32)

where g(x) = O(|x|2) is independent of N and accounts for the nonlinear part. Let assume from now on
that ξ2(i+1)+1, ξ2(i+1)+2 exists on [0, T ], and that for any j ≥ i+ 1,

sup
t∈[0,T ]

|ξ2j+1, ξ2j+2| ≤ δ, (3.33)
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where δ does not depend on N and need to be specified. Then exists such a δ > 0, c(T ) > 0, and C(T ) > 0
independent of N such that for η < c(T ), ξ2i+1, ξ2i+2 exists on [0, T ] and

sup
s∈[0,T ]

|ξ2i+1(t), ξ2i+2(t)| ≤ C(T )(|ξ2i+1(0), ξ2i+2(0)|+ sup
s∈[0,T ]

(|ξ2(i+1)+1, ξ2(i+1)+2|)), (3.34)

on [0, T ]. This consideration encourages us to start with ξ2N+1 and then to show the existence backward to
smaller indices up to y1. For ξ2N+1, we have

ξ̇2N+1 = −kξ2N+1, (3.35)

thus ξ2n+1 trivially exists on [0, T ], without any constraint on η and

sup
[0,T ]

|ξ2N+1(t)| ≤ |ξ2N+1(0)|. (3.36)

Let us look at ξ2N , ξ2N−1. From (3.2) and the definition of S given by (3.8) (we recall that ξ = S−1y), there
exists η1(T ) > 0 and C1(T ) (independent of N) such that, if |ξ2N (0), ξ2N−1(0)| < η1(T )

sup
s∈[0,T ]

|ξ2N−1(s), ξ2N (s)| ≤ C1(T )(|ξ2N−1(0), ξ2N (0)|+ sup
s∈[0,T ]

|ξ2N (s)|),

≤ C1(T )(|ξ2N−1(0), ξ2N (0)|+ |ξ2N+1(0)|).
(3.37)

We would now like to use (3.34) by induction together with (3.37) to get the trajectories and bound their
norm. To do so, assume that

η ≤ min

δ
C(T )(N−1)C1(T ) +

N−2∑
j=0

C(T )j+1

−1

, c(T )

 , (3.38)

then we claim that for any i ∈ {1, ..., N − 1}, (ξ2i+1, ξ2i+2) exists, and

sup
[0,T ]

|ξ2i+1(t), ξ2i+2(t)| ≤C(T )(N−1)−iC1(T )(|ξ2N−1(0), ξ2N (0)|+ |ξ2N+1(0)|)),

+

N−2∑
j=i

C(T )j+1−i|ξ2j+1(0), ξ2j+2(0)|.
(3.39)

Indeed, for i = N − 1, this holds thanks to (3.37) and (3.38). For i ∈ {0, ..., N − 2}, if the claim is true
for i + 1, then from the assumption (3.38) on η and (3.39), (3.33) holds and η < c(T ). Thus, from (3.34),
(ξ2i+1, ξ2i+2) exists on [0, T ] and

sup
s∈[0,T ]

|ξ2i+1(t), ξ2i+2(t)| ≤ C(T )(|ξ2i+1(0), ξ2i+2(0)|+ sup
s∈[0,T ]

(|ξ2(i+1)+1, ξ2(i+1)+2|)),

≤ C(T )
(

(|ξ2i+1(0), ξ2i+2(0)|+ C(T )(N−1)−i−1C1(T )(|ξ2N−1(0), ξ2N (0)|+ |ξ2N+1(0)|))

+

N−2∑
j=i

C(T )j+1−i|ξ2j+1(0), ξ2j+2(0)|


≤ C(T )(N−1)−iC1(T )(|ξ2N−1(0), ξ2N (0)|+ |ξ2N+1(0)|)

