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This article describes a modication of an association algorithm for object tracking based on the evidence theory. This association algorithm was rst developed by M. Rombaut and subsequently improved in a general way by D. Gruyer. This algorithm has been modied here in order to obtain better results when data reliability is poor. This article presents the basic concepts of the evidence theory. Then, the association algorithm developed by M. Rombaut is explained, and some examples are given to show that this algorithm fails to give the proper decision when data reliability decreases. Finally, the new algorithm is presented and the two algorithms are compared using synthetic data. In order to test the robustness of the two algorithms, they were also tested using real data coming from a CCD camera and these data can be qualied as very noisy with a reliability ranging from good to very bad.

Introduction

This article relates to intelligent vehicles and more precisely to making an algorithm for obstacle detection and tracking. Many European projects on intelligent vehicles are currently in progress, and before explaining the work done, here, a short description will be given of the work achieved in some of these projects.

In the Carsense project [START_REF] Gruyer | Credibilistic multi sensor fusion for real time application. application to obstacle detection and tracking[END_REF], the car is tted with six sensors: two cameras in stereovision, another for lane following, a long-range radar, a short-range radar and a laser. Except for lane-keeping camera, all the sensors are dedicated to obstacle detection in front of the car. The algorithm must be able to detect many objects simultaneously. Data fusion is carried out using the evidence theory and an association algorithm for tracking is described. The aim of this project is to establish, the car environment as reliably as possible.

The aim of the Argo project [START_REF] Broggi | Visual perception of obstacles and vehicles for platooning[END_REF] is to provide a driver assistance system capable of driving the car at the driver's request. The experimental car is tted with just two stereovision cameras and one speedometer. The wheel is motorized to allow automatic drive. Some tests were performed to compare the detection results between a single camera and two in stereovision [START_REF] Bensrhair | A cooperative approach to vision based vehicle detection[END_REF].

The Autonomes Fahren project [START_REF] Stiller | Multi-sensor obstacle detection and tracking[END_REF] is based on a car integrating a DGPS, a digital map, three lasers (one at the rear and two in the front), several shortrange radars on both sides, a long-range radar and a stereovision system. Objects are detected and tracked in a Kalman lter. The car is tted with actuators to make the driving task fully automatic.

Also worth mentioning is the development of the Adaptative Cruise Control (ACC), named Stop and Go ACC [START_REF] Kato | An obstacle detection method by fusion of radar and motion stereo[END_REF]. This system works with a millimeter wave radar and a lane-keeping camera. Its aim is to maintain automatically a safety distance between two vehicles in cruise control mode.

Finally, other research work on intelligent vehicles using stereovision systems can be found in [START_REF] Bertozzi | Vision-based intelligent vehicles : state of the art and perspectives[END_REF].

The project discussed here is a part of is RaViOLi: "Radar, Vision Orientable et Lidar". In this project, three sensors are used: a long-range radar, a stereovision system and a Lidar. The interest of this project is to make a long-range detection system. Given that reliability decreases with increasing in ranging distance, a fusion algorithm for detection and tracking of moving objects has been developed that is still able to work when data reliability is poor.

Taking directly into account the imperfections due to each item of information and each sensor, the algorithm is based on the evidence theory [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. The procedure is as follows: rst, belief masses are created for each sensor, with the dierent measurements they provide. Then, the belief functions made from the measurements are combined and then, those from each sensor are also combined. Finally, an association algorithm gives a decision: a new object appears, the object disappears, or the object had already been detected before.

This article is organized as follows: section 2, describes the basic concept of the evidence theory. Section 3 presents the method for creating the mass sets for the dierent sensors and the fusion steps. Section 4, describes the association algorithm and the modications made to improve it when detected objects are a long way ahead of the sensors. Section 5 compares the results obtained with this algorithm using synthetic and real data. Finally, possible future developments of this algorithm are indicated in section 6.

