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Improvement of an association algorithm for

obstacle tracking

Yann Lemeret, Eric Lefevre, Daniel Jolly

Abstract

This article describes a modi�cation of an association algorithm for

object tracking based on the evidence theory. This association algorithm

was �rst developed by M. Rombaut and subsequently improved in a gen-

eral way by D. Gruyer. This algorithm has been modi�ed here in order to

obtain better results when data reliability is poor. This article presents

the basic concepts of the evidence theory. Then, the association algorithm

developed by M. Rombaut is explained, and some examples are given to

show that this algorithm fails to give the proper decision when data re-

liability decreases. Finally, the new algorithm is presented and the two

algorithms are compared using synthetic data. In order to test the robust-

ness of the two algorithms, they were also tested using real data coming

from a CCD camera and these data can be quali�ed as very noisy with a

reliability ranging from good to very bad.

Keywords� Data Fusion, Evidence Theory, Association, Tracking.

1 Introduction

This article relates to intelligent vehicles and more precisely to making an al-
gorithm for obstacle detection and tracking. Many European projects on intel-
ligent vehicles are currently in progress, and before explaining the work done,
here, a short description will be given of the work achieved in some of these
projects.

In the Carsense project [1], the car is �tted with six sensors: two cameras in
stereovision, another for lane following, a long-range radar, a short-range radar
and a laser. Except for lane-keeping camera, all the sensors are dedicated to
obstacle detection in front of the car. The algorithm must be able to detect
many objects simultaneously. Data fusion is carried out using the evidence
theory and an association algorithm for tracking is described. The aim of this
project is to establish, the car environment as reliably as possible.

The aim of the Argo project [2] is to provide a driver assistance system
capable of driving the car at the driver's request. The experimental car is �tted
with just two stereovision cameras and one speedometer. The wheel is motorized
to allow automatic drive. Some tests were performed to compare the detection
results between a single camera and two in stereovision [3].

1



The Autonomes Fahren project [4] is based on a car integrating a DGPS, a
digital map, three lasers (one at the rear and two in the front), several short-
range radars on both sides, a long-range radar and a stereovision system. Ob-
jects are detected and tracked in a Kalman �lter. The car is �tted with actuators
to make the driving task fully automatic.

Also worth mentioning is the development of the Adaptative Cruise Control
(ACC), named Stop and Go ACC [5]. This system works with a millimeter wave
radar and a lane-keeping camera. Its aim is to maintain automatically a safety
distance between two vehicles in cruise control mode.

Finally, other research work on intelligent vehicles using stereovision systems
can be found in [6].

The project discussed here is a part of is RaViOLi: "Radar, Vision Ori-
entable et Lidar". In this project, three sensors are used: a long-range radar,
a stereovision system and a Lidar. The interest of this project is to make a
long-range detection system. Given that reliability decreases with increasing
in ranging distance, a fusion algorithm for detection and tracking of moving
objects has been developed that is still able to work when data reliability is
poor.

Taking directly into account the imperfections due to each item of informa-
tion and each sensor, the algorithm is based on the evidence theory [7, 8]. The
procedure is as follows: �rst, belief masses are created for each sensor, with
the di�erent measurements they provide. Then, the belief functions made from
the measurements are combined and then, those from each sensor are also com-
bined. Finally, an association algorithm gives a decision: a new object appears,
the object disappears, or the object had already been detected before.

This article is organized as follows: section 2, describes the basic concept of
the evidence theory. Section 3 presents the method for creating the mass sets for
the di�erent sensors and the fusion steps. Section 4, describes the association
algorithm and the modi�cations made to improve it when detected objects are a
long way ahead of the sensors. Section 5 compares the results obtained with this
algorithm using synthetic and real data. Finally, possible future developments
of this algorithm are indicated in section 6.

2 Evidence theory

The evidence theory was initially introduced by Dempster [7] in relation to his
work on lower and upper bounds of a distribution probability family. Using
this mathematical formalism, Shafer [8] shows the bene�ts of belief functions
for modelling uncertain knowledge. The usefulness of Belief functions, as an
alternative to subjective probabilities, was subsequently proved in an axiomatic
way by Smets [9, 10] in the Transferable Belief Model thus giving a clear and
coherent interpretation of the subjacent concept of this theory. In this section,
some mathematical elements of belief functions will be introduced. Not all of the
concepts of this theory will be introduced but just those needed to understand
this article. Then, an approach will be explained for using the evidence theory
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in the case of object association.