+

N−2∑
j=i

C(T )j+1−i|ξ2j+1(0), ξ2j+2(0)|,

(3.40)

which ends the induction.
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b) Bounds on the basin of attraction on [0, T ]
Let us now show the bound on the basin of attraction. From (3.32), as there exists Cg > 0 such that
|g(x)| ≤ Cg|x|2, similarly as before,

e|Re(λ2)|t |ξ2i+1(t), ξ2i+2(t)| ≤ |ξ2i+1(0), ξ2i+2(0)|

+ 2‖B2‖∞
∫ t

0

e|Re(λ2)|s ∣∣ξ2(i+1)+1(s), ξ2(i+1)+2(s)
∣∣ ds

+ Cg

∫ t

0

e|Re(λ2)|s |ξ2i+1(s), ξ2i+2(s), ξ2i+3(s), ξ2i+4(s)|2 ds.

(3.41)

This implies

sup
s∈[0,t]

(
e|Re(λ2)|s |ξ2i+1(s), ξ2i+2(s)|

)
− TCg sup

s∈[0,t]

(
e|Re(λ2)|s |ξ2i+1(s), ξ2i+2(s)|2

)
≤ |ξ2i+1(0), ξ2i+2(0)|+ 2 max(‖B2, 1‖∞)

∫ t

0

e|Re(λ2)|s ∣∣ξ2(i+1)+1(s), ξ2(i+1)+2(s)
∣∣ (1 + Cg

∣∣ξ2(i+1)+1(s), ξ2(i+1)+2(s)
∣∣) ds

(3.42)

Looking at (3.42), and comparing with the linear case given in (3.19), one directly sees that if we can
guarantee for any i ∈ {1, ..., N − 1},

Cg sup
s∈[0,T ]

(|ξ2i+1(s), ξ2i+2(s)|) < 1

T
, (3.43)

then we can perform exactly as in the linear case and back propagate again the exponential stability and
obtain for any γ ∈ (0, γmax)

|ξ2i+1(t), ξ2i+2(t)| ≤ C ′0eτ
′Ne−γt |ξ2i+1(0), ξ2i+2(0)| , (3.44)

where C0 and τ ′ are positive constants independent of N , T and η. So, all that remains to get the basin
on attraction on [0, T ] is to find η such that (3.43) holds. This comes directly from the estimate (3.39) and
gives the following sufficient condition on η,

η < min

min(CgT, δ)

C(T )(N−1)C1(T ) +

N−2∑
j=0

C(T )j+1

 , c(T )

 . (3.45)

Written in a less complicated form, this implies that there exists η0(T ) such that η < η0(T )N is a lower
bound on the basin of attraction. Right now the exponential decay (3.44) is only valid on [0, T ], for T that
can be arbitrarily large but η0 depends also on T . We now show how to extend this to [0,+∞) and have η0

independent of T .

c) Extending the bound to [0,+∞)
Let α ∈ (0, 1) and select T1 > 0 large enough such that

C ′0e
τ ′Ne−γ(1−α)T1 < 1. (3.46)

Note that T1 depends on α and tends to +∞ as α tends to 1. Let us now assume that η < η0(T1)N , then
from (3.44) and (3.46)

|ξ2i+1(T1), ξ2i+2(T1)| ≤ e−αγT1 |ξ2i+1(0), ξ2i+2(0)| . (3.47)

As the system (3.31) is autonomous, the solution at t = 2T1 is equivalent to the solution at t = T1 with
an initial condition ξ(T1), and this quantity exists as, from (3.47), |ξ(T1)| < |ξ(0)| < η. Thus, for any
t ∈ [T1, 2T1] as α < 1,

|ξ2i+1(t), ξ2i+2(t)| ≤ C ′0eτ
′Ne−αγ(t−T1) |ξ2i+1(T1), ξ2i+2(T1)|

≤ C ′0eτ
′Ne−γ(t−T1)e−αγT1 |ξ2i+1(0), ξ2i+2(0)|

≤ C ′0eτ
′Ne−αt |ξ2i+1(0), ξ2i+2(0)| .