Evidence theory

The evidence theory was initially introduced by Dempster [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF] in relation to his work on lower and upper bounds of a distribution probability family. Using this mathematical formalism, Shafer [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] shows the benets of belief functions for modelling uncertain knowledge. The usefulness of Belief functions, as an alternative to subjective probabilities, was subsequently proved in an axiomatic way by Smets [START_REF] Smets | What is dempster-shafer's model ?[END_REF][START_REF] Smets | The transferable belief model[END_REF] in the Transferable Belief Model thus giving a clear and coherent interpretation of the subjacent concept of this theory. In this section, some mathematical elements of belief functions will be introduced. Not all of the concepts of this theory will be introduced but just those needed to understand this article. Then, an approach will be explained for using the evidence theory in the case of object association.

Basic concepts

The evidence theory is based on the assumption that, from the beginning, a set Ω called the frame of discernment is known and which is dened as follows:

Ω = {ω 1 , ω 2 , . . . ω N } (1) 
This set is composed of N exhaustive and exclusive hypotheses. From this frame of discernment, a set noted 2 Ω can be built, including the 2 N proposals A of Ω:

2 Ω = {A/A ⊆ Ω} (2) 
A belief function can be mathematically dened by a mass function (or allocation (1) ), noted m dened by 2 Ω in [0, 1], and that veries:

A⊆Ω m(A) = 1 (3) 
Each subset A ⊆ Ω such that m(A) = 0 is called a focal element of Ω. Thus, mass m(A) represents the degree of belief allocated to the proposal A and that cannot, in the present state of knowledge, be attributed to a subset more specic than A. The belief function for which m(∅) = 0 is called normal. In the Transferable Belief Model, the condition ∅ =A⊆Ω m(A) = 1 is not imposed and it is possible to have m(∅) = 0. This can introduce the notion of open world while assuming that the belief cannot be attributed to a subset of Ω. In this case, ∅ can be interpreted as a proposal which is not in the frame of discernment Ω and that it is likely to be the solution to the problem as opposed to the closed world where the set Ω is assumed to be exhaustive.

Dual functions

From the belief mass, other belief functions such as plausibility can be dened:

pl(B) = A∩B =0 m(A) ∀B ⊆ Ω (4) 
This function can be interpreted as the part of belief that can potentially be allocated to B taking into account the elements that do not discredit this proposal.

Another belief function that is often found in the literature is the credibility function which is obtained as follows:

bel(B) = A⊆B m(A) ∀B ⊆ Ω (5) 
This function represents the belief brought to the elements of that proposal. Plausibility and credibility functions are dual measures. Those measures can be viewed as lower and upper bounds of function m. In addition, the dierent functions pl, bel and m represent the same information but expressed in dierent ways. Moreover, they can be translated from one to the other thanks to the Mbius transform [START_REF] Kennes | Uncertainty in Articial Intelligence, chapter Computational aspect of the Möbius transformation[END_REF][START_REF] Kennes | Computational aspects of the möbius transformation of graphs[END_REF].

Discounting

When the information that results in the belief function is not totally reliable, it may be useful to discount this belief. In order to do that, a coecient α is used, which represents knowledge of the source reliability. This coecient will allow the transfer of the belief to the set Ω when the information is not totally reliable. The discounting belief function m α , dened by a reliability coecient α can then be deduced from m by means of the following expression:

m α (A) = αm(A) m α (Ω) = 1 -α + αm(Ω). (6) 

Fusion of belief functions

In the evidence theory, data from distinct sources are fused using the rule of Dempster combination, also known as the orthogonal sum. This sum, which is commutative and associative, is dened by:

∀ A ∈ 2 Ω m(A) = m 1 (A) ⊕ . . . ⊕ m Q (A) (7) 
where ⊕ represents the combination operator. In cases of two sources noted S i and S j , giving respectively belief functions noted m i et m j , the combination can be written as follows:

m(C) = 1 1 -K A∩B=C m i (A).m j (B) (8) 
where K is dened by:

K = A∩B=∅ m i (A).m j (B). (9) 
In equation ( 8), the coecient K reects the existing conict between two sources S i and S j . When this factor equals 1, the sources are in total conict and the information cannot be fused. On the other hand, when K equals 0, the two sources totally agree. This fusion rule, deduced from the conditioning rule [START_REF] Smets | The combination of evidence in the transferable belief model[END_REF], has been criticized in several publications such as [START_REF] Smets | The combination of evidence in the transferable belief model[END_REF][START_REF] Zadeh | Fuzzy sets and information granularity[END_REF][START_REF] Yager | On the dempster-shafer framework and new combination rules[END_REF], particularly for the case of two totally conicting sources. In order to avoid this disadvantage, Dubois and Prade [START_REF] Dubois | A set-theoric view of belief functions: Logical operations and approximations by fuzzy sets[END_REF] have dened a disjunctive and conjunctive fusion operator. Finally, another form of combination has been proposed in order to gather all the fusion operators that can be used in the evidence theory [START_REF] Lefevre | Informations et combinaison : les liaisons conictuelles[END_REF][START_REF] Lefevre | Belief function combination and conict management[END_REF].

When comparing it to the probability theory, the evidence theory shows some advantages, the most important of which is the possibility of expressing the degree of uncertainty. In this theory, the mass assignment on a subset does not mean that the remainder automatically goes to the complement.

Measures of uncertainty

It follows from the nature of the evidence theory that it subsumes two distinct types of uncertainty [START_REF] Klir | Measures of Uncertainty in the Dempster-Shafer Theory of Evidence[END_REF]. One of them is called the nonspecicity. This measure is dened by the following formula:

N (m) = A⊂Ω m(A) • log 2 | A | (10) 
where | A | denotes the cardinality of the focal element A. This measure, which was proven to be unique under appropriate requirements [START_REF] Ramer | Uniqueness of information measure in the theory of evidence[END_REF], expresses the uncertainty of the belief function m. It ranges from:

0 ≤ N (m) ≤ log 2 | Ω |. N (m) = 0 when m(A) = 1 (A ⊂ Ω and A is a singleton), corresponding to the full certainty. N (m) = log 2 | Ω | when m(Ω) = 1 (total ignorance).
The second type of uncertainty captured by the evidence theory is called the discord. This measure was dened as follows by [START_REF] Klir | Uncertainty in the dempster-shafer theory : a critical re-examination[END_REF]:

D(m) = - A⊂Ω m(A) • log 2 [1 - B⊂Ω m(B) • | B -A | | B | ] (11) 
This measure gives the mean conict (expressed by the logarithmic transformation) among evidential claims within each given body of evidence. Note that the following part:

B⊂Ω m(B) • | B -A | | B | (12) 
expresses the sum of individual conicts of evidential claims with respect to a particular set A.

After this introduction to the basic concepts of the evidence theory, the next section deals with the creation of masses, adapted to the present application, using information from the dierent sources.

Creation of masses

In an intelligent vehicle, objects are detected by sensors installed in the vehicle. From these sensors used for RaViOLi, the kind of information is known and is expressed in terms of (distance;angle): (ρ; Θ). Moreover, it is considering that using a radar, the speed can be obtained independently of the angle and the distance, by Doppler eect. In addition, the dimensions of the object re also available.

The aim is to track vehicles. Therefore, it must be possible to nd them from one moment to another. All the available information is used to create several mass sets indicating the relations that exist between perceived objects at time t and those known at time t -1. The term X i denote the objects Perceived (i = 1 : N bP ) at time t by the sensors and Y j the Known objects (j = 1 : N bK). The known objects are perceived objects from the previous sample time that were stored in memory.

In a rst stage, The frame of discernment must be dened as a basis for the work. Two hypotheses have been chosen: Ω = {(X i RY j ); (X i RY j )}. Either the perceived object is the same as the known one (in relation:(X i RY j )), or it is not in relation :((X i RY j )) [START_REF] Rombaut | Decision making in data fusion using dempster-shafer's theory[END_REF].

The rst step consists in creating belief functions using the information. A dierent mass set is built for each usable item of information from each sensor.

