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David Mercier, Éric Lefèvre, Daniel Jolly

Univ. Lille Nord de France, UArtois, EA 3926 LGI2A, France

Abstract

The problem tackled in this article consists in associating perceived objects
detected a certain time with known objects previously detected, knowing
uncertain and imprecise information regarding the association of each per-
ceived objects with each known objects. For instance, this problem can
occur during the association step of an association obstacle tracking pro-
cess, especially in the context of vehicle driving aid. A contribution in the
modelling of this association problem in the belief function framework is
introduced. By interpreting belief functions as weighted opinions according
to the Transferable Belief Model semantics, pieces of information regarding
the association of known objects and perceived objects can be expressed
in a common global space of association to be combined by the conjunc-
tive rule of combination, and a decision making process using the pignistic
transformation can be made. This approach is validated on real data.

Keywords: Object association, obstacle tracking, belief functions,
Transferable Belief Model.

1. Introduction

In obstacle tracking, the association step consists in establishing a corre-
lation between tracks (known objects) and targets (perceived objects) from
information usually provided by different sensors or captors. Such a mapping
can be even more complex depending on the number of targets and tracks, as
well as the quality of the provided information. Introduced by Dempster [7]
and Shafer [26], belief functions constitute a suitable framework for the rep-
resentation and manipulation of imperfect information [4, 12, 13, 20, 30, 31].
Thus, next to architectures based on Bayesian probabilistic framework [2, 3],
Rombaut [23, 24] develops a first modelling based on belief functions. In this
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model, information regarding the association of couples (known objects, per-
ceived objects) is represented by belief functions, which are combined using,
for simplicity reasons, an adapted combination introduced by Rombaut. In
[16] this latter model is developed by using a decision-making system based
on belief matrices and the application of a coupling algorithm.

In this article, a modelling of this association step problem is introduced
in the Smets’ semantic approach of belief functions: the Transferable Belief
Model (TBM) [29], a subjectivist and non-probabilistic interpretation of the
Dempster-Shafer theory of belief function. In particular, it is shown that
TBM classical tool like the conjunctive combination rule and the pignistic
decision-making can be implemented and tested in a real time application,
these experimental results demonstrating the effectiveness of this approach
as compared to Rombaut’s combination rule.

The works presented here extend a short version of this study presented
in [19], as well as it reexpress and extend in the Transferable Belief Model a
former model presented by some of the authors in [17]. At last, the associ-
ation problem described here also presents some similarities with the works
undertaken by Ristic and Smets in [22], which are discussed in this article.

This article is organized as follows. The TBM basic concepts we need
are recalled in Section 2. An association algorithm based on belief functions
is then introduced in Section 3 and discussed with previous approaches in
Section 4. Then, experimental results on real data are presented in Section 5.
Finally, Section 6 concludes this article.

2. Transferable Belief Model (TBM): basic concepts

The Transferable Belief Model (TBM) is a model of uncertain reasoning
and decision-making based on two levels [14, 29]:

• the credal level, where available pieces of information are represented
by belief functions, and manipulated;

• the pignistic or decision level, where belief functions are transformed
into probability measures when a decision has to be made, and the
expected utility is maximized.

2.1. Representing information with belief functions

2.1.1. Belief functions

The knowledge held by an agent is represented by the allocation of a
finite mass of belief to subsets of the universe of discourse.
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Let Ω = {ω1, ω2, . . . , ωN}, called the frame of discernment, be a finite
set composed of all possible answers to a given question Q of interest. The
beliefs held by a rational agent Ag regarding the answer to question Q

can be quantified by a mass function or a basic belief assignment (BBA)
mΩ

Ag : 2Ω → [0, 1] s.t.:
∑

A⊆Ω

mΩ
Ag(A) = 1 . (1)

The quantity mΩ
Ag(A) represents the part of the unit mass allocated to the

hypothesis that the answer to question Q is in the subset A of Ω. When
there is no ambiguity, the notation mΩ

Ag will be simplified as follows mΩ or
m.

• A subset A of Ω such that m(A) > 0 is called a focal set of m.

• A BBA m with only one focal set A is called a categorical BBA and is
denoted mA; then mA(A) = 1.

• Total ignorance is represented by the BBA mΩ called the vacuous
BBA.

• A normal BBA m satisfies the condition m(∅) = 0.

• Let A be a subset of Ω, the cardinality of A, denoted |A|, is the number
of elements of Ω in A; if |A| = 1, A is said to be a singleton.

The belief and plausibility functions associated with a BBA m are de-
fined, respectively, as:

bel(A) =
∑

∅6=B⊆A

m(B) ∀A ⊆ Ω , (2)

pl(A) =
∑

B∩A 6=∅

m(B) ∀A ⊆ Ω . (3)

Functions m, bel and pl are in one-to-one correspondence, and thus consti-
tute different forms of the same information.