(3.48)
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One can do the same on [nT1, (n+ 1)T1]. Finally, we have for any t ∈ [0,+∞)

|ξ2i+1(s), ξ2i+2(s)| ≤ C ′0eτ
′Ne−αγt |ξ2i+1(0), ξ2i+2(0)| . (3.49)

As α was chosen arbitrarily in (0, 1) and γ was arbitrary in (0, γmax), the above equation is true for any
αγ ∈ (0, γmax). Of course the choice of decay rate αγ impacts the choice of C0 and T1, and consequently on
η0 and the bound on the basin of attraction η given by ηN0 . This concludes the proof of Theorem 2.2. Note
that, while the estimate on the time needed to stabilize the AV is likely to be optimal, this estimate on η,
exponential with the number of cars N , is likely to be conservative.

Proof of Proposition 2.3 To prove Proposition 2.3, note that if k ≤ 0, from (2.3), (2.4) the velocity of
the AV vN+1 does not converge to v̄ if vN+1(0) 6= 0. This ends the proof of Proposition 2.3.

4 Numerical Simulations and stabilization of a multilane ring-road

In this section, we provide two sets of simulations. These simulations are obtained by discretizing and solving
the system of ODEs with an Runge-Kutta method of order 4. We present a first set of simulations on a
single lane ring road to illustrate our theoretical results. Then, a second set where we apply our controllers
to a multilane setting.

4.1 Single-lane ring road

In Figure 1, we show the final average speed of the system with different vehicle densities, when we apply
the controller and when no controller is applied (only regular vehicles). In addition to the Bando-FtL model,
the vehicles have a maximum acceleration (2.5m.s−2) and maximum deceleration (4m.s−2). The average
speed of the system without controller is represented in red. The average speed with controller in green.
And the uniform flow velocity in blue. The speed represented is averaged over the vehicles and over the 200
last seconds, in order to account for the speed variance due to stop and go waves in the uncontrolled case.
The road length is L = 260m, a = 20, b = 0.5, and the optimal velocity V (h) is given by

V (h) = Vmax

tanh(h−lvd0
− 2) + tanh(2)

1 + tanh(2)
, (4.1)

where h is the headway between two vehicles, lv is the length of a vehicle and d0 = 2.5 is a characteristic
length. This optimal velocity is commonly used in the literature and one can check that is has the properties
expected in Section 2. At t = 0, all the vehicles are in the uniform steady-state xi+1 − xi = L/N and
vi = V (L/N) for any i ∈ {1, ..., N} (with the slight abuse of notation N + 1 = 1).

We remark that the controlled system always reaches the optimal steady state, while the uncontrolled
system never does. Interestingly, we also see in Figure 1 that, above a certain density, the system has a
higher throughput with stop and go waves than in uniform flow. However, from an energy consumption
point of view, the uniform flow is a much better regime as can be seen in Figure 2 (upper left). The energy
model used is the P∆P model derived in [30].

Smoothing existing stop-and-go waves The theoretical results we obtained deal with local stability.
This is typically enough when the aim is to prevent the emergence of stop and go waves from a state close
to a steady-state. However, if large stop and go waves are already present in the system, such results may
fail because the perturbations are already too large. Nevertheless, in the following simulations, we show
that even with large perturbations the stabilization seems to be effective. The most problematic point being
that our control law may induce AV to crash with the car in front if nothing is done. To avoid this, we
complement our control strategy with two safety mechanisms:
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Figure 1: Comparison of terminal velocity with respect to number of cars on the road. Uncontrolled case is
in red, controlled in blue and the reference uniform steady-state in green.

