Corrigendum to "Belief Functions Contextual Discounting and Canonical Decompositions" [International Journal of Approximate Reasoning 53 (2012) 146-158]

David Mercier, Frédéric Pichon, Éric Lefèvre
Univ. Artois, EA 3926, Laboratoire de Génie Informatique et d'Automatique de l'Artois (LGI2A), Béthune, F-62400, France

We hereby correct Proposition 4 and Theorem 1 in [2], which contained erroneous results.

Let us first recall the problem. A source S of information provides to agent $A g$ a piece of information represented by a mass function m_{S}^{Ω} (with $\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}$), simply denoted by m in this corrigendum. Let \mathcal{A} be a non empty set of subsets of Ω called contexts. Agent $A g$ owns a metaknowledge regarding the reliability of S conditionally on each set $A \in \mathcal{A}$. Formally, for all $A \in \mathcal{A}$, we suppose that

$$
\begin{cases}m_{A g}^{\mathcal{R}}[A](\{R\}) & =1-\alpha_{A}=\beta_{A} \tag{1}\\ m_{A g}^{\mathcal{R}}[A](\mathcal{R}) & =\alpha_{A},\end{cases}
$$

where $\alpha_{A} \in[0,1]$ and $\mathcal{R}=\{R, N R\}$ (R meaning the source is reliable, $N R$ otherwise), and the notation $m[\cdot]$ denotes conditioning.

With the same reasoning as in [1] (where \mathcal{A} was supposed to form a partition of Ω), the knowledge $m_{A g}^{\Omega}$ held by agent $A g$ on Ω, based on the information m provided by S and his metaknowledge regarding S represented by (1) for all $A \in \mathcal{A}$, can be obtained by the following computation,

$$
\begin{equation*}
\left(m^{\Omega}[\{R\}]^{\Uparrow \Omega \times \mathcal{R}} \oplus_{A \in \mathcal{A}} m^{\mathcal{R}}[A]^{\Uparrow \Omega \times \mathcal{R}}\right)^{\downarrow \Omega}, \tag{2}
\end{equation*}
$$

where symbol \Uparrow and \downarrow denote, respectively, the deconditioning and projection operations, and $m^{\Omega}[\{R\}]=m$.

[^0]It is stated in [2] that, for $\mathcal{A}=2^{\Omega}$ (Proposition 4) and more generally for any set \mathcal{A} of contexts (Theorem 1), Equation (2) is equivalent to

$$
\begin{equation*}
m(())\left(\left(_{A \in \mathcal{A}} A_{\beta_{A}}\right) .\right. \tag{3}
\end{equation*}
$$

This statement is incorrect. In the general case, for any non empty \mathcal{A}, Equation (2) is equivalent to

$$
\begin{equation*}
m\left(()\left(\cap_{A \in \mathcal{A}} \bar{A}^{\alpha_{A}}\right),\right. \tag{4}
\end{equation*}
$$

as shown by the following proof, which corrects Theorem 1 from [2]. The fact that, in general, (4) is not equivalent to (3) (and particularly when $\mathcal{A}=2^{\Omega}$), and therefore (2) is not equivalent in general to (3), is shown below by Example 1.

Proof 1. Let us denote by $A_{i}, i \in I=\{1, \ldots, n\}$, the contexts present in \mathcal{A}, and let us write $\beta_{A_{i}}$ simply by β_{i}, for all $i \in I$. For all $A_{i} \in \mathcal{A}$, the deconditioning of $m^{\mathcal{R}}\left[A_{i}\right]$ over $\Omega \times \mathcal{R}$ is given by

$$
\begin{align*}
m^{\mathcal{R}}\left[A_{i}\right]^{\Uparrow \Omega \times \mathcal{R}}\left(A_{i} \times\{R\} \cup \overline{A_{i}} \times \mathcal{R}\right) & =\beta_{i}, \tag{5a}\\
m^{\mathcal{R}}\left[A_{i}\right]^{\Uparrow \Omega \times \mathcal{R}}(\Omega \times \mathcal{R}) & =\alpha_{i} . \tag{5b}
\end{align*}
$$

Moreover, for all $\left(A_{i}, A_{j}\right) \in \mathcal{A}^{2}$, such that $j \neq i$,

$$
\begin{aligned}
& \left(A_{i} \times\{R\} \cup \overline{A_{i}} \times \mathcal{R}\right) \cap\left(A_{j} \times\{R\} \cup \overline{A_{j}} \times \mathcal{R}\right) \\
= & \left(A_{i} \cap A_{j}\right) \times\{R\} \cup\left(A_{i} \cap \overline{A_{j}}\right) \times\{R\} \cup\left(\overline{A_{i}} \cap A_{j}\right) \times\{R\} \cup \overline{\left(A_{i} \cup A_{j}\right)} \times \mathcal{R} \\
= & \left(A_{i} \cup A_{j}\right) \times\{R\} \cup \overline{\left(A_{i} \cup A_{j}\right)} \times \mathcal{R} .
\end{aligned}
$$