2.1.2. Refinements and Coarsenings

When applying the TBM to a real-world application, the determination
of the frame of discernment Ω, which defines the set of states on which
beliefs will be expressed, is a crucial step. As noticed by Shafer [26, chapter
6], the degree of granularity of Ω is always, to some extent, a matter of
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convention, as any element of Ω representing a given state can always be
split into several alternatives. Hence, it is fundamental to examine how a
belief function defined on a frame may be expressed in a finer or, conversely,
in a coarser frame. The concepts of refinement and coarsening can be defined
as follows.

Let Θ and Ω denote two frames of discernment. A mapping ρ : 2Θ → 2Ω

is called a refining of Θ (Figure 5) if it verifies the following properties:

1. The set {ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω, and

2. For all A ⊆ Θ:
ρ(A) =

⋃

θ∈A

ρ({θ}). (4)

Θ is then called a coarsening of Ω, and Ω is called a refinement of Θ.

Figure 1: Illustration of a coarsening Θ of Ω associated with a refining ρ of Θ.

2.2. Manipulating information with belief functions

2.2.1. Vacuous extension

The vacuous extension operation allows one to convey a mass function
mΘ, expressing a state of belief on Θ, to a finer frame Ω, a refinement of Θ.
Stemming from the least committed principle [27], this operation is denoted
with an arrow pointing up, and is defined by:

mΘ↑Ω(ρ(A)) = mΘ(A), ∀A ⊆ Θ , (5)

where ρ is the refining of Θ in Ω.

2.2.2. Combining beliefs

Two BBAs m1 and m2, induced by distinct and reliable sources of infor-
mation, can be combined using the conjunctive rule of combination (CRC),
also called unnormalized Dempster’s rule of combination, defined for all
A ⊆ Ω by:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C) . (6)

4



The normalization hypothesis (m(∅) = 0) can be recovered with the
following normalization step:

m1 ⊕ m2(A) =

{

m1 ∩©2(A)

1−m1 ∩©2(∅) if ∅ 6= A ⊆ Ω ,

0 otherwise.
(7)

This latter rule of combination is called Dempster’s rule of combination.

2.3. Decision-making level

When a decision has to be made regarding the answer to question Q,
some rationally principles [6] justify the strategy consisting in choosing the
decision d among a set of possible decisions D, which minimizes the expected
risk defined by:

R(d) =
∑

ω∈Ω

c(d, ω)PΩ({ω}), (8)

where PΩ : 2Ω → [0, 1] is a probability measure and c : D × Ω → IR a cost
function, c(d, ω) representing the cost to decide d while the truth is ω.

At this level, the mass function mΩ representing the available informa-
tion regarding the answer to question Q belonging to Ω (resulting in practice
from a fusion process) has then to be transformed in a probability measure.
A solution [9] consists in computing the pignistic probability [28] defined by:

BetPΩ({ω}) =
∑

{A⊆Ω,ω∈A}

m(A)

|A| (1 − m(∅))
, ∀ω ∈ Ω. (9)

The chosen decision is then the one that minimizes the pignistic risk
defined by:

RBet(d) =
∑

ω∈Ω

c(d, ω)BetPΩ({ω}) . (10)

In the case of 0-1 costs with D = Ω, which means that c(ωi, ωj) = 1
if i = j, 0 otherwise, choosing the decision d which minimises the pignistic
risk (10) is equivalent to choose the decision d which maximizes the pignistic
probability (9).

An other case consists in choosing 0-1 costs with D = Ω∪{d0}, where d0,
called rejection decision [9], consists in refusing to make a decision belonging
to D\{d0} when the risk is judged too high. By denoting c0 = c(d0, ωi) ∀i ∈
{1, . . . , N}, minimizing the pignistic risk (10) is equivalent to choose the
decision:

• d0 if max
i=1,...,N

BetP ({ωi}) < 1 − c0,
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• ωj if BetP ({ωj}) = max
i=1,...,N

BetP ({ωi}) ≥ 1 − c0.

The cost c0 is called the rejection cost.

3. Object association algorithm

3.1. Representing information with belief functions

The first step when building belief functions is to define the universe of
discourse.

Let us consider the following notations:

• Xi: represents a perceived object at time t, i ∈ I = {1, . . . , N}, N

being the number of perceived objects at time t;

• Yj : represents a known object at previous time t − 1, j ∈ J =
{1, . . . , M}, M being the number of known objects at time t − 1;

• ⋆: is a proposition meaning “no object”.

The association process objective consists in finding the best possible
association between a set of perceived objects {X1, X2, . . . , XN ,⋆ } and a set
of known objects {Y1, Y2, . . . , YM ,⋆ }, under the following constraints:

• each perceived object Xi is associated with at most one known object;

• each known object Yj is associated with at most one perceived object;

• proposition ⋆ can be associated with any objects.