• Quasi-stationary target speed. Instead of stabilizing directly the optimal steady-state speed (v̄, L/(N+
1)), which might impose the AV to be too fast compared to the other cars, we first stabilize to another,
slower, steady-state (v̄d, d) and then increase gradually the speed v̄d until reaching v̄. Hence, the AV is
following a continuous path of steady states as described in [5, Chapter 7]. Note that this continuous
path of steady states is only possible because of the presence of the AV and does not exist in the
uncontrolled case. The control law becomes

u(t) = k(v̄d(t)− vN+1) + Z,

Ż = (v̄d(t)− vN+1),
(4.2)

where vd(t) =vmin + (v̄ − vmin)
t

t̄
, for t ∈ [0, t̄]

vd(t) =v̄, for t ≥ t̄.
(4.3)

When using the proportional control of Theorem 2.2, v′d(t)/v(t) has to be small compared to k to
ensure quasi-stationarity, but this assumption is not needed when using the PI controller and when v′d
is kept constant. The reason behind this is that v′d plays the same role as a disturbance in the control
law (see next paragraph).

• When the AV is too close from the vehicle in front, the control law is changed to

u(t) = −k(vN+1 −min(vleader, v̄d(t))). (4.4)

This control law forces the AV to decelerate when the headway is too small and its speed too high. Let us
emphasize that these mechanisms are only here to deal with large perturbations and the local asymptotic
stability of the system (2.1), (2.3), with the control feedback (2.4) or (2.10) complemented with these two
safety mechanisms can be deduced from Theorem 2.2. Indeed, when looking at the local asymptotic stability,
the control law is never changed to (4.4). Applying [5, Chapter 7], [23] to the control described in Theorem
2.2 with (4.2) shows that the system still converges eventually to v̄ if v′d(t)/v(t) is small compared to k.
When using the PI controller described by Theorem 2.4 with v′d constant, it is even easier: one can define
Z1 = Z − v′d and (A.1) still holds with y2N+2 = Z1 instead of Z, so the analysis remains exactly the same.

We now consider a situation where we start with human-driven cars and we see the formation of stop and go
waves inducing large perturbations. The parameters and the length of the road are identical as in previous
simulations and the number of cars is 26. At t = 1000s, we turn on the AV control. The average speed of
the vehicles and the speed variance at each time are depicted in Figure 2 (lower left right and upper right
respectively). Notice the sharp drop of the speed variance as soon as the AV control is turned on. The
optimal steady-state speed is highlighted with dashed green line. The speed variance quickly converges near
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0 in less than 100 s, while the system finally converges to the optimal steady-state after around 800 s. Notice
the drop in the average speed when the AV control is turned on, before the average speed increases slowly
up to the target speed. This results from the quasi-stationary target speed strategy.
More generally, a temporary speed drop is unavoidable when the system starts with stop-and-go waves.
Indeed, to avoid crashing into the front car, the AV cannot go faster than if it was acting as a human-driven
vehicle at all times. Therefore, the only possible strategy is to use a lower speed and then aim for the target
steady-state speed, as the natural speed of human-driven cars increases. This is illustrated in Figure 2 (lower
left).

Figure 2: Upper left: Average energy consumption per meter travelled with respect to time. Upper right:
Speed variance on the road with respect to time. Lower left: Speed of the AV with respect to time. Lower
right: Average velocity on the road with respect to time. Control start at t = 1000s.

4.2 Multilane ring-road

In this subsection, we apply our controller to a three-lane ring road. This requires to add a lane changing
condition to the dynamics. We consider a lane changing condition taken from [22]: a vehicle changes lane
if and only if it has an incentive in acceleration and if its lane change does not cause excessive braking (for
him or for the vehicle that would be right behind him).Mathematically this translates as follows:

A regular vehicle in a lane i changes by a lateral move to a neighboring lane j ∈ {i− 1, i+ 1} ∩ {1, ..., J} if
and only if

ãji > ai + ∆ (4.5)

ãji > −∆, ãjfol(i) > −∆ (4.6)
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where ai = v̇i is the acceleration of the i-th vehicle given by (3.2), while ãji is the expected acceleration in the

new lane. That is, ãji is the acceleration that the i-th vehicle would have if it were in lane j instead. Finally

ãjfol(i) is the expected acceleration of the follower of the i-th vehicle in lane j, that is, the acceleration that
the vehicle right behind the i-th vehicle would have if the i-th vehicle was in lane j instead.