With \mathcal{A} composed of two elements denoted by A_{i} and A_{j}, we then have

$$
\left\{\begin{array}{cll}
\left(m^{\mathcal{R}}\left[A_{i}\right]^{\Uparrow \Omega \times \mathcal{R}} \odot m^{\mathcal{R}}\left[A_{j}\right]^{\uparrow \Omega \times \mathcal{R}}\right)\left(\left(A_{i} \cup A_{j}\right) \times\{R\} \cup \overline{\left(A_{i} \cup A_{j}\right)} \times \mathcal{R}\right) & =\beta_{i} \beta_{j} \\
\left(m^{\mathcal{R}}\left[A_{i}\right]^{\Uparrow \Omega \mathcal{R}} \odot m^{\mathcal{R}}\left[A_{j}\right] \Uparrow \Omega \times \mathcal{R}\right)\left(A_{i} \times\{R\} \cup \overline{A_{i}} \times \mathcal{R}\right) & =\beta_{i} \alpha_{j} \\
\left(m^{\mathcal{R}}\left[A_{i}\right]^{\uparrow \times \mathcal{R}} \odot m^{\mathcal{R}}\left[A_{j}\right] \Uparrow \Omega \times \mathcal{R}\right)\left(A_{j} \times\{R\} \cup \overline{A_{j}} \times \mathcal{R}\right) & =\alpha_{i} \beta_{j} \\
\left(m^{\mathcal{R}}\left[A_{i}\right]^{\left.\left.1 \uparrow \times \mathcal{R} \times m^{\mathcal{R}}\left[A_{j}\right]\right]^{\Uparrow \Omega \times \mathcal{R}}\right)(\Omega \times \mathcal{R})}\right. & =\alpha_{i} \alpha_{j}
\end{array}\right.
$$

In other words, all the focal elements of $\oplus_{A \in \mathcal{A}} m^{\mathcal{R}}[A]^{\uparrow \Omega \times \mathcal{R}}$ are the elements $C \times\{R\} \cup \bar{C} \times \mathcal{R}$ with C composed of a union of elements A_{i} in \mathcal{A}, I^{\prime} being the set of indices of the A_{i} 's, which means with $C=\cup_{i \in I^{\prime} \subseteq I} A_{i}$. Moreover, each focal element has a mass equal to $\prod_{i \in I^{\prime}} \beta_{i} \prod_{j \in I \backslash I^{\prime}} \alpha_{j}$. Let us note that this latter result is also true if \mathcal{A} is composed of one element $A \subseteq \Omega$ (directly from Equations (5)).

By induction, we can show that this property remains true with \mathcal{A} composed of n contexts $A_{i}, i \in I=\{1, \ldots, n\}$. Indeed, let us suppose the property true with \mathcal{A} composed of $n-1$ contexts $A_{i}, i \in I=\{1, \ldots, n-1\}$, we then have for all focal elements $C \times\{R\} \cup \bar{C} \times \mathcal{R}$ of $๑_{i \in I} m^{\mathcal{R}}\left[A_{i}\right]^{\Uparrow \Omega \times \mathcal{R}}$, with $C=\cup_{i \in I^{\prime} \subseteq I} A_{i}$,

$$
\begin{aligned}
&\left(๑_{i \in I} m^{\mathcal{R}}\left[A_{i}\right]^{\Uparrow \Omega \times \mathcal{R}} \odot m^{\mathcal{R}}\left[A_{n}\right]^{\Uparrow \Omega \times \mathcal{R}}\right)\left(\left(C \cup A_{n}\right) \times\{R\} \cup \overline{\left(C \cup A_{n}\right)} \times \mathcal{R}\right) \\
&=\beta_{n} \prod_{i \in I^{\prime}} \beta_{i} \prod_{j \in I \backslash I^{\prime}} \alpha_{j}=\prod_{i \in I^{\prime} \cup\{n\}} \beta_{i} \prod_{j \in(I \cup\{n\}) \backslash\left(I^{\prime} \cup\{n\}\right)} \alpha_{j},
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(๑_{i \in I} m^{\mathcal{R}}\left[A_{i}\right]^{\Uparrow \Omega \times \mathcal{R}} \odot m^{\mathcal{R}}\left[A_{n}\right]^{\Uparrow \Omega \times \mathcal{R}}\right)(C \times\{R\} \cup \bar{C} \times \mathcal{R}) \\
&=\alpha_{n} \prod_{i \in I^{\prime}} \beta_{i} \prod_{j \in I \backslash I^{\prime}} \alpha_{j}=\prod_{i \in I^{\prime}} \beta_{i} \prod_{j \in(I \cup\{n\}) \backslash I^{\prime}} \alpha_{j}
\end{aligned}
$$