The frames of discernment involved in this application are then the fol-
lowings:

• Ωi,j = {yi,j , ni,j}: contains the two possible answers (yes or no) to the
question Qi,j : “Is the perceived object Xi associated with the known
object Yj?”;

• ΩXi
= {Y1, Y2, . . . , YM ,⋆ }: contains the set of possible answers to the

question QXi
: “Who is associated with the perceived object Xi?”,

proposition ⋆ meaning that Xi has appeared;

• ΩYj
= {X1, X2, . . . , XN ,⋆ }: contains the set of possible answers to

the question QYj
: “Who is associated with the known object Yj?”,

proposition ⋆ meaning that Yj has disappeared or is hidden.
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Let us remark that ΩYj
= ΩYk

, for all j, k ∈ J , and ΩXi
= ΩXℓ

, for all
i, ℓ ∈ I. Thus, ΩXi

(respectively ΩYj
) can be denoted ΩX ∀i (respectively

ΩY ∀j). At last, when there is no ambiguity, the frames elements will be
simplified as follows:

• ΩXi
= J ∪ {⋆} = {1, . . . , M, ⋆},

• ΩYj
= I ∪ {⋆} = {1, . . . , N, ⋆}.

In the domain of intelligent vehicles, sensors or measures generally pro-
vide information regarding the association between each perceived object Xi

and each known object Yj [23, 24, 16, 15]. More precisely, initial information
is represented by mass functions mΩi,j on frames Ωi,j , i ∈ I, j ∈ J :

• the mass allocated to {yi,j} expresses information on the fact that Xi

is associated with Yj ;

• the mass allocated to {ni,j} expresses information on the fact that Xi

is not associated with Yj ;

• the mass allocated to Ωi,j = {yi,j , ni,j} expresses the ignorance regard-
ing the association of Xi and Yj .

The association problem to solve can then be express in the following
manner: N×M mass functions mΩi,j being defined regarding the association
of each perceived object Xi with each known object Yj , how these pieces of
information can be fused/merged to determine:

• Where do perceived objects Xi come from?

• What are known objects Yj become?

3.2. Expressing pieces of information in a common frame

To answer these questions, the N × M mass functions can be combined
when expressed on two possible common frames: ΩX and ΩY .

Frames ΩXi
and ΩYj

being refinements of Ωi,j , each information mΩi,j

can be expressed either on ΩXi
or on ΩYj

by a vacuous extension (5):

mΩi,j↑ΩXi (ρi,j(A)) = mΩi,j (A), ∀A ⊆ Ωi,j , (11)

where ρi,j is the refining of Ωi,j on ΩXi
illustrated in Figure 2, and defined

by ρi,j({yi,j}) = {j} and ρi,j({ni,j}) = {j}.
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Figure 2: Refining ρi,j allowing one to transport the information m
Ωi,j on ΩXi

.

Thus, for all (i, j) ∈ I × J :











mΩi,j↑ΩXi ({j}) = mΩi,j ({yi,j})

mΩi,j↑ΩXi ({j}) = mΩi,j ({ni,j})

mΩi,j↑ΩXi (ΩXi
) = mΩi,j (Ωi,j)

(12)

In the same manner, mass functions mΩi,j can be vacuously extended on
ΩYj

for all (i, j) ∈ I × J :











m
Ωi,j↑ΩYj ({i}) = mΩi,j ({yi,j})

m
Ωi,j↑ΩYj ({i}) = mΩi,j ({ni,j})

m
Ωi,j↑ΩYj (ΩYj

) = mΩi,j (Ωi,j)

(13)

In the following, mass functions mΩi,j↑ΩXi (respectively m
Ωi,j↑ΩYj ) are

denoted m
ΩXi

j (respectively m
ΩYj

i ).

3.3. Combining mass functions

At this level:

• for each i ∈ I = {1, . . . , N}, M mass functions m
ΩXi

j have been created
regarding the association of each object Xi toward the Yj , the focal

elements of each one being {j}, {j}, and ΩXi
.

• for each j ∈ J = {1, . . . , M}, N mass functions m
ΩYj

i have been created
regarding the association of each object Yj toward the Xi, the focal

elements of each one being {i}, {i}, et ΩYj
.

The M mass functions m
ΩXi

j , considered as distinct and reliable, are
combined using the conjunctive rule of combination (6).
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Let us denote mΩXi the resulting mass function:

mΩXi = ∩©j∈J m
ΩXi

j . (14)

For all k ∈ J :

mΩXi ({k}) =
∑

∩Aj={k}

∏

j∈J

m
ΩXi

j (Aj) , (15)

where, for all j ∈ J , Aj = {j}, {j}, or ΩXi
.

But:

∩j∈JAj = {k} ⇔ Ak = {k} and (Aj = {j} or

Aj = ΩXi
, ∀j ∈ J \ {k}),

⇔ Ak = {k} and

Aj 6= {j}, ∀j ∈ J \ {k} .

Thus, for all k ∈ J :

mΩXi ({k}) = m
ΩXi

k ({k})
M
∏

j=1

j 6=k

(1 − m
ΩXi

j ({j})) . (16)

Similarly, for all K ⊆ J :

mΩXi (K) =
∑

∩Aj=K

∏

j∈J

m
ΩXi

j (Aj) ,

=
∏

j∈K

m
ΩXi

j ({j})
∏

j∈K

m
ΩXi

j (ΩXi
) .

In particular:

mΩXi ({⋆}) = mΩXi (J) =
∏

j∈J

m
ΩXi

j ({j}) ,

mΩXi (ΩXi
) = mΩXi (∅) =

∏

j∈J

m
ΩXi

j (ΩXi
) .