2.1 Basic concepts

The evidence theory is based on the assumption that, from the beginning, a set
Ω called the frame of discernment is known and which is de�ned as follows:

Ω = {ω1, ω2, . . . ωN} (1)

This set is composed of N exhaustive and exclusive hypotheses. From this frame
of discernment, a set noted 2Ω can be built, including the 2N proposals A of Ω:

2Ω = {A/A ⊆ Ω} (2)

A belief function can be mathematically de�ned by a mass function (or alloca-
tion (1)), noted m de�ned by 2Ω in [0, 1], and that veri�es:∑

A⊆Ω

m(A) = 1 (3)

Each subsetA ⊆ Ω such thatm(A) 6= 0 is called a focal element of Ω. Thus, mass
m(A) represents the degree of belief allocated to the proposal A and that cannot,
in the present state of knowledge, be attributed to a subset more speci�c than
A. The belief function for which m(∅) = 0 is called normal. In the Transferable
Belief Model, the condition

∑
∅6=A⊆Ωm(A) = 1 is not imposed and it is possible

to have m(∅) 6= 0. This can introduce the notion of open world while assuming
that the belief cannot be attributed to a subset of Ω. In this case, ∅ can be
interpreted as a proposal which is not in the frame of discernment Ω and that it
is likely to be the solution to the problem as opposed to the closed world where
the set Ω is assumed to be exhaustive.

2.2 Dual functions

From the belief mass, other belief functions such as plausibility can be de�ned:

pl(B) =
∑

A∩B 6=0

m(A) ∀B ⊆ Ω (4)

This function can be interpreted as the part of belief that can potentially be allo-
cated to B taking into account the elements that do not discredit this proposal.
Another belief function that is often found in the literature is the credibility
function which is obtained as follows:

bel(B) =
∑
A⊆B

m(A) ∀B ⊆ Ω (5)

This function represents the belief brought to the elements of that proposal.
Plausibility and credibility functions are dual measures. Those measures can

1The term bba for basic belief assignment is often found in the literature
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be viewed as lower and upper bounds of function m. In addition, the di�erent
functions pl, bel andm represent the same information but expressed in di�erent
ways. Moreover, they can be translated from one to the other thanks to the
Mbius transform [11, 12].

2.3 Discounting

When the information that results in the belief function is not totally reliable,
it may be useful to discount this belief. In order to do that, a coe�cient α is
used, which represents knowledge of the source reliability. This coe�cient will
allow the transfer of the belief to the set Ω when the information is not totally
reliable. The discounting belief function mα, de�ned by a reliability coe�cient
α can then be deduced from m by means of the following expression:{

mα(A) = αm(A)
mα(Ω) = 1− α+ αm(Ω).

(6)

2.4 Fusion of belief functions

In the evidence theory, data from distinct sources are fused using the rule of
Dempster combination, also known as the orthogonal sum. This sum, which is
commutative and associative, is de�ned by:

∀ A ∈ 2Ω m(A) = m1(A)⊕ . . .⊕mQ(A) (7)

where ⊕ represents the combination operator. In cases of two sources noted Si
and Sj , giving respectively belief functions noted mi et mj , the combination
can be written as follows:

m(C) =
1

1−K
∑

A∩B=C

mi(A).mj(B) (8)

where K is de�ned by:

K =
∑

A∩B=∅

mi(A).mj(B). (9)

In equation (8), the coe�cient K re�ects the existing con�ict between two
sources Si and Sj . When this factor equals 1, the sources are in total con-
�ict and the information cannot be fused. On the other hand, when K equals 0,
the two sources totally agree. This fusion rule, deduced from the conditioning
rule [13], has been criticized in several publications such as [13, 14, 15], par-
ticularly for the case of two totally con�icting sources. In order to avoid this
disadvantage, Dubois and Prade [16] have de�ned a disjunctive and conjunc-
tive fusion operator. Finally, another form of combination has been proposed
in order to gather all the fusion operators that can be used in the evidence
theory [17, 18].
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When comparing it to the probability theory, the evidence theory shows
some advantages, the most important of which is the possibility of expressing
the degree of uncertainty. In this theory, the mass assignment on a subset does
not mean that the remainder automatically goes to the complement.