which means that focal elements of $@_{i \in\{1, \ldots, n-1\}} m^{\mathcal{R}}\left[A_{i}\right]^{\uparrow \Omega \times \mathcal{R}} \odot m^{\mathcal{R}}\left[A_{n}\right]^{\Uparrow \Omega \times \mathcal{R}}$ are also of the form $C \times\{R\} \cup \bar{C} \times \mathcal{R}$, with $C=\cup_{i \in I^{\prime} \subseteq I} A_{i}, I=\{1, \ldots, n\}$, $A_{i} \in \mathcal{A}$, and have for mass: $\prod_{i \in I^{\prime}} \beta_{i} \prod_{j \in I \backslash I^{\prime}} \alpha_{j}$.

Besides, for all $B \subseteq \Omega$,

$$
m^{\Omega}[\{R\}]^{\Uparrow \Omega \times \mathcal{R}}(B \times\{R\} \cup \Omega \times\{N R\})=m(B)
$$

and, for all $B \subseteq \Omega$, for all $C=\cup_{i \in I^{\prime} \subseteq I} A_{i}$,

$$
(C \times\{R\} \cup \bar{C} \times \mathcal{R}) \cap(B \times\{R\} \cup \Omega \times\{N R\})=B \times\{R\} \cup \bar{C} \times\{N R\}
$$

Therefore, after the projection on $\Omega,\left(m^{\Omega}[\{R\}]^{\Uparrow \Omega \times \mathcal{R}^{@}}{ }_{A \in \mathcal{A}} m^{\mathcal{R}}[A]^{\Uparrow \Omega \times \mathcal{R}}\right)^{\downarrow \Omega}$ consists in transferring a part $\prod_{i \in I^{\prime}} \beta_{i} \prod_{j \in I \backslash I^{\prime}} \alpha_{j}$ of each mass $m(B), B \subseteq$ Ω, from B to $B \cup \bar{C}$, for all $C=\cup_{i \in I^{\prime} \subseteq I} A_{i}$.

On the other hand, $m(())\left(\cap_{A \in \mathcal{A}} \bar{A}^{\sigma_{A}}\right)$ can be written as

$$
m\left(()\left(\cap_{i \in I}{\overline{A_{i}}}^{\alpha_{i}}\right)=m\left(() \left(\cap_{i \in I}\left\{\begin{array}{ccc}
\Omega & \mapsto & \alpha_{i} \\
\frac{A_{i}}{i} & \mapsto & \beta_{i}
\end{array}\right) .\right.\right.\right.
$$

As for all $(i, j) \in I^{2}$ s.t. $i \neq j, \overline{A_{i}} \cap \overline{A_{j}}=\overline{A_{i} \cup A_{j}}$, it can be shown (with an induction for example) that the focal elements of $\bigcap_{i \in I}{\overline{A_{i}}}^{\alpha_{i}}$ are the elements \bar{C} with $C=\cup_{i \in I^{\prime} \subseteq I} A_{i}$ and have a mass equal to $\prod_{i \in I^{\prime}} \beta_{i} \prod_{j \in I \backslash I^{\prime}} \alpha_{j}$.

Consequently, operation $m(1)\left(\cap_{i \in I} \bar{A}_{i}^{\alpha_{i}}\right)$ also consists in transferring a part $\prod_{i \in I^{\prime}} \beta_{i} \prod_{j \in I \backslash I^{\prime}} \alpha_{j}$ of each mass $m(B), B \subseteq \Omega$, from B to $B \cup \bar{C}$, for all $C=\cup_{i \in I^{\prime} \subseteq I} A_{i}$. We can then conclude that Equations (2) and (4) are equivalent for any non empty set of contexts \mathcal{A}.