At last:

mΩXi (∅) =
∑

∩Aj=∅

∏

j∈J

m
ΩXi

j (Aj) , (17)

=
∑

j,k∈J
j 6=k

m
ΩXi

j ({j}) m
ΩXi

k ({k}). (18)
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In the same manner, the N mass functions m
ΩYj

i can also be conjunc-

tively combined to result in a mass function m
ΩYj .

Example 1. Let us consider one perceived object X1 and two known objects
Y1 and Y2 s.t.:







mΩ1,1({y1,1}) = .2
mΩ1,1({n1,1}) = .45
mΩ1,1(Ω1,1) = .35







mΩ1,2({y1,2}) = .45
mΩ1,2({n1,2}) = .15
mΩ1,2(Ω1,2) = .4

(19)

By expressing this information on ΩX1
(X1’s point of view: with which

known object, the perceived object X1 is associated? In other words: Where
does X1 come from?), it is obtained:











m
ΩX1

1 ({1}) = .2

m
ΩX1

1 ({1}) = .45

m
ΩX1

1 (ΩX1
) = .35











m
ΩX1

2 ({2}) = .45

m
ΩX1

2 ({2}) = .15

m
ΩX1

2 (ΩX1
) = .4

(20)

The conjunctive combination of m
ΩX1

1 and m
ΩX1

2 provides the following re-
sult:

mΩX1 ({1}) = .2 × (1 − .45) = .2 × .55 = .11

mΩX1 ({2}) = .45 × (1 − .2) = .45 × .8 = .36

mΩX1 ({1}) = mΩX1 ({2, ⋆}) = .45 × .4 = .18

mΩX1 ({2}) = mΩX1 ({1, ⋆}) = .15 × .35= .05

mΩX1 ({1, 2})= mΩX1 ({⋆}) = .45 × .15= .07

mΩX1 (ΩX1
) = mΩX1 ({1, 2, ⋆})= .35 × .4 = .14

mΩX1 (∅) = .2 × .45 = .09 .

(21)

3.4. Decision-making

The pignistic probability BetPΩXi (9) computed from mΩXi is defined
for all ω ∈ ΩXi

by:

BetPΩXi ({ω}) =
∑

{A⊆ΩXi
,ω∈A}

mΩXi (A)

|A| (1 − mΩXi (∅))
. (22)
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Then, for all k ∈ J :

BetPΩXi ({k}) = K1






m

ΩXi

k ({k})
M
∏

j=1

j 6=k

(1 − m
ΩXi

j ({j}))

+
∑

k∈K
K⊆J

1

|K|

∏

j∈K

m
ΩXi

j ({j})
∏

j∈K

m
ΩXi

j (ΩXi
)






, (23)

where

K1 =
1

1 − mΩXi (∅)
=

1

1 −
∑

j,k∈J
j 6=k

m
ΩXi

j ({j}) m
ΩXi

k ({k})
. (24)

And:

BetPΩXi ({⋆}) =

K1

∑

K⊆J

1

|K|

∏

j∈K

m
ΩXi

j ({j})
∏

j∈K

m
ΩXi

j (ΩXi
) . (25)

Once the pignistic probabilities BetPΩXi computed for each i ∈ I, the
chosen decision is the one that maximizes the pignistic probability associated
to the joint law BetPΩX1

×...×ΩXN which verifies the constraints expressed
in Section 3.1.

This decision-making process is summed up by the following algorithm 1.
Similarly, an equivalently justified solution consists in computing the

decision from the Yj points of view, by maximizing the pignistic probability
BetPΩY1

×...×ΩYM .

Example 2 (Example 1 continued). Let us consider again one perceived
object X1 and two known objects Y1 and Y2 with the information represented
by the BBAs mΩ1,1 and mΩ1,2 defined by Equation 19.

From X1’s point of view, the conjunctive combination of m
ΩX1

1 and m
ΩX1

2

has been detailed in Example 1. The pignistic probability BetPΩX1 regarding
the association of X1 is then given by:

A ∅ {1} {2} {⋆} {1, ⋆} {2, ⋆} {1, 2, ⋆}

mΩX1 (A) .09 .11 .36 .07 .05 .18 .14

BetPΩX1 (A) .20 .55 .25 .45 .80 1

Conclusion from X1’s point of view:

11



Algorithm 1: Decision-making process regarding the perceived ob-
jects Xi

Data: BetPΩXi , i ∈ I = {1, . . . , N}, pignistic probabilities of each
perceived object Xi.

Result: The decision maximizing BetPΩX1
×...×ΩXN and verifying the

association constraints.
begin

• Consider the (M + 1)N possible associations

• Delete from this set the associations which do not verify the
association constraints expressed in Section 3.1

• Compute the products of the pignistic probabilities over these sets

• Select the association maximizing the products

end

1. The singleton maximizing BetPΩX1 is {2}, so X1 is associated with
Y2;

2. knowing that Y1 is not associated, Y1 has disappeared (or is hidden).