2.5 Measures of uncertainty

It follows from the nature of the evidence theory that it subsumes two distinct
types of uncertainty [19]. One of them is called the nonspeci�city. This measure
is de�ned by the following formula:

N(m) =
∑
A⊂Ω

m(A) · log2 | A | (10)

where | A | denotes the cardinality of the focal element A. This measure, which
was proven to be unique under appropriate requirements [20], expresses the
uncertainty of the belief function m. It ranges from: 0 ≤ N(m) ≤ log2 | Ω |.
N(m) = 0 when m(A) = 1 (A ⊂ Ω and A is a singleton), corresponding to the
full certainty. N(m) = log2 | Ω | when m(Ω) = 1 (total ignorance).

The second type of uncertainty captured by the evidence theory is called the
discord. This measure was de�ned as follows by [21]:

D(m) = −
∑
A⊂Ω

m(A) · log2[1−
∑
B⊂Ω

m(B) · | B −A |
| B |

] (11)

This measure gives the mean con�ict (expressed by the logarithmic transforma-
tion) among evidential claims within each given body of evidence. Note that
the following part: ∑

B⊂Ω

m(B) · | B −A |
| B |

(12)

expresses the sum of individual con�icts of evidential claims with respect to a
particular set A.

After this introduction to the basic concepts of the evidence theory, the next
section deals with the creation of masses, adapted to the present application,
using information from the di�erent sources.

3 Creation of masses

In an intelligent vehicle, objects are detected by sensors installed in the vehicle.
From these sensors used for RaViOLi, the kind of information is known and is
expressed in terms of (distance;angle): (ρ; Θ). Moreover, it is considering that
using a radar, the speed can be obtained independently of the angle and the
distance, by Doppler e�ect. In addition, the dimensions of the object re also
available.

The aim is to track vehicles. Therefore, it must be possible to �nd them
from one moment to another. All the available information is used to create
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several mass sets indicating the relations that exist between perceived objects at
time t and those known at time t−1. The term Xi denote the objects Perceived
(i = 1 : NbP ) at time t by the sensors and Yj the Known objects (j = 1 : NbK).
The known objects are perceived objects from the previous sample time that
were stored in memory.

In a �rst stage, The frame of discernment must be de�ned as a basis for the
work. Two hypotheses have been chosen: Ω = {(XiRYj); (XiRYj)}. Either the
perceived object is the same as the known one (in relation:(XiRYj)), or it is not
in relation :((XiRYj)) [22].

The �rst step consists in creating belief functions using the information. A
di�erent mass set is built for each usable item of information from each sensor.

The mathematical equations of the mass set, that can be used to deter-
mine whether objects are in relation or not, is based on a negative exponential
introduced by Denoeux [23]:

mi,j(XiRYj) = α0 · exp(−e2i,j)

mi,j(XiRYj) = α0 · (1− exp(−e2i,j))
mi,j(Ωi,j) = 1− α0

(13)

where ei,j is the variation between two items of information (distance, angle,
or speed) from perceived Xi and known Yj objects. α0 is a coe�cient that
characterizes the sensor reliability. There is then one mass set for distance
(Fig. 1) and one for angle for each sensor. There will be another set, based on
speed, with the Doppler radar.

The next step consists in combining the distance, angle and speed mass sets
for each sensor, and then combining the various sensors. For data fusion, the
evidence theory is used with Dempster's conjunctive operator and normalisation.

At the end of those two fusion steps, the mass sets obtained are the number
of possible relations between objects. It is now necessary to decide which are
the recognized objects, those that appear and those that disappear. This stage
is described in the next section.

Figure 1: Association between known and perceived objects using distance in-
formation.
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4 Object association

When associating objects the decision is taken by means of a fusion algorithm
developed by M. Rombaut [24]. This algorithm was improved by D. Gruyer [25].

4.1 Mathematical formulation

The algorithm is based on the calculation of certain masses. The relation mass
for a given object i to all the objects j is computed. These masses are notedmi,..
The next operation consists in computing the relation masses for each object
j to all other i. These masses are noted m.,j . The mathematical formulation
adopted for mi,. is:

mi,.(XiRYj) = Ki,. ·mi,j(XiRYj) ·
NbK∏
k=1
k 6=j

(1−mi,k(XiRYk))

mi,.(XiR∗) = Ki,. ·
NbK∏
j=1

mi,j(XiRYj)

mi,.(Ωi,.) = Ki,. · [
NbK∏
j=1

(mi,j(Ωi,j) +mi,j(XiRYj))−
NbK∏
j=1

mi,j(XiRYj)]