Example 1. Let us consider $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$ and $\mathcal{A}=2^{\Omega}$, and let us denote $\alpha_{\left\{\omega_{1}\right\}}$ by $\alpha_{1}, \alpha_{\left\{\omega_{2}\right\}}$ by α_{2}, and α_{Ω} by α_{12}. Equation (4) gives

$$
\begin{aligned}
& m \text { (()) }\left(\cap_{A \in \mathcal{A}} \bar{A}^{\alpha_{A}}\right) \\
& =m \text { (() } \quad\left(\bar{\emptyset}^{\alpha_{\emptyset}} \cap{\overline{\left\{\omega_{1}\right\}}}^{\alpha_{1}} \cap\left\{{\overline{\left.\omega_{2}\right\}}}^{\alpha_{2}} \cap \bar{\Omega}^{\alpha_{12}}\right)\right. \\
& =m \quad(1) \quad\left(\left\{\omega_{2}\right\}^{\alpha_{1}} \cap\left\{\omega_{1}\right\}^{\alpha_{2}} \cap \emptyset^{\alpha_{12}}\right) \\
& =m(())\left(\begin{array} { c c c }
{ \{ \omega _ { 2 } \} } & { \mapsto } & { \beta _ { 1 } } \\
{ \Omega } & { \mapsto } & { \alpha _ { 1 } }
\end{array} \cap \left\{\begin{array}{ccc}
\left\{\omega_{1}\right\} & \mapsto & \beta_{2} \\
\Omega & \mapsto & \alpha_{2}
\end{array} ๑\left\{\begin{array}{lll}
\emptyset & \mapsto & \beta_{12} \\
\Omega & \mapsto & \alpha_{12}
\end{array}\right)\right.\right. \\
& =m \text { (L) }\left\{\begin{array}{rll}
\emptyset & \mapsto & \beta_{1} \beta_{2} \alpha_{12}+\beta_{12} \\
\left\{\omega_{1}\right\} & \mapsto & \alpha_{1} \beta_{2} \alpha_{12} \\
\left\{\omega_{2}\right\} & \mapsto & \beta_{1} \alpha_{2} \alpha_{12} \\
\Omega & \mapsto & \alpha_{1} \alpha_{2} \alpha_{12}
\end{array}\right. \text {. }
\end{aligned}
$$

In contrast, Equation (3) leads to

$$
\begin{aligned}
& \left.m \text { (1) ((1) } A_{A \in \mathcal{A}} A_{\beta_{A}}\right) \\
& =m \text { (1) } \emptyset_{\beta_{\emptyset}}(1)\left\{\omega_{1}\right\}_{\beta_{1}}(1)\left\{\omega_{2}\right\}_{\beta_{2}}\left(() \Omega_{\beta_{12}}\right. \\
& =m \text { (()) }\left\{\omega_{1}\right\}_{\beta_{1}}(1)\left\{\omega_{2}\right\}_{\beta_{2}}(1) \Omega_{\beta_{12}} \\
& =m \text { (()) }\left\{\begin{array} { c c c }
{ \emptyset } & { \mapsto } & { \beta _ { 1 } } \\
{ \{ \omega _ { 1 } \} } & { \mapsto } & { \alpha _ { 1 } }
\end{array} (\bigcirc) \left\{\begin{array} { c c c }
{ \emptyset } & { \mapsto } & { \beta _ { 2 } } \\
{ \{ \omega _ { 2 } \} } & { \mapsto } & { \alpha _ { 2 } }
\end{array} \left(\begin{array}{lll}
\emptyset & \mapsto & \beta_{12} \\
\Omega & \mapsto & \alpha_{12}
\end{array}\right.\right.\right. \\
& =m \text { (1) }\left\{\begin{array}{rll}
\emptyset & \mapsto & \beta_{1} \beta_{2} \beta_{12} \\
\left\{\omega_{1}\right\} & \mapsto & \alpha_{1} \beta_{2} \beta_{12} \\
\left\{\omega_{2}\right\} & \mapsto & \beta_{1} \alpha_{2} \beta_{12} \\
\Omega & \mapsto & \alpha_{1} \alpha_{2} \beta_{12}+\alpha_{12}
\end{array} .\right.
\end{aligned}
$$

To summarize, in [1], the equivalence was shown between (2) and (3) when \mathcal{A} forms a partition of Ω. This corrigendum shows that this equivalence does not hold for any \mathcal{A}, and that (2) is actually equivalent to (4) for any (non empty) \mathcal{A}.

References

References

[1] D. Mercier, B. Quost and T. Denœux. Refined modeling of sensor reliability in the belief function framework using contextual discounting. Information Fusion, volume 9, pages 246-258, 2008.
[2] D. Mercier, É. Lefèvre and F. Delmotte. Belief Functions Contextual Discounting and Canonical Decompositions. International Journal of Approximate Reasoning, volume 53, pages 146-158, 2012.

[^0]: Email addresses: david.mercier@univ-artois.fr (David Mercier), frederic.pichon@univ-artois.fr (Frédéric Pichon), eric.lefevre@univ-artois.fr (Éric Lefèvre)