On the other hand, it is also possible to express the available information
on ΩY1

and ΩY2
:











m
ΩY1

1 ({1}) = .2

m
ΩY1

1 ({1}) = .45

m
ΩY1

1 (ΩY1
) = .35











m
ΩY2

1 ({1}) = .45

m
ΩY2

1 ({1}) = .15

m
ΩY2

1 (ΩY2
) = .4

As there is only one perceived object X1, no combination is necessary:

A ∅ {1} {⋆} {1, ⋆}

mΩY1 (A) .2 .45 .35

BetPΩY1 (A) .375 .625 1

mΩY2 (A) .45 .15 .4

BetPΩY2 (A) .65 .35 1

From the association constraints (Section 3.1), the known objects (Y1, Y2)
can be associated to (1, ⋆), (⋆, 1), or (⋆, ⋆).

And, as:
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• BetPΩY1
×ΩY2 ({1, ⋆}) = .375 × .35 = .131;

• BetPΩY1
×ΩY2 ({⋆, 1}) = .625 × .65 = .406;

• BetPΩY1
×ΩY2 ({⋆, ⋆}) = .625 × .35 = .219,

then BetPΩY1
×ΩY2 reaches its valid maximum at {⋆, 1}, so (Y1, Y2) is asso-

ciated with (⋆, 1); in other words, Y1 has disappeared and Y2 is associated
with X1.

In the previous example, the decision coming from X1 and the decision
coming from the Yj are the same.

Unfortunately, as illustrated by the following Example 3, the decision
providing by the criteria of maximizing the joint pignistic probability can be
different depending on which point of view (perceived objects Xi or known
objects Yj) it is computed.

Example 3. Let us considered one perceived object X1, and two known ob-
jects Y1 and Y2, s.t.:







mΩ1,1({y1,1}) = .5
mΩ1,1({n1,1}) = 0
mΩ1,1(Ω1,1) = .5







mΩ1,2({y1,2}) = .7
mΩ1,2({n1,2}) = .3
mΩ1,2(Ω1,2) = 0 .

By expressing the beliefs on the frames ΩXi
:











m
ΩX1

1 ({1}) = .5

m
ΩX1

1 ({1}) = 0

m
ΩX1

1 (ΩX1
) = .5











m
ΩX1

2 ({2}) = .7

m
ΩX1

2 ({2}) = .3

m
ΩX1

2 (ΩX1
) = 0 ,

the following results are obtained:

A ∅ {1} {2} {⋆} {1, ⋆} {2, ⋆} {1, 2, ⋆}

mΩX1 (A) .35 .15 .35 0 .15 0 0

BetPΩX1 (A) .35 .54 .11 .46 .65 1

Then, regarding object X1:

• X1 is associated with Y2,

• Y1 has disappeared.
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From Y1’s and Y2’s points of view:











m
ΩY1

1 ({1}) = .5

m
ΩY1

1 ({1}) = 0

m
ΩY1

1 (ΩY1
) = .5











m
ΩY2

1 ({1}) = .7

m
ΩY2

1 ({1}) = .3

m
ΩY2

1 (ΩY2
) = 0 .

(26)

So:
A {1} {⋆}

BetPΩY1 .75 .25

BetPΩY2 .70 .30

(27)

As .75 × .3 > .7 × .25, BetPΩY1
×ΩY2 reaches its valid maximum at {1, ⋆},

which implies that:

• Y1 is associated with X1,

• Y2 has disappeared.

This decision is then different from the previous one.

Let us also remark that the introduction of a rejection decision, as pre-
sented in Section 2.3, can also imply a different decision according to the
Xi or Yj points of view. For instance, by choosing c0 equal to 0.5 in the
Example 2, from X1 the same decision is made as BetPΩX1 ({2}) ≥ 1 − c0,
however as BetPΩY1

×ΩY2 ({⋆, 1}) < 1 − c0, the decision made according to
the Yj is d0 (a rejection).

A practical solution consists in choosing a decision by favouring either
the perceived objects or the known objects.

However, to relativize this problem, conflicting decisions happen in very
few cases in the particular application described in Section 5, less than 1%
of the cases in this example.

4. Discussion

4.1. What’s new in comparison to Rombaut and Gruyer’s approaches?

The approach presented in this article differs mainly from Rombaut and
Gruyer’s approaches [23, 16] by regarding two points:

1. the combination of BBAs m
ΩXi

j = mΩi,j↑ΩXi and m
ΩYj

i = m
Ωi,j↑ΩYj ;

2. the decision-making process.
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In both Rombaut’s approach [23] and Gruyer’s approach [16], BBAs

m
ΩXi

j and m
ΩYj

i are not classically conjunctively combined with (14). To
simplify the combination and to make it computationally efficient, it is pro-
posed to allocate masses only on singletons and the universe. Thus the
following mergers are proposed, ∀i ∈ I:

m
ΩXi

Rombaut({∅}) = mΩXi ({∅})

m
ΩXi

Rombaut({k}) = mΩXi ({k}), ∀k ∈ J,

m
ΩXi

Rombaut({⋆}) = mΩXi ({⋆})

m
ΩXi

Rombaut(ΩXi
) = 1 − mΩXi ({∅}) − mΩXi ({⋆})

−
∑

k∈J

mΩXi ({k}).