Ki,. = 1

(
NbK∏
j=1

(1−mi,j(XiRYj)))·(1+
NbK∑
j=1

(
mi,j(XiRYj)

1−mi,j(XiRYj)
))

(14)
Then, m.,j can be deduced:

m.,j(YjRXi) = K.,j ·mi,j(XiRYj) ·
NbP∏
k=1
k 6=i

(1−mk,j(XkRYj))

m.,j(YjR∗) = K.,j ·
NbP∏
i=1

mi,j(XiRYj)

m.,j(Ω.,j) = K.,j · [
NbP∏
i=1

(mi,j(Ωi,j) +mi,j(XiRYj))−
NbP∏
i=1

mi,j(XiRYj)]

K.,j = 1

(
NbP∏
i=1

(1−mi,j(XiRYj)))·(1+
NbP∑
i=1

(
mi,j(XiRYj)

1−mi,j(XiRYj)
))

(15)
Note that the non relation masses are not computed. However, this infor-

mation is not necessary in order to make the decision: deciding that Xi is not
in relation with Yj does not give any information about the other associations.

Two new hypotheses mi,.(XiR∗) and m.,j(YjR∗) are introduced. In these
hypotheses, ∗ represents the fact that one object is in relation with none of the
others. Thus, if a perceived object Xi is not associated, it is a new object and if
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a known object is not associated, it has disappeared (masked by another object,
out of range, ...). The decision is taken according to the two sets of masses mi,.

and m.,j . The couples that have the maximum credibility in the two mass set
are chosen.

4.2 New formulation

The �rst remark that can be made about these formulae concerns the framework.
At the beginning, when the masses are built, Ωi,j = {(XiRYj); (XiRYj)}. With
the association formulae, it can be seen that Ω changes from a closed world
to an extended open world but also that the hypotheses are not the same too:
Ωi,. = {(XiRYj); (XiR∗)}.

Then, it has been found that in some situations, they did not work well.
Indeed, the masses mi,j(XiRYj), are added on mi,.(Ωi,.) and m.,j(Ω.,j). While
this is not important for the decision because deciding that Xi is not in rela-
tion with Yj does not give any decision, the manner in which the formulae are
established adds these masses to Ω and can lead to the choice of a bad decision.
For example with one perceived and two known objects the following mass sets
are obtained:

m1,1(X1RY1) = 0.2 m1,2(X1RY2) = 0.45
m1,1(X1RY1) = 0.45 m1,2(X1RY2) = 0.15
m1,1(Ω1,1) = 0.35 m1,2(Ω1,2) = 0.4

Therefore:

M i,.
cr =

X1

Y1 0.121
Y2 0.396
∗ 0.073

Ω1,. 0.41

M .,j
cr =

X1 ∗ Ω.,j
Y1 0.2 0.45 0.35
Y2 0.45 0.15 0.4

From the �rst matrix (mi,.), it can be deduced that the relation on X1 is un-
known: m1,.(Ω1,.) = 0.41 while seeing that m1,.(X1RY2) = 0.396. From the
second matrix, it can be decided that Y1 disappears and that X1 is in relation
with Y2. So there is a problem with deciding on the couples. To solve this
problem, it was decided to modify the equations for computing the masses mi,.

and m.,j . This modi�cation consists in de�ning a unique framework: Ωi,. =

{(XiRY0); . . . ; (XiRYNbK); (XiR∗)} and noting (XiRYj) = [
⋃NbK

k=1
k 6=j

(XiRYk) ] ∪
(XiR∗). Thus, the masses are created as follows:

mi,j(XiRYj) = α0 · exp(−e2i,j)

mi,j(XiRYj) = α0 · (1− exp(−e2i,j))
mi,j(Ωi,.) = 1− α0

(16)