The (longitudinal) control law for the AV is the same as before with the target speed v̄ = V (L/Ni), where
Li is the length of the lane in which the AV is and Ni(t) the number of vehicles is this lane. The only
difference with the previous subsection is that v̄ now changes with time at each lane change occur. We also
complement this control law with the two safety mechanisms described in the previous subsection to account
for large perturbations.

We now design a lateral control for the AV, that is, a lane-changing mechanism for the AV to stabilize the
system in all three lanes. Let t1 and t2 be time parameters. The AV changes lane at time t if and only if
the three following conditions are satisfied:

1. The safety conditions are satisfied;

2. The speed variance in another lane is higher than the average speed variance in the AV’s lane averaged
on the last t1 seconds plus a threshold c1;

3. The AV has not been changing lanes in the last t2 seconds.

In precise mathematical terms, let us denote xi,j and vi,j the location and velocity of the i − th vehicle in
the j lane. Let j0 ∈ {1, ...J} be the lane where the AV is at time t−, i0 be the car number of the AV in this
lane, and t0 be the last time at which the AV has changed lane, with t0 = 0 if the AV never changed lane.
The AV changes lane if

1. t > t1 and there exists j ∈ {1, ..., J} \ {j0} such that

∫ t

t−t1

1

N

n∑
i=1

v2
i,j(s)−

1

N2

(
n∑
i=1

vi,j(s)

)2

ds

> c1 +

∫ t

t−t1

1

N

n∑
i=1

v2
i,j0(s)− 1

N2

(
n∑
i=1

vi,j0(s)

)2

ds;

(4.7)

2. t > t2 + t0;

3. the safety condition (4.6) is satisfied with i = i0 and j = j0.

In Figure 3, we provide an example simulation. We show the speed variance in each lane, the number of
vehicles per lane, and the energy consumption with respect to time. In this simulation, the outer lane length
is L1 = 298m, the middle lane length is L2 = 279m, and the inner lane length is L3 = 260m. The simulation
starts with 25 vehicles per lane and run for 1500s. At t = 750s, we turn the AV on. We can see that turning
the AV on quickly stabilizes the entire system despite having a very low penetration rate (around 1.3%).
We can also see that the cars are more stable with the AV activated. After the AV turns on at 750s, the
speed variance quickly drops and remains between 0 and 0.5. Also, once the AV is activated, there seems
to be less lane changes as well. The energy consumption per distance travelled is obtained from the P∆T
model derived in [30] for a combustion engine. This has to be taken with precautions for two reasons: the
energy model might not be representative of the reality (no electric vehicles are included, parameters are
generic, etc.); the case studied here is a ring-road where the effect of wave can have a huge effect on the
energy consumption in practice (see [39]). Nevertheless, we can see qualitatively a decrease in the energy
consumption, which seems logical given the strong decrease of speed variance in the system. To confirm these
insights, we ran 50 simulations with random initial perturbations and we present in Table 1 the different
resulting averaged quantities before and after the activation of the control.
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Figure 3: Left: Speed variance with respect to time in a three lanes ring-road. Right: Number of vehicles
per lane with respect to time. Below: Energy consumption (P∆P model) per distance travelled with respect
to time. Control starts at t = 750s.
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Time 700s (before control) 1500s (after control)

Speed variance lane 1 (m2.s−2) 2.88 0.55
Speed variance lane 2 (m2.s−2) 3.27 0.03
Speed variance lane 3 (m2.s−2) 4.59 0.14

Average speed lane 1 (m.s−1) 7.83 8.46
Average speed lane 2 (m.s−1) 7.68 7.62
Average speed lane 3 (m.s−1) 7.18 8.40