(28)

In [16], the authors suggest a decision-making system based on BBAs

mΩXi and m
ΩYj whose focal elements, thanks to Rombaut’s combination,

are either a singleton or the universe. In outline:

• An association matrix N × M is built such that each of its elements
(i, j) is equal to the product mΩXi ({j})×m

ΩYj ({i}). Each row i is then
associated with a perceived object Xi, and each column j is associated
with a known object Yj .

• If necessary, fictive objects are added to make the latter matrix squared.

• A coupling algorithm, the Hungarian algorithm, is then applied to this
matrix, this latter algorithm providing an optimal decision regarding
the sum of the beliefs.

• A final treatment deals with the objects appearance.

Applied to the examples presented in [23] and [16], the model presented
in this article and Gruyer’s approach lead to the same results.

Example 4 (Rombaut [23]). Let us consider two perceived objects Xi and
two known objects Yj, s.t.:







mΩ1,1({y1,1}) = 0.8
mΩ1,1({n1,1}) = 0.1
mΩ1,1(Ω1,1) = 0.1







mΩ1,2({y1,2}) = 0.7
mΩ1,2({n1,2}) = 0.2
mΩ1,2(Ω1,2) = 0.1







mΩ2,1({y2,1}) = 0.8
mΩ2,1({n2,1}) = 0.1
mΩ2,1(Ω1,1) = 0.1







mΩ2,2({y2,2}) = 0.6
mΩ2,2({n2,2}) = 0.3
mΩ2,2(Ω2,2) = 0.1

(29)
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By expressing these beliefs over ΩX1
and ΩX2

, it is obtained:











m
ΩX1

1 ({1}) = 0.8

m
ΩX1

1 ({1}) = 0.1

m
ΩX1

1 (ΩX1
) = 0.1











m
ΩX1

2 ({2}) = 0.7

m
ΩX1

2 ({2}) = 0.2

m
ΩX1

2 (ΩX1
) = 0.1











m
ΩX2

1 ({1}) = 0.8

m
ΩX2

1 ({1}) = 0.1

m
ΩX2

1 (ΩX2
) = 0.1











m
ΩX2

2 ({2}) = 0.6

m
ΩX2

2 ({2}) = 0.3

m
ΩX2

2 (ΩX2
) = 0.1

Pignistic probabilities are then defined by:

A {1} {2} {⋆}

BetPΩX1 0.57 0.34 0.09

BetPΩX2 0.65 0.25 0.10

(30)

Thus BetPΩX1
×ΩX2 reaches its valid maximum at {2, 1}, and regarding the

Xi:

1. X1 is associated with Y2;

2. X2is associated with Y1;

By expressing the beliefs regarding objects Yj, we have:











m
ΩY1

1 ({1}) = 0.8

m
ΩY1

1 ({1}) = 0.1

m
ΩY1

1 (ΩY1
) = 0.1











m
ΩY1

2 ({2}) = 0.8

m
ΩY1

2 ({2}) = 0.1

m
ΩY1

2 (ΩY1
) = 0.1











m
ΩY2

1 ({1}) = 0.7

m
ΩY2

1 ({1}) = 0.2

m
ΩY2

1 (ΩY2
) = 0.1











m
ΩY2

2 ({2}) = 0.6

m
ΩY2

2 ({2}) = 0.3

m
ΩY2

2 (ΩY2
) = 0.1

Then:
A {1} {2} {⋆}

BetPΩY1 0.47 0.47 0.06

BetPΩY2 0.52 0.33 0.15

(31)

Conclusion from Y1’s and Y2’s point of view:

1. BetPΩX1
×ΩX2 ’s maximum for a valid association is obtained in {2, 1},

then Y1 is associated with X2, and Y2 is associated with X1.

Example 5 (Gruyer [16]). In this example, three perceived objects (Xi)
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and four objects (Yj) are considered such that:






mΩ1,1({y1,1}) = 0.80
mΩ1,1({n1,1}) = 0
mΩ1,1(Ω1,1) = 0.20







mΩ1,2({y1,2}) = 0
mΩ1,2({n1,2}) = 0.99
mΩ1,2(Ω1,2) = 0.01







mΩ1,3({y1,3}) = 0
mΩ1,3({n1,3}) = 0.97
mΩ1,3(Ω1,3) = 0.03







mΩ1,4({y1,4}) = 0
mΩ1,4({n1,4}) = 0.99
mΩ1,4(Ω1,4) = 0.01







mΩ2,1({y2,1}) = 0.57
mΩ2,1({n2,1}) = 0
mΩ2,1(Ω2,1) = 0.43







mΩ2,2({y2,2}) = 0.57
mΩ2,2({n2,2}) = 0
mΩ2,2(Ω2,2) = 0.43







mΩ2,3({y2,3}) = 0
mΩ2,3({n2,3}) = 0.52
mΩ2,3(Ω2,3) = 0.48







mΩ2,4({y2,4}) = 0
mΩ2,4({n2,4}) = 0.99
mΩ2,4(Ω2,4) = 0.01







mΩ3,1({y3,1}) = 0
mΩ3,1({n3,1}) = 0.99
mΩ3,1(Ω3,1) = 0.01







mΩ3,2({y3,2}) = 0.61
mΩ3,2({n3,2}) = 0
mΩ3,2(Ω3,2) = 0.39







mΩ3,3({y3,3}) = 0
mΩ3,3({n3,3}) = 0.52
mΩ3,3(Ω3,3) = 0.48







mΩ3,4({y3,4}) = 0
mΩ3,4({n3,4}) = 0.99
mΩ3,4(Ω3,4) = 0.01

Pignistic probabilities regarding objects Xi are given by:

A {1} {2} {3} {4} {⋆}

BetPΩX1 0.90 0.00 0.00 0.00 0.10

BetPΩX2 0.44 0.44 0.03 0.00 0.08

BetPΩX3 0.00 0.77 0.06 0.00 0.16

(32)

The association result can be obtained from Algorithm 1. However, when
numerous probabilities are equal to zero, the following Algorithm 2 can be
employed.

The use of Algorithm 2 on this example is illustrated in Figure 3.

BetPΩX1
×ΩX2

×ΩX3 reaches its maximum .9× .08× .77 at {1, ⋆, 2}. Thus:

1. X1 is associated with Y1;
2. X2 has appeared;
3. X3 is associated with Y2;
4. then Y3 and Y4 have disappeared.

On the other side, by considering Yjs’ points of view:

A {1} {2} {3} {⋆}

BetPΩY1 0.69 0.26 0.00 0.05

BetPΩY2 0.00 0.42 0.49 0.09

BetPΩY3 0.01 0.20 0.20 0.59

BetPΩY4 0.05 0.05 0.05 0.985

(33)

BetPΩY1
×ΩY2

×ΩY3
×ΩY4 reaches its maximum .69×.49×.59×.985 at {1, 3, ⋆, ⋆}.

Then:
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{3} − (0.03)

{2} − (0.77)

{⋆} − (0.08)

{2} − (0.44)

{1} − (0.90) {3} − (0.06)

{⋆} − (0.08)

{2} − (0.44)

{⋆} − (0.16) {⋆} − (0.08)

{3} − (0.03)

{3} − (0.03)

{2} − (0.77)

{⋆} − (0.08)

{2} − (0.44)

{⋆} − (0.10) {3} − (0.06)

{⋆} − (0.08)

{1} − (0.44)

{2} − (0.44)

{⋆} − 0.16

{3} − (0.03)

{⋆} − (0.08)

BetPΩX1 BetPΩX3 BetPΩX2

Figure 3: Illustration of the use of Algorithm 2 on Example 5
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Algorithm 2: Decision regarding the perceived objects Xi

Data: BetPΩXi , i ∈ I = {1, . . . , N}, pignistic probabilities of each
perceived object Xi.

Result: The decision maximizing BetPΩX1
×...×ΩXN and verifying the

association constraints
begin

• Rank in decreasing order the pignistic probabilities BetPΩXi

according to the number of singletons which probabilities are equal
to zero.

• Delete each branch which do not correspond to a valid association

• Compute the products of the pignistic probabilities on each branch

• Select the association maximizing the products

end

• Y1 is associated with X1;

• Y2 is associated with X3;

• Y3 has disappeared;

• Y4 has disappeared;

• and, X2 has appeared.

In this example, the solution proposed by Gruyer in [16] leads to the same
conclusion.

4.2. About Ristic and Smets’ approach

The problem tackled by Ristic and Smets in [22] is somewhat different
from the association problem described in this article. Ristic and Smets
consider a given volume of interest containing an unknown number of ob-
jects. While sensors we consider give information regarding the associations
of each object detected at a time step t, with previous objects detected at
a previous time step t − 1, Ristic and Smets’s sensors provide information
regarding the class of each object they have detected in the scene, for in-
stance helicopter, airplane, . . . The “association problem” they try to solve
consists then in determining the number of objects as well as the class of
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each one. Besides, the appearance and disappearance of objects do not take
directly part of their problem. The application of Ristic and Smets’ works
to our problem is consequently not straightforward.

However, some technical points of this model should be taken into ac-
count and investigated.

Following [10], the authors remark that the mass given to the empty set,
after conjunctively combining two BBAs expressing themselves on the class
of two different objects is equal to the belief that these two objects do not
belong to the same class, an idea already present in [1] (multi-sensor fusion
for submarine detection) and in [25] (intelligence clustering).

At last, the criteria the authors maximize is based on the plausibility of
each possible associations. As justified in [28], the pignistic transformation
has been chosen to make the decision in this article. A first investigation in
the direction of the plausibility consists in using the plausibility-probability
transformation [5].

5. Results on real data

In this section, the approach presented in this article (Section 3) is com-
pared to the approach of Rombaut and Gruyer on real data coming from a
DV camera placed behind the windshield of a car. This DV camera has a
CCD sensor, a 720 × 576 pixels resolution, an angle ranging from −0.5 to
+0.5 radians (i.e. approximately ±30◦), and works at 25 images per second
(∆t = .04s), a filmed image example being presented in Figure 4.