The masses of relation (XiRYj) are increased using the mass on star com-
bined with the complementary masses (XiRYj) that do not contradict the rela-
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tion hypothesis. The new mi,. values are de�ned thus:

mi,.(XiRYj) = Ki,. · [mi,j(XiRYj) ·
NbK∏
k=1
k 6=j

(1−mi,k(XiRYk)) +
NbK∑
k=1
k 6=j

1
NbK ·mi,k(XiRYk)·

NbK∏
p=1
p6=k

mi,p(Ωi,.) +
NbK−1∑

k=1
k 6=j

NbK∑
l>k
l 6=j

1
NbK−1 ·mi,k(XiRYk) ·mi,l(XiRYl)·

NbK∏
p=1

p 6=k,p 6=l

mi,p(Ωi,.) + · · ·+ 1
2 ·mi,j(Ωi,.) ·

NbK∏
p=1
p 6=j

mi,p(XiRYp)]

mi,.(XiR∗) = Ki,. · [
NbK∏
j=1

mi,j(XiRYj) +
NbK∑
k=1

1
NbK ·mi,k(XiRYk)·

NbK∏
p=1
p6=k

mi,p(Ωi,.) +
NbK−1∑
k=1

NbK∑
l>k

1
NbK−1 ·mi,k(XiRYk) ·mi,l(XiRYl)·

NbK∏
p=1

p 6=k,p 6=l

mi,p(Ωi,.) + · · ·+
NbK∑
j=1

1
2 ·mi,j(Ωi,.) ·

NbK∏
p=1
p 6=j

mi,p(XiRYp)]

mi,.(Ωi,.) = Ki,. ·
NbK∏
j=1

mi,j(Ωi,.)

Ki,. = 1

(
NbK∏
j=1

(1−mi,j(XiRYj)))·(1+
NbK∑
j=1

(
mi,j(XiRYj)

1−mi,j(XiRYj)
))

(17)
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and the m.,j values:

m.,j(YjRXi) = K.,j · [mi,j(XiRYj) ·
NbP∏
k=1
k 6=i

(1−mk,j(XkRYj)) +
NbP∑
k=1
k 6=i

1
NbP ·mk,j(XkRYj)·

NbP∏
p=1
p 6=k

mp,j(Ω.,j) +
NbP−1∑

k=1
k 6=i

NbP∑
l>k
l 6=i

1
NbP−1 ·mk,j(XkRYj) ·ml,j(XlRYj)·

NbP∏
p=1

p 6=k,p 6=l

mp,j(Ω.,j) + · · ·+ 1
2 ·mi,j(Ω.,j) ·

NbP∏
p=1
p 6=i

mp,j(XpRYj)]

m.,j(YjR∗) = K.,j · [
NbP∏
i=1

mi,j(XiRYj) +
NbP∑
k=1

1
NbP ·mk,j(XkRYj)·

NbP∏
p=1
p 6=k

mp,j(Ω.,j) +
NbP−1∑
k=1

NbP∑
l>k

1
NbP−1 ·mk,j(XkRYj) ·ml,j(XlRYj)·

NbP∏
p=1

p 6=k,p 6=l

mp,j(Ω.,j) + · · ·+
NbP∑
i=1

1
2 ·mi,j(Ω.,j) ·

NbP∏
p=1
p 6=i

mp,j(XpRYj)]

m.,j(Ω.,j) = K.,j ·
NbP∏
i=1

mi,j(Ω.,j)

K.,j = 1

(
NbP∏
i=1

(1−mi,j(XiRYj)))·(1+
NbP∑
i=1

(
mi,j(XiRYj)

1−mi,j(XiRYj)
))

(18)
In the terms of relation, coe�cients appear: ( 1

NbK , . . . , 1
2 ) for mi,. and

( 1
NbP , . . . ,

1
2 ) for m.,j . These correspond to an equal distribution of the mass

when there are one or more masses on Ω multiplied with the non relation
masses. Indeed, with one perceived and two known objects, if m1,2(X1RY2) =
(m1,1(X1RY1) ∪ m1(X1R∗)) is multiplied by m1,1(Ω1,.), this means that it is
certain that X1 is not in relation with Y2. So as the framework is exhaustive
and closed, the result goes on m1,.(X1RY1) and m1,.(X1R∗) (multiplied by 1

2 ).
In the case of three known objects, if there are two masses on Ω in the product
(m1,1(X1RY1) · m1,2(Ω1,.) · m1,3(Ω1,.)), it is not possible to decide where the
mass should go, so 1

3 goes to the �rst relation (m1,.(X1RY2)), 1
3 to the second

(m1,.(X1RY3)) and 1
3 to the mass on star (m1,.(X1R∗)), and so on until divided

by NbK (or NbP ). Considering the example again, this gives:

Mi,. =

X1

Y1 0.15
Y2 0.495
∗ 0.201

Ω1,. 0.154

M.,j =

X1 ∗ Ω.,j
Y1 0.2 0.45 0.35
Y2 0.45 0.15 0.4

This time, there is no ambiguity about the best decision which is: (X1RY2) and
Y1 disappears. The next section compares the two formulae using synthetic and
real data.
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5 Experimental results

The aim of this section is to validate the association formulae made using results
obtained from simulated or real data. The �rst part illustrates the use of the
formulae(2) with synthetic data and a limited uncertainty, and then with a
strong uncertainty. The second part shows the results obtained with real data.