The mathematical equations of the mass set, that can be used to determine whether objects are in relation or not, is based on a negative exponential introduced by Denoeux [START_REF] Denoeux | A k-nearest neighbour classication rule based on dempstershafer theory[END_REF]:

m i,j (X i RY j ) = α 0 • exp (-e 2 i,j ) m i,j (X i RY j ) = α 0 • (1 -exp (-e 2 i,j ) ) m i,j (Ω i,j ) = 1 -α 0 (13)
where e i,j is the variation between two items of information (distance, angle, or speed) from perceived X i and known Y j objects. α 0 is a coecient that characterizes the sensor reliability. There is then one mass set for distance (Fig. 1) and one for angle for each sensor. There will be another set, based on speed, with the Doppler radar.

The next step consists in combining the distance, angle and speed mass sets for each sensor, and then combining the various sensors. For data fusion, the evidence theory is used with Dempster's conjunctive operator and normalisation.

At the end of those two fusion steps, the mass sets obtained are the number of possible relations between objects. It is now necessary to decide which are the recognized objects, those that appear and those that disappear. This stage is described in the next section. 

Object association

When associating objects the decision is taken by means of a fusion algorithm developed by M. Rombaut [START_REF] Rombaut | Decision in multi-obstacle matching process using the theory of belief[END_REF]. This algorithm was improved by D. Gruyer [START_REF] Gruyer | Credibilist multi-sensors fusion for the mapping of dynamic environnement[END_REF].

Mathematical formulation

The algorithm is based on the calculation of certain masses. The relation mass for a given object i to all the objects j is computed. These masses are noted m i,. . The next operation consists in computing the relation masses for each object j to all other i. These masses are noted m .,j . The mathematical formulation adopted for m i,. is:

m i,. (X i RY j ) = K i,. • m i,j (X i RY j ) • N bK k=1 k =j (1 -m i,k (X i RY k )) m i,. (X i R * ) = K i,. • N bK j=1 m i,j (X i RY j ) m i,. (Ω i,. ) = K i,. • [ N bK j=1 (m i,j (Ω i,j ) + m i,j (X i RY j )) - N bK j=1 m i,j (X i RY j )] K i,. = 1 ( N bK j=1 (1-mi,j (XiRYj )))•(1+ N bK j=1 ( m i,j (X i RY j ) 1-m i,j (X i RY j ) )) (14) 
Then, m .,j can be deduced:

m .,j (Y j RX i ) = K .,j • m i,j (X i RY j ) • N bP k=1 k =i (1 -m k,j (X k RY j )) m .,j (Y j R * ) = K .,j • N bP i=1 m i,j (X i RY j ) m .,j (Ω .,j ) = K .,j • [ N bP i=1 (m i,j (Ω i,j ) + m i,j (X i RY j )) - N bP i=1 m i,j (X i RY j )] K .,j = 1 ( N bP i=1 (1-mi,j (XiRYj )))•(1+ N bP i=1 ( m i,j (X i RY j ) 1-m i,j (X i RY j ) )) (15 
) Note that the non relation masses are not computed. However, this information is not necessary in order to make the decision: deciding that X i is not in relation with Y j does not give any information about the other associations.

Two new hypotheses m i,. (X i R * ) and m .,j (Y j R * ) are introduced. In these hypotheses, * represents the fact that one object is in relation with none of the others. Thus, if a perceived object X i is not associated, it is a new object and if a known object is not associated, it has disappeared (masked by another object, out of range, ...). The decision is taken according to the two sets of masses m i,. and m .,j . The couples that have the maximum credibility in the two mass set are chosen.

New formulation

The rst remark that can be made about these formulae concerns the framework. At the beginning, when the masses are built, Ω i,j = {(X i RY j ); (X i RY j )}. With the association formulae, it can be seen that Ω changes from a closed world to an extended open world but also that the hypotheses are not the same too:

Ω i,. = {(X i RY j ); (X i R * )}.
Then, it has been found that in some situations, they did not work well. Indeed, the masses m i,j (X i RY j ), are added on m i,. (Ω i,. ) and m .,j (Ω .,j ). While this is not important for the decision because deciding that X i is not in relation with Y j does not give any decision, the manner in which the formulae are established adds these masses to Ω and can lead to the choice of a bad decision. For example with one perceived and two known objects the following mass sets are obtained:

m 1,1 (X 1 RY 1 ) = 0.2 m 1,2 (X 1 RY 2 ) = 0.45 m 1,1 (X 1 RY 1 ) = 0.45 m 1,2 (X 1 RY 2 ) = 0.15 m 1,1 (Ω 1,1 ) = 0.35 m 1,2 (Ω 1,2 ) = 0.4
Therefore:

M i,. cr = X 1 Y 1 0.121 Y 2 0.396 * 0.073 Ω 1,.
0.41

M .,j cr = X 1 * Ω .,j Y 1
0.2 0.45 0.35 Y 2 0.45 0.15 0.4

From the rst matrix (m i,. ), it can be deduced that the relation on X 1 is unknown: m 1,. (Ω 1,. ) = 0.41 while seeing that m 1,. (X 1 RY 2 ) = 0.396. From the second matrix, it can be decided that Y 1 disappears and that X 1 is in relation with Y 2 . So there is a problem with deciding on the couples. To solve this problem, it was decided to modify the equations for computing the masses m i,. and m .,j . This modication consists in dening a unique framework:

Ω i,. = {(X i RY 0 ); . . . ; (X i RY N bK ); (X i R * )} and noting (X i RY j ) = [ N bK k=1 k =j (X i RY k ) ] ∪ (X i R * ).
Thus, the masses are created as follows:

m i,j (X i RY j ) = α 0 • exp (-e 2 i,j ) m i,j (X i RY j ) = α 0 • (1 -exp (-e 2 i,j ) ) m i,j (Ω i,. ) = 1 -α 0 (16)
The masses of relation (X i RY j ) are increased using the mass on star combined with the complementary masses (X i RY j ) that do not contradict the rela-tion hypothesis. The new m i,. values are dened thus:

m i,. (X i RY j ) = K i,. • [m i,j (X i RY j ) • N bK k=1 k =j (1 -m i,k (X i RY k )) + N bK k=1 k =j 1 N bK • m i,k (X i RY k )• N bK p=1 p =k m i,p (Ω i,. ) + N bK-1 k=1 k =j N bK l>k l =j 1 N bK-1 • m i,k (X i RY k ) • m i,l (X i RY l )• N bK p=1 p =k,p =l m i,p (Ω i,. ) + • • • + 1 2 • m i,j (Ω i,. ) • N bK p=1 p =j m i,p (X i RY p )] m i,. (X i R * ) = K i,. • [ N bK j=1 m i,j (X i RY j ) + N bK k=1 1 N bK • m i,k (X i RY k )• N bK p=1 p =k m i,p (Ω i,. ) + N bK-1 k=1 N bK l>k 1 N bK-1 • m i,k (X i RY k ) • m i,l (X i RY l )• N bK p=1 p =k,p =l m i,p (Ω i,. ) + • • • + N bK j=1 1 2 • m i,j (Ω i,. ) • N bK p=1 p =j m i,p (X i RY p )] m i,. (Ω i,. ) = K i,. • N bK j=1 m i,j (Ω i,.
)