Energy consumption per distance lane 1 (kJ.km−1) 324 98
Energy consumption per distance lane 2 (kJ.km−1) 295 51
Energy consumption per distance lane 3 (kJ.km−1) 381 78

Total speed variance (m2.s−2) 3.58 0.24
Total average speed (m.s−1) 7.57 8.16
Total energy consumption per distance (kJ.km−1) 333 76
Number of lane-change per minute 1.64 0.34

Table 1: Speed variance, average speed, energy consumption per distance travelled and number of lane-
change per minutes before activation of the control (t = 700s) and after (t = 1500s). Control is activated at
t = 750s and all quantities are averaged on 50 simulations. At t = 0, each lane has 25 vehicles and the AV
is in the middle lane.

A Proportional Integral control

In this appendix, we prove Theorem 2.4 by adapting the proof of Theorem 2.2. Performing the same change
of variable (3.1) as previously and setting y2N+2 = Z we get (3.2) where

f2p+1(y, k) = y2p+2, 0 ≤ p ≤ N − 1

f2p(y, k) = a

[
y2p+2

(d+ y2p+1)2
− y2p

(d+ y2p−1)2

]
+ b[V (d+ y2p+1)− V (d+ y2p−1)− (y2p)], 1 ≤ p ≤ N − 1,

f2N (y, k) = ky2N+1 − a
[

y2N

(d+ y2N−1)2

]
− b[V (d+ y2N−1) + y2N + y2N+1 − v̄]

f2N+1(y, k) = −ky2N+1 − kIZ,
f2N+2(y, k) = y2N+1,

(A.1)

such that

∂yf(0, k) =



A1 B1 0 ... ... ... 0
0 A1 B1 0 ... ... 0
... ... ... ... ... ... ...
0 ... 0 A1 B1 0 0

0 ... 0 0 A1

(
0

k − b

)
0

0 ... 0 0 0 −k −kI
0 ... 0 0 0 1 0


, (A.2)
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such that redefining S by

S =


S1 0 0 ... ... ... 0
0 S1 0 ... ... ... 0
... ... ... ... ... ... ...
0 ... 0 0 S1 0 0
0 ... 0 0 0 λ3 λ4

0 ... 0 0 0 1 1

 , (A.3)

where S1 is given by (3.7), and λ3 = −(k −
√
k2 − 4k2

I )/2 and λ4 = −(k +
√
k2 − 4k2

I )/2, we have

S−1∂yf(0, k)S =


Λ1 B2 0 ... ... 0
0 Λ1 B2 0 ... 0
... ... ... ... ... ...
0 ... 0 Λ1 B2 0
0 ... 0 0 Λ1 B3

0 ... 0 0 0 ΛI

 , (A.4)

where B3 is a 2× 2 block diagonal matrix and ΛI is given by

ΛI : =

(
λ3 0
0 λ4

)
=

−k−√k2−4k2I
2 0

0 −k+
√
k2−4k2I
2

 . (A.5)

As previously, this implies that the only eigenvalues of ∂yf(0, k) are λ1, λ2, λ3 and λ4. Besides, from (A.5)
these eigenvalues have all negative real part if and only if k > 0 and kI > 0. As in the proof of 2.2, this
implies that the system (A.1), (2.3), (2.10) is locally exponentially stable. The analysis of the decay rate
and the characteristic time can be done exactly as previously. This ends the proof of Theorem 2.4.