5.1 Synthetic data

5.1.1 With limited uncertainty

In this section, the data were arti�cially created and the association matrices are
not shown. The relevant masses are displayed in order to be able to decide the
association as the results are known in advance. The �rst step was to de�ne a
trajectory for the objects (Fig. 2). The objects move for 10s, with a sample time
of 0.1s, according to the following equations (which introduce strong constraints
while remaining realistic):

Object 0→ d = 1
2 · 0.1 · t

2 + 5 · t+ 19.3
Object 1→ d = 45

1+exp(−2·t+10) + 10
(19)
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Figure 2: Variation in object distance from the sensor, for 10s.

From these data, the distances between perceived and known objects (Sec-
tion 3) are computed at each sample time, so as to plot the variation of the
relation masses between those objects (Fig. 3). As the relative distances are
not very high, a reliability α0 = 0.8 was chosen for the sensor 0 and α1 = 0.8
for sensor 1. As shown in this �gure, the objects are well separated until the
moment object 1 approaches object 0 (5.8s < t < 6.8s). During this time,

2In order to make the computational stage easier, in this part, i ranges from 0 to NbP −1,
and j from 0 to NbK − 1
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m0,1(X0RY1) falls whereas m0,1(X0RY1) increases. However, m0,1(X0RY1) is
still higher than m0,1(X0RY1).
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Figure 3: Variation in relation masses between X0 and Y0, X0 and Y1.

Figure 4 shows the variation of the association masses using M. Rombaut's
formulae. These formulae give good results in this case. In fact, they work well
in most cases.

Note that on �gure 5 the changes have made to these formulae also give
good results. A peak can be seen on m0,.(Ω0,.) (Fig. 5). This variation of mass
does not come from the mi,j(Ωi,j) (because these masses are constant with time
(Fig. 3)) but from the variation of the con�ict coe�cient.

The next part shows the advantage of the modi�ed formulae in the case of
low reliability.

5.1.2 With high uncertainty

This is a particular case (Fig. 6) where the temporal equations are:

Object 0→ d = 1
2 · 0.1 · t

2 + 5 · t+ 59.3
Object 1→ d = 45

1+exp(−2·t+10) + 50
(20)

For this simulation, distances were greater than 50m, α0 = 0.6 and α1 = 0.7
were �xed. The variation of relation masses is represented on �gure 7.

Figure 8 shows the evolution of association masses using M. Rombaut's for-
mulae. Normally, it should be decided that X0 is in relation with Y0. But in
this case, it can be seen on the curves that till the beginning the decision of
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Figure 4: Variation in m0,. using Rombaut's formulae.
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Figure 5: Variation in m0,. using the modi�ed formulae.
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association is debatable. Indeed, the relation mass m0,.(X0RY0) is only slightly
higher than m0,.(Ω0,.) for t < 5.8s and becomes slightly lower when t > 5.8s.
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Figure 8: Variation in m0,. using Rombaut's formulae.

Now, looking at the variation in masses obtained with the modi�ed formulae
(Fig. 9), it can be seen that the decision is not ambiguous: X0 is in relation with
Y0, and this decision is not debatable at any time even when the two objects
are very close.

5.1.3 Variation in relation masses according to reliability

For this test, two objects are considered side by side with the same speed and
1m apart. Those two vehicles move away progressively from the sensor (from
20 to 100m with a constant speed of 5m.s−1) which leads to a reduction in the
reliability coe�cient (from 0.9 at 20m to 0.3 at 100m). Figure 10 represents
the evolution of the decision reliability according to the sensor reliability for M.
Rombaut's algorithm and for the modi�ed one. The decision is not considered
to be completely reliable when the variation between the mass of a good decision
and another one is lower than a threshold which have been set to 0.1 in this
case.