K i,. = 1 ( N bK j=1 (1-mi,j (XiRYj )))•(1+ N bK j=1 ( m i,j (X i RY j ) 1-m i,j (X i RY j ) )) (17) 
and the m .,j values:

m .,j (Y j RX i ) = K .,j • [m i,j (X i RY j ) • N bP k=1 k =i (1 -m k,j (X k RY j )) + N bP k=1 k =i 1 N bP • m k,j (X k RY j )• N bP p=1 p =k m p,j (Ω .,j ) + N bP -1 k=1 k =i N bP l>k l =i 1 N bP -1 • m k,j (X k RY j ) • m l,j (X l RY j )• N bP p=1 p =k,p =l m p,j (Ω .,j ) + • • • + 1 2 • m i,j (Ω .,j ) • N bP p=1 p =i m p,j (X p RY j )] m .,j (Y j R * ) = K .,j • [ N bP i=1 m i,j (X i RY j ) + N bP k=1 1 N bP • m k,j (X k RY j )• N bP p=1 p =k m p,j (Ω .,j ) + N bP -1 k=1 N bP l>k 1 N bP -1 • m k,j (X k RY j ) • m l,j (X l RY j )• N bP p=1 p =k,p =l m p,j (Ω .,j ) + • • • + N bP i=1 1 2 • m i,j (Ω .,j ) • N bP p=1 p =i m p,j (X p RY j )] m .,j (Ω .,j ) = K .,j • N bP i=1 m i,j (Ω .,j ) K .,j = 1 ( N bP i=1 (1-mi,j (XiRYj )))•(1+ N bP i=1 ( m i,j (X i RY j ) 1-m i,j (X i RY j ) )) (18) 
In the terms of relation, coecients appear: ( 1 N bK , . . . , 1 2 ) for m i,. and ( 1 N bP , . . . , 1 2 ) for m .,j . These correspond to an equal distribution of the mass when there are one or more masses on Ω multiplied with the non relation masses. Indeed, with one perceived and two known objects, if m 1,2 (X

1 RY 2 ) = (m 1,1 (X 1 RY 1 ) ∪ m 1 (X 1 R * )) is multiplied by m 1,1 (Ω 1,.
), this means that it is certain that X 1 is not in relation with Y 2 . So as the framework is exhaustive and closed, the result goes on m 1,. (X 1 RY 1 ) and m 1,. (X 1 R * ) (multiplied by 1 2 ). In the case of three known objects, if there are two masses on Ω in the product

(m 1,1 (X 1 RY 1 ) • m 1,2 (Ω 1,. ) • m 1,3 (Ω 1,.
)), it is not possible to decide where the mass should go, so 1 3 goes to the rst relation (m 1,. (X 1 RY 2 )), 1 3 to the second (m 1,. (X 1 RY 3 )) and 1 3 to the mass on star (m 1,. (X 1 R * )), and so on until divided by N bK (or N bP ). Considering the example again, this gives:

M i,. = X 1 Y 1 0.15 Y 2 0.495 * 0.201 Ω 1,. 0.154 M .,j = X 1 * Ω .,j Y 1 0.2 0.45 0.35 Y 2 0.45 0.15 0.4
This time, there is no ambiguity about the best decision which is: (X 1 RY 2 ) and Y 1 disappears. The next section compares the two formulae using synthetic and real data.

Experimental results

The aim of this section is to validate the association formulae made using results obtained from simulated or real data. The rst part illustrates the use of the formulae (2) with synthetic data and a limited uncertainty, and then with a strong uncertainty. The second part shows the results obtained with real data.

5.1

Synthetic data

With limited uncertainty

In this section, the data were articially created and the association matrices are not shown. The relevant masses are displayed in order to be able to decide the association as the results are known in advance. The rst step was to dene a trajectory for the objects (Fig. 2). The objects move for 10s, with a sample time of 0.1s, according to the following equations (which introduce strong constraints while remaining realistic): From these data, the distances between perceived and known objects (Section 3) are computed at each sample time, so as to plot the variation of the relation masses between those objects (Fig. 3). As the relative distances are not very high, a reliability α 0 = 0.8 was chosen for the sensor 0 and α 1 = 0.8 for sensor 1. As shown in this gure, the objects are well separated until the moment object 1 approaches object 0 (5.8s < t < 6.8s). During this time, m 0,1 (X 0 RY 1 ) falls whereas m 0,1 (X 0 RY 1 ) increases. However, m 0,1 (X 0 RY 1 ) is still higher than m 0,1 (X 0 RY 1 ). 

Object 0 → d = 1 2 • 0.1 • t 2 + 5 • t + 19.3 Object 1 → d = 45 1+exp (-2•t+10) + 10 (19)
m 0,1 (X 0 R Y 1 ) m 0,1 (X 0 R Y 1 ) m 0,1 (Ω 0,1 ) m 0,0 (X 0 R Y 0 ) m 0,0 (X 0 R Y 0 ) m 0,0 (Ω 0,0 )
Figure 3: Variation in relation masses between X 0 and Y 0 , X 0 and Y 1 .

Figure 4 shows the variation of the association masses using M. Rombaut's formulae. These formulae give good results in this case. In fact, they work well in most cases.

Note that on gure 5 the changes have made to these formulae also give good results. A peak can be seen on m 0,. (Ω 0,. ) (Fig. 5). This variation of mass does not come from the m i,j (Ω i,j ) (because these masses are constant with time (Fig. 3)) but from the variation of the conict coecient.

The next part shows the advantage of the modied formulae in the case of low reliability.

With high uncertainty

This is a particular case (Fig. 6) where the temporal equations are:

Object 0 → d = 1 2 • 0.1 • t 2 + 5 • t + 59.3 Object 1 → d = 45 1+exp (-2•t+10) + 50 (20) 
For this simulation, distances were greater than 50m, α 0 = 0.6 and α 1 = 0.7 were xed. The variation of relation masses is represented on gure 7.

Figure 8 shows the evolution of association masses using M. Rombaut's formulae. Normally, it should be decided that X 0 is in relation with Y 0 . But in this case, it can be seen on the curves that till the beginning the decision of 

m 0,1 (X 0 R Y 1 ) m 0,1 (X 0 R Y 1 ) m 0,1 (Ω 0,1 ) m 0,0 (X 0 R Y 0 ) m 0,0 (X 0 R Y 0 )
m 0,0 (Ω 0,0 ) association is debatable. Indeed, the relation mass m 0,. (X 0 RY 0 ) is only slightly higher than m 0,. (Ω 0,. ) for t < 5.8s and becomes slightly lower when t > 5.8s. Now, looking at the variation in masses obtained with the modied formulae (Fig. 9), it can be seen that the decision is not ambiguous: X 0 is in relation with Y 0 , and this decision is not debatable at any time even when the two objects are very close.

Variation in relation masses according to reliability

For this test, two objects are considered side by side with the same speed and 1m apart. Those two vehicles move away progressively from the sensor (from 20 to 100m with a constant speed of 5m.s -1 ) which leads to a reduction in the reliability coecient (from 0.9 at 20m to 0.3 at 100m). Figure 10 represents the evolution of the decision reliability according to the sensor reliability for M. Rombaut's algorithm and for the modied one. The decision is not considered to be completely reliable when the variation between the mass of a good decision and another one is lower than a threshold which have been set to 0.1 in this case.

When the reliability is greater than 0.69, the two algorithms give the same results. However, the modied algorithm is able to give a reliable decision down to a data reliability value of 0.49. For Rombaut's algorithm, the decision is not reliable below 0.69 and is false if the data reliability value falls below 0.62.

Tests were conducted with a large number of threshold values, always resulting in the same conclusion: the modied algorithm is better when the reliability decreases. When real tests could be made, it would be interesting to plot the percentage of good decisions of the two algorithms with various data reliability values from several scenarios. Figure 11 shows the variation in non specicity according to data reliability. This gure shows that the modied formulae give more specic mass sets, so there is less uncertainty on the best decision. These results prove that the modied formulae presented lead to a better decision.

Real data

The association algorithm was initially tested by using a simulator developed by the authors [START_REF] Lemeret | Simulator of obstacle detection and tracking[END_REF]. This simulator provided the only data that could be used. It was able to create various scenarios thanks to adjustable parameters such as: number and speed of vehicles, number of sensors, sweeping time, angle, range, etc. The driver's behaviour was governed by the driving law. The problem with this simulator was that data were synthetic, so not representative of the driver's behaviour and not noisy. In order to improve the association algorithm and to test its robustness, it was decided to use real data. These data were supplied by a simple DV camera placed behind the windshield of a car. This DV camera has a CCD sensor. The resolution is 720x576 pixels, the angle ranges from -0.5 to +0.5 radians (almost ±30 • ) and works at 25 images per second (∆ t = 0.04s). For calibration purposes, a sequence was lm in a car park where a reference car was parked. A pocket laser telemeter was used to measure the distance between the camera and the car. The measurements were taken from 0 to 60m, because for greater distances, it was dicult to point the laser on the car. From the calibration sequence, while assuming that detected objects are cars, two equations were computed by two dierent interpolation methods (Fig. 12) giving the distance according to object height and width in the image. The angle is extracted from the centre of gravity position in the image. In this way, information (ρ, Θ), for two dierent sensors is obtained (3) .

Figure 12: Characterization function of the two cameras. The distance in meter is obtained from the height and the width in pixels of the object.

Without being specialists in image processing, the measurements extracted were very noisy. Indeed, at 70m, a variation of 20m was possible for the same object from an image to the next. In terms of angle, the variation could be as high as 0.02rd for a measurement of 0.01rd.

Object association

Figure 13 shows the variation in the relation mass for one perceived object. This object is followed for 300 images (12s) and is located almost 20m from the sensor. The mass of relation varies between 0.57 and 1, but is close to 1 most of the time. A value of 0.57 was obtained because, at this time, there is a measurement error of 14.6% on the distance and a simultaneous 8.2% error on the angle. The entire sequence consists of 3230 images (almost 2min10s) and, during this time, 7063 vehicles were perceived (between 0 and 6 per image). Figure 14 shows the variation in mass on * for the entire simulation using both formulae.

In the scenario presented (Fig. 14) it can be seen that there is many appearance and disappearance of objects (763 during the 3230 images). Note that the masses on star with the new formulae are equal to or higher than the one with Rombaut's formulae. The mass of relation (Fig. 13) is plotted between images 450 and 750. Figure 14 shows that during this time there was just one object and it is always tracked (no appearance or disappearance).

Conclusion and future work

This article has presented an improvement to an association algorithm. This algorithm is used to track moving vehicles. Hypotheses to be computed in the association stage have been added in order to reduce the number of ambiguous decisions. This algorithm was tested on synthetic and real noisy data, the maximum variation in distance was about 25% and 200% for the angle from one image to the next. Better results are obtained with the modied formulae especially when the reliability is poor. The number of non-decisions is reduced and the choice of right decision is made easier while increasing the dierence between the mass for the best hypothesis and the others. Improvements could still be made to the detection and tracking of objects by adding a prediction lter to this algorithm. It will thus be possible to predict future associations. This information could then be used to conrm the associations made or reduce the ambiguous decisions on some associations.
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 1 Figure 1: Association between known and perceived objects using distance information.
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 2 Figure 2: Variation in object distance from the sensor, for 10s.
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 4 Figure 4: Variation in m 0,. using Rombaut's formulae.
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 5 Figure 5: Variation in m 0,. using the modied formulae.
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 6 Figure 6: Variation in object distance, from the sensor, for 10s.
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 7 Figure 7: Variation in relation masses between X 0 and Y 0 , X 0 and Y 1 .
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 8 Figure 8: Variation in m 0,. using Rombaut's formulae.
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 9 Figure 9: Variation in m 0,. using the modied formulae.
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 10 Figure 10: Variation in the decision reliability according to data reliability.
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 11 Figure 11: Variation in the non specicity according to reliability.
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 13 Figure 13: Variation in the mass of detection for one perceived object.
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 14 Figure 14: Variation in mass on * during the entire sequence.

The term bba for basic belief assignment is often found in the literature

In order to make the computational stage easier, in this part, i ranges from 0 to N bP -1, and j from 0 to N bK -1

The fact of using two dierent interpolation methods leads to two sources of information. So it can be said that there are two sensors.