B Input-to-state stability with noise function

In this section, we prove Theorem 2.5. This proof is mainly a variation of the proof of Theorem 2.2. Let us
first consider the case of a noise function δ ∈ L∞. The system (2.1), (2.3), (2.10) is still equivalent to the
system (3.2), (3.3), with the following change

y2N+1 = −ky2N+1 + kIZ + δ(t),

Ż = y2N+1.
(B.1)

As previously, we look at the linearized system which can be written

ż = ∂yf(0)z + V1δ(t), (B.2)

where ∂yf(0 is given by (A.2) and V1 = (0, ..., 0, 1, 0)T ∈ Rn. We can use once again the change of variable
ξ = S−1y, where S is given by (A.3), so that this system becomes

ξ̇ = ∂ξg(0)ξ + S−1V1δ(t), (B.3)

where ∂ξg(0) is given as previously by (3.18). Note that from (A.3), S−1V1 = V1. Therefore the disturbances
still only concerns the previous last equation of the system corresponding to ξ2N+1. As the first equations
are same as previously, estimates (3.17), (3.19)–(3.21) still hold, the only difference being (3.22) which now
becomes

ξ̇2N+1(t) = −kξ2N+1(t) + δ(t), (B.4)

thus, as 0 < γmax ≤ k,

ξ2N+1(t) ≤ |ξ2N+1(0)|e−γmaxt + e−γmaxt

∫ t

0

eγmaxsδ(s)ds. (B.5)
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Using (3.21) as previously, we get

eγmaxt |(ξ2N−1(t), ξ2N (t))| ≤
∣∣(ξ2N−1(0), ξ2N (0))T

∣∣+ max(|c1|, |c2|)

(
t|ξ2N+1(0)|+ eγmaxs − 1

γmax
sup
s∈[0,t]

|δ(s)|

)
,

(B.6)
and using (3.19), we get by induction, that for all i ∈ {0, ..., N − 1},

eγmaxt|(ξ2j+1(t), ξ2j+2(t))T | ≤
N−1∑
i=j

(2‖B2‖∞t)i−j

(i− j)!
|(ξ2i+1(0), ξ2i+2(0))T |

+
(2‖B2‖∞t)(N−1)−j

(N − 1− j)!
max(|c1|, |c2|)

t

(N − j)
|ξ2N+1(0)|

+ (2‖B2‖∞)
(N−1)−j

max(|c1|, |c2|)

(
eγmaxt

γN−jmax

−
N−1−j∑
k=0

tk

k!γN−j−kmax

)
sup
s∈[0,t]

|δ(s)|.

(B.7)

Therefore,|ξ2N+1(t)|+
N−1∑
j=0

|(ξ2j+1(t), ξ2j+2(t))T |

eγmaxt

≤

(
|ξ2N+1(0)|+

N∑
i=0

|(ξ2i+1(0), ξ2i+2(0))T |

) N∑
j=0

(max(2‖B2‖∞, |c1|, |c2|)t)j

j!


+eγmaxt sup

s∈[0,t]

|δ(s)|+
N−1∑
j=0

(2‖B2‖∞)
(N−1)−j

max(|c1|, |c2|)
1

γN−jmax

(
eγmaxt −

N−1−j∑
k=0

(γmaxt)
k

k!

)
sup
s∈[0,t]

|δ(s)|

≤

(
|ξ2N+1(0)|+

N∑
i=0

|(ξ2i+1(0), ξ2i+2(0))T |

) N∑
j=0

(max(2‖B2‖∞, |c1|, |c2|)t)j

j!


+eγmaxt sup

s∈[0,t]

|δ(s)|

1 +

N−1∑
j=0

(max(2‖B2‖∞, |c1|, |c2|))j+1

γj+1
max

 .

(B.8)

We can then proceed exactly as in (3.25)–(3.29), to get, for any γ ∈ (0, γmax),|ξ2N+1(t)|+
N−1∑
j=0

|(ξ2j+1(t), ξ2j+2(t))T |

 ≤eτNe−γt
|ξ2N+1(0)|+

N−1∑
j=0

|(ξ2j+1(0), ξ2j+2(0))T |


+GN1 sup

[0,t]

|δ(s)|,
(B.9)

where G1 is a constant gain independent of N . Finally, using the inverse change of variable y = Sξ and the
definition of S given by (A.3), we obtain the ISS estimate (2.14). The extension to the nonlinear provided
that η is sufficiently small follows as in Section 3.
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