When the reliability is greater than 0.69, the two algorithms give the same
results. However, the modi�ed algorithm is able to give a reliable decision down
to a data reliability value of 0.49. For Rombaut's algorithm, the decision is not
reliable below 0.69 and is false if the data reliability value falls below 0.62.

Tests were conducted with a large number of threshold values, always result-
ing in the same conclusion: the modi�ed algorithm is better when the reliability
decreases.
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Figure 9: Variation in m0,. using the modi�ed formulae.
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When real tests could be made, it would be interesting to plot the percentage
of good decisions of the two algorithms with various data reliability values from
several scenarios.
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Figure 11: Variation in the non speci�city according to reliability.

Figure 11 shows the variation in non speci�city according to data reliability.
This �gure shows that the modi�ed formulae give more speci�c mass sets, so
there is less uncertainty on the best decision. These results prove that the
modi�ed formulae presented lead to a better decision.

5.2 Real data

The association algorithm was initially tested by using a simulator developed
by the authors [26]. This simulator provided the only data that could be used.
It was able to create various scenarios thanks to adjustable parameters such as:
number and speed of vehicles, number of sensors, sweeping time, angle, range,
etc. The driver's behaviour was governed by the driving law. The problem
with this simulator was that data were synthetic, so not representative of the
driver's behaviour and not noisy. In order to improve the association algorithm
and to test its robustness, it was decided to use real data. These data were
supplied by a simple DV camera placed behind the windshield of a car. This
DV camera has a CCD sensor. The resolution is 720x576 pixels, the angle ranges
from −0.5 to +0.5 radians (almost ±30◦) and works at 25 images per second
(∆t = 0.04s). For calibration purposes, a sequence was �lm in a car park where
a reference car was parked. A pocket laser telemeter was used to measure the
distance between the camera and the car. The measurements were taken from
0 to 60m, because for greater distances, it was di�cult to point the laser on
the car. From the calibration sequence, while assuming that detected objects
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are cars, two equations were computed by two di�erent interpolation methods
(Fig. 12) giving the distance according to object height and width in the image.
The angle is extracted from the centre of gravity position in the image. In this
way, information (ρ,Θ), for two di�erent sensors is obtained(3).

Figure 12: Characterization function of the two cameras. The distance in meter
is obtained from the height and the width in pixels of the object.

Without being specialists in image processing, the measurements extracted
were very noisy. Indeed, at 70m, a variation of 20m was possible for the same
object from an image to the next. In terms of angle, the variation could be as
high as 0.02rd for a measurement of 0.01rd.

5.2.1 Object association

Figure 13 shows the variation in the relation mass for one perceived object.
This object is followed for 300 images (12s) and is located almost 20m from

3The fact of using two di�erent interpolation methods leads to two sources of information.

So it can be said that there are two sensors.
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the sensor. The mass of relation varies between 0.57 and 1, but is close to 1
most of the time. A value of 0.57 was obtained because, at this time, there is a
measurement error of 14.6% on the distance and a simultaneous 8.2% error on
the angle.
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Figure 13: Variation in the mass of detection for one perceived object.

The entire sequence consists of 3230 images (almost 2min10s) and, during
this time, 7063 vehicles were perceived (between 0 and 6 per image). Figure 14
shows the variation in mass on * for the entire simulation using both formulae.

In the scenario presented (Fig. 14) it can be seen that there is many appear-
ance and disappearance of objects (763 during the 3230 images). Note that the
masses on star with the new formulae are equal to or higher than the one with
Rombaut's formulae. The mass of relation (Fig. 13) is plotted between images
450 and 750. Figure 14 shows that during this time there was just one object
and it is always tracked (no appearance or disappearance).

6 Conclusion and future work

This article has presented an improvement to an association algorithm. This
algorithm is used to track moving vehicles. Hypotheses to be computed in the
association stage have been added in order to reduce the number of ambiguous
decisions. This algorithm was tested on synthetic and real noisy data, the
maximum variation in distance was about 25% and 200% for the angle from
one image to the next. Better results are obtained with the modi�ed formulae
especially when the reliability is poor. The number of non-decisions is reduced
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Figure 14: Variation in mass on * during the entire sequence.

and the choice of right decision is made easier while increasing the di�erence
between the mass for the best hypothesis and the others.

Improvements could still be made to the detection and tracking of objects
by adding a prediction �lter to this algorithm. It will thus be possible to pre-
dict future associations. This information could then be used to con�rm the
associations made or reduce the ambiguous decisions on some associations.
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