The video sequence allowing one to compare the two approaches includes
about 3250 images corresponding to a 130-second playing time. Each images
contains 1 to 6 objects. The distribution of the number of objects in each
image is illustrated in Figure 5. It can be observed that the sequence to
analyse is mainly composed of images with 1 object, 2 objects, 3 objects or
more.

During the sequence, 75 distinct objects were manually identified as
illustrated in Figure 4 (no automatic treatment of the images), the number
of associations to realize being equal to 6800. The ground truth is then
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Figure 4: Four vehicles in a selected image in the sequence.

Figure 5: Number of objects in each image during the sequence.

known. It allows us to compute the good recognition rate (GRR) of each
approach during this sequence. Formally, this rate is defined as follows:

GRR =
Number of correct associations

Number of association to realize
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In the same manner, the rejection rate (RR) and the error rate (ER) are
defined by:

RR =
Number of rejections

Number of association to realize

ER =
Number of incorrect associations

Number of association to realize
.

The sum of these rates is equal to 1.
Distance and angle criteria allow the creation of two mass functions

m
Ωi,j

distance and m
Ωi,j

angle, regarding the association between each perceived ob-
ject Xi and known object Yj .

The distance was estimated as a function of the height and the width in
pixels of the object observed in the scene thanks to an interpolation method
illustrated in Figure 6.

On the other hand, the angle between two objects is computed from the
gravity centre of the perceived object in the image (Figure 4).

The measurements provided are very noisy. For instance, there can be
a variation of 20m for the same object from an image to the next one.
Likewise, angle variations can be as high as 100%, from 0.01rd to 0.02rd for
two consecutive measurements of the same object.

Figure 6: Interpolation function giving the distance in meter depending on the height and

the width in pixels of the object in the scene.
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In this application, masses are fixed in the following way:











mΩi,j ({yi,j}) = β φi,j(ei,j)

mΩi,j ({ni,j}) = β (1 − φi,j(ei,j))

mΩi,j (Ωi,j) = 1 − β

(34)

where:

• 0 < β < 1 is a constant representing the degree of reliability of the
source of information (cf the discounting operation [26, page 252], see
[18, 21] for other correction mechanisms).

• φi,j(.) is a monotone decreasing function s.t. φi(0) = 1 and lim
e→∞

φi(e) =

0;

• ei,j is the dissimilarity measure between the perceived object Xi and
the known object Yj , which means the difference of distance and the
difference of angle in this application.

The function φi,j is chosen as follows [8]:

φi,j(ei,j) = exp(−(ei,j)
2). (35)

Constant β being fixed at 0.9, these two mass functions are combined
thanks to the Dempster’s rule of combination to obtain a mass function
mΩi,j :

mΩi,j = m
Ωi,j

distance ⊕ m
Ωi,j

angle ∀i ∈ I,∀j ∈ J . (36)

The association model presented in Section 3 only need one BBA ex-
pressing the information regarding the association between object Xi and
object Yj . In this application, we are lucky enough to have two information
sources. Thus these two pieces of information are firstly combined using a
well justified rule for the combination of two distinct sources. The choice
to combine theses sources at this step, and the choice of the rule have been
left for further study.

In Figure 7, the good recognition rate of the two approaches presented in
this article obtained in this video sequence is represented as a function of the
rejection cost (Section 2.3). It can be observed that as soon as the rejection
cost becomes greater than 0, the good recognition rates obtained with the
conjunctive combination are greater than those obtained with Rombaut’s
combination, which is recalled to be also used in Gruyer’s approach.

23



Let us note that the decisions have been computed on the basis of the
perceived objects. As mentioned in Section 3.4, these decisions are not nec-
essary identical with those computed from the known objects point of view.
However, as illustrated in Figure 8, this conflicting decision rate remains
very low in this application (from 0% to less than 1% depending on the
rejection cost). Let us also recall that, as illustrated at the end of Example
2, the introduction of a rejection cost enhances the appearance of conflicting
decisions.

Figure 7: Good recognition rate in function of the rejection cost.

Figure 8: Conflicting decision rate in function of the rejection cost.

6. Conclusion and prospects

In this article, a modelling of the association problem in the belief func-
tion framework has been presented. It has been shown in particular, how
tools from the theory of belief functions such as the vacuous extension, the
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conjunctive combination rule and the pignistic transformation can be ap-
plied. Validated on real data, this approach can perform better good recog-
nition rates than Rombaut’s initial approach as soon as a rejection cost is
introduced.

Concerning the prospects, even if it concerns a reduce number of cases,
the resolution of the possible conflicting decisions between perceived and
known objects have to be deeper investigated, even if it seems an integral
part of this problem.

The decomposition of the BBAs [11] expressing the beliefs regarding
the associations between known objects and perceived objects could also be
studied in order to use a more adapted rule.

Subsequently, this approach should be enhanced by introducing informa-
tion coming from the tracking of vehicles at time steps preceding the current
analysis